JP2015200816A - Structural color filter and optical instrument using the same - Google Patents

Structural color filter and optical instrument using the same Download PDF

Info

Publication number
JP2015200816A
JP2015200816A JP2014080090A JP2014080090A JP2015200816A JP 2015200816 A JP2015200816 A JP 2015200816A JP 2014080090 A JP2014080090 A JP 2014080090A JP 2014080090 A JP2014080090 A JP 2014080090A JP 2015200816 A JP2015200816 A JP 2015200816A
Authority
JP
Japan
Prior art keywords
color filter
structural color
thin film
film
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080090A
Other languages
Japanese (ja)
Other versions
JP6337583B2 (en
Inventor
松尾 正
Tadashi Matsuo
正 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014080090A priority Critical patent/JP6337583B2/en
Publication of JP2015200816A publication Critical patent/JP2015200816A/en
Application granted granted Critical
Publication of JP6337583B2 publication Critical patent/JP6337583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmission-type structural color filter with high chroma saturation and with low incident angle dependency, namely, visual field angle dependency, and also to provide an optical instrument using the same.SOLUTION: A structural color filter includes: a substrate; a thin film for transmittance adjustment laminated on the substrate; a transparent thin film laminated on the thin film for transmittance adjustment; and a metallic thin film material embedded in a gap in a diffraction grating pattern formed on the transparent thin film. The metallic thin film material may be aluminum. The thin film for transmittance adjustment may include tantalum, nitrogen and oxygen.

Description

本発明は、構造色を利用した構造色フィルターおよびこれを用いた光学機器に関する。特に、透明性薄膜材料と金属性薄膜材料からなる回折格子パターンと、透過率調整用の薄膜を持つ構造によって生じる色特性を利用する構造色フィルターに関する。   The present invention relates to a structural color filter using a structural color and an optical apparatus using the same. In particular, the present invention relates to a structural color filter that utilizes color characteristics generated by a structure having a diffraction grating pattern made of a transparent thin film material and a metallic thin film material and a thin film for adjusting transmittance.

カラーフィルターは、ディスプレイ、イメージセンサー、各種光学機器、分析機器などで、色を表現または識別する素子として、様々な用途で利用される。その機能の実現には、一般的には色素を添加した高分子材料や、数十層の多層膜がつくる干渉色が使用されている。   A color filter is used in various applications as an element for expressing or identifying a color in a display, an image sensor, various optical devices, an analysis device, or the like. In order to realize this function, generally, a polymer material to which a dye is added or an interference color formed by a multilayer film of several tens of layers is used.

他方、光の波長程度のスケール(厚さ、寸法)の薄膜や回折格子構造によって発生する光の干渉や回折の結果として発現する構造色を用いたカラーフィルター(以下、構造色フィルターと記す)が知られている。構造色フィルターは、色素合成プロセスを必要とせず、構造パラメータの最適化により多様な色特性を、同一基板上に一括形成できる、等の特長を有する。   On the other hand, there is a color filter (hereinafter referred to as a structural color filter) using a structural color that appears as a result of interference or diffraction of light generated by a thin film or diffraction grating structure having a scale (thickness, size) of the order of the wavelength of light. Are known. The structural color filter does not require a dye synthesis process, and has a feature that various color characteristics can be collectively formed on the same substrate by optimizing structural parameters.

光の波長程度のスケールの構造やパターンを形成する方法としては、従来、電子線描画などの半導体プロセス技術が必要とされ、構造色フィルターの製造コストを高める要因となっていたが、近年、より量産に適したナノインプリント技術が進展しつつあり、構造色フィルターの製造への適用が期待されている。(特許文献1、非特許文献1参照)。   As a method of forming a scale structure or pattern of the order of the wavelength of light, conventionally, semiconductor process technology such as electron beam drawing has been required, which has been a factor in increasing the manufacturing cost of structural color filters. Nanoimprint technology suitable for mass production is advancing, and application to the production of structural color filters is expected. (See Patent Document 1 and Non-Patent Document 1).

しかしながら、構造色フィルターは、前述のように、回折格子による光の干渉、回折を利用することから、波長帯域(発色要因となる、反射率や透過率のスペクトルのピーク若しくはボトムの半値幅)が狭くなり、彩度の高い色を生じることが多い反面、入射光の入射角や観察方向に依存して色特性が変化する、いわゆる入射角依存性(視野角依存性)が大きいという欠点を有していた。   However, the structural color filter uses the interference and diffraction of light by the diffraction grating as described above, so that the wavelength band (the peak or bottom half-value width of the reflectance or transmittance spectrum, which becomes a color development factor), is used. While narrowing and often producing highly saturated colors, the color characteristics change depending on the incident angle of the incident light and the viewing direction, so-called incident angle dependency (viewing angle dependency) is large. Was.

図14は、石英基板上11に、ナノインプリントにより高分子樹脂(以下、適宜ポリマーと略記)の回折格子12を形成した構造色フィルター30の断面模式図である。図14において、d1は形成した回折格子12の厚さ(深さ)、d2はナノインプリント後の残膜部の厚さであり、P、wはそれぞれ回折格子12の周期、線幅を表わしている。また、4、5、9はそれぞれ入射光、透過光、反射光であり、θは入射光の入射角を表わしている。   FIG. 14 is a schematic cross-sectional view of a structural color filter 30 in which a diffraction grating 12 of a polymer resin (hereinafter abbreviated as a polymer as appropriate) is formed on a quartz substrate 11 by nanoimprinting. In FIG. 14, d1 is the thickness (depth) of the formed diffraction grating 12, d2 is the thickness of the remaining film portion after nanoimprinting, and P and w represent the period and line width of the diffraction grating 12, respectively. . Reference numerals 4, 5, and 9 denote incident light, transmitted light, and reflected light, respectively, and θ represents the incident angle of the incident light.

図14の構造において、d1=250nm、d2=100nm、F(回折格子の線幅/周期)=w/P=0.45とし(Fは通常Filling Factorと呼ばれる)、TE(Transverse Electric)偏光を、上面(回折格子側)から垂直入射(入射角θ=0)したときの分光反射率(反射率スペクトル)を計算すると、図15の(a)のようになる。ここで、ポリマーとしては、波長400nmから700nmにおける平均屈折率が1.70程度のものを用いている。計算には、コンピュータを用いた電磁界解析法の一種である、厳密結合波解析(RCWA)法を使用した(非特許文献2参照)。   In the structure shown in FIG. 14, d1 = 250 nm, d2 = 100 nm, F (line width / period of diffraction grating) = w / P = 0.45 (F is usually called Filling Factor), and TE (Transverse Electric) polarization is used. When the spectral reflectance (reflectance spectrum) when perpendicularly incident (incidence angle θ = 0) from the upper surface (diffraction grating side) is calculated, it is as shown in FIG. Here, a polymer having an average refractive index of about 1.70 at a wavelength of 400 nm to 700 nm is used. For the calculation, a strict coupled wave analysis (RCWA) method, which is a kind of electromagnetic field analysis method using a computer, was used (see Non-Patent Document 2).

ヒトの眼の分光感度特性によると、青色(B)と感じる光強度のピーク波長は約450nm、同じく緑色(G)、赤色(R)と感じる光強度のピーク波長はそれぞれ、約550nm、610nmである。図15の(a)によると、回折格子12の周期:P=300nm、375nm、415nmとしたときに、それぞれ光の波長=450nm、550nm、610nm付近にピークが出来ており、これらの周期で作製することで、加法混色用のB、G、Rの構造色フィルターとなることが分かる。   According to the spectral sensitivity characteristics of the human eye, the peak wavelength of the light intensity felt as blue (B) is about 450 nm, and the peak wavelengths of the light intensity felt as green (G) and red (R) are about 550 nm and 610 nm, respectively. is there. According to (a) of FIG. 15, when the period of the diffraction grating 12 is set to P = 300 nm, 375 nm, and 415 nm, peaks are formed in the vicinity of the wavelengths of light = 450 nm, 550 nm, and 610 nm, respectively. By doing so, it can be seen that a structural color filter of B, G, R for additive color mixing is obtained.

図15の(b)は、構造色フィルター30に対して、TE偏光を上面(回折格子側)から入射角θ=5deg(°)で入射したときの分光反射率を計算したものである。図15の(b)では、図15の(a)のB、G、Rのピークに、B1、B2、G1、G2、R1、R2と分離が発生している。このように、入射角をわずかに変化させただけで、分光反射率は変化し、図14の構造色フィルター30の視野角は狭いことが分かる。   FIG. 15B shows the calculated spectral reflectance when TE polarized light is incident on the structural color filter 30 from the upper surface (diffraction grating side) at an incident angle θ = 5 deg (°). In (b) of FIG. 15, separation occurs from B1, B2, G1, G2, R1, and R2 at the B, G, and R peaks in (a) of FIG. Thus, it can be seen that the spectral reflectance changes only by slightly changing the incident angle, and the viewing angle of the structural color filter 30 in FIG. 14 is narrow.

また、図14のような構造の構造色フィルター30においては、上記のように反射光を利用することはできるが、透過光を利用してB、G、Rの色特性をもつ透過型構造色フィルターを作製することは困難であった。   In the structural color filter 30 having the structure as shown in FIG. 14, the reflected light can be used as described above, but the transmitted structural color having B, G, and R color characteristics using the transmitted light. It was difficult to produce a filter.

特許第5023324号公報Japanese Patent No. 5023324

金森義明著、「構造色を利用したカラーフィルターの開発」、月刊ディスプレイ、テクノタイムズ社、2009年、3月号、p.32Yoshiaki Kanamori, “Development of color filters using structural colors,” Monthly Display, Techno Times, March 2009, p. 32 渋谷眞人、大木裕史著、「回折と結像の光学(光学ライブラリー)」、初版、朝倉書店、2005年12月、p.207Shibuya Hayato, Hiroshi Oki, “Diffraction and Imaging Optics (Optical Library)”, first edition, Asakura Shoten, December 2005, p. 207

構造色フィルターは、前述のように、回折格子による光の干渉、回折を利用することから、波長帯域(発色要因となる、反射率や透過率のスペクトルのピーク若しくはボトムの半値幅)が狭くなり、彩度の高い色を生じることが多い反面、入射光の入射角や観察方向に依存して色特性が変化する、いわゆる入射角依存性(視野角依存性)が大きいという欠点を有していた。本発明は、彩度が高く(色特性が高く)、かつ、入射角依存性、すなわち視野角依存性の低い透過型構造色フィルターおよびこれを用いた光学機器を提供することを目的とする。   As described above, the structural color filter uses the interference and diffraction of light by the diffraction grating, so the wavelength band (the peak value or bottom half-value width of the reflectance or transmittance spectrum, which causes color development) is narrowed. However, the color characteristics change depending on the incident angle of the incident light and the observation direction, and so-called incident angle dependency (viewing angle dependency) is large. It was. An object of the present invention is to provide a transmission type structural color filter having high saturation (high color characteristics) and having a low incident angle dependency, that is, a low viewing angle dependency, and an optical apparatus using the same.

上述の課題を解決するための本発明の一局面は、基板と、基板に積層された透過率調整用の薄膜と、透過率調整用の薄膜に積層された透明性薄膜と、透明性薄膜に形成された回折格子パターンの間隙に埋め込まれた金属性薄膜材料とを含む、構造色フィルターである。   One aspect of the present invention for solving the above-described problems is a substrate, a thin film for transmittance adjustment stacked on the substrate, a transparent thin film stacked on the thin film for transmittance adjustment, and a transparent thin film. A structural color filter including a metallic thin film material embedded in a gap of a formed diffraction grating pattern.

また、金属性薄膜材料はAlであってもよい。   The metallic thin film material may be Al.

また、透過率調整用の薄膜はTa、窒素および酸素を含んでもよい。   The thin film for adjusting the transmittance may contain Ta, nitrogen, and oxygen.

また、本発明の他の局面は、上述の構造色フィルターを含み、構造色フィルターへの入射光として、TE偏光を用いる、光学機器である。   Another aspect of the present invention is an optical apparatus that includes the above-described structural color filter and uses TE polarized light as incident light to the structural color filter.

本発明は、従来作製が困難であった透過型構造色フィルターの彩度等の色特性を向上するとともに、構造色フィルターの課題であった入射角依存性、すなわち視野角依存性が大きいという欠点を抑えることができる。また、金属性膜として安価で入手しやすいAlを使用することで他の金属を用いるより製造コストを低減でき、また、インプリント技術を用いることで、半導体プロセス技術を用いるより製造コストを低減できる。   The present invention improves the color characteristics such as the saturation of a transmission type structural color filter, which has been difficult to produce in the past, and has the disadvantage that the incident angle dependency, that is, the viewing angle dependency, which is a problem of the structural color filter is large. Can be suppressed. In addition, it is possible to reduce the manufacturing cost by using cheap and easily available Al as the metallic film, compared to using other metals, and it is possible to reduce the manufacturing cost by using the imprint technology than by using the semiconductor process technology. .

本発明に係る構造色フィルターの断面模式図(回折格子側から入射光を入射する場合の概念図)Schematic sectional view of structural color filter according to the present invention (conceptual diagram when incident light is incident from the diffraction grating side) 本発明に係る構造色フィルターの断面模式図(基板側から入射光を入射する場合の概念図)Schematic cross-sectional view of structural color filter according to the present invention (conceptual diagram when incident light is incident from the substrate side) 透過率調整膜を持たない構造色フィルターの断面模式図Cross-sectional schematic diagram of structural color filter without transmittance adjustment film 透過率調整膜を持たない構造色フィルターにTE偏光である入射光を回折格子側から垂直入射した場合の分光透過率を計算した結果を示す特性図Characteristic diagram showing the result of calculating the spectral transmittance when incident light, which is TE-polarized light, is vertically incident from the diffraction grating side to a structural color filter that does not have a transmittance adjustment film (a)TaN膜と、(b)Ta膜の波長に対する光学定数(n:屈折率、k:消衰係数)の変化を示す特性図(A) TaN film and, (b) Ta 2 O 5 film optical constants for the wavelength of the (n: refractive index, k: extinction coefficient) characteristic diagram showing the change of 透過率調整膜を持たない構造色フィルターにTE偏光である入射光を基板側から垂直入射した場合の分光透過率を計算した結果を示す特性図Characteristic diagram showing the result of calculating the spectral transmittance when incident light, which is TE-polarized light, is vertically incident on the structural color filter having no transmittance adjusting film from the substrate side 実施例1および2の構造色フィルターに、TE偏光である入射光を回折格子側から垂直入射した場合の分光透過率を計算した結果を示す特性図The characteristic view which shows the result of having calculated the spectral transmittance at the time of making incident light which is TE polarized light perpendicularly incident on the structural color filter of Example 1 and 2 from the diffraction grating side 実施例1の構造色フィルターに、TE偏光である入射光を回折格子側の斜め方向から入射した場合の分光透過率を計算した結果を示す特性図The characteristic view which shows the result of having calculated the spectral transmittance at the time of making incident light which is TE polarized light into the structural color filter of Example 1 from the diagonal direction on the diffraction grating side 実施例3および4の構造色フィルターに、TE偏光である入射光を基板側から垂直入射した場合の分光透過率を計算した結果を示す特性図FIG. 6 is a characteristic diagram showing the result of calculating the spectral transmittance when incident light as TE polarized light is vertically incident on the structural color filters of Examples 3 and 4 from the substrate side. 実施例3の構造色フィルターに、TE偏光である入射光を基板側の斜め方向から入射した場合の分光透過率を計算した結果を示す特性図The characteristic view which shows the result of having calculated the spectral transmittance when the incident light which is TE polarized light is incident on the structural color filter of Example 3 from the oblique direction on the substrate side 実施例5の構造色フィルターに、TE偏光である入射光を回折格子側の(a)垂直方向から、および(b)斜め方向から入射した場合の分光透過率を計算した結果を示す特性図FIG. 6 is a characteristic diagram showing the result of calculating the spectral transmittance when incident light, which is TE polarized light, is incident on the structural color filter of Example 5 from the diffraction grating side (a) from the vertical direction and (b) from the oblique direction. 実施例6の構造色フィルターに、TE偏光である入射光を基板側の(a)垂直方向から、および(b)斜め方向から入射した場合の分光透過率を計算した結果の例を示す特性図FIG. 5 is a characteristic diagram showing an example of the result of calculating the spectral transmittance when incident light, which is TE polarized light, is incident on the structural color filter of Example 6 from the substrate side (a) from the vertical direction and (b) from the oblique direction. 実施例7の構造色フィルターに、TE偏光である入射光を回折格子側の(a)垂直方向から、および(b)斜め方向から入射した場合の分光透過率を計算した結果を示す特性図FIG. 6 is a characteristic diagram showing the result of calculating the spectral transmittance when incident light, which is TE polarized light, is incident on the structural color filter of Example 7 from the diffraction grating side (a) from the vertical direction and (b) from the oblique direction. 従来技術に係る構造色フィルターの断面模式図であり、回折格子側から入射光を入射する場合の概念図It is a cross-sectional schematic diagram of a structural color filter according to the prior art, a conceptual diagram when incident light is incident from the diffraction grating side 従来技術の構造色フィルターに、TE偏光である入射光を回折格子側の(a)垂直方向から、および(b)斜め方向から入射した場合の分光反射率を計算した結果を示す特性図FIG. 6 is a characteristic diagram showing the result of calculating the spectral reflectance when incident light, which is TE polarized light, is incident on the structural color filter of the prior art from the diffraction grating side (a) from the vertical direction and (b) from the oblique direction.

図1および図2に、本発明に係る構造色フィルター10の一実施形態を示す。図1および図2に示すように、構造色フィルター10は、基板1(石英、アルミナなど透明性であることが好ましい)と、回折格子パターンが形成された透明性薄膜2と、回折格子パターンの間隙に埋め込まれた金属性薄膜材料3と、透過率調整用の薄膜である透過率調整膜4とが積層されて構成される。   1 and 2 show an embodiment of a structural color filter 10 according to the present invention. As shown in FIGS. 1 and 2, the structural color filter 10 includes a substrate 1 (which is preferably transparent such as quartz and alumina), a transparent thin film 2 on which a diffraction grating pattern is formed, and a diffraction grating pattern. A metallic thin film material 3 embedded in the gap and a transmittance adjusting film 4 which is a thin film for adjusting the transmittance are laminated.

金属性薄膜材料3は、安価で入手しやすいAl(アルミニウム)が好適である。Alを使用することで他の金属を用いるより製造コストを低減できる。また、インプリント技術を用いることで、半導体プロセス技術を用いるより製造コストを低減できる。   The metallic thin film material 3 is preferably Al (aluminum) which is inexpensive and easily available. By using Al, the manufacturing cost can be reduced as compared with other metals. Further, by using the imprint technique, the manufacturing cost can be reduced as compared with the semiconductor process technique.

透過率調整膜4は、Ta(タンタル)、窒素および酸素を含んでもよい。   The transmittance adjusting film 4 may contain Ta (tantalum), nitrogen, and oxygen.

図1および図2に示すように、構造色フィルター10においては、TE偏光である入射光(図1では5、図2では7)が回折格子側(図1)、または基板側(図2)から入射し、それらの透過光(図1では6、図2では8)は、加法混色用の3原色である、B(青)、G(緑)、R(赤)として利用することができる。   As shown in FIGS. 1 and 2, in the structural color filter 10, incident light (5 in FIG. 1, 7 in FIG. 2) that is TE-polarized light is on the diffraction grating side (FIG. 1) or on the substrate side (FIG. 2). The transmitted light (6 in FIG. 1, 8 in FIG. 2) can be used as B (blue), G (green), and R (red), which are the three primary colors for additive color mixing. .

以下、構造色フィルター10における、透明性薄膜2と金属性薄膜材料3の組み合わせからなる回折格子による波長選択性の発現と、透過率調整膜4の役割について、波長400nmから700nmの可視光域におけるTE偏光入射の分光透過率を計算した結果を用いて説明する。計算方法は、図15と同様、RCWA法であり、基板1の材料には石英、透明性薄膜2の材料には図15の場合と同じポリマー、金属性薄膜材料3としてはAl、透過率調整膜4の材料にはTaN、またはTaNとTaとの一定組成からなる化合物薄膜を用いた。計算に必要な屈折率は、石英は1.46で一定とし、Al、TaN、Taについては、次の情報から得た数値を用いた。
Nanolithography Research Labs、「Optical Properties of Thin Films for DUV and VUV Microlithography」、[online]、2012年4月26日、インターネット<URL: http://www.rit.edu/kgcoe/microsystems/lithography/thinfilms/thinfilms/thinfilms>
また、ポリマーは光の波長400nmから700nmの領域における平均屈折率が約1.70のポリマーであり、分光エリプソメーターで実際に測定した数値を用いた。
Hereinafter, in the structural color filter 10, the expression of wavelength selectivity by the diffraction grating composed of the combination of the transparent thin film 2 and the metallic thin film material 3 and the role of the transmittance adjusting film 4 in the visible light range from 400 nm to 700 nm are described. Description will be made using the calculation result of the spectral transmittance of TE polarized light. The calculation method is the RCWA method as in FIG. 15, the material of the substrate 1 is quartz, the material of the transparent thin film 2 is the same polymer as in FIG. 15, the metallic thin film material 3 is Al, and the transmittance is adjusted. The material of the film 4 was TaN or a compound thin film having a constant composition of TaN and Ta 2 O 5 . The refractive index necessary for the calculation was constant at 1.46 for quartz, and the values obtained from the following information were used for Al, TaN, and Ta 2 O 5 .
Nanolithography Research Labs, “Optical Properties of Thin Films for DUV and VUV Microlithography”, [online], April 26, 2012, Internet <URL: http: // www. rit. edu / kgcoe / microsystems / lithography / thinfilms / thinfilms / thinfilms>
Further, the polymer is a polymer having an average refractive index of about 1.70 in a light wavelength region of 400 nm to 700 nm, and a value actually measured with a spectroscopic ellipsometer was used.

まず、図3に示す、構造色フィルター20に回折格子側から光が入射する場合について説明する。構造色フィルター20は、本発明に係る構造色フィルター10と比較して、透過率調整膜4がない構造である。構造色フィルター20は、ヒトの目の分光感度特性に即して、B(青):450nm、G(緑):550nm、R(赤):610nmの光の波長にピークができるよう、構造パラメータである格子部膜厚:d1、残膜部膜厚:d2、周期:P、およびF=w/Pを調整して設計した。構造色フィルター20の2つの例について、分光透過率を計算した結果を図4の(a)、(b)に示す。それぞれの場合のパラメータの数値は、(a)が、d1=150nm、d2=100nm、F=w/P=0.5、回折格子の周期:P=270nm、430nm、520nm、(b)が、d1=150nm、d2=50nm、F=w/P=0.5、回折格子の周期:P=270nm、430nm、520nmとした。なお、図4の(a)、(b)に示した結果は、後述する実施例において「比較例1」と呼ぶ。   First, the case where light enters the structural color filter 20 shown in FIG. 3 from the diffraction grating side will be described. The structural color filter 20 has a structure without the transmittance adjusting film 4 as compared with the structural color filter 10 according to the present invention. The structural color filter 20 has structural parameters so that peaks can be formed at light wavelengths of B (blue): 450 nm, G (green): 550 nm, and R (red): 610 nm in accordance with the spectral sensitivity characteristics of the human eye. It was designed by adjusting the lattice part film thickness: d1, the remaining film part film thickness: d2, the period: P, and F = w / P. The results of calculating the spectral transmittance for two examples of the structural color filter 20 are shown in FIGS. The numerical values of the parameters in each case are as follows: (a) d1 = 150 nm, d2 = 100 nm, F = w / P = 0.5, diffraction grating period: P = 270 nm, 430 nm, 520 nm, (b) d1 = 150 nm, d2 = 50 nm, F = w / P = 0.5, and diffraction grating period: P = 270 nm, 430 nm, and 520 nm. The results shown in FIGS. 4A and 4B are referred to as “Comparative Example 1” in the examples described later.

図4の(a)、(b)を見ると、どちらの場合においても、透明性薄膜2と金属性薄膜材料3の組み合わせからなる周期:P=270nm、430nm、520nmの回折格子とすることで、目的とする光の波長(B(青):450nm、G(緑):550nm、R(赤):610nm)付近にピークはできている。しかしながら、特にG(緑)、R(赤)においては、ピーク以外の透過率がまだかなり高く、色特性を反映する波長選択性は不十分であるといえる。   When (a) and (b) of FIG. 4 are seen, in either case, a period composed of a combination of the transparent thin film 2 and the metallic thin film material 3 is set to a diffraction grating with P = 270 nm, 430 nm, and 520 nm. , Peaks are formed in the vicinity of the target light wavelength (B (blue): 450 nm, G (green): 550 nm, R (red): 610 nm). However, particularly in G (green) and R (red), the transmittance other than the peak is still quite high, and it can be said that the wavelength selectivity reflecting the color characteristics is insufficient.

また、図4の(a)、(b)に依れば、上記の波長選択性を劣化させている要因は、ピークより短い波長領域における透過率が高いことである。そこで、透過光が透過率調整膜4を通る図1および2のような構造とすることで、ピークより短い波長領域における透過率を低下させることができると考えられる。   Further, according to FIGS. 4A and 4B, the factor that deteriorates the wavelength selectivity is a high transmittance in a wavelength region shorter than the peak. Therefore, it is considered that the transmittance in the wavelength region shorter than the peak can be reduced by adopting the structure as shown in FIGS. 1 and 2 where the transmitted light passes through the transmittance adjusting film 4.

ピークより短い波長領域における透過率を、透過率調整膜4を通すことで低下させるためには、ピークよりも短い波長領域からピークよりも長い波長領域にかけて、次第に光吸収が小さくなるような透過率調整膜4を用いればよい。そのためには、ピークより短い波長領域から長い波長領域にかけて、吸収を左右する消衰係数(複素屈折率の虚数部分)が単調に小さくなる方向へ変化する材料を選択することが考えられる。   In order to reduce the transmittance in the wavelength region shorter than the peak by passing through the transmittance adjusting film 4, the transmittance is such that light absorption gradually decreases from the wavelength region shorter than the peak to the wavelength region longer than the peak. The adjustment film 4 may be used. For this purpose, it is conceivable to select a material in which the extinction coefficient (imaginary part of the complex refractive index) that affects absorption monotonously decreases from a wavelength region shorter than the peak to a longer wavelength region.

種々の材料の波長に対する消衰係数kおよび屈折率nを比較した結果、TaNの変化は上述のアドレスの情報を参照すると図5の(a)のようであり、波長400nmから700nmの可視光域において、消衰係数kが直線的に小さくなり、望ましい変化をしていることが分かった。   As a result of comparing the extinction coefficient k and the refractive index n with respect to the wavelengths of various materials, the change in TaN is as shown in FIG. 5A with reference to the information of the above address, and the visible light range from 400 nm to 700 nm is shown. , The extinction coefficient k was linearly decreased, and it was found that a desirable change was made.

しかしながら、検討の結果、TaN膜単独では消衰係数kの値が大きすぎ、透過率が低くなりすぎることが分かった。一方、Ta膜の消衰係数kおよび屈折率nの変化は、上述のアドレスの情報を参照すると、図5の(b)のようであり、波長400nmから700nmの可視光域において、消衰係数kがほぼ0の透明な膜であることが分かる。 However, as a result of examination, it has been found that the TaN film alone has a too large extinction coefficient k and the transmittance becomes too low. On the other hand, changes in the extinction coefficient k and the refractive index n of the Ta 2 O 5 film are as shown in FIG. 5B when referring to the address information described above, and in the visible light region having a wavelength of 400 nm to 700 nm, It can be seen that the film is a transparent film having an extinction coefficient k of almost zero.

そこで、TaN膜とTa膜の好適な組成からなる化合物薄膜(TaO膜。以下適宜TaON膜と略記)を透過率調整膜4とすれば、目的に叶う分光透過率特性が得られることが分かった。 Therefore, if a compound thin film (TaO x N y film; hereinafter abbreviated as TaON film as appropriate) having a suitable composition of a TaN film and a Ta 2 O 5 film is used as the transmittance adjusting film 4, the spectral transmittance characteristics that meet the purpose can be obtained. It turns out that it is obtained.

なお、上記のTa膜の役割は、TaN膜をより透明化し、組成比の調整により好適な光学特性とすることであるので、十分透明な膜であればよく、Ta膜に限らず、SiN膜やSiO膜であってもよい。これらの場合のTaN膜との化合物薄膜はそれぞれ、TaSiON膜、TaSiN膜となるが、いずれにおいてもTa、窒素および酸素を含むことでは共通しており、本発明の透過率調整膜4に用いることができる。 The role of the Ta 2 O 5 film is to make the TaN film more transparent and to have suitable optical characteristics by adjusting the composition ratio. Therefore, the Ta 2 O 5 film may be a sufficiently transparent film. It is not limited to SiN film or SiO 2 film. The compound thin film with the TaN film in these cases is a TaSiON film and a TaSiN film, respectively, but it is common to contain Ta, nitrogen and oxygen, and is used for the transmittance adjusting film 4 of the present invention. Can do.

次に、図6の(a)、(b)には、構造色フィルター20の、基板1側から光が入射する場合について、図4の場合と同様、ヒトの目の分光感度特性に即して、B(青):450nm、G(緑):550nm、R(赤):610nmの光の波長にピークができるよう、構造色フィルター20の構造パラメータである格子部膜厚:d1、残膜部膜厚:d2、周期:P、およびF=w/Pを調整して設計した2つの例を示す。それぞれの場合のパラメータの数値は、(a)が、d1=120nm、d2=100nm、F=w/P=0.45、回折格子の周期:P=350nm、560nm、690nm、(b)が、d1=150nm、d2=50nm、F=w/P=0.45、回折格子の周期:P=305nm、480nm、590nmとした。なお、図6の(a)、(b)に示した結果は、後述する実施例において「比較例2」と呼ぶ。   Next, FIGS. 6A and 6B show the case where light is incident from the substrate 1 side of the structural color filter 20 in the same manner as in FIG. B (blue): 450 nm, G (green): 550 nm, R (red): Lattice film thickness: d1, which is a structural parameter of the structural color filter 20, so that peaks can be formed at wavelengths of 610 nm, remaining film Two examples designed by adjusting the partial film thickness: d2, the period: P, and F = w / P are shown. The numerical values of the parameters in each case are: (a) d1 = 120 nm, d2 = 100 nm, F = w / P = 0.45, diffraction grating period: P = 350 nm, 560 nm, 690 nm, (b) d1 = 150 nm, d2 = 50 nm, F = w / P = 0.45, and diffraction grating period: P = 305 nm, 480 nm, and 590 nm. The results shown in FIGS. 6A and 6B are referred to as “Comparative Example 2” in the examples described later.

図6の(a)、(b)を見ると、図4の(a)、(b)の透過率と比較すると高くはないが、やはりG(緑)、R(赤)においては、ピーク以外の透過率がいく分高く、色特性を反映する波長選択性が不十分であるといえる。   Looking at (a) and (b) in FIG. 6, it is not as high as the transmittance of (a) and (b) in FIG. 4, but G (green) and R (red) are not peaks. Therefore, it can be said that the wavelength selectivity reflecting the color characteristics is insufficient.

図6のように、基板1側から光が入射する場合においても、本発明に係るTa、窒素および酸素を含む透過率調整膜4を使用することで、分光透過率特性を改善することができると考えられる。   As shown in FIG. 6, even when light is incident from the substrate 1 side, the spectral transmittance characteristics can be improved by using the transmittance adjusting film 4 containing Ta, nitrogen and oxygen according to the present invention. it is conceivable that.

以下、図7乃至図13に、本発明に係る構造色フィルター10について、波長400nmから700nmの可視光域におけるTE偏光入射時の分光透過率を計算した結果を示す。   7 to 13 show the results of calculating the spectral transmittance when TE polarized light is incident in the visible light wavelength range of 400 nm to 700 nm for the structural color filter 10 according to the present invention.

(実施例1、2)
実施例1および2の計算結果を図7および8に示す。実施例1(図7の(a))では、透明性薄膜2をポリマー、金属性薄膜材料3をAl、透過率調整膜4をTaONとし、TE偏光である入射光を回折格子側から入射した場合の分光透過率の計算を行った。詳細には、透過率調整膜4がTa:TaN=80:20の組成比からなる化合物膜で、d1=150nm、d2=50nm、d3=100nm、F=w/P=0.4、回折格子の周期:P=350nm、465nm、595nmとした。この結果、光の波長=450nm、550nm、610nm付近に透過率のピークができるとともに、透過率調整膜4のない比較例1の場合と比べ、ピーク以外の透過率が抑えられ、加法混色用のB、G、Rの構造色フィルター10として望ましい結果になっていることが確認された。
(Examples 1 and 2)
The calculation results of Examples 1 and 2 are shown in FIGS. In Example 1 (FIG. 7A), the transparent thin film 2 is a polymer, the metallic thin film material 3 is Al, the transmittance adjusting film 4 is TaON, and incident light that is TE polarized light is incident from the diffraction grating side. The spectral transmittance of the case was calculated. Specifically, the transmittance adjusting film 4 is a compound film having a composition ratio of Ta 2 O 5 : TaN = 80: 20, d1 = 150 nm, d2 = 50 nm, d3 = 100 nm, F = w / P = 0.4. The period of the diffraction grating was P = 350 nm, 465 nm, and 595 nm. As a result, transmittance peaks are formed in the vicinity of the light wavelength = 450 nm, 550 nm, and 610 nm, and the transmittance other than the peak is suppressed as compared with the case of the comparative example 1 without the transmittance adjusting film 4. It was confirmed that desirable results were obtained as the structural color filters 10 for B, G, and R.

また、実施例2(図7の(b))では、透明性薄膜2と金属性薄膜材料3は実施例1と同じ材料の組み合わせとして、透過率調整膜4をTa:TaN=70:30の組成比からなる化合物膜として分光透過率の計算を行った。また、d1、d2、d3、Fも実施例1と同じ数値とし、回折格子の周期をP=345nm、465nm、600nmとした。この結果、光の波長=450nm、550nm、610nm付近に透過率のピークができるとともに、透過率調整膜4のない比較例1の場合と比べ、ピーク以外の透過率が抑えられ、加法混色用のB、G、Rの構造色フィルターとして望ましい結果になっていることが確認された。 In Example 2 (FIG. 7B), the transparent thin film 2 and the metallic thin film material 3 are the same combination of materials as in Example 1, and the transmittance adjusting film 4 is Ta 2 O 5 : TaN = 70. The spectral transmittance was calculated as a compound film having a composition ratio of 30. D1, d2, d3, and F were also set to the same numerical values as in Example 1, and the diffraction grating period was set to P = 345 nm, 465 nm, and 600 nm. As a result, transmittance peaks are formed in the vicinity of the light wavelength = 450 nm, 550 nm, and 610 nm, and the transmittance other than the peak is suppressed as compared with the case of the comparative example 1 without the transmittance adjusting film 4. It was confirmed that desirable results were obtained as structural color filters for B, G, and R.

図8は、実施例1の構造色フィルターに対して、TE偏光を回折格子側から入射角θ=5degおよび20degで斜め入射したときの分光透過率を計算したものである。図8から分かるように、実施例1の構造色フィルターは、入射角を20deg程度まで変化させてもB、G、Rのピーク形状に、大きな変化は見られない。また、図では省略するが、実施例2の構造色フィルターに対しても同様である。このように、本発明に係る構造色フィルター10は、TE偏光の回折格子側からの斜め入射に対する依存性が従来構造の構造色フィルターよりも小さく、視野角依存性が改善されることが確認された。   FIG. 8 shows the calculated spectral transmittance when TE polarized light is obliquely incident at the incident angles θ = 5 deg and 20 deg from the diffraction grating side with respect to the structural color filter of the first embodiment. As can be seen from FIG. 8, the structural color filter of Example 1 shows no significant change in the peak shapes of B, G, and R even when the incident angle is changed to about 20 deg. Although not shown in the figure, the same applies to the structural color filter of the second embodiment. As described above, it is confirmed that the structural color filter 10 according to the present invention has a smaller dependence on the oblique incidence of TE polarized light from the diffraction grating side than the structural color filter of the conventional structure, and the viewing angle dependence is improved. It was.

(実施例3、4)
実施例3および4の計算結果を図9および10に示す。実施例3(図9の(a))では、透明性薄膜2をポリマー、金属性薄膜材料3をAl、透過率調整膜4をTaONとし、TE偏光である入射光を基板側から入射した場合の分光透過率の計算を行った。詳細には、透過率調整膜4がTa:TaN=85:15の組成比からなる化合物膜で、d1=150nm、d2=50nm、d3=100nmとし、F=w/P=0.4、回折格子の周期:P=345nm、465nm、590nmとした。この結果、光の波長=450nm、550nm、610nm付近に透過率のピークができるとともに、透過率調整膜4のない比較例2の場合と比べ、ピーク以外の透過率が抑えられ、加法混色用のB、G、Rの構造色フィルター10として望ましい結果になっていることが確認された。
(Examples 3 and 4)
The calculation results of Examples 3 and 4 are shown in FIGS. In Example 3 (FIG. 9A), the transparent thin film 2 is a polymer, the metallic thin film material 3 is Al, the transmittance adjusting film 4 is TaON, and incident light that is TE polarized light is incident from the substrate side. The spectral transmittance of was calculated. Specifically, the transmittance adjusting film 4 is a compound film having a composition ratio of Ta 2 O 5 : TaN = 85: 15, d1 = 150 nm, d2 = 50 nm, d3 = 100 nm, and F = w / P = 0. 4. Period of diffraction grating: P = 345 nm, 465 nm, and 590 nm. As a result, the light transmittance is peaked at around 450 nm, 550 nm, and 610 nm, and the transmittance other than the peak is suppressed as compared with the case of the comparative example 2 without the transmittance adjusting film 4. It was confirmed that desirable results were obtained as the structural color filters 10 for B, G, and R.

また、実施例4(図9の(b))では、透明性薄膜2と金属性薄膜材料3は実施例3と同じ材料の組み合わせで、透過率調整膜4をTa:TaN=70:30の組成比からなる化合物膜として分光透過率の計算を行った。また、d1、d2、d3、Fも実施例3と同じ数値とし、回折格子の周期をP=340nm、465nm、605nmとした。この結果、光の波長=450nm、550nm、610nm付近に透過率のピークができるとともに、透過率調整膜4のない比較例2の場合と比べ、ピーク以外の透過率が抑えられ、加法混色用のB、G、Rの構造色フィルター10として望ましい結果になっていることが確認された。 In Example 4 (FIG. 9B), the transparent thin film 2 and the metallic thin film material 3 are the same combination of materials as in Example 3, and the transmittance adjusting film 4 is Ta 2 O 5 : TaN = 70. The spectral transmittance was calculated as a compound film having a composition ratio of 30. D1, d2, d3, and F were also set to the same numerical values as in Example 3, and the diffraction grating period was set to P = 340 nm, 465 nm, and 605 nm. As a result, the light transmittance is peaked at around 450 nm, 550 nm, and 610 nm, and the transmittance other than the peak is suppressed as compared with the case of the comparative example 2 without the transmittance adjusting film 4. It was confirmed that desirable results were obtained as the structural color filters 10 for B, G, and R.

図10は、実施例3の構造色フィルター10に対して、TE偏光を基板1側から入射角θ=5degおよび20degで斜め入射したときの分光透過率を計算したものである。図10から分かるように、実施例3の構造色フィルター10は、入射角を20deg程度まで変化させてもB、G、Rのピーク形状に、大きな変化は見られない。また、図では省略するが、実施例4の構造色フィルターに対しても同様である。このように、本発明の構造色フィルターは、TE偏光の基板1側からの斜め入射に対する依存性が従来構造の構造色フィルターよりも小さく、視野角依存性が改善されることが確認された。   FIG. 10 shows the spectral transmittance when TE polarized light is obliquely incident at the incident angles θ = 5 deg and 20 deg from the substrate 1 side with respect to the structural color filter 10 of the third embodiment. As can be seen from FIG. 10, the structural color filter 10 of Example 3 shows no significant change in the peak shapes of B, G, and R even when the incident angle is changed to about 20 degrees. Although not shown in the figure, the same applies to the structural color filter of the fourth embodiment. Thus, it was confirmed that the structural color filter of the present invention is less dependent on the oblique incidence of TE polarized light from the substrate 1 side than the structural color filter of the conventional structure, and the viewing angle dependency is improved.

(実施例5)
実施例5の計算結果を図11に示す。実施例5では、透明性薄膜2をSiN膜、金属性薄膜材料3をAl、透過率調整膜4をTaONとし、TE偏光である入射光を回折格子側から入射した場合の分光透過率の計算を行った。詳細には、透過率調整膜4がTa:TaN=50:50の組成比からなる化合物膜で、d1=100nm、d2=50nm、d3=140nmとし、B(青)に対してはF=w/P=0.35、G(緑)とR(赤)に対してはF=w/P=0.40、回折格子の周期:P=310nm、400nm、600nmとした。この結果、光の波長=450nm、550nm、610nm付近に透過率のピークができるとともに、透過率調整膜のない比較例1の場合と比べ、ピーク以外の透過率が抑えられ、加法混色用のB、G、Rの構造色フィルターとして望ましい結果になっていることが確認された(図11の(a))。
(Example 5)
The calculation result of Example 5 is shown in FIG. In Example 5, the transparent thin film 2 is a SiN film, the metallic thin film material 3 is Al, the transmittance adjusting film 4 is TaON, and the spectral transmittance is calculated when incident light that is TE polarized light is incident from the diffraction grating side. Went. Specifically, the transmittance adjusting film 4 is a compound film having a composition ratio of Ta 2 O 5 : TaN = 50: 50, d1 = 100 nm, d2 = 50 nm, d3 = 140 nm, and for B (blue) F = w / P = 0.35, F = w / P = 0.40 for G (green) and R (red), and diffraction grating periods: P = 310 nm, 400 nm, and 600 nm. As a result, transmittance peaks are formed in the vicinity of light wavelengths = 450 nm, 550 nm, and 610 nm, and transmittance other than the peak is suppressed as compared with the case of Comparative Example 1 having no transmittance adjusting film, and additive color mixing B It was confirmed that desirable results were obtained as structural color filters for G, R, and G (FIG. 11A).

図11の(b)は、実施例5の構造色フィルター10に対して、TE偏光を回折格子側から入射角θ=20degで斜め入射したときの分光透過率を計算したものである。図11の(b)から分かるように、実施例5の構造色フィルター10は、入射角を20deg程度まで変化させてもB、G、Rのピーク形状に、色特性に影響するような変化は見られない。このように、本発明に係る構造色フィルター10は、SiN膜を透明性薄膜2とする場合においても、TE偏光の回折格子側からの斜め入射に対する依存性が従来構造の構造色フィルターよりも小さく、視野角依存性が改善されることが確認された。   FIG. 11B shows the calculated spectral transmittance when TE polarized light is obliquely incident on the structural color filter 10 of the fifth embodiment at an incident angle θ = 20 deg from the diffraction grating side. As can be seen from FIG. 11B, the structural color filter 10 of Example 5 does not change the B, G, and R peak shapes that affect the color characteristics even when the incident angle is changed to about 20 deg. can not see. Thus, the structural color filter 10 according to the present invention is less dependent on the oblique incidence of TE polarized light from the diffraction grating side than the structural color filter of the conventional structure even when the SiN film is the transparent thin film 2. It was confirmed that the viewing angle dependency was improved.

(実施例6)
実施例6の計算結果を図12に示す。実施例6では、透明性薄膜2をSiN膜、金属性薄膜材料3をAl、透過率調整膜4をTaONとし、TE偏光である入射光を基板1側から入射した場合の分光透過率の計算を行った。詳細には、透過率調整膜4がTa:TaN=50:50の組成比からなる化合物膜で、d1=130nm、d2=50nm、d3=120nm、F=w/P=0.40、回折格子の周期:P=260nm、370nm、460nmとした。この結果、それぞれ波長=450nm、550nm、610nm付近に透過率のピークができるとともに、透過率調整膜4のない比較例2の場合と比べ、ピーク以外の透過率が抑えられ、加法混色用のB、G、Rの構造色フィルター10として望ましい結果になっていることが確認された(図12の(a))。
(Example 6)
The calculation result of Example 6 is shown in FIG. In Example 6, the transparent thin film 2 is made of SiN film, the metallic thin film material 3 is made of Al, the transmittance adjusting film 4 is made of TaON, and the spectral transmittance is calculated when incident light that is TE polarized light enters from the substrate 1 side. Went. Specifically, the transmittance adjusting film 4 is a compound film having a composition ratio of Ta 2 O 5 : TaN = 50: 50, d1 = 130 nm, d2 = 50 nm, d3 = 120 nm, F = w / P = 0.40. The period of the diffraction grating: P = 260 nm, 370 nm, and 460 nm. As a result, transmittance peaks are formed in the vicinity of wavelengths = 450 nm, 550 nm, and 610 nm, respectively, and transmittance other than the peak is suppressed as compared with the case of Comparative Example 2 without the transmittance adjusting film 4, and additive color mixing B , G and R structural color filters 10 were confirmed to have desirable results ((a) of FIG. 12).

図12の(b)は、実施例6の構造色フィルター10に対して、TE偏光を基板側から入射角θ=20degで斜め入射したときの分光透過率を計算したものである。図12の(b)から分かるように、実施例6の構造色フィルター10は、入射角を20deg程度まで変化させてもB、G、Rのピーク形状に、色特性に影響するような変化は見られない。このように、本発明に係る構造色フィルター10は、SiN膜を透明性薄膜とする場合においても、TE偏光の基板側からの斜め入射に対する依存性が従来構造の構造色フィルターよりも小さく、視野角依存性が改善されることが確認された。   FIG. 12B shows the calculated spectral transmittance when TE polarized light is obliquely incident on the structural color filter 10 of Example 6 from the substrate side at an incident angle θ = 20 deg. As can be seen from FIG. 12B, the structural color filter 10 of Example 6 does not change the B, G, and R peak shapes that affect the color characteristics even when the incident angle is changed to about 20 deg. can not see. As described above, the structural color filter 10 according to the present invention is less dependent on the oblique incidence from the substrate side of the TE polarized light than the structural color filter of the conventional structure, even when the SiN film is a transparent thin film. It was confirmed that the angular dependence was improved.

(実施例7)
実施例7の計算結果を図13に示す。実施例7では、透明性薄膜2の残膜部がない(d2=0nm)構造色フィルター10を用いた。一般に回折格子のパターンをインプリントで形成する場合には、ポリマーの残膜部が発生するが、半導体プロセスでエッチングにより形成する場合は、残膜部をつくることもできるが、基板表面までエッチングすることで残膜部を無くすこともできる。実施例7では、構造色フィルター10を、回折格子の透明性薄膜2がSiN膜、回折格子の金属性薄膜材料3がAl、透過率調整膜4がTa:TaN=70:30の組成比からなる化合物膜で、d1=150nm、d3=150nmであるが、残膜部は無く(d2=0nm)、B(青)に対してはF=w/P=0.40、G(緑)とR(赤)に対してはF=w/P=0.35の条件で、回折格子の周期:P=265nm、410nm、470nmとして作製した。この結果、波長=450nm、550nm、610nm付近に透過率のピークができるとともに、透過率調整膜4のない比較例1の場合と比べ、ピーク以外の透過率が抑えられ、透明性薄膜の残膜部がない場合においても、加法混色用のB、G、Rの構造色フィルター10として望ましい結果になることが確認された(図13の(a))。
(Example 7)
The calculation result of Example 7 is shown in FIG. In Example 7, the structural color filter 10 having no remaining film portion of the transparent thin film 2 (d2 = 0 nm) was used. In general, when a diffraction grating pattern is formed by imprinting, a residual film portion of a polymer is generated. However, when forming by etching in a semiconductor process, a residual film portion can be formed, but etching is performed up to the substrate surface. Thus, the remaining film portion can be eliminated. In Example 7, the structural color filter 10 was formed such that the transparent thin film 2 of the diffraction grating was an SiN film, the metallic thin film material 3 of the diffraction grating was Al, and the transmittance adjusting film 4 was Ta 2 O 5 : TaN = 70: 30. A compound film having a composition ratio, d1 = 150 nm and d3 = 150 nm, but no remaining film part (d2 = 0 nm), and for B (blue), F = w / P = 0.40, G ( With respect to (green) and R (red), the diffraction grating periods were set to P = 265 nm, 410 nm, and 470 nm under the condition of F = w / P = 0.35. As a result, transmittance peaks are formed in the vicinity of wavelengths = 450 nm, 550 nm, and 610 nm, and the transmittance other than the peak is suppressed as compared with the case of Comparative Example 1 without the transmittance adjustment film 4, and the remaining film of the transparent thin film Even when there is no portion, it was confirmed that a desirable result was obtained as the B, G, R structural color filter 10 for additive color mixing ((a) of FIG. 13).

図13の(b)は、実施例7の構造色フィルター10に対して、TE偏光を回折格子側から入射角θ=20degで斜め入射したときの分光透過率を計算したものである。図13の(b)から分かるように、実施例7の構造色フィルター10は、入射角を20deg程度まで変化させてもB、G、Rのピーク形状に、色特性に影響するような変化は見られない。このように、本発明に係る構造色フィルター10は、SiN膜を透明性薄膜とし、その残膜部がない場合においても、TE偏光の回折格子側からの斜め入射に対する依存性が従来構造の構造色フィルターよりも小さく、視野角依存性が改善されることが確認された。   FIG. 13B shows the calculated spectral transmittance when TE polarized light is obliquely incident on the structural color filter 10 of Example 7 from the diffraction grating side at an incident angle θ = 20 deg. As can be seen from FIG. 13B, the structural color filter 10 of Example 7 does not change the peak shapes of B, G, and R that affect the color characteristics even when the incident angle is changed to about 20 deg. can not see. As described above, the structural color filter 10 according to the present invention has a structure in which the dependence on the oblique incidence from the diffraction grating side of the TE polarized light is the structure of the conventional structure even when the SiN film is a transparent thin film and there is no remaining film portion. It was confirmed that it was smaller than the color filter and the viewing angle dependency was improved.

図を用いた説明は省略するが、残膜部がない構造においては、TE偏光の基板側からの入射や、透明性薄膜をポリマーとする場合においても本発明に係る構造色フィルター10は、TE偏光の斜め入射に対する依存性が従来構造の構造色フィルターよりも小さく、視野角依存性が改善されることが確認された。   Although the description with reference to the drawings is omitted, in the structure having no remaining film portion, the structural color filter 10 according to the present invention is TE even when the TE polarized light is incident from the substrate side or the transparent thin film is a polymer. It was confirmed that the dependency of polarized light on oblique incidence was smaller than that of a structural color filter having a conventional structure, and the viewing angle dependency was improved.

以上の結果から、本発明に係る構造色フィルター10は、従来作製が困難であった透過型構造色フィルターの色特性を向上するとともに、構造色フィルターの課題であった入射角依存性、すなわち視野角依存性が大きいという欠点を抑えることが確認できた。また金属性膜として安価で入手しやすいAlを使用することで他の金属を用いるより製造コストを低減でき、また、インプリント技術を用いることで、半導体プロセス技術を用いるより製造コストを低減できた。   From the above results, the structural color filter 10 according to the present invention improves the color characteristics of the transmissive structural color filter, which has been difficult to produce in the past, and the incident angle dependency, that is, the field of view, which has been a problem of the structural color filter. It was confirmed that the drawback of large angular dependence was suppressed. In addition, it was possible to reduce the manufacturing cost by using cheap and easily available Al as a metallic film, compared to using other metals, and by using the imprint technology, the manufacturing cost could be reduced more than using the semiconductor process technology. .

また、本発明に係る構造色フィルターは、入射光としてTE偏光を用いたカラーディスプレイ等の各種光学機器に用いることもできる。   The structural color filter according to the present invention can also be used in various optical devices such as a color display using TE polarized light as incident light.

本発明は、色素を添加した高分子材料を使わず、透明性材料と金属性材料からなる回折格子パターンと、透過率調整膜を使い、構造パラメータ(膜厚、周期、線幅)を最適化することにより、多様で、視野角依存性が小さく視野角が広く、彩度等の色特性に優れた透過型カラーフィルターを、同一基板上に一括形成できるので、ディスプレイ、イメージセンサー、分析機器などの各種光学機器への応用が期待される。   The present invention optimizes structural parameters (film thickness, period, line width) by using a diffraction grating pattern made of a transparent material and a metallic material and a transmittance adjusting film without using a polymer material added with a dye. As a result, a variety of transmission type color filters with a small viewing angle dependency, a wide viewing angle, and excellent color characteristics such as saturation can be formed on the same substrate, so that displays, image sensors, analytical instruments, etc. Application to various optical equipment is expected.

1 基板
2 透明性薄膜
3 金属性膜
4 透過率調整膜
5、7 入射光
6、8 透過光
9 反射光
10、20、30 構造色フィルター
11 石英基板
12 回折格子
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent thin film 3 Metallic film 4 Transmittance adjustment film 5, 7 Incident light 6, 8 Transmitted light 9 Reflected light 10, 20, 30 Structural color filter 11 Quartz substrate 12 Diffraction grating

Claims (4)

基板と、前記基板に積層された透過率調整用の薄膜と、前記透過率調整用の薄膜に積層された透明性薄膜と、前記透明性薄膜に形成された回折格子パターンの間隙に埋め込まれた金属性薄膜材料とを含む、構造色フィルター。   Embedded in a gap between a substrate, a transmittance adjusting thin film laminated on the substrate, a transparent thin film laminated on the transmittance adjusting thin film, and a diffraction grating pattern formed on the transparent thin film A structural color filter comprising a metallic thin film material. 前記金属性薄膜材料はアルミニウムである、請求項1に記載の構造色フィルター。   The structural color filter according to claim 1, wherein the metallic thin film material is aluminum. 透過率調整用の薄膜はタンタル、窒素および酸素を含む、請求項1又は2に記載の構造色フィルター。   The structural color filter according to claim 1 or 2, wherein the transmittance adjusting thin film contains tantalum, nitrogen, and oxygen. 請求項1〜3のいずれかに記載の構造色フィルターを含み、前記構造色フィルターへの入射光として、TE偏光を用いる、光学機器。   An optical apparatus comprising the structural color filter according to claim 1, and using TE polarized light as incident light to the structural color filter.
JP2014080090A 2014-04-09 2014-04-09 Structural color filter and optical instrument using the same Active JP6337583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080090A JP6337583B2 (en) 2014-04-09 2014-04-09 Structural color filter and optical instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080090A JP6337583B2 (en) 2014-04-09 2014-04-09 Structural color filter and optical instrument using the same

Publications (2)

Publication Number Publication Date
JP2015200816A true JP2015200816A (en) 2015-11-12
JP6337583B2 JP6337583B2 (en) 2018-06-06

Family

ID=54552100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080090A Active JP6337583B2 (en) 2014-04-09 2014-04-09 Structural color filter and optical instrument using the same

Country Status (1)

Country Link
JP (1) JP6337583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094537A1 (en) * 2015-12-03 2017-06-08 ソニー株式会社 Semiconductor chip and electronic device
JP2018195908A (en) * 2017-05-15 2018-12-06 ソニーセミコンダクタソリューションズ株式会社 Image element, image element manufacturing method, electronic apparatus, and imaging module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030103150A1 (en) * 2001-11-30 2003-06-05 Catrysse Peter B. Integrated color pixel ( ICP )
JP2003322947A (en) * 2002-04-26 2003-11-14 Hoya Corp Halftone phase shifting mask blank and halftone phase shifting mask
JP2009534700A (en) * 2006-04-19 2009-09-24 コミツサリア タ レネルジー アトミーク Micro-structure spectral filter and image sensor
JP2011187804A (en) * 2010-03-10 2011-09-22 Toppan Printing Co Ltd Method of manufacturing mask for extreme ultraviolet exposure
WO2012105555A1 (en) * 2011-02-01 2012-08-09 株式会社クラレ Wavelength selective filter element, method for manufacturing same, and image display device
JP2013029805A (en) * 2011-06-23 2013-02-07 Toyo Seikan Kaisha Ltd Lamination structure having layer for structural color development

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030103150A1 (en) * 2001-11-30 2003-06-05 Catrysse Peter B. Integrated color pixel ( ICP )
JP2003322947A (en) * 2002-04-26 2003-11-14 Hoya Corp Halftone phase shifting mask blank and halftone phase shifting mask
JP2009534700A (en) * 2006-04-19 2009-09-24 コミツサリア タ レネルジー アトミーク Micro-structure spectral filter and image sensor
JP2011187804A (en) * 2010-03-10 2011-09-22 Toppan Printing Co Ltd Method of manufacturing mask for extreme ultraviolet exposure
WO2012105555A1 (en) * 2011-02-01 2012-08-09 株式会社クラレ Wavelength selective filter element, method for manufacturing same, and image display device
JP2013029805A (en) * 2011-06-23 2013-02-07 Toyo Seikan Kaisha Ltd Lamination structure having layer for structural color development

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094537A1 (en) * 2015-12-03 2017-06-08 ソニー株式会社 Semiconductor chip and electronic device
US11048028B2 (en) 2015-12-03 2021-06-29 Sony Semiconductor Solutions Corporation Semiconductor chip and electronic apparatus for suppressing degradation of semiconductor chip
US11619772B2 (en) 2015-12-03 2023-04-04 Sony Semiconductor Solutions Corporation Semiconductor chip and electronic apparatus
JP2018195908A (en) * 2017-05-15 2018-12-06 ソニーセミコンダクタソリューションズ株式会社 Image element, image element manufacturing method, electronic apparatus, and imaging module
US11264424B2 (en) 2017-05-15 2022-03-01 Sony Semiconductor Solutions Corporation Optical filters and associated imaging devices
US11705473B2 (en) 2017-05-15 2023-07-18 Sony Semiconductor Solutions Corporation Optical filters and associated imaging devices

Also Published As

Publication number Publication date
JP6337583B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6237060B2 (en) Structure color filter
Cheng et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption
Yang et al. Compact multilayer film structure for angle insensitive color filtering
Raj Shrestha et al. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array
KR100597655B1 (en) Half-tone type phase shift mask blank and half-tone type phase shift mask
KR101890663B1 (en) Method for measuring film thickness distribution
CN102713693B (en) Security element having a color filter, document of value having such a security element and production method for such a security element
CN109196387A (en) Super lens for subwavelength resolution imaging
US20150118124A1 (en) Structural colorimetric sensor
JP2006517307A (en) General-purpose broadband polarizer, device including the same, and manufacturing method thereof
WO2005065182A2 (en) Optical retarders and related devices and systems
CN106574996A (en) Security element having subwavelength grating
CN105093380B (en) Inorganic polarizing plate and production method thereof
JP2018528486A (en) Security element with subwavelength diffraction grating
Asano et al. Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating
KR20130098651A (en) Wavelength filter based on a subwavelength metal grating
CN103777264A (en) Ultrahigh transmittivity color subtraction filter applicable to any light and preparation method of ultrahigh transmittivity color subtraction filter
Nguyen et al. 3D nanoimprint for NIR Fabry-Pérot filter arrays: fabrication, characterization and comparison of different cavity designs
JP6337583B2 (en) Structural color filter and optical instrument using the same
Qian et al. Improving the sensitivity of guided-mode resonance sensors under oblique incidence condition
US7608369B2 (en) Photomask to which phase shift is applied and exposure apparatus
Maystre Diffraction gratings
JP2015191230A (en) resonant element
Finlayson et al. Covert Images Using Surface Plasmon‐Mediated Optical Polarization Conversion
Pinton et al. Recent progress in plasmonic colour filters for image sensor and multispectral applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6337583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250