JP2015218706A - Internal combustion engine ignition control device - Google Patents

Internal combustion engine ignition control device Download PDF

Info

Publication number
JP2015218706A
JP2015218706A JP2014105269A JP2014105269A JP2015218706A JP 2015218706 A JP2015218706 A JP 2015218706A JP 2014105269 A JP2014105269 A JP 2014105269A JP 2014105269 A JP2014105269 A JP 2014105269A JP 2015218706 A JP2015218706 A JP 2015218706A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
control device
required voltage
ignition control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014105269A
Other languages
Japanese (ja)
Inventor
喜幸 後藤
Yoshiyuki Goto
喜幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014105269A priority Critical patent/JP2015218706A/en
Priority to PCT/JP2015/002348 priority patent/WO2015177978A1/en
Publication of JP2015218706A publication Critical patent/JP2015218706A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine ignition control device capable of executing plug replacement at more appropriate replacement timing.SOLUTION: An ignition control device of an on-vehicle internal combustion engine 10 mounting therein an ignition plug 40 that includes counter electrodes 41 and 42, stores a load condition of the internal combustion engine 10 during driving of a vehicle, and calculates a required voltage necessary to generate spark discharge of the ignition plug 40 on the basis of a history of the stored load condition. The ignition control device determines the replacement timing of the ignition plug 40 on the basis of the calculated required voltage. That is, the ignition control device calculates a current electrode distance between the counter electrodes 41 and 42 in light of the history of the load condition, and calculates the required voltage on the basis of the calculated current electrode distance and an occasional operating state of the internal combustion engine 10.

Description

本発明は、自動車等の車両に搭載される内燃機関の点火制御装置に関する。   The present invention relates to an ignition control device for an internal combustion engine mounted on a vehicle such as an automobile.

内燃機関の燃焼室内に火花放電を生じさせる点火プラグの電極は、火花放電の繰り返しによって次第に消耗し、その電極間距離が次第に長くなる。電極間距離が長くなると、電極間に火花放電を生じさせるために必要となる要求電圧が上昇し、要求電圧が点火プラグの耐圧を超えてしまうと、点火プラグの損傷に伴う不都合が生じるおそれがある。   The electrodes of the spark plug that cause spark discharge in the combustion chamber of the internal combustion engine are gradually consumed due to repeated spark discharge, and the distance between the electrodes gradually increases. If the distance between the electrodes is increased, the required voltage required to cause a spark discharge between the electrodes increases, and if the required voltage exceeds the withstand pressure of the spark plug, there may be a disadvantage associated with the damage of the spark plug. is there.

そこで、点火プラグに対する要求電圧が点火プラグの耐圧を超えないように、要求電圧を推定することが行われている。例えば、特許文献1では、機関回転速度と機関負荷とに基づいて要求電圧(推定値)を算出している。   Therefore, the required voltage is estimated so that the required voltage for the spark plug does not exceed the withstand voltage of the spark plug. For example, in Patent Document 1, the required voltage (estimated value) is calculated based on the engine rotation speed and the engine load.

特開2009−174354号公報JP 2009-174354 A

ところで、点火プラグの電極の消耗は車両ごとに異なると考えられる。そのため、安全サイドに考えれば点火プラグの交換時期を短めに定めておくことが望ましい。しかしながら、ユーザごとに運転パターンが異なること等を考慮すると、既存の技術では適正な交換時期で点火プラグが交換されているとは言えないと考えられる。この場合、例えば点火プラグがまだ寿命でない、すなわち電極摩耗がさほど生じていない状況であるにもかかわらず、点火プラグの交換が促されるといった不都合が生じると考えられる。   By the way, it is considered that the consumption of the electrode of the spark plug is different for each vehicle. For this reason, it is desirable that the replacement time of the spark plug be set short in view of the safety side. However, considering that the operation pattern is different for each user, it can be said that the existing technology does not say that the spark plug is replaced at an appropriate replacement timing. In this case, for example, it is considered that there is a problem that the replacement of the spark plug is promoted despite the fact that the spark plug has not yet reached the end of its life, that is, the electrode has not worn much.

本発明は、上記の問題点に鑑み、より適切なる交換時期でプラグ交換を実施できる内燃機関の点火制御装置を提供することを主たる目的とするものである。   In view of the above problems, it is a primary object of the present invention to provide an ignition control device for an internal combustion engine that can perform plug replacement at a more appropriate replacement timing.

本発明は、対向電極を有する点火プラグが搭載された車載の内燃機関の点火制御装置であって、車両運転時において、内燃機関の負荷条件を記憶する負荷条件記憶手段と、負荷条件記憶手段により記憶した負荷条件の履歴に基づいて点火プラグの火花放電の発生に必要となる要求電圧を算出する要求電圧算出手段と、算出された要求電圧に基づいて点火プラグの交換時期を判定する交換時期判定手段と、を備えることを特徴とする。   The present invention is an ignition control device for an on-vehicle internal combustion engine equipped with a spark plug having a counter electrode, and includes a load condition storage means for storing a load condition of the internal combustion engine and a load condition storage means during vehicle operation. A required voltage calculation means for calculating a required voltage required for generating spark discharge of the spark plug based on the stored load condition history, and a replacement timing determination for determining a replacement timing of the spark plug based on the calculated required voltage And means.

上記発明では、内燃機関の負荷条件の履歴に基づいて要求電圧を算出し、その要求電圧を用いてプラグ交換の実施時期を判定する。そのため、内燃機関の負荷条件の履歴の違いを考慮して、適切なる交換時期でのプラグ交換が可能となる。   In the above invention, the required voltage is calculated based on the load condition history of the internal combustion engine, and the execution time of the plug replacement is determined using the required voltage. Therefore, the plug can be replaced at an appropriate replacement time in consideration of the difference in the history of load conditions of the internal combustion engine.

内燃機関の概略図。1 is a schematic view of an internal combustion engine. 点火プラグの構造図。The structure of a spark plug. 電極の消耗量の算出のブロック図。The block diagram of calculation of the consumption amount of an electrode. 電極の消耗量算出のためのマップの説明図。Explanatory drawing of the map for electrode consumption amount calculation. プラグ交換時期判定のフローチャート。The flowchart of plug replacement time determination. 出力制限処理のフローチャート。The flowchart of an output restriction process.

以下、本発明にかかる内燃機関の点火制御装置について図面を参照しつつ説明する。なお、内燃機関はガソリンエンジン等であり、自動車等の車両の動力源として用いられる。   Hereinafter, an ignition control device for an internal combustion engine according to the present invention will be described with reference to the drawings. The internal combustion engine is a gasoline engine or the like, and is used as a power source for a vehicle such as an automobile.

図1に示されるように、各気筒11は、本体部を構成するエンジンブロックに形成されている。エンジンブロック上部のシリンダヘッドには、気筒11に形成された燃焼室11aに連通可能に吸気ポート13及び排気ポート14が形成されている。またシリンダヘッドには、カム軸の回転に伴い開閉駆動される吸気弁15と排気弁16とが装着されている。   As shown in FIG. 1, each cylinder 11 is formed in an engine block that constitutes a main body. An intake port 13 and an exhaust port 14 are formed in the cylinder head above the engine block so as to communicate with a combustion chamber 11 a formed in the cylinder 11. The cylinder head is mounted with an intake valve 15 and an exhaust valve 16 that are opened and closed as the camshaft rotates.

またエンジンブロックには、燃焼室11aに突出するように、インジェクタ18と点火プラグ40とが取り付けられている。インジェクタ18から噴射された燃料が、点火プラグ40の火花放電で燃焼すると、図示しないクランク軸が回転して機関回転速度NEが上昇する。   An injector 18 and a spark plug 40 are attached to the engine block so as to protrude into the combustion chamber 11a. When the fuel injected from the injector 18 burns by the spark discharge of the spark plug 40, a crankshaft (not shown) rotates and the engine speed NE increases.

ここで、図2を参照して点火プラグ40の構造を説明すると、点火プラグ40は、対向電極として中心電極41と接地電極42とを備えている。これらの各電極41,42は、所定の電極間距離を持つ放電ギャップGを挟んで互いに対向している。点火プラグ40において、中心電極41と接地電極42との間に火花放電を生じさせるために最低限必要となる電圧である要求電圧以上の電圧が印加されることにより、電極41,42間に火花放電が発生する。   Here, the structure of the spark plug 40 will be described with reference to FIG. 2. The spark plug 40 includes a center electrode 41 and a ground electrode 42 as counter electrodes. These electrodes 41 and 42 are opposed to each other with a discharge gap G having a predetermined inter-electrode distance. In the spark plug 40, a voltage higher than a required voltage, which is a minimum voltage necessary for generating a spark discharge, is applied between the center electrode 41 and the ground electrode 42, so that a spark is generated between the electrodes 41 and 42. Discharge occurs.

図1において、内燃機関10には、車両や内燃機関10の制御に必要となる各種のセンサが設けられている。例えば、クランク軸の回転に同期した信号を出力する回転速度センサ33、内燃機関10の冷却水温を検出する水温センサ34、吸気管内の圧力である吸気圧を検出する吸気圧センサ36、吸入空気量を検出するエアフローセンサ37、排気空燃比を検出する空燃比センサ38、図示を略すアクセルペダルの踏み込み量からアクセル開度を検出するアクセル開度センサ39などが含まれている。これらのセンサはECU30の入力側に接続されている。ECU30の出力側には、インジェクタ18、点火プラグ40等を含む各種のアクチュエータが接続されている。   In FIG. 1, the internal combustion engine 10 is provided with various sensors necessary for controlling the vehicle and the internal combustion engine 10. For example, a rotation speed sensor 33 that outputs a signal synchronized with the rotation of the crankshaft, a water temperature sensor 34 that detects a cooling water temperature of the internal combustion engine 10, an intake pressure sensor 36 that detects an intake pressure that is a pressure in the intake pipe, and an intake air amount An air flow sensor 37 that detects the exhaust air-fuel ratio, an air-fuel ratio sensor 38 that detects the exhaust air-fuel ratio, an accelerator opening sensor 39 that detects the accelerator opening from the amount of depression of an accelerator pedal (not shown), and the like. These sensors are connected to the input side of the ECU 30. Various actuators including the injector 18 and the spark plug 40 are connected to the output side of the ECU 30.

ECU30は、A/D変換部、CPU、RAM、ROM、フラッシュメモリ(不揮発性メモリ)などを備えて構成されている。ECU30は、上記の各センサ検出された内燃機関10のその時々の運転条件(負荷条件)に基づいて、ROMに記憶された各種プログラムをCPUが実行することにより、各アクチュエータを駆動して、内燃機関10の運転制御を行う。   The ECU 30 includes an A / D converter, a CPU, a RAM, a ROM, a flash memory (nonvolatile memory), and the like. The ECU 30 drives each actuator by causing the CPU to execute various programs stored in the ROM on the basis of the respective operating conditions (load conditions) of the internal combustion engine 10 detected by the sensors. Operation control of the engine 10 is performed.

具体的には、回転速度センサ33の出力に基づいて機関回転速度NEとクランク角とを検出する。また、機関回転速度NEとエアフローセンサ37で検出された吸入空気量とに基づいて機関負荷を算出する。またクランク角の検出値に基づいて燃料噴射時期、点火時期を決定する。そして吸入空気量及び機関負荷などに基づいて燃料噴射量を算出し、インジェクタ18を駆動するとともに、点火プラグ40を駆動して、中心電極41と接地電極42との間の放電ギャップGに電圧を印加する。   Specifically, the engine rotational speed NE and the crank angle are detected based on the output of the rotational speed sensor 33. Further, the engine load is calculated based on the engine rotational speed NE and the intake air amount detected by the air flow sensor 37. Further, the fuel injection timing and the ignition timing are determined based on the detected value of the crank angle. Then, the fuel injection amount is calculated based on the intake air amount and the engine load, and the injector 18 is driven and the spark plug 40 is driven so that a voltage is applied to the discharge gap G between the center electrode 41 and the ground electrode 42. Apply.

ところで、点火プラグの電極は、火花放電の繰り返しによって次第に消耗し、その電極間距離が次第に長くなる。電極間距離が長くなると、電極間で火花放電が生じにくくなるため、火花放電を発生させるために必要となる要求電圧が上昇する。そして、要求電圧が上昇して点火プラグの耐圧を超えることがあると、点火プラグの損傷や、燃焼室内で適切な火花放電が発生しないことで燃料が適正に燃焼しなくなるなどの不都合が生じうる。   By the way, the electrodes of the spark plug are gradually consumed due to repeated spark discharge, and the distance between the electrodes gradually increases. When the distance between the electrodes becomes longer, it becomes difficult for spark discharge to occur between the electrodes, and the required voltage required to generate spark discharge increases. If the required voltage increases and exceeds the pressure resistance of the spark plug, there may be inconveniences such as damage to the spark plug and the inability of proper spark discharge in the combustion chamber to prevent fuel from burning properly. .

点火プラグの電極の消耗は、内燃機関の負荷条件の履歴に応じて変わる。すなわち高負荷条件での運転の頻度が高くなるほど電極の消耗が進行しやすく、要求電圧が耐圧を超えるようになると、点火プラグの損傷に伴う不都合が生じるおそれがある。そこで、プラグの交換時期を予め定めておく場合に、高負荷条件での運転頻度が高い場合を基準として、点火プラグの交換時期を設定しておくことで、要求電圧が耐圧を超えることに伴う不具合の発生を回避できる。しかし、一方で、低負荷条件での運転頻度が高い場合には、点火プラグが未だ寿命に達していない状態でプラグ交換が実施されることになり、点火プラグの使用期間が短くなる不都合が生じてしまう。   The consumption of the spark plug electrode changes according to the load condition history of the internal combustion engine. That is, as the frequency of operation under a high load condition increases, the electrode is more easily consumed, and if the required voltage exceeds the withstand voltage, there may be a disadvantage associated with damage to the spark plug. Therefore, when the plug replacement time is determined in advance, the required voltage exceeds the withstand voltage by setting the replacement time of the spark plug with reference to the case where the operation frequency is high under high load conditions. The occurrence of defects can be avoided. However, on the other hand, when the frequency of operation under low load conditions is high, plug replacement is performed in a state where the spark plug has not yet reached the end of its life, resulting in inconvenience that the use period of the spark plug is shortened. End up.

近年では、燃焼室に吸入される空気量を増大するために過給器が採用されたり、高圧縮比化が検討されたりするなど、点火プラグに火花放電を生じさせる点火時期での燃焼室の内圧が上昇する傾向にある。この場合、高負荷条件と低負荷条件とで内圧の差が拡大するため、負荷条件の違いによる点火プラグの電極の消耗度合の差が拡大する傾向がある。   In recent years, a supercharger has been adopted to increase the amount of air sucked into the combustion chamber, or a high compression ratio has been considered, and the combustion chamber is not properly operated at the ignition timing that causes spark discharge in the spark plug. The internal pressure tends to increase. In this case, since the difference in internal pressure increases between the high load condition and the low load condition, the difference in the degree of wear of the spark plug electrode due to the difference in the load condition tends to increase.

そこで、本実施形態のECU30は、内燃機関10の負荷条件の履歴に基づいて点火プラグ40の火花放電の発生に必要となる要求電圧を算出(推定)する。そして要求電圧が点火プラグ40の耐圧以上となる場合には、点火プラグ40の交換時期である旨を通知する。このように内燃機関10の負荷条件の履歴に基づいて、プラグ交換の時期を判定することで、より適切なる交換時期でのプラグ交換の実施が可能となる。   Therefore, the ECU 30 of the present embodiment calculates (estimates) a required voltage necessary for generating spark discharge of the spark plug 40 based on the load condition history of the internal combustion engine 10. When the required voltage is equal to or higher than the withstand pressure of the spark plug 40, the fact that it is time to replace the spark plug 40 is notified. As described above, by determining the plug replacement time based on the history of the load conditions of the internal combustion engine 10, it is possible to perform plug replacement at a more appropriate replacement time.

具体的には、内燃機関10の負荷条件の履歴を反映して、点火プラグ40の消耗量、つまり点火プラグ40の電極間距離を算出し、その消耗量をプラグ交換時期の判定に使用する。すなわち高負荷条件の頻度が高くなるほど、点火プラグ40の消耗量が多く、電極間距離が拡大することを利用して、プラグ交換時期の判定パラメータである要求電圧を算出する。   Specifically, the consumption amount of the spark plug 40, that is, the distance between the electrodes of the ignition plug 40 is calculated by reflecting the load condition history of the internal combustion engine 10, and the consumption amount is used for determining the plug replacement timing. That is, as the frequency of the high load condition increases, the consumption amount of the spark plug 40 increases and the distance between the electrodes increases, so that a required voltage that is a determination parameter for plug replacement timing is calculated.

すなわち図3のブロック図に示されるように、ECU30のROMには、電極間距離の演算処理部50が記憶されている。演算処理部50は、機関回転速度NEと機関負荷とを指標として、1燃焼当たりの放電ギャップGの変化に関する重みづけ値を算出する演算マップ51と、単位時間当たりの燃焼回数を算出する燃焼回数算出部52と、演算マップ51と燃焼回数算出部52の出力を乗算する乗算部53と、乗算部53の演算結果である単位時間当たりの電極間距離の変化量を積算することにより、電極消耗量を算出する積算部54と、積算部54で算出した電極消耗量を用いて、現在の電極間距離を算出する電極間距離演算部55と、を備えている。   That is, as shown in the block diagram of FIG. 3, the inter-electrode distance calculation processing unit 50 is stored in the ROM of the ECU 30. The arithmetic processing unit 50 uses the engine speed NE and the engine load as indices to calculate a weighting value for the change in the discharge gap G per combustion, and the number of combustions for calculating the number of combustions per unit time. The calculation unit 52, the multiplication unit 53 that multiplies the outputs of the calculation map 51 and the combustion frequency calculation unit 52, and the amount of change in the interelectrode distance per unit time that is the calculation result of the multiplication unit 53 is integrated. An integration unit 54 that calculates the amount, and an interelectrode distance calculation unit 55 that calculates the current interelectrode distance using the electrode consumption amount calculated by the integration unit 54 are provided.

なお演算マップ51は、機関回転速度NEと機関負荷の複数の組み合わせについて、電極間距離の変化量を実機等で計測することで、各々の重みづけ値が定められている。図4の演算マップ51では、機関回転速度NE及び機関負荷の各々が増加するほど、電極間距離の変化量が増大することに基づいて、重みづけ値が定められている。また、高負荷域となる図の領域Aでは、点火時期が圧縮上死点(TDC付近)に近づくほど電極間距離の変化量が増大することを考慮して重みづけ値が大きめの値となっている。この場合、同様の重みづけ値を有する複数の領域を設けることで、機関回転速度NEと機関負荷の検出値の組み合わせがいずれの領域に属するかに応じて、重みづけ値が選択されるようになっている。   In the calculation map 51, for each of a plurality of combinations of the engine rotational speed NE and the engine load, each weight value is determined by measuring the amount of change in the interelectrode distance with an actual machine or the like. In the calculation map 51 of FIG. 4, the weighting value is determined based on the fact that the amount of change in the interelectrode distance increases as the engine rotational speed NE and the engine load each increase. Also, in the region A in the figure, which is a high load region, the weighting value is a large value in consideration that the amount of change in the interelectrode distance increases as the ignition timing approaches the compression top dead center (near TDC). ing. In this case, by providing a plurality of regions having similar weight values, the weight value is selected according to which region the combination of the detected value of the engine speed NE and the engine load belongs to. It has become.

燃焼回数算出部52は、内燃機関10の気筒数(本実施形態では4気筒とする)に応じて単位時間当たりの燃焼回数を算出するものであり、内燃機関10の負荷条件に応じて所定のパラメータが選択される。具体的には機関回転速度NE(rpm)を単位時間(ここでは1秒)に換算し、かつ回転ごとの燃焼回数を乗算することで、燃焼回数を算出する。なお燃料カットやエンジンストールが生じる場合には、その状態を考慮して単位時間当たりの燃焼回数が設定される。   The number-of-combustions calculation unit 52 calculates the number of combustions per unit time according to the number of cylinders of the internal combustion engine 10 (four cylinders in the present embodiment). A predetermined number of times is determined according to the load condition of the internal combustion engine 10. A parameter is selected. Specifically, the engine speed NE (rpm) is converted into a unit time (here, 1 second), and the number of combustion is calculated by multiplying the number of combustion for each rotation. When fuel cut or engine stall occurs, the number of combustions per unit time is set in consideration of the state.

ECU30は、電極間距離の演算処理部50を用いて、回転速度センサ33で検出した機関回転速度NEと、機関負荷とに基づいて、現在の電極間距離(推定値)を得る。そして、ECU30は、演算処理部50で算出された現在の電極間距離と、その時々の内燃機関10の運転条件とに基づいて要求電圧(推定値)を算出する。例えば、式(1)に示す演算式を用いて要求電圧を算出する。
要求電圧=ベース値
+K1×NE(rpm)
+K2×Pm(kPa)
−K3×SA(BTDC)
+K4×λ
+K5×Trq(Nm)
+K6×L(mm) …(1)
なお、式(1)において、NEは機関回転速度、Pmは吸気圧、SAは点火時期、λは空気過剰率、Trgはトルクであり、Lは現在の電極間距離である。なお、K1〜K6は内燃機関ごとに個別に設定される係数(パラメータ)である。ここで、要求電圧は、都度の機関回転速度NE、吸気圧Pm、トルクTrq、電極間距離Lが大きいほど、大きい値として算出される。また、空気過剰率λがリーンであるほど大きい値として算出される。さらには、要求電圧は、点火時期SAがTDCに対して進角側であるほど小さい値として算出される。
The ECU 30 obtains a current inter-electrode distance (estimated value) based on the engine rotational speed NE detected by the rotational speed sensor 33 and the engine load, using the inter-electrode distance calculation processing unit 50. Then, the ECU 30 calculates a required voltage (estimated value) based on the current interelectrode distance calculated by the arithmetic processing unit 50 and the operating condition of the internal combustion engine 10 at that time. For example, the required voltage is calculated using an arithmetic expression shown in Expression (1).
Required voltage = Base value + K1 x NE (rpm)
+ K2 x Pm (kPa)
-K3 x SA (BTDC)
+ K4 × λ
+ K5 x Trq (Nm)
+ K6 × L (mm) (1)
In Equation (1), NE is the engine speed, Pm is the intake pressure, SA is the ignition timing, λ is the excess air ratio, Trg is the torque, and L is the current interelectrode distance. K1 to K6 are coefficients (parameters) set individually for each internal combustion engine. Here, the required voltage is calculated as a larger value as the engine speed NE, the intake pressure Pm, the torque Trq, and the interelectrode distance L are increased. Moreover, it is calculated as a larger value as the excess air ratio λ becomes leaner. Furthermore, the required voltage is calculated as a smaller value as the ignition timing SA is advanced with respect to TDC.

次に、図5を用いて点火プラグ40の交換時期の判定処理を説明する。なお以下の処理は、図示を略す車両のイグニッションスイッチがオンとされ内燃機関10が運転可能な状態で、1燃焼サイクル(例えば20msサイクル)ごとに繰り返し実施する。なお点火プラグ40の使用開始時(交換時)に、点火プラグ40の電極間距離の初期値がECU30のフラッシュメモリに入力される。また初期状態では、後述するプラグ交換フラグはオフとされている。   Next, a process for determining the replacement timing of the spark plug 40 will be described with reference to FIG. The following processing is repeatedly performed every combustion cycle (for example, 20 ms cycle) in a state where an ignition switch of a vehicle (not shown) is turned on and the internal combustion engine 10 is operable. Note that the initial value of the distance between the electrodes of the spark plug 40 is input to the flash memory of the ECU 30 when the spark plug 40 starts to be used (at the time of replacement). In the initial state, a plug replacement flag, which will be described later, is off.

図5において、ステップS10でプラグ交換フラグがオフであるか否かを判定する。なおプラグ交換フラグは、後述の処理で要求電圧の推定値が点火プラグ40の耐圧以上と判定した際にオンに切り替えられる。プラグ交換フラグがオフであり肯定判定した場合には、ステップS11で、回転速度センサ33の検出信号から機関回転速度NEを取得する。ステップS12では、機関負荷を取得する。例えば機関負荷として、アクセル開度センサ39の検出信号からアクセル開度を取得する。   In FIG. 5, it is determined in step S10 whether or not the plug replacement flag is off. The plug replacement flag is switched on when it is determined that the estimated value of the required voltage is equal to or higher than the withstand voltage of the spark plug 40 in the process described later. If the plug replacement flag is off and the determination is affirmative, the engine rotational speed NE is acquired from the detection signal of the rotational speed sensor 33 in step S11. In step S12, the engine load is acquired. For example, the accelerator opening is acquired from the detection signal of the accelerator opening sensor 39 as the engine load.

ステップS13では、現在の電極間距離を算出する。具体的には、ステップS11,S12で取得した各パラメータを演算処理部50の演算マップ51(図4参照)に対応付けることにより、単位時間当たりの電極間距離の変化量を算出する。そして単位時間当たりの電極間距離の変化量を積算して、使用開始からの電極間距離の変化量を求める。そして点火プラグ40の電極間距離の初期値に、電極間距離の変化量を加算することで、現在の電極間距離を算出する。   In step S13, the current interelectrode distance is calculated. Specifically, the amount of change in the inter-electrode distance per unit time is calculated by associating each parameter acquired in steps S11 and S12 with the calculation map 51 (see FIG. 4) of the calculation processing unit 50. Then, the amount of change in the interelectrode distance per unit time is integrated to obtain the amount of change in the interelectrode distance from the start of use. Then, the current inter-electrode distance is calculated by adding the change amount of the inter-electrode distance to the initial value of the inter-electrode distance of the spark plug 40.

ステップS14では、要求電圧を算出する。本実施形態では、ステップS13で算出した現在の電極間距離と、各種センサで検出されるその時々の内燃機関10の運転条件とを、式(1)の演算式に代入することで、要求電圧を算出する。   In step S14, a required voltage is calculated. In the present embodiment, the required voltage is calculated by substituting the current inter-electrode distance calculated in step S13 and the operating condition of the internal combustion engine 10 detected by various sensors into the arithmetic expression of Expression (1). Is calculated.

ステップS15では、要求電圧が点火プラグ40の耐圧以上であるか否かを判定する。なお点火プラグ40の耐圧の情報は予めフラッシュメモリなどに記録されている。ステップS15で要求電圧が耐圧未満と判定した場合には本処理を終了する。一方、要求電圧が耐圧以上と判定した場合には、ステップS16で点火プラグ40の交換時期フラグをオンにする。   In step S15, it is determined whether the required voltage is equal to or higher than the withstand voltage of the spark plug 40. Note that the pressure resistance information of the spark plug 40 is recorded in advance in a flash memory or the like. If it is determined in step S15 that the required voltage is less than the withstand voltage, this process is terminated. On the other hand, if it is determined that the required voltage is higher than the withstand voltage, the replacement timing flag of the spark plug 40 is turned on in step S16.

ステップS10で否定判定した場合、すなわちプラグ交換時期フラグがオンの場合には、ステップS17に進み、点火プラグ40のプラグ交換を促す通知を出力する。例えば、図示を略す車両のインパネ部などにプラグ交換の実施を促す表示をする。   If a negative determination is made in step S10, that is, if the plug replacement time flag is on, the process proceeds to step S17, and a notification for prompting the plug replacement of the spark plug 40 is output. For example, a display that prompts the user to replace the plug is displayed on an instrument panel of a vehicle (not shown).

なお、プラグ交換時期フラグがオンである場合には、図6に示す出力制限処理が実施される。具体的には、ステップS21で、プラグ交換時期フラグがオフであるか否かを判定する。オフであり肯定判定した場合にはステップS22で、通常処理を実施する。なお通常処理では、各種センサで検出される内燃機関10の運転条件に基づき、通常のエンジン制御が実施される。ステップS21で否定判定した場合には、ステップS23で出力制限を実施する。例えば、アクセルペダルの踏み込み量に対して内燃機関10の出力制限を実施する。具体的には、アクセル操作に対して目標トルクを制限したり、点火時期を遅角側に補正したり、機関回転速度NEを制限したり、シフト制限を実施したりすることで要求電圧を制限する(下げる)。また、混合気の空燃比をリッチ化することで、要求電圧を制限するとよい。   If the plug replacement time flag is on, the output restriction process shown in FIG. 6 is performed. Specifically, in step S21, it is determined whether or not the plug replacement time flag is off. If it is off and an affirmative decision is made, normal processing is performed in step S22. In the normal process, normal engine control is performed based on the operating conditions of the internal combustion engine 10 detected by various sensors. If a negative determination is made in step S21, output restriction is performed in step S23. For example, the output restriction of the internal combustion engine 10 is performed with respect to the depression amount of the accelerator pedal. Specifically, the required voltage is limited by limiting the target torque for accelerator operation, correcting the ignition timing to the retard side, limiting the engine rotational speed NE, or performing shift limitation. Do (lower). Further, the required voltage may be limited by enriching the air-fuel ratio of the air-fuel mixture.

このように、プラグ交換時期フラグがオンの際に、内燃機関の出力制限が実施されることで、点火プラグ40の交換時期において、要求電圧の上昇を抑えることができる。この場合、プラグ交換が実施されるまでに点火プラグ40の損傷を抑えることができる。   As described above, when the plug replacement timing flag is on, the output restriction of the internal combustion engine is performed, so that an increase in the required voltage can be suppressed at the replacement timing of the spark plug 40. In this case, damage to the spark plug 40 can be suppressed before the plug replacement is performed.

本発明によれば以下の優れた効果を奏することができる。   According to the present invention, the following excellent effects can be obtained.

・点火プラグ40の電極41,42の消耗は車両ごとに異なると考えられる。そのため、安全サイドに考えれば点火プラグ40の交換時期を短めに定めておくことが望ましい。しかしながら、ユーザごとに運転パターンが異なること等を考慮すると、既存の技術では適正な交換時期で点火プラグ40が交換されているとは言えないと考えられる。そこで内燃機関10の負荷条件の履歴に基づいて要求電圧を算出し、その要求電圧を用いてプラグ交換の実施時期を判定する。この場合、内燃機関の負荷条件の履歴の違いを考慮して、適切なる交換時期でのプラグ交換の実施が可能となる。   The consumption of the electrodes 41 and 42 of the spark plug 40 is considered to be different for each vehicle. Therefore, considering the safety side, it is desirable to set the replacement timing of the spark plug 40 short. However, considering that the operation pattern is different for each user, it can be said that the existing technology does not say that the spark plug 40 is replaced at an appropriate replacement timing. Therefore, the required voltage is calculated based on the load condition history of the internal combustion engine 10, and the execution time of plug replacement is determined using the required voltage. In this case, the plug replacement can be performed at an appropriate replacement time in consideration of the difference in the history of load conditions of the internal combustion engine.

・要求電圧の算出に際しては、負荷条件の履歴を加味して電極間距離を算出し、その電極間距離に対して都度の機関運転状態を反映して要求電圧を算出する構成とした。これにより、要求電圧を高精度に算出でき、ひいてはその要求電圧に基づくプラグ交換判定の精度を高めることができる。   -When calculating the required voltage, the distance between the electrodes is calculated in consideration of the load condition history, and the required voltage is calculated by reflecting the engine operating state for each distance between the electrodes. As a result, the required voltage can be calculated with high accuracy, and as a result, the accuracy of the plug replacement determination based on the required voltage can be increased.

・内燃機関10のその時々の負荷条件に基づき電極間距離の変化量の積算値を算出し、その電極間距離の変化量の積算値を用いて、現在の電極間距離を算出できる。   The integrated value of the change amount of the interelectrode distance can be calculated based on the load condition of the internal combustion engine 10, and the current interelectrode distance can be calculated using the integrated value of the change amount of the interelectrode distance.

・機関回転速度及び機関負荷と、電極間距離の変化量との関係を示す特性データを用いて、電極間距離の変化量を算出できる。   The amount of change in the interelectrode distance can be calculated using characteristic data indicating the relationship between the engine rotational speed and the engine load and the amount of change in the interelectrode distance.

・要求電圧が点火プラグ40の耐圧以上となり、点火プラグ40が交換時期であると判定される場合に、内燃機関10の出力が制限されることで、プラグ交換が実施されるまでの点火プラグ40の損傷を抑えることができる。   When the required voltage is equal to or higher than the withstand voltage of the spark plug 40 and it is determined that the spark plug 40 is in the replacement timing, the output of the internal combustion engine 10 is limited, and the spark plug 40 until the plug replacement is performed. Damage can be suppressed.

本発明は、上記実施形態の記載内容に限定されず、次のように実施されてもよい。   The present invention is not limited to the description of the above embodiment, and may be implemented as follows.

・気筒内に生じる気流の大きさを加味して演算マップ51(特性データ)を定めてもよい。すなわち、気筒11内の気流が強い場合には、火花放電が吹き消され、何回かの火花放電が断続的に発生する現象、すなわち吹き消えによる再放電が発生しやすい。なお再放電は、点火プラグ40の放電エネルギが消費されるまで繰り返されるため、電極41,42の消耗は、再放電の回数が増えるほど増加する傾向がある。そこで、気筒内の気流の強さと再放電回数をパラメータとして、個々の燃焼サイクルにおける電極間距離の変化量を算出してもよい。例えば、図4の演算マップ51で算出した電極間距離の変化量を、気流の強さと再放電回数をパラメータとした演算マップ51に代入して、電極間距離の変化量が算出する。この場合、点火プラグ40における再放電回数を考慮して、より精度よく電極の消耗量を推定することができる。   The calculation map 51 (characteristic data) may be determined in consideration of the magnitude of airflow generated in the cylinder. That is, when the air flow in the cylinder 11 is strong, the spark discharge is blown out, and a phenomenon in which several spark discharges are intermittently generated, that is, re-discharge due to blow-out easily occurs. Since the re-discharge is repeated until the discharge energy of the spark plug 40 is consumed, the consumption of the electrodes 41 and 42 tends to increase as the number of re-discharges increases. Therefore, the amount of change in the distance between the electrodes in each combustion cycle may be calculated using the strength of the airflow in the cylinder and the number of redischarges as parameters. For example, the change amount of the interelectrode distance is calculated by substituting the change amount of the interelectrode distance calculated by the calculation map 51 of FIG. 4 into the calculation map 51 using the strength of the airflow and the number of re-discharges as parameters. In this case, the consumption amount of the electrode can be estimated with higher accuracy in consideration of the number of re-discharges in the spark plug 40.

・都度の電極消耗量(電極間距離)に応じて、その電極消耗が予め定めた標準状態より早いこと等を通知する構成としてもよい。例えば、車両の走行距離や内燃機関10の累積燃焼回数等に対応させて電極消耗の標準量を定めておく。そして、ECU30は、走行距離等に対して電極消耗が適正であると判断されれば、その旨をユーザに通知し、走行距離等に対して電極消耗が早いと判断されれば、やはりその旨をユーザに通知する。この場合、ユーザは意図せず過負荷運転をしている場合にそれを直させること等ができる。   -It is good also as a structure which notifies that the electrode consumption is earlier than the predetermined standard state according to the amount of electrode consumption (distance between electrodes). For example, the standard amount of electrode consumption is determined in accordance with the travel distance of the vehicle, the cumulative number of combustions of the internal combustion engine 10, and the like. If it is determined that the electrode consumption is appropriate with respect to the travel distance or the like, the ECU 30 notifies the user, and if it is determined that the electrode consumption is early with respect to the travel distance or the like, the ECU 30 also indicates that. To the user. In this case, when the user unintentionally performs an overload operation, the user can correct it.

・要求電圧の大きさを判定する判定値として複数の判定値を定めておいてもよい。具体的には、ECU30は、要求電圧が第1判定値(<耐圧)に達した場合に、あと少しで要求電圧が耐圧に達すること、すなわちプラグ交換時期になることを通知し、その後、要求電圧が第2判定値(=耐圧)に達した場合に、プラグ交換時期になったことを通知するとともに内燃機関のトルク制限を実施する。   A plurality of determination values may be defined as determination values for determining the magnitude of the required voltage. Specifically, when the required voltage reaches the first determination value (<withstand voltage), the ECU 30 notifies that the requested voltage will soon reach the withstand voltage, that is, it is time to replace the plug. When the voltage reaches the second determination value (= withstand voltage), it is notified that the plug replacement time has come, and the torque of the internal combustion engine is limited.

・図5において、ステップS13で算出された現在の電極間距離が所定未満の場合、すなわち電極の消耗が進行していない場合には、ステップS15で要求電圧が耐圧以上であるか否かの判定処理が省略されてもよい。   In FIG. 5, when the current inter-electrode distance calculated in step S13 is less than a predetermined value, that is, when the electrode is not consumed, it is determined in step S15 whether the required voltage is equal to or higher than the withstand voltage. Processing may be omitted.

10…内燃機関、40…点火プラグ、41…中心電極、42…接地電極。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 40 ... Spark plug, 41 ... Center electrode, 42 ... Ground electrode.

Claims (6)

対向電極(41,42)を有する点火プラグ(40)が搭載された車載の内燃機関の点火制御装置であって、
車両運転時において、前記内燃機関の負荷条件を記憶する負荷条件記憶手段と、
前記負荷条件記憶手段により記憶した前記負荷条件の履歴に基づいて前記点火プラグの火花放電の発生に必要となる要求電圧を算出する要求電圧算出手段と、
前記算出された要求電圧に基づいて前記点火プラグの交換時期を判定する交換時期判定手段と、
を備えることを特徴とする内燃機関の点火制御装置。
An on-vehicle internal combustion engine ignition control device equipped with a spark plug (40) having counter electrodes (41, 42),
Load condition storage means for storing a load condition of the internal combustion engine during vehicle operation;
Request voltage calculating means for calculating a required voltage required for occurrence of spark discharge of the spark plug based on the history of the load condition stored by the load condition storage means;
Replacement timing determination means for determining the replacement timing of the spark plug based on the calculated required voltage;
An ignition control device for an internal combustion engine, comprising:
前記負荷条件の履歴を加味して前記対向電極の現在の電極間距離を算出する電極間距離算出手段(50)を備え、
前記要求電圧算出手段は、前記電極間距離算出手段で算出された前記現在の電極間距離とその時々の前記内燃機関の運転状態とに基づいて前記要求電圧を算出する請求項1に記載の内燃機関の点火制御装置。
Inter-electrode distance calculation means (50) for calculating the current inter-electrode distance of the counter electrode in consideration of the history of the load condition,
2. The internal combustion engine according to claim 1, wherein the required voltage calculating unit calculates the required voltage based on the current inter-electrode distance calculated by the inter-electrode distance calculating unit and the operating state of the internal combustion engine at that time. Engine ignition control device.
前記電極間距離算出手段は、前記負荷条件に基づいて単位時間ごとの前記電極間距離の変化量を算出する変化量算出手段(51〜53)と、前記電極間距離の変化量を積算する手段(54)と、前記電極間距離の積算値を用いて、前記現在の電極間距離を算出する手段(55)とを有している請求項2に記載の内燃機関の点火制御装置。   The interelectrode distance calculation means is a change amount calculation means (51-53) for calculating the change amount of the interelectrode distance per unit time based on the load condition, and a means for integrating the change amount of the interelectrode distance. The ignition control device for an internal combustion engine according to claim 2, further comprising: (54) and means (55) for calculating the current inter-electrode distance using an integrated value of the inter-electrode distance. 前記変化量算出手段は、前記負荷条件としての機関回転速度及び機関負荷と、前記電極間距離の変化量との関係を示す特性データを用いて、電極間距離の変化量を算出する請求項3に記載の内燃機関の点火制御装置。   The change amount calculation means calculates the change amount of the interelectrode distance by using characteristic data indicating the relationship between the engine rotation speed and the engine load as the load condition and the change amount of the interelectrode distance. An ignition control device for an internal combustion engine according to claim 1. 前記特性データは、前記機関回転速度及び前記機関負荷に基づいて単位時間当たりの前記電極間距離の変化量を定めるマップである請求項4に記載の内燃機関の点火制御装置。   The ignition control device for an internal combustion engine according to claim 4, wherein the characteristic data is a map that determines a change amount of the inter-electrode distance per unit time based on the engine rotational speed and the engine load. 前記算出された要求電圧が前記点火プラグの耐圧以上の場合に、前記内燃機関の出力を制限する出力制限手段を備える請求項1乃至5のいずれか1項に記載の内燃機関の点火制御装置。   The ignition control device for an internal combustion engine according to any one of claims 1 to 5, further comprising output limiting means for limiting an output of the internal combustion engine when the calculated required voltage is equal to or higher than a withstand voltage of the ignition plug.
JP2014105269A 2014-05-21 2014-05-21 Internal combustion engine ignition control device Pending JP2015218706A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014105269A JP2015218706A (en) 2014-05-21 2014-05-21 Internal combustion engine ignition control device
PCT/JP2015/002348 WO2015177978A1 (en) 2014-05-21 2015-05-08 Ignition control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105269A JP2015218706A (en) 2014-05-21 2014-05-21 Internal combustion engine ignition control device

Publications (1)

Publication Number Publication Date
JP2015218706A true JP2015218706A (en) 2015-12-07

Family

ID=54553664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105269A Pending JP2015218706A (en) 2014-05-21 2014-05-21 Internal combustion engine ignition control device

Country Status (2)

Country Link
JP (1) JP2015218706A (en)
WO (1) WO2015177978A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145753A (en) * 2016-02-17 2017-08-24 株式会社Subaru Control device
JP2020143613A (en) * 2019-03-05 2020-09-10 大阪瓦斯株式会社 Engine, engine remote monitoring device and engine maintenance cycle adjustment method
JP2020143614A (en) * 2019-03-05 2020-09-10 大阪瓦斯株式会社 Engine, engine remote monitoring device and engine maintenance cycle adjustment method
JP2021008831A (en) * 2019-06-28 2021-01-28 アイシン精機株式会社 Maintenance timing calculating device of ignition plug of heat pump engine and maintenance timing calculating method of ignition plug of heat pump engine
JP2021017837A (en) * 2019-07-19 2021-02-15 マツダ株式会社 Abrasion amount estimation device and abnormality determination device of ignition plug
US11199170B2 (en) 2018-03-01 2021-12-14 Denso Corporation Ignition control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248641A (en) * 1989-03-23 1990-10-04 Toyota Motor Corp Control device of vehicle internal combustion engine
JPH0666236A (en) * 1992-08-20 1994-03-08 Honda Motor Co Ltd Plasma-jet ignition device
JP3322862B2 (en) * 1999-02-19 2002-09-09 日本特殊陶業株式会社 Ignition device for internal combustion engine
JP4963404B2 (en) * 2006-11-10 2012-06-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP2009180157A (en) * 2008-01-31 2009-08-13 Nissan Motor Co Ltd Gap length estimation device for ignition plug

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145753A (en) * 2016-02-17 2017-08-24 株式会社Subaru Control device
US11199170B2 (en) 2018-03-01 2021-12-14 Denso Corporation Ignition control device
JP2020143613A (en) * 2019-03-05 2020-09-10 大阪瓦斯株式会社 Engine, engine remote monitoring device and engine maintenance cycle adjustment method
JP2020143614A (en) * 2019-03-05 2020-09-10 大阪瓦斯株式会社 Engine, engine remote monitoring device and engine maintenance cycle adjustment method
JP7190941B2 (en) 2019-03-05 2022-12-16 大阪瓦斯株式会社 Engine, its remote monitoring device, and its maintenance cycle adjustment method
JP7221085B2 (en) 2019-03-05 2023-02-13 大阪瓦斯株式会社 Engine, its remote monitoring device, and its maintenance cycle adjustment method
JP2021008831A (en) * 2019-06-28 2021-01-28 アイシン精機株式会社 Maintenance timing calculating device of ignition plug of heat pump engine and maintenance timing calculating method of ignition plug of heat pump engine
JP7243488B2 (en) 2019-06-28 2023-03-22 株式会社アイシン Apparatus for calculating ignition plug maintenance timing for heat pump engine and method for calculating maintenance timing for ignition plug of heat pump engine
JP2021017837A (en) * 2019-07-19 2021-02-15 マツダ株式会社 Abrasion amount estimation device and abnormality determination device of ignition plug
JP7344464B2 (en) 2019-07-19 2023-09-14 マツダ株式会社 Spark plug wear estimation device and abnormality determination device

Also Published As

Publication number Publication date
WO2015177978A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2015177978A1 (en) Ignition control device for internal combustion engine
US5947077A (en) Control device for cylinder injection internal-combustion engine
JP2008088948A (en) Engine control device
JP6081248B2 (en) Ignition control device for internal combustion engine
JP2000291519A (en) Ignition device for internal combustion engine
JP2009257095A (en) Control device and control method of internal combustion engine
JP2012002204A (en) Controller for internal combustion engine
JP2018071485A (en) Device for controlling internal combustion engine
JP5357852B2 (en) Control device for internal combustion engine
JP2018105171A (en) Control device of internal combustion engine
JP5514601B2 (en) Control device for internal combustion engine
JP2006266116A (en) Fuel injection control device for internal combustion engine
JPWO2016006438A1 (en) Control device for internal combustion engine
JP2010127259A (en) Device for controlling fuel injection in starting engine
JP2012219757A (en) Internal combustion engine control device
JP2017172483A (en) Internal combustion engine control device
JP2012002076A (en) Device for control of internal combustion engine
JP2004232568A (en) Method of determining combustion state of internal combustion engine
JP6605376B2 (en) Internal combustion engine control device
JP2020012426A (en) Ignition control device of internal combustion engine and ignition control method of internal combustion engine
JP2004308560A (en) Control device for internal combustion engine
JP6260599B2 (en) Control device for internal combustion engine
JP2005042575A (en) Control device of internal combustion engine
RU2620599C2 (en) Control method of forced ignition advance in internal combustion engine
JP2007162469A (en) Fuel injection control device for internal combustion engine