JP2015218561A - Seismic strengthening structure and seismic strengthening method - Google Patents

Seismic strengthening structure and seismic strengthening method Download PDF

Info

Publication number
JP2015218561A
JP2015218561A JP2014105497A JP2014105497A JP2015218561A JP 2015218561 A JP2015218561 A JP 2015218561A JP 2014105497 A JP2014105497 A JP 2014105497A JP 2014105497 A JP2014105497 A JP 2014105497A JP 2015218561 A JP2015218561 A JP 2015218561A
Authority
JP
Japan
Prior art keywords
column
building
outer peripheral
existing
seismic reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014105497A
Other languages
Japanese (ja)
Inventor
一高 小島
Kazutaka Kojima
一高 小島
平川 恭章
Yasuaki Hirakawa
恭章 平川
和宏 佐分利
Kazuhiro Saburi
和宏 佐分利
裕次 石川
Yuji Ishikawa
裕次 石川
武史 福原
Takeshi Fukuhara
武史 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2014105497A priority Critical patent/JP2015218561A/en
Publication of JP2015218561A publication Critical patent/JP2015218561A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve aseismic capacity of existing peripheral columns without significantly reducing an effectively usable interior space in a building.SOLUTION: A seismic strengthening structure 10 comprises: existing peripheral columns 16 arranged on a periphery of a building 12; and extension sections 24 which are positioned next to the respective existing peripheral columns 16 in a peripheral direction of the building 12 and integrated therewith. The extension sections 24 are constructed by reinforced concrete with a plurality of main reinforcing bars and a plurality of hoops surrounding the same, and integrated with the peripheral columns 16 by being connected thereto through anchor members which are post-construction anchors.

Description

本発明は、既設柱の耐震性を高める耐震補強構造及び耐震補強方法に関する。   The present invention relates to a seismic reinforcement structure and a seismic reinforcement method for improving the seismic resistance of existing columns.

既設柱の耐震性を高める耐震補強構造として、既設柱の全周を取り囲むようにしてコンクリートを増し打ちしたり、補強部材を設けたりする構造が挙げられる。   As a seismic reinforcement structure that enhances the earthquake resistance of the existing pillar, there is a structure in which concrete is added to surround the entire circumference of the existing pillar or a reinforcing member is provided.

例えば、特許文献1には、既設柱に補強鋼板を捲装し、既設柱と補強鋼板の間にグラウトを充填して構成した耐震補強構造が開示されている。   For example, Patent Literature 1 discloses a seismic reinforcement structure in which a reinforcing steel plate is installed on an existing column and a grout is filled between the existing column and the reinforcing steel plate.

しかし、このような耐震補強構造を建物の外周部に配置された既設外周柱に適用した場合、建物の有効に利用できる室内空間が、既設外周柱の建物内側に設けられた増し打ちコンクリート部や補強部材によって大幅に狭くなってしまう。   However, when such an earthquake-proof reinforcement structure is applied to an existing outer peripheral column arranged on the outer peripheral part of a building, an indoor space that can be effectively used by the building becomes an additional cast concrete part provided on the inner side of the existing outer peripheral column or It will be significantly narrowed by the reinforcing member.

特開平9−273318号公報JP-A-9-273318

本発明は係る事実を考慮し、建物の有効に利用できる室内空間を大幅に狭くすることなく既設外周柱の耐震性を向上させることを課題とする。   This invention considers the fact which concerns, and makes it a subject to improve the earthquake resistance of the existing outer periphery pillar, without significantly narrowing the indoor space which can be utilized effectively of a building.

第1態様の発明は、建物の外周部に配置された既設外周柱と、前記既設外周柱と前記建物の外周方向に隣り合い、該既設外周柱と一体に設けられた増設部と、を有する耐震補強構造である。   The invention of the first aspect includes an existing outer peripheral column disposed in an outer peripheral portion of a building, and an extension portion adjacent to the existing outer peripheral column and the outer peripheral direction of the building and provided integrally with the existing outer peripheral column. Seismic reinforcement structure.

第1態様の発明では、増設部によって既設外周柱を補強することにより、既設外周柱の耐震性を向上させることができる。   In the first aspect of the invention, the existing outer peripheral column can be reinforced with the extension portion, thereby improving the earthquake resistance of the existing outer peripheral column.

また、既設外周柱と建物の外周方向に隣り合うように増設部が設けられているので、建物の有効に利用できる室内空間が増設部を設けることによって大幅に狭くなるのを抑制することができる。   Moreover, since the extension part is provided so that the existing outer periphery pillar and the outer peripheral direction of a building may be adjacent, it can suppress that the indoor space which can be used effectively of a building becomes significantly narrow by providing an extension part. .

さらに、既設外周柱と建物の外周方向に隣り合うように増設部を設けることにより、既設外周柱の曲げ耐力を上げずに、既設外周柱のせん断耐力を上げることができる。これにより、既設外周柱の靭性を高めて、既設外周柱の耐震性を向上させることができる。   Furthermore, by providing the additional portion so as to be adjacent to the existing outer peripheral column and the outer peripheral direction of the building, the shear strength of the existing outer peripheral column can be increased without increasing the bending strength of the existing outer peripheral column. Thereby, the toughness of an existing outer periphery column can be improved and the earthquake resistance of an existing outer periphery column can be improved.

第2態様の発明は、第1態様の耐震補強構造において、前記増設部は、コンクリートによって形成されるとともに該増設部の内部に設けられた主筋を取り囲む帯筋を有し、アンカー部材によって前記既設外周柱に接合されている。   According to a second aspect of the present invention, in the seismic reinforcement structure according to the first aspect, the additional portion is formed of concrete and has a strip that surrounds a main reinforcing bar provided inside the additional portion, and the existing member is provided by an anchor member. It is joined to the outer peripheral column.

第2態様の発明では、コンクリートによって形成された増設部をアンカー部材によって既設外周柱に接合することにより、既設外周柱のせん断耐力を確実に大きくすることができる。   In the invention of the second aspect, the shear strength of the existing outer peripheral column can be reliably increased by joining the additional portion formed of concrete to the existing outer peripheral column by the anchor member.

第3態様の発明は、建物の外周部に配置された既設外周柱と前記建物の外周方向に隣り合うように、該既設外周柱と一体に増設部を設ける耐震補強方法である。   The invention of the third aspect is a seismic reinforcement method in which an extension portion is provided integrally with the existing outer peripheral column so as to be adjacent to the existing outer peripheral column arranged on the outer peripheral portion of the building in the outer peripheral direction of the building.

第3態様の発明では、第1態様と同様の効果を得ることができる。   In the invention of the third aspect, the same effect as in the first aspect can be obtained.

本発明は上記構成としたので、建物の有効に利用できる室内空間を大幅に狭くすることなく既設外周柱の耐震性を向上させることができる。   Since this invention set it as the said structure, the earthquake resistance of the existing outer periphery pillar can be improved, without reducing indoor space which can be utilized effectively of a building significantly.

本発明の実施形態に係る耐震補強構造によって耐震補強された既設建物の基準階を示す平面図である。It is a top view which shows the standard floor of the existing building reinforced earthquake-proof with the earthquake-proof reinforcement structure which concerns on embodiment of this invention. 本発明の実施形態に係る耐震補強構造を示す平断面図である。It is a plane sectional view showing the earthquake-proof reinforcement structure concerning the embodiment of the present invention. 本発明の実施形態に係る耐震補強構造を示す平断面図である。It is a plane sectional view showing the earthquake-proof reinforcement structure concerning the embodiment of the present invention. 本発明の実施形態に係る耐震補強構造の効果を示すグラフである。It is a graph which shows the effect of the earthquake-proof reinforcement structure concerning the embodiment of the present invention. 従来の耐震補強構造を示す平断面図である。It is a plane sectional view showing the conventional earthquake-proof reinforcement structure. 本発明の実施形態に係る耐震補強構造のバリエーションを示す平断面図である。It is a plane sectional view showing the variation of the earthquake-proof reinforcement structure concerning the embodiment of the present invention. 本発明の実施形態に係る耐震補強構造のバリエーションを示す平断面図である。It is a plane sectional view showing the variation of the earthquake-proof reinforcement structure concerning the embodiment of the present invention.

図を参照しながら、本発明の実施形態を説明する。まず、本発明の実施形態に係る耐震補強構造について説明する。   Embodiments of the present invention will be described with reference to the drawings. First, the seismic reinforcement structure according to the embodiment of the present invention will be described.

図1の平面図には、本実施形態の耐震補強構造10によって耐震補強が施された一例として、建物としての既設建物12の基準階14が示されている。ここでは、耐震補強構造10によって、既設建物12の梁間方向Yに対して既設建物12の耐震性を向上させている。すなわち、梁間方向Yが耐震補強方向となっている。   In the plan view of FIG. 1, a reference floor 14 of an existing building 12 as a building is shown as an example in which earthquake-proof reinforcement is performed by the earthquake-proof reinforcement structure 10 of the present embodiment. Here, the seismic reinforcement structure 10 improves the seismic resistance of the existing building 12 with respect to the direction Y between the beams of the existing building 12. That is, the inter-beam direction Y is the seismic reinforcement direction.

既設建物12は、鉄筋コンクリート造の構造物であり、鉄筋コンクリートによって形成された既設の躯体柱16、躯体梁18、及び床スラブ20と、既設の外壁22を有している。   The existing building 12 is a reinforced concrete structure, and has an existing column 16, a frame beam 18, a floor slab 20, and an existing outer wall 22 formed of reinforced concrete.

耐震補強構造10は、既設建物12の外周部に配置された既設外周柱としての躯体柱16と、鉄筋コンクリートによって形成された増設部24とを有して構成されている。増設部24は、躯体柱16と既設建物12の外周方向S(本実施形態においては、外周方向Sが既設建物12の桁行き方向Xと同じ方向となっている)に隣り合う位置のみに配置されており、梁間方向Yに対する既設建物12の内側には設けられていない。   The seismic strengthening structure 10 is configured to include a frame column 16 as an existing outer peripheral column disposed on the outer peripheral portion of an existing building 12 and an extension portion 24 formed of reinforced concrete. The extension part 24 is disposed only at a position adjacent to the outer periphery direction S of the pillar 16 and the existing building 12 (in this embodiment, the outer periphery direction S is the same as the carry direction X of the existing building 12). It is not provided inside the existing building 12 with respect to the inter-beam direction Y.

すなわち、既設建物12の耐震補強方向である梁間方向Yと平行な、躯体柱16の左右側面の一方のみに増設部24が設けられている。別の言い方をすれば、既設建物12の外側から躯体柱16を正面視したときの躯体柱16の左右側面の一方のみに増設部24が設けられている。   That is, the extension part 24 is provided only on one of the left and right side surfaces of the frame column 16 that is parallel to the inter-beam direction Y, which is the seismic reinforcement direction of the existing building 12. In other words, the extension part 24 is provided only on one of the left and right side surfaces of the frame column 16 when the frame column 16 is viewed from the outside of the existing building 12.

説明の都合上、図1に示されている複数の耐震補強構造10を、左上から時計回りに耐震補強構造10A、10B、10C、10D、10E、10F、10G、10H、10I、10Jとする。   For convenience of explanation, the plurality of seismic reinforcement structures 10 shown in FIG. 1 are assumed to be seismic reinforcement structures 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 10I, and 10J clockwise from the upper left.

耐震補強構造10Jにおける増設部24は、図2の平面断面図に示すように、コンクリートUによって形成され、増設部24(コンクリートU)の内部に略鉛直に設けられた複数の主筋28と、複数の主筋28を取り囲む帯筋30を有している。そして、増設部24は、あと施工アンカーであるアンカー部材26により躯体柱16に接合されて、躯体柱16と一体に設けられている。   As shown in the cross-sectional plan view of FIG. 2, the extension portion 24 in the earthquake-proof reinforcement structure 10J is formed of concrete U, and includes a plurality of main bars 28 provided substantially vertically inside the extension portion 24 (concrete U), The main bar 28 has a girdle 30 surrounding it. The extension portion 24 is joined to the frame column 16 by an anchor member 26 that is a post-construction anchor, and is provided integrally with the frame column 16.

耐震補強構造10Hにおける増設部24は、図3の平面断面図に示すように、コンクリートUによって形成され、増設部24(コンクリートU)の内部に略鉛直に設けられた複数の主筋28と、複数の主筋28を取り囲む帯筋30を有している。そして、増設部24は、あと施工アンカーであるアンカー部材26により躯体柱16に接合されて、躯体柱16と一体に設けられている。   As shown in the cross-sectional plan view of FIG. 3, the extension portion 24 in the earthquake-proof reinforcement structure 10 </ b> H is formed of concrete U and includes a plurality of main bars 28 provided substantially vertically inside the extension portion 24 (concrete U), The main bar 28 has a girdle 30 surrounding it. The extension portion 24 is joined to the frame column 16 by an anchor member 26 that is a post-construction anchor, and is provided integrally with the frame column 16.

このように、耐震補強構造10J、10Hでは、複数の主筋28を取り囲むようにして増設部24の内部に帯筋30を設けることにより、躯体柱16と独立した塊となるように増設部24を形成し、この塊(増設部24)をアンカー部材26によって躯体柱16と一体化している。   In this way, in the earthquake-proof reinforcement structures 10J and 10H, the extension portion 24 is formed so as to be a lump independent of the frame column 16 by providing the band 30 inside the extension portion 24 so as to surround the plurality of main bars 28. In this way, this lump (additional portion 24) is integrated with the frame column 16 by the anchor member 26.

図1に示されている耐震補強構造10A、10E、10Fは、図2で説明した耐震補強構造10Jと同じ構成になっており、図1に示されている耐震補強構造10B、10C、10D、10G、10H、10Iは、図3で説明した耐震補強構造10Hと同じ構成になっているので、説明を省略する。   The seismic reinforcement structures 10A, 10E, and 10F shown in FIG. 1 have the same configuration as the earthquake resistant reinforcement structure 10J described in FIG. 2, and the seismic reinforcement structures 10B, 10C, and 10D shown in FIG. Since 10G, 10H, and 10I have the same configuration as the earthquake-proof reinforcement structure 10H described with reference to FIG.

耐震補強構造10を構築する耐震補強方法では、既設建物12の外周部に配置された既設外周柱としての躯体柱16と既設建物12の外周方向Sに隣り合うように、この躯体柱16と一体に増設部24を設ける。   In the seismic strengthening method for constructing the seismic strengthening structure 10, the column 16 as an existing outer peripheral column arranged on the outer peripheral part of the existing building 12 and the main column 16 are integrated so as to be adjacent to the outer peripheral direction S of the existing building 12. An extension unit 24 is provided.

次に、本発明の実施形態に係る耐震補強構造及び耐震補強方法の作用と効果について説明する。   Next, the operation and effect of the earthquake-proof reinforcement structure and the earthquake-proof reinforcement method according to the embodiment of the present invention will be described.

本実施形態の耐震補強構造10及び耐震補強方法では、図1〜3に示すように、増設部24によって躯体柱16を補強することにより、耐震補強方向(梁間方向Y)に対して躯体柱16の耐震性を向上させることができる。   In the seismic reinforcement structure 10 and the seismic reinforcement method of the present embodiment, as shown in FIGS. 1 to 3, the pillars 16 are reinforced with respect to the seismic reinforcement direction (inter-beam direction Y) by reinforcing the pillars 16 with the extension portions 24. Can improve the earthquake resistance.

また、躯体柱16と既設建物12の外周方向S(図1の例では、既設建物12の桁行き方向X)に隣り合う位置のみに増設部24が設けられているので、既設建物12の有効に利用できる室内空間が増設部24を設けることによって大幅に狭くなるのを抑制することができる。すなわち、梁間方向Yに対する躯体柱16より既設建物12内側の室内空間が減ってしまうのを抑制することができる。   Moreover, since the extension part 24 is provided only in the position adjacent to the outer periphery direction S (in the example of FIG. 1, the direction X of the existing building 12) of the frame pillar 16 and the existing building 12, It is possible to prevent the indoor space that can be used for the vehicle from being significantly narrowed by providing the additional portion 24. That is, it is possible to suppress a decrease in the indoor space inside the existing building 12 from the frame column 16 with respect to the beam-interval direction Y.

さらに、図1に示すように、躯体柱16と既設建物12の外周方向Sに隣り合う位置のみに増設部24を設けることにより、耐震補強方向(梁間方向Y)に対して、躯体柱16の曲げ耐力を上げずに、躯体柱16のせん断耐力を上げることができる。これにより、耐震補強方向(梁間方向Y)に対して、躯体柱16の靭性を高めて、躯体柱16の耐震性を向上させることができる。また、耐震補強方向(梁間方向Y)に対して、躯体柱16の曲げ耐力を上げずに、躯体柱16のせん断耐力を上げることにより、増設部24の平断面積に対して効率よく躯体柱16の耐震性を高めることができる。   Furthermore, as shown in FIG. 1, by providing the extension part 24 only at the position adjacent to the outer circumferential direction S of the building column 16 and the existing building 12, the building column 16 can be moved in the direction of earthquake resistance (direction Y between beams). The shear strength of the frame column 16 can be increased without increasing the bending strength. Thereby, the toughness of the column 16 can be improved with respect to the earthquake-proof reinforcement direction (direction Y between beams), and the earthquake resistance of the column 16 can be improved. Further, by increasing the shear strength of the frame column 16 without increasing the bending strength of the frame column 16 with respect to the seismic reinforcement direction (inter-beam direction Y), the frame column can be efficiently added to the plane cross-sectional area of the extension portion 24. 16 earthquake resistance can be improved.

このことについて、さらに詳しく説明する。図4(a)のグラフに示すような、耐震補強方向(梁間方向Y)に対してせん断耐力QS1と曲げ耐力Qm1を有する(曲げ耐力Qm1よりもせん断耐力QS1の方が小さい)躯体柱16を、図5(a)の平面断面図に示すように、躯体柱16を取り囲むように鉄筋コンクリートを増し打ちして補強部32を形成する従来の耐震補強構造34で耐震補強した場合、耐震補強方向(梁間方向Y)に対して、躯体柱16にせん断耐力ΔQと曲げ耐力ΔQの両方が付与されるので、図4(b)のグラフに示すように、躯体柱16は、耐震補強方向(梁間方向Y)に対して、曲げ耐力Qm2よりもせん断耐力QS2の方が小さい(躯体柱16の耐力がせん断耐力で決まる)特性を有する柱になる。 This will be described in more detail. As shown in the graph of FIG. 4A, it has a shear strength Q S1 and a bending strength Q m1 with respect to the seismic reinforcement direction (inter-beam direction Y) (the shear strength Q S1 is smaller than the bending strength Q m1 ). As shown in the plan cross-sectional view of FIG. 5A, the reinforced concrete column 16 is reinforced with reinforced concrete so as to surround the reinforced concrete column 16 and reinforced with a conventional aseismic reinforcing structure 34 that forms a reinforced portion 32. Since both the shear strength ΔQ S and the bending strength ΔQ m are given to the frame column 16 with respect to the seismic reinforcement direction (direction Y between beams), as shown in the graph of FIG. With respect to the seismic reinforcement direction (direction Y between beams), the shear strength Q S2 is smaller than the bending strength Q m2 (the column column 16 has a strength determined by the shear strength).

これに対して、耐震補強構造10では、図1〜3に示すように、躯体柱16と既設建物12の外周方向Sに隣り合う位置のみに増設部24を設けることにより、耐震補強方向(梁間方向Y)に対して、せん断耐力ΔQのみが躯体柱16に付与されるので、図4(c)のグラフに示すように、躯体柱16は、耐震補強方向(梁間方向Y)に対して、せん断耐力QS3よりも曲げ耐力Qm3の方が小さい(躯体柱16の耐力が曲げ耐力で決まる)特性を有する柱になる。厳密には、耐震補強構造10においても、耐震補強方向(梁間方向Y)に対して、躯体柱16に曲げ耐力も若干付与されるが、その値は小さいのでせん断耐力QS3よりも曲げ耐力Qm3の方が小さい特性を有する柱になる。すなわち、躯体柱16の靭性を向上させることができる。 In contrast, in the seismic reinforcement structure 10, as shown in FIGS. 1 to 3, the extension part 24 is provided only at the position adjacent to the outer peripheral direction S of the building column 16 and the existing building 12, thereby providing the seismic reinforcement direction (between beams). to the direction Y), only the shear strength Delta] Q S is applied to the precursor pillars 16, as shown in the graph of FIG. 4 (c), the Mukurotaihashira 16, to the earthquake-proof reinforcement direction (Harima direction Y) The bending strength Q m3 is smaller than the shear strength Q S3 (the column column 16 has a characteristic that the strength of the column 16 is determined by the bending strength). Strictly speaking, in the seismic reinforcement structure 10 as well, a slight bending strength is imparted to the frame column 16 with respect to the seismic reinforcement direction (inter-beam direction Y), but since the value is small, the bending strength Q is greater than the shear strength Q S3. m3 is a column having smaller characteristics. That is, the toughness of the column 16 can be improved.

よって、躯体柱16の靭性を向上させて耐震補強方向(梁間方向Y)に対する躯体柱16の耐震性を高めることにより、増設部24の平断面積に対して効率よく躯体柱16の耐震性を高めることができる。   Therefore, by improving the toughness of the frame column 16 and increasing the earthquake resistance of the frame column 16 in the direction of seismic strengthening (direction Y between beams), the earthquake resistance of the column column 16 can be efficiently increased with respect to the plane cross-sectional area of the extension part 24. Can be increased.

例えば、図5(a)、(b)の平断面図に示すように、梁間方向Yに対する躯体柱16よりも既設建物12の内側に鉄筋コンクリートを増し打ちして補強部32を形成した耐震補強構造34、36の場合、耐震補強方向(梁間方向Y)に対して躯体柱16の耐力を大きく向上させるためには、増し打ち厚さ(補強部32)を厚くする必要があり、既設建物12の有効に利用できる室内空間がより狭くなってしまう。   For example, as shown in the plan cross-sectional views of FIGS. 5A and 5B, the seismic reinforcement structure in which the reinforcing portion 32 is formed by adding reinforced concrete to the inside of the existing building 12 rather than the frame column 16 with respect to the inter-beam direction Y. In the case of 34 and 36, in order to greatly improve the proof strength of the frame column 16 with respect to the seismic reinforcement direction (direction Y between beams), it is necessary to increase the additional striking thickness (reinforcement portion 32). The indoor space that can be used effectively becomes narrower.

また、例えば、図5(c)の平断面図に示すように、梁間方向Yに対する躯体柱16よりも既設建物12の外側に鉄筋コンクリートを増し打ちして補強部32を形成した耐震補強構造38の場合、耐震補強のための改修工事を既設建物12の外側で行わなければならない。   Further, for example, as shown in the plan cross-sectional view of FIG. 5C, the seismic reinforcing structure 38 in which the reinforcing portion 32 is formed by adding reinforced concrete to the outside of the existing building 12 rather than the frame column 16 with respect to the inter-beam direction Y. In such a case, repair work for seismic reinforcement must be performed outside the existing building 12.

さらに、図5(a)〜(c)においては、躯体柱16が図4(b)で示した特性を有する柱になるので、補強部32の平断面積に対して効率よく躯体柱16の耐震性を高めることが難しい。   Further, in FIGS. 5A to 5C, the column 16 has the characteristics shown in FIG. 4B, so that the column 16 can be efficiently combined with the plane cross-sectional area of the reinforcing portion 32. It is difficult to improve earthquake resistance.

これに対して、本実施形態の耐震補強構造10では、図1〜3に示すように、躯体柱16と既設建物12の外周方向Sに隣り合う位置のみに増設部24を設けることにより、既設建物12の有効に利用できる室内空間が増設部24を設けることによって大幅に狭くなるのを抑制することができ、また、増設部24の平断面積に対して効率よく耐震補強方向(梁間方向Y)に対する躯体柱16の耐震性を高めることができる。さらに、増設部24が外壁22の内側に配置されるので、外壁22に改修工事を施すことなく耐震補強を行うことができ、耐震補強のための改修工事を既設建物12の外側で行わなくてよい。   On the other hand, in the seismic reinforcement structure 10 of this embodiment, as shown in FIGS. 1-3, by providing the extension part 24 only in the position adjacent to the outer periphery direction S of the pillar 16 and the existing building 12, It is possible to prevent the indoor space that can be effectively used in the building 12 from being significantly narrowed by providing the extension portion 24, and to efficiently reduce the seismic reinforcement direction (interbeam direction Y) with respect to the plane cross-sectional area of the extension portion 24. ) Can improve the earthquake resistance of the column 16. Furthermore, since the extension part 24 is arranged inside the outer wall 22, it is possible to perform seismic reinforcement without renovating the outer wall 22, and the renovation work for seismic reinforcement need not be performed outside the existing building 12. Good.

また、本実施形態の耐震補強構造10及び耐震補強方法では、コンクリートによって形成された増設部24をアンカー部材26によって躯体柱16に接合することにより、耐震補強方向(梁間方向Y)に対する躯体柱16のせん断耐力を確実に大きくすることができる。   In addition, in the seismic reinforcement structure 10 and the seismic reinforcement method of the present embodiment, the extension column 24 formed of concrete is joined to the chassis column 16 by the anchor member 26, whereby the chassis column 16 with respect to the earthquake resistance reinforcement direction (direction Y between beams). The shear strength of can be reliably increased.

以上、本発明の実施形態について説明した。   The embodiment of the present invention has been described above.

なお、本実施形態では、躯体柱16と既設建物12の外周方向Sに隣り合う位置のみに増設部24を配置した例を示したが、増設部24は、図6(a)〜(c)、及び図7(a)〜(c)に示すように、躯体柱16と既設建物12の外周方向Sに隣り合う位置の少なくとも一方のみに配置されていればよい。   In addition, in this embodiment, although the example which has arrange | positioned the extension part 24 only to the position adjacent to the outer periphery direction S of the frame pillar 16 and the existing building 12 was shown, the extension part 24 is shown to Fig.6 (a)-(c). And as shown to Fig.7 (a)-(c), it should just be arrange | positioned only at at least one of the positions adjacent to the outer periphery direction S of the pillar 16 and the existing building 12. FIG.

また、本実施形態で示した耐震補強構造10の増設部24は、現場打ちコンクリートによって形成してもよいし、プレキャスト部材にして現場で躯体柱16に接合してもよい。   Moreover, the extension part 24 of the earthquake-proof reinforcement structure 10 shown by this embodiment may be formed with a cast-in-place concrete, and may be joined to the frame pillar 16 on the spot as a precast member.

さらに、本実施形態では、耐震補強の対象となる躯体柱16が鉄筋コンクリートによって形成されている例を示したが、既設建物に設けられているさまざまな構造(鉄筋コンクリート造、鉄骨造、鉄骨鉄筋コンクリート造、CFT造(Concrete-Filled Steel Tube:充填形鋼管コンクリート構造)等)の外周柱に対して適用することができる。   Furthermore, in this embodiment, although the example in which the frame column 16 to be subjected to seismic reinforcement is formed of reinforced concrete, various structures (reinforced concrete structure, steel structure, steel reinforced concrete structure, It can be applied to the outer peripheral column of CFT structure (Concrete-Filled Steel Tube).

以上、本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in a various aspect.

10、10A、10B、10C、10D、10E、10F、10G、10H、10I、10J 耐震補強構造
12 既設建物(建物)
16 躯体柱(既設外周柱)
24 増設部
26 アンカー部材
28 主筋
30 帯筋
S 外周方向
U コンクリート
10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 10I, 10J Seismic reinforcement structure 12 Existing building (building)
16 Frame pillar (existing outer peripheral pillar)
24 Extension part 26 Anchor member 28 Main reinforcement 30 Stirrup S Outer circumferential direction U Concrete

Claims (3)

建物の外周部に配置された既設外周柱と、
前記既設外周柱と前記建物の外周方向に隣り合い、該既設外周柱と一体に設けられた増設部と、
を有する耐震補強構造。
An existing outer peripheral column arranged on the outer periphery of the building;
An extension part adjacent to the existing outer peripheral column and the outer peripheral direction of the building and provided integrally with the existing outer peripheral column;
Seismic reinforcement structure with
前記増設部は、コンクリートによって形成されるとともに該増設部の内部に設けられた主筋を取り囲む帯筋を有し、アンカー部材によって前記既設外周柱に接合されている請求項1に記載の耐震補強構造。   The seismic reinforcement structure according to claim 1, wherein the extension portion is formed of concrete and has a band reinforcing the main reinforcement provided inside the extension portion, and is joined to the existing outer peripheral column by an anchor member. . 建物の外周部に配置された既設外周柱と前記建物の外周方向に隣り合うように、該既設外周柱と一体に増設部を設ける耐震補強方法。   A seismic reinforcement method for providing an additional portion integrally with the existing outer peripheral column so as to be adjacent to the existing outer peripheral column arranged on the outer peripheral portion of the building in the outer peripheral direction of the building.
JP2014105497A 2014-05-21 2014-05-21 Seismic strengthening structure and seismic strengthening method Pending JP2015218561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105497A JP2015218561A (en) 2014-05-21 2014-05-21 Seismic strengthening structure and seismic strengthening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105497A JP2015218561A (en) 2014-05-21 2014-05-21 Seismic strengthening structure and seismic strengthening method

Publications (1)

Publication Number Publication Date
JP2015218561A true JP2015218561A (en) 2015-12-07

Family

ID=54778172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105497A Pending JP2015218561A (en) 2014-05-21 2014-05-21 Seismic strengthening structure and seismic strengthening method

Country Status (1)

Country Link
JP (1) JP2015218561A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045539A (en) * 1999-08-19 2000-02-15 Yahagi Construction Co Ltd Reinforcing method for existing column in multi-story building
JP2010159543A (en) * 2009-01-06 2010-07-22 Kfc Ltd Aseismatic reinforcing structure
WO2014030483A1 (en) * 2012-08-20 2014-02-27 名工建設株式会社 Seismic retrofitting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045539A (en) * 1999-08-19 2000-02-15 Yahagi Construction Co Ltd Reinforcing method for existing column in multi-story building
JP2010159543A (en) * 2009-01-06 2010-07-22 Kfc Ltd Aseismatic reinforcing structure
WO2014030483A1 (en) * 2012-08-20 2014-02-27 名工建設株式会社 Seismic retrofitting method

Similar Documents

Publication Publication Date Title
JP2014031654A (en) Axial yield type elasto-plastic hysteresis brace and vibration damping steel structure
JP5734169B2 (en) Building structure
JP5250096B2 (en) Building structure
JP4936171B2 (en) Column structure in a complex structure building
JP5424761B2 (en) Seismic reinforcement method for existing buildings
JP2016050377A (en) Joint structure between column base part and steel beam
JP2015218561A (en) Seismic strengthening structure and seismic strengthening method
JP2016075131A (en) Composite structure
JP2017172278A (en) Earthquake-proof reinforcement structure
JP2007040049A (en) Antiseismic reinforcing structure for existing building
JP2016089549A (en) Structure and method for joining reinforced concrete beam and steel column or column comprising steel column
JP6478832B2 (en) Seismic reinforcement structure
JP7127244B2 (en) Seismic reinforcement structure
JP2008297750A (en) Column-beam joint portion structure on highest story of reinforced concrete structure
JP2007162255A (en) Seismically reinforcing method by using concrete blocks
JP6204027B2 (en) Reinforced structure
JP6248470B2 (en) Seismic reinforcement structure and method for existing frame
JP6261333B2 (en) Seismic reinforcement method
JP2012215063A (en) Structure for reinforcing beam-column connection
JP7062853B2 (en) Seismic retrofitting structure
JP6832135B2 (en) Peripheral frame reinforcement structure
JP6816941B2 (en) Foundation structure of seismic isolated building
JP2020059987A (en) Aseismatic reinforcing structure
JP2020056285A (en) Frame structure
JP5706025B2 (en) building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190326