JP2015196848A - Arsenic treatment method - Google Patents

Arsenic treatment method Download PDF

Info

Publication number
JP2015196848A
JP2015196848A JP2014073837A JP2014073837A JP2015196848A JP 2015196848 A JP2015196848 A JP 2015196848A JP 2014073837 A JP2014073837 A JP 2014073837A JP 2014073837 A JP2014073837 A JP 2014073837A JP 2015196848 A JP2015196848 A JP 2015196848A
Authority
JP
Japan
Prior art keywords
arsenic
heat
heat treatment
coating
treatment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073837A
Other languages
Japanese (ja)
Other versions
JP6267042B2 (en
Inventor
良介 辰巳
Ryosuke Tatsumi
良介 辰巳
和浩 波多野
Kazuhiro Hatano
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014073837A priority Critical patent/JP6267042B2/en
Publication of JP2015196848A publication Critical patent/JP2015196848A/en
Application granted granted Critical
Publication of JP6267042B2 publication Critical patent/JP6267042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an arsenic treatment method by which arsenic contained in an arsenic-containing copper ore can be treated in a shorter period of time into a stable form suitable for long-term storage and preservation.SOLUTION: The arsenic treatment method comprises: a roasting step of roasting an arsenic-containing copper ore under a non-oxidizing atmosphere to separate the ore into chalcopyrite and a volatile matter containing arsenic sulfide; a first heat treatment step of heat-treating the volatile matter obtained in the roasting step, under a non-oxidizing atmosphere and melting the arsenic sulfide in the volatile matter to obtain a heat-treated product; a coating step of producing a coated material by coating the heat-treated product with a heat-shrinkable film having a heat-resistant temperature of 120°C or more; and a second heat treatment step of heating the coated material.

Description

本発明は、砒素の処理方法に関し、特に、砒素を含む銅鉱石の処理に利用可能な砒素の処理方法に関する。   The present invention relates to a method for treating arsenic, and more particularly, to a method for treating arsenic that can be used for treating copper ore containing arsenic.

近年、世界中で稼働している銅鉱山において、採取される銅鉱石は、初生硫化鉱主体となってきており、鉄・硫黄、その他の不純物が増加し、銅品位は低下傾向にある。これは、乾式銅製錬向けの銅精鉱生産コストの増加を招く。   In recent years, copper ores collected at copper mines operating all over the world have become the primary sulfide ore, and iron, sulfur and other impurities have increased, and the copper quality has been on the decline. This leads to an increase in copper concentrate production costs for dry copper smelting.

銅鉱石中の不純物の中で、最も問題視されているのは砒素である。砒素は、その存在形態にもよるが、極めて有害であり、産業分野での用途も僅少であるため、大部分は、安定的な形態で廃棄または貯蔵する必要がある。   Of the impurities in copper ore, arsenic is considered the most problematic. Although arsenic depends on the form of its existence, it is extremely harmful and has few applications in the industrial field, so most of it needs to be disposed or stored in a stable form.

そのため、買鉱乾式製錬所では、購入する銅精鉱中の砒素に対して、ある一定の制限(通常<0.3mass%程度)を付与している。鉱山側は、制限を超過した場合には、超過量に応じペナルティを製錬所側へ支払うことが一般的である。   For this reason, the purchase smelting smelter imposes certain restrictions (usually <about 0.3 mass%) on arsenic in the copper concentrate to be purchased. When the limit is exceeded, the mine side generally pays a penalty to the smelter according to the excess amount.

従って、鉱山にとってみれば、コスト低減、鉱山寿命延長のため、砒素を多く含む硫化鉱の効率的な処理方法は、重要な関心事である。一方、買鉱乾式製錬所側にとってみても、良質な鉱石の枯渇、銅精鉱需給の逼迫により、将来的に砒素を多く含む銅精鉱への対応が必要となる可能性が高い。   Therefore, from the mine's point of view, an efficient method for treating sulfide ore containing a large amount of arsenic is an important concern for cost reduction and mine life extension. On the other hand, the purchase smelter is likely to need to deal with arsenic-rich copper concentrate in the future due to depletion of high-quality ore and tight supply and demand of copper concentrate.

特開2009−39666号公報(特許文献1)では、砒素含有化合物を水分が少なくコンパクトな結晶化合物粒子形態とした後、得られた結晶化合物を樹脂でコートする砒素の処理方法が開示されている。   Japanese Patent Application Laid-Open No. 2009-39666 (Patent Document 1) discloses an arsenic treatment method in which an arsenic-containing compound is made into a compact crystalline compound particle form with less moisture and then the obtained crystalline compound is coated with a resin. .

特開2009−39666号公報JP 2009-39666 A

しかしながら、特許文献1に記載された方法では、樹脂でコートする砒素含有化合物を所定の形態に調整するための予備調整が複雑で時間がかかる上、処理コストが高くなるという問題がある。   However, the method described in Patent Document 1 has a problem that the preliminary adjustment for adjusting the arsenic-containing compound coated with the resin into a predetermined form is complicated and takes time, and the processing cost is increased.

上記課題を鑑み、本発明は、砒素を含む銅鉱石に含まれる砒素をより短時間で長期的な貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法を提供する。   In view of the above problems, the present invention provides an arsenic treatment method capable of treating arsenic contained in copper ore containing arsenic in a short time and in a stable form suitable for long-term storage and preservation.

上記課題を解決するために、本発明者が鋭意検討したところ、砒素を含む銅鉱石を焙焼して銅鉱石から砒素を含む揮発物を抽出し、この揮発物に熱処理を施した熱処理物に対してコーティングを施した上で更に所定の熱処理を行うことで、砒素含有化合物を従来よりも短時間で長期的な貯蔵及び保存に適した安定的な形態に処理可能であることを見出した。   In order to solve the above problems, the present inventors diligently studied, roasting copper ore containing arsenic, extracting volatiles containing arsenic from the copper ore, and applying heat treatment to the volatiles. On the other hand, it was found that by applying a predetermined heat treatment after coating, the arsenic-containing compound can be processed into a stable form suitable for long-term storage and preservation in a shorter time than before.

以上の知見を基礎として完成した本発明は一側面において、砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、焙焼工程で得られた揮発物を非酸化性雰囲気下において熱処理し、揮発物中の砒素硫化物を溶融させて熱処理物を得る第1の熱処理工程と、熱処理物を耐熱温度120℃以上の熱収縮性フィルムで被覆し、被覆物を作製する被覆工程と、被覆物を加熱する第2の熱処理工程とを含む砒素の処理方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a roasting step of roasting copper ore containing arsenic in a non-oxidizing atmosphere and separating it into chalcopyrite and volatiles containing arsenic sulfide; A first heat treatment step of heat-treating the volatile matter obtained in the roasting step in a non-oxidizing atmosphere to melt the arsenic sulfide in the volatile matter to obtain a heat-treated product; This is a method for treating arsenic, which includes a coating step of coating with a heat-shrinkable film to produce a coating, and a second heat treatment step of heating the coating.

本発明に係る砒素の処理方法は一実施形態において、第1の熱処理工程は、揮発物を200〜600℃で加熱することを含み、第2の熱処理工程は、被覆物を120℃〜200℃で加熱することを含む。   In one embodiment of the method for treating arsenic according to the present invention, the first heat treatment step includes heating a volatile material at 200 to 600 ° C., and the second heat treatment step includes heating the coating to 120 ° C. to 200 ° C. Heating with.

本発明に係る砒素の処理方法は別の一実施形態において、熱収縮性フィルムが、ポリ塩化ビニリデンを含む。   In another embodiment of the method for treating arsenic according to the present invention, the heat-shrinkable film contains polyvinylidene chloride.

本発明に係る砒素の処理方法は更に別の一実施形態において、第1の熱処理工程において、硫黄を添加することを更に含む。   In another embodiment, the arsenic treatment method according to the present invention further includes adding sulfur in the first heat treatment step.

本発明に係る砒素の処理方法は更に別の一実施形態において、第1の熱処理工程において、老化防止剤を更に添加することを含む。   In yet another embodiment, the method for treating arsenic according to the present invention includes further adding an anti-aging agent in the first heat treatment step.

本発明によれば、砒素を含む銅鉱石に含まれる砒素をより短時間で長期的な貯蔵及び保存に適した安定的な形態に処理可能な砒素の処理方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the arsenic processing method which can process the arsenic contained in the copper ore containing arsenic in a stable form suitable for a long-term storage and preservation | save for a short time can be provided.

本発明の実施の形態に係る砒素の処理方法を示すフローチャートである。It is a flowchart which shows the arsenic processing method which concerns on embodiment of this invention. 熱処理工程で得られた熱処理物の性状を表す顕微鏡写真の例である。It is an example of the microscope picture showing the property of the heat processing thing obtained at the heat processing process. 第1の熱処理工程で得られる熱処理物の外観を示す写真である。It is a photograph which shows the external appearance of the heat processing thing obtained at a 1st heat treatment process. ポリ塩化ビニリデンフィルムで被覆した被覆物の第2の熱処理直後の外観を示す。The appearance immediately after the second heat treatment of the coating coated with the polyvinylidene chloride film is shown. 加熱容器から取り出した後の被覆物の外観を示す。The external appearance of the coating after taking out from a heating container is shown. ポリプロピレンフィルムで被覆した被覆物の第2の熱処理直後の外観を示す。The external appearance just after the 2nd heat processing of the coating coated with the polypropylene film is shown. 加熱容器から取り出した後の被覆物の外観を示す。The external appearance of the coating after taking out from a heating container is shown. 焙焼、第1の熱処理、第2の熱処理によって得られた砒素含有化合物のAs溶出量の評価結果を示すグラフである。It is a graph which shows the evaluation result of As elution amount of the arsenic containing compound obtained by roasting, 1st heat processing, and 2nd heat processing.

本発明の実施の形態に係る砒素の処理方法は、図1に示すように、砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程S1と、焙焼工程で得られた揮発物を非酸化性雰囲気下において熱処理し、揮発物中の砒素硫化物を溶融させて熱処理物を得る第1の熱処理工程S2と、熱処理物を耐熱温度120℃以上の熱収縮性フィルムで被覆し、被覆物を作製する被覆工程S3と、被覆物を加熱する第2の熱処理工程S4とを含む。   As shown in FIG. 1, the arsenic treatment method according to the embodiment of the present invention roasts copper ore containing arsenic in a non-oxidizing atmosphere to convert chalcopyrite and volatiles containing arsenic sulfide. Roasting step S1 to be separated, first heat treatment step S2 to heat-treat the volatiles obtained in the roasting step in a non-oxidizing atmosphere, and melt the arsenic sulfide in the volatiles to obtain a heat-treated product; It includes a coating step S3 for coating the heat-treated product with a heat-shrinkable film having a heat-resistant temperature of 120 ° C. or higher, and a second heat-treatment step S4 for heating the coated product.

本実施形態の処理対象物は、砒素を含む銅鉱石である。具体的には、例えば、硫砒銅鉱(Cu3AsS4)、四面砒銅鉱(Cu12As413)、または、これら砒素を含む銅鉱が混在する銅精鉱等が利用可能である。なお、これら銅鉱石の他にも、砒素を含む鉱石であって以下に示す二段階処理により処理可能な鉱石であれば、上記銅鉱石には限定されないことは勿論である。 The processing object of this embodiment is a copper ore containing arsenic. Specifically, for example, copper arsenite (Cu 3 AsS 4 ), tetrahedral arsenite (Cu 12 As 4 S 13 ), or copper concentrate in which copper ores containing these arsenic are mixed can be used. In addition to these copper ores, it is a matter of course that the present invention is not limited to the copper ores as long as they are ores containing arsenic and can be processed by the following two-stage treatment.

例えば、本発明に利用可能な硫砒銅鉱を主体とする銅精鉱の品位は、共存する黄鉄鉱(FeS2)や脈石成分の品位によって異なるが、典型的には、銅を15〜35質量%、砒素を3〜15質量%含む。 For example, the grade of copper concentrate mainly composed of arsenite that can be used in the present invention varies depending on the grade of coexisting pyrite (FeS 2 ) and gangue components, but typically copper is 15 to 35% by mass. And 3-15% by mass of arsenic.

本実施形態では、銅精鉱を、鉱物種及び品位が変化しない温度で、予備乾燥することが好ましい。通常、高温空気で銅精鉱を乾燥させる際には、乾燥機出口における銅精鉱の温度をおよそ90℃とし、銅精鉱の水分率を0.5質量%以下とする。   In this embodiment, it is preferable to pre-dry the copper concentrate at a temperature at which the mineral species and quality do not change. Normally, when copper concentrate is dried with high-temperature air, the temperature of the copper concentrate at the outlet of the dryer is set to approximately 90 ° C., and the moisture content of the copper concentrate is set to 0.5 mass% or less.

−焙焼工程S1−
乾燥した銅精鉱は、非酸化性雰囲気下で、550℃〜700℃において、10〜60分間焙焼する。装置内を非酸化性雰囲気にするために供給されるガスとしては、例えば窒素ガスが用いられる。なお、焙焼工程S1における処理温度、および雰囲気の制御は、硫砒銅鉱主体の銅精鉱を硫化砒素と黄銅鉱等に変換にするのに必要な条件であり、反応時間は未反応硫砒銅鉱を残さないために必要な時間である。
-Roasting process S1-
The dried copper concentrate is roasted at 550 ° C. to 700 ° C. for 10 to 60 minutes in a non-oxidizing atmosphere. For example, nitrogen gas is used as the gas supplied to make the inside of the apparatus a non-oxidizing atmosphere. Control of the treatment temperature and atmosphere in the roasting step S1 is a condition necessary for converting the copper concentrate mainly composed of arsenite to arsenic sulfide and chalcopyrite, and the reaction time is determined based on the unreacted arsenite. This is the time required to leave no.

焙焼工程S1において、銅精鉱中の砒素硫化物の生成反応は、下記(1)式または(2) 式に従う。元の精鉱中に黄鉄鉱等が多く含まれていれば、(1)式中で添加するSは、(3)式の通り、処理温度帯における黄鉄鉱の分解によって、生成するSにより補填されるため不要となる。

4Cu3AsS4+12FeS+2S →12CuFeS2+As46 (1)
4Cu3AsS4+12FeS → 12CuFeS2+As44 (2)
FeS2 → FeS + S (3)
In the roasting step S1, the formation reaction of arsenic sulfide in the copper concentrate follows the following formula (1) or (2). If the original concentrate contains a lot of pyrite, etc., the S added in the formula (1) is compensated by the generated S by the decomposition of the pyrite in the treatment temperature zone as shown in the formula (3). Therefore, it becomes unnecessary.

4Cu 3 AsS 4 + 12FeS + 2S → 12CuFeS 2 + As 4 S 6 (1)
4Cu 3 AsS 4 + 12FeS → 12CuFeS 2 + As 4 S 4 (2)
FeS 2 → FeS + S (3)

焙焼工程S1は、例えばロータリキルンなどを用いて行われる。上記(1)〜(3)式に示すように、焙焼によって、砒素を含む硫化化合物が生成され、生成した砒素化合物は、温度に応じた蒸気圧で揮発し、原料銅精鉱中から除去される。   The roasting step S1 is performed using, for example, a rotary kiln. As shown in the above formulas (1) to (3), a sulfurized compound containing arsenic is generated by roasting, and the generated arsenic compound volatilizes at a vapor pressure corresponding to the temperature and is removed from the raw copper concentrate. Is done.

この焙焼処理の結果、原料銅精鉱から、黄銅鉱とキューバ鉱を主体とする焼鉱と、揮発して回収される砒素化合物(硫化砒素)と単体硫黄を含む揮発物とが得られる。焼鉱の黄銅鉱とキューバ鉱の比率は、550℃〜700℃の温度範囲では、反応前に含まれる黄銅鉱、輝銅鉱などの硫化銅鉱量と、反応前に含まれる黄鉄鉱量、及び添加される黄鉄鉱量により変化する。   As a result of this roasting treatment, the raw copper concentrate provides a calcined ore mainly composed of chalcopyrite and Cubanite, and an arsenic compound (arsenic sulfide) recovered by volatilization and a volatile substance containing elemental sulfur. In the temperature range of 550 ° C to 700 ° C, the ratio of chalcopyrite to chalcopyrite and cuba ore is the amount of copper ore such as chalcopyrite and chalcopyrite included before the reaction, the amount of pyrite included before the reaction, and added. Varies depending on the amount of pyrite.

焙焼工程S1において揮発したAs硫化物および単体硫黄はガス形態であるため、不活性雰囲気下のまま冷却し、固化させて回収する。図2は、回収した揮発物の顕微鏡写真の例を示している。回収した揮発物は、直径約10〜15μm程度の粒状粒子を含み、As品位の異なる内層1と外層2の二層構造を備える。   Since the As sulfide and elemental sulfur volatilized in the roasting step S1 are in a gas form, they are cooled, solidified and recovered in an inert atmosphere. FIG. 2 shows an example of a photomicrograph of the recovered volatiles. The recovered volatiles include granular particles having a diameter of about 10 to 15 μm and have a two-layer structure of an inner layer 1 and an outer layer 2 having different As grades.

揮発物粒子の内層1は砒素を約30mol%、硫黄を約70mol%含む層で構成されている。揮発物粒子の外層2は砒素を約5mol%、硫黄を約95mol%含む層で構成されている。即ち、焙焼工程S1で得られる粒状粒子からなる揮発物は、砒素を粒子内部に多く含む内層1の外側を硫黄を多く含む外層2で覆った二層構造を有している。   The inner layer 1 of volatile particles is composed of a layer containing about 30 mol% arsenic and about 70 mol% sulfur. The outer layer 2 of volatile particles is composed of a layer containing about 5 mol% arsenic and about 95 mol% sulfur. That is, the volatile matter composed of granular particles obtained in the roasting step S1 has a two-layer structure in which the outer side of the inner layer 1 containing a large amount of arsenic inside the particles is covered with the outer layer 2 containing a large amount of sulfur.

−第1の熱処理工程S2−
第1の熱処理工程S2では、図2に示す揮発物粒子に対して更に非酸化性雰囲気中で熱処理を行い、揮発物中の砒素硫化物(硫化砒素)を溶融させることで、揮発物の砒素溶出性をより低減させる。
-1st heat treatment process S2-
In the first heat treatment step S2, the volatile particles shown in FIG. 2 are further heat-treated in a non-oxidizing atmosphere to melt arsenic sulfide (arsenic sulfide) in the volatile matter, thereby arsenic of volatile matter. Reduces dissolution more.

熱処理系内を非酸化性雰囲気とするガスとしては例えば窒素ガスが用いられる。熱処理工程S2の処理温度は、200〜600℃とすることが好ましく、より好ましくは250〜400℃である。処理温度が200℃よりも低い場合には、揮発物中の砒素硫化物が十分に溶融せず、砒素溶出量の低減効果が十分に得られない場合がある。処理温度が600℃よりも高い場合には、揮発物中の砒素硫化物として含まれる硫化水素がガス化して揮発するため、熱処理物が回収できない場合がある。   For example, nitrogen gas is used as a gas for making the heat treatment system non-oxidizing atmosphere. The treatment temperature in the heat treatment step S2 is preferably 200 to 600 ° C, more preferably 250 to 400 ° C. When the processing temperature is lower than 200 ° C., the arsenic sulfide in the volatile material may not be sufficiently melted, and the effect of reducing the arsenic elution amount may not be sufficiently obtained. When the processing temperature is higher than 600 ° C., hydrogen sulfide contained as arsenic sulfide in the volatiles is gasified and volatilizes, so that the heat-treated product may not be recovered.

熱処理工程S2の処理時間は、処理温度によっても異なるが、完全に反応を進めるために、少なくとも30分以上、より好ましくは50分以上行うことが、熱処理物のAs溶出量低減の効果の面からは好ましい。   Although the treatment time of the heat treatment step S2 varies depending on the treatment temperature, in order to completely advance the reaction, it is preferable to carry out the treatment for at least 30 minutes or more, more preferably 50 minutes or more in terms of the effect of reducing the As elution amount of the heat treatment product. Is preferred.

熱処理工程S2に際し、揮発物に対して硫黄を添加することが好ましい。熱処理工程S2の処理温度が高くなるにつれて、硫黄の揮発量が増加して揮発物中の砒素濃度が高くなることで、硫黄が砒素と反応することによる砒素の溶出抑制効果が小さくなるからである。例えば、S/As質量比3.0の揮発物を400℃で処理した場合には、揮発物中のS分が揮発してS/As質量比が2.4程度に低下し、500℃で処理した場合にはS分が揮発してS/As質量比が1.2程度にまで低下する場合がある。添加する硫黄源としては単体硫黄が取り扱いの面からみて好ましい。硫黄の添加は、熱処理工程前に行ってもよいし、熱処理工程中に添加してもよい。   In the heat treatment step S2, sulfur is preferably added to the volatiles. This is because as the treatment temperature in the heat treatment step S2 increases, the volatilization amount of sulfur increases and the arsenic concentration in the volatile matter increases, so that the arsenic elution suppression effect due to the reaction of sulfur with arsenic decreases. . For example, when a volatile matter having an S / As mass ratio of 3.0 is treated at 400 ° C., the S content in the volatile matter is volatilized, and the S / As mass ratio is reduced to about 2.4, at 500 ° C. In the case of treatment, the S component volatilizes and the S / As mass ratio may be reduced to about 1.2. As the sulfur source to be added, simple sulfur is preferable from the viewpoint of handling. Sulfur may be added before the heat treatment step or may be added during the heat treatment step.

熱処理工程S2においては、揮発物中に含まれる硫黄の砒素に対する質量比(S/As質量比)が1.2以上、より好ましくは2.3以上、更に好ましくは3以上となるように、必要に応じて硫黄を添加することにより揮発物中の硫黄と砒素の濃度を調整することが好ましい。S/As質量比が1.2よりも小さくなると、熱処理の処理時間を長くしても、砒素の溶出低減効果が十分に得られない場合がある。   In the heat treatment step S2, it is necessary that the mass ratio of sulfur to arsenic (S / As mass ratio) in the volatiles is 1.2 or more, more preferably 2.3 or more, and even more preferably 3 or more. It is preferable to adjust the concentration of sulfur and arsenic in the volatiles by adding sulfur according to the above. If the S / As mass ratio is less than 1.2, the arsenic elution reduction effect may not be sufficiently obtained even if the heat treatment time is increased.

なお、S/As質量比の上限に特に制限はないが、S/As質量比が高ければ高いほど、短時間の熱処理でAs溶出抑制効果が得られる。一方で、S/As質量比を高くするために硫黄の添加量を増加させすぎても、As溶出抑制効果は大きく変わらず、むしろ硫黄が砒素に対して過剰となるために過剰な硫黄分の後処理が必要となりコスト上昇を招く場合がある。よって、S/As質量比の上限は6程度とすることができる。   Although there is no particular limitation on the upper limit of the S / As mass ratio, the higher the S / As mass ratio, the more effective the As elution suppression can be achieved with a shorter heat treatment. On the other hand, if the amount of sulfur added is increased too much in order to increase the S / As mass ratio, the As elution suppression effect does not change greatly. Rather, since sulfur is excessive with respect to arsenic, excess sulfur content is not increased. Post-processing is required and may increase costs. Therefore, the upper limit of the S / As mass ratio can be about 6.

熱処理工程S2においては、単体硫黄の他に、ゴムの老化防止剤を添加してもよい。これにより、より長期間に渡って砒素を含む揮発物から砒素が溶出することを抑制できる。ゴムの老化防止剤としては、例えば、モノフェノール系、ビスフェノール系、ポリフェノール系から選択されるいずれか1種類以上の老化防止剤が利用可能である。老化防止剤の添加量は0.2mol/m3以上、より好ましくは0.4mol/m3以上供給することが好ましく、より具体的には0.2〜2.0mol/m3である。 In the heat treatment step S2, an antioxidant for rubber may be added in addition to the elemental sulfur. Thereby, it can suppress that arsenic elutes from the volatile matter containing arsenic over a longer period of time. As the anti-aging agent for rubber, for example, any one or more anti-aging agents selected from monophenol, bisphenol and polyphenol can be used. The addition amount of the antioxidant is preferably 0.2 mol / m 3 or more, more preferably 0.4 mol / m 3 or more, and more specifically 0.2 to 2.0 mol / m 3 .

図3は、熱処理工程S2で得られた熱処理物の外観を示す写真である。熱処理物は、外観上は嵩張った柱状物質として採取される。この熱処理物の砒素品位は12〜15mol%で、その密度は、約0.6〜1.5g/cm3程度である。熱処理工程S2によって試料が膨張するため、この熱処理物は、純物質の硫化砒素の密度と比べると半分程度となる。この熱処理物をそのまま保存することも可能であるが、密度が低いと比表面積が大きくなるため、熱処理物の外部の雰囲気(例えば空気や液体)との接触面積が大きくなり、溶出が起こりやすくなる場合がある。 FIG. 3 is a photograph showing the appearance of the heat-treated product obtained in the heat treatment step S2. The heat-treated product is collected as a columnar substance that is bulky in appearance. The heat-treated product has an arsenic quality of 12 to 15 mol% and a density of about 0.6 to 1.5 g / cm 3 . Since the sample expands in the heat treatment step S2, the heat treatment product is about half the density of the pure arsenic sulfide. This heat-treated product can be stored as it is, but if the density is low, the specific surface area becomes large, so that the contact area with the atmosphere (eg, air or liquid) outside the heat-treated product becomes large and elution tends to occur. There is a case.

−被覆工程S3−
そこで本実施形態では、第1の熱処理工程S2で処理された熱処理物を粉砕(破砕)して、粉砕された熱処理物を熱収縮性フィルムで被覆して被覆物を作製する。熱収縮性フィルムで被覆することにより、後述する第2の熱処理工程において被覆物を加熱する際にフィルムが被覆物の表面及び表面から内部に一部入り込んだ状態で固着するため、Asの溶出抑制効果が期待できる。また、熱処理物を被覆しない場合は処理時間が30分以上必要であるのに対し、被覆工程S3で熱処理物を被覆することにより、第2の熱処理工程での加熱に必要な時間を例えば5分程度にまで短縮することができる。
-Coating step S3-
Therefore, in this embodiment, the heat-treated product processed in the first heat treatment step S2 is pulverized (crushed), and the pulverized heat-treated product is coated with a heat-shrinkable film to produce a coating. By coating with a heat-shrinkable film, when the coating is heated in the second heat treatment step to be described later, the film is fixed in a state where the film partially enters the inside from the surface of the coating, thereby suppressing As elution. The effect can be expected. In addition, when the heat-treated product is not coated, the treatment time is 30 minutes or more. On the other hand, by coating the heat-treated product in the coating step S3, the time required for heating in the second heat treatment step is, for example, 5 minutes. It can be shortened to the extent.

熱収縮性フィルムとしては、耐熱温度120℃以上、より好ましくは130℃以上の熱収縮性フィルムが用いられる。耐熱温度120℃以上の熱収縮性フィルムとしては、例えば、ポリ塩化ビニリデンが利用でき、他にも、ナイロン66などのポリアミド樹脂、ポリテトラフルオロエチレンなどのフッ素樹脂、フェノール樹脂などがあげられる。   As the heat-shrinkable film, a heat-shrinkable film having a heat resistant temperature of 120 ° C. or higher, more preferably 130 ° C. or higher is used. As the heat-shrinkable film having a heat resistant temperature of 120 ° C. or higher, for example, polyvinylidene chloride can be used, and other examples include polyamide resins such as nylon 66, fluorine resins such as polytetrafluoroethylene, and phenol resins.

−第2の熱処理工程S4−
第2の熱処理工程S4では、被覆工程S3で得られた被覆物に対して所定の熱処理を行い、被覆物内部の硫化水素や砒素混合物を固溶させるとともに加熱により熱収縮性フィルムを収縮させた被処理物を得る。
-Second heat treatment step S4-
In the second heat treatment step S4, the coating obtained in the coating step S3 is subjected to a predetermined heat treatment to dissolve the hydrogen sulfide and arsenic mixture inside the coating, and the heat shrinkable film is shrunk by heating. Get the workpiece.

第2の熱処理工程S4においては、被覆物を、窒素などを用いた非酸化性雰囲気下で加熱する。これにより、第2の熱処理後の被覆物の密度が1.5〜3.0g/cm3となるように加熱する。第2の熱処理工程S4における被覆物の処理温度は、使用する熱収縮フィルムの特性にもよるが、被覆物中に含まれる砒素含有物(熱処理物)の性質を考慮すると、120〜200℃とするのが好ましい。処理温度が120℃よりも低いと被覆物中の砒素含有物が十分に固溶しない場合がある。処理温度が200℃を超えると、使用できる熱収縮フィルムの種類が限られる上、熱収縮フィルムによってはフィルムを何重に巻いても破断が起こる場合がある。尚、加熱時間は5分以上あればよい。 In the second heat treatment step S4, the coating is heated in a non-oxidizing atmosphere using nitrogen or the like. Thereby, it heats so that the density of the coating after 2nd heat processing may be set to 1.5-3.0 g / cm < 3 >. The treatment temperature of the coating in the second heat treatment step S4 depends on the characteristics of the heat-shrinkable film to be used, but considering the properties of the arsenic-containing material (heat-treated product) contained in the coating, it is 120 to 200 ° C. It is preferable to do this. If the treatment temperature is lower than 120 ° C., the arsenic-containing material in the coating may not be sufficiently dissolved. When the treatment temperature exceeds 200 ° C., the types of heat-shrinkable films that can be used are limited, and depending on the heat-shrinkable film, breakage may occur regardless of how many times the film is wound. The heating time may be 5 minutes or longer.

第2の熱処理工程S4により得られた被処理物は、砒素を含み、その密度は1.5〜3.0g/cm3である。この被処理物は、熱収縮性フィルムが被処理物の表面に密着して表面から内部へ入り込むように、熱収縮性フィルムにより一体化して被覆されているため、被処理物表面の外気への接触が抑制でき、被処理物中の硫化水素の酸化を抑制できる。更に、第2の熱処理S4で得られた被処理物は、成形性が良好であり、塊状、柱状、板状などの所望の形に成形自在であるため、長期的な貯蔵及び保存に適した安定的な形態に処理することができる。また、本発明によれば、砒素を含む熱処理物を熱収縮性フィルムにより被覆した後に、熱収縮性フィルムの熱処理物への密着化処理と砒素の最終の難溶出化処理を同時に実施する。これにより、砒素を難溶出形態にした後にさらに樹脂によりコートして安定化させるという従来技術に比べて、工程数も少なくて済むとともに、最終の難溶出化処理中における砒素の溶出を抑制してより安全に処理を進めることが可能となる。 The to-be-processed object obtained by 2nd heat treatment process S4 contains arsenic, The density is 1.5-3.0 g / cm < 3 >. Since the heat-shrinkable film is integrated and covered with the heat-shrinkable film so that the heat-shrinkable film adheres to the surface of the object to be processed and enters the inside from the surface, Contact can be suppressed, and oxidation of hydrogen sulfide in the workpiece can be suppressed. Furthermore, the object to be processed obtained by the second heat treatment S4 has good moldability and can be formed into a desired shape such as a lump shape, a columnar shape, or a plate shape, and is suitable for long-term storage and preservation. It can be processed into a stable form. In addition, according to the present invention, after the heat-treated product containing arsenic is coated with the heat-shrinkable film, the heat-shrinkable film is adhered to the heat-treated product and the final arsenic elution treatment is simultaneously performed. This reduces the number of processes compared to the conventional technology that stabilizes the arsenic by making it difficult to elute and then coating it with resin, and suppresses arsenic elution during the final difficult eluting process. It becomes possible to proceed with processing more safely.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

(実施例1)
原料銅精鉱として、Cu品位21mass%、Fe品位23mass%、S品位38mass%、As品位6.8mass%の高As品位銅精鉱を使用した。この高As品位銅精鉱に対してX線回折(XRD)及び電子線マイクロアナライザ(EPMA)を用いて特性された主な鉱物組成は、黄銅鉱(CuFeS2)11mass%、黄鉄鉱(FeS2)42mass%、硫砒銅鉱(Cu3AsS4)36mass%、脈石成分(SiO2等)11mass%であった。
(Example 1)
As the raw material copper concentrate, a high As grade copper concentrate having a Cu grade of 21 mass%, an Fe grade of 23 mass%, an S grade of 38 mass%, and an As grade of 6.8 mass% was used. The main mineral composition characterized using X-ray diffraction (XRD) and electron microanalyzer (EPMA) for this high As grade copper concentrate is 11 mass% of chalcopyrite (CuFeS 2 ), pyrite (FeS 2 ). They were 42 mass%, arsenite (Cu 3 AsS 4 ) 36 mass%, and gangue components (SiO 2 etc.) 11 mass%.

この砒素を含む銅精鉱100gを予備乾燥した後、窒素ガス雰囲気中において650℃の処理温度で焙焼したところ、表1に示すように、砒素をほとんど含まない黄銅鉱を含む精鉱(焙焼精鉱)と、砒素を33質量%、硫黄を64質量%含む揮発物とに分離できた。   After 100 g of this copper concentrate containing arsenic was pre-dried and then baked at a processing temperature of 650 ° C. in a nitrogen gas atmosphere, as shown in Table 1, the concentrate containing the chalcopyrite containing almost no arsenic (roasted Sinter) and volatiles containing 33% by mass of arsenic and 64% by mass of sulfur.

焙焼工程で得られた揮発物を冷却、固化して回収したところ、揮発物のS/As質量比は2.3であった。この揮発物をポリ塩化ビニリデンフィルムで被覆して被覆物を作製し、この被覆物を窒素ガス雰囲気下で140℃で5分間加熱処理して被処理物を得た。加熱処理直後の被処理物の外観を図4(a)に、加熱容器から取り出した後の被覆物の外観を図4(b)に示す。加熱処理により、砒素を含む化合物がポリ塩化ビニリデンフィルムにより被覆され、長期間保存可能な状態となった。   When the volatiles obtained in the roasting step were cooled, solidified and recovered, the S / As mass ratio of the volatiles was 2.3. The volatile matter was coated with a polyvinylidene chloride film to prepare a coating, and the coating was heat-treated at 140 ° C. for 5 minutes in a nitrogen gas atmosphere to obtain a workpiece. FIG. 4A shows the appearance of the object to be processed immediately after the heat treatment, and FIG. 4B shows the appearance of the coating after being taken out from the heating container. By the heat treatment, the compound containing arsenic was covered with the polyvinylidene chloride film, and the compound could be stored for a long time.

(比較例1)
実施例1の焙焼工程で得られた揮発物をポリプロピレンフィルムで被覆して被覆物を作製し、この被覆物を窒素ガス雰囲気下で150℃で5分間加熱処理して被処理物を得た。熱処理直後の被処理物の外観を図5(a)に、加熱容器から取り出した後の被覆物の外観を図5(b)に示す。比較例1の場合、加熱処理により被覆物が破れて、加熱容器から被処理物を取り出す際に破損した。ポリプロピレンフィルムの代わりにポリエチレンを用いた場合においても、加熱処理により被覆物が破れる現象が起こった。
(Comparative Example 1)
The volatile matter obtained in the roasting step of Example 1 was coated with a polypropylene film to prepare a coating, and this coating was heat-treated at 150 ° C. for 5 minutes in a nitrogen gas atmosphere to obtain a workpiece. . FIG. 5 (a) shows the appearance of the object to be processed immediately after the heat treatment, and FIG. 5 (b) shows the appearance of the coating after taking out from the heating container. In the case of Comparative Example 1, the coating was broken by the heat treatment, and was damaged when the object to be treated was taken out from the heating container. Even when polyethylene was used in place of the polypropylene film, a phenomenon that the coating was broken by the heat treatment occurred.

(溶出結果)
実施例1で得られた揮発物、熱処理物及び被処理物と、実施例1の焙焼工程で得られた揮発物に添加剤として硫黄と老化防止剤を加えなかった揮発物、熱処理物及び被処理物に対し、それぞれ米国環境保護庁(EPA)における土壌汚染物質の溶出分析(TCLP)によりAs溶出量を評価した。この溶出分析では、揮発物、溶出物及び被処理物をそれぞれ破砕して、粒径9.5mm未満(0.5〜5mm)とした試料に対し、溶出溶媒として脱イオン水、酢酸または酢酸緩衝液を使用し、pHを2.88とし、液固比20、温度22.3℃、振とう方法は回転振とうで30rpm、振とう時間を18時間で、固液分離を加圧ろ過(0.6〜0.8μmGFFフィルタ使用)として溶出分析を行った。結果を図6に示す。
(Elution results)
The volatile matter obtained in Example 1, the heat-treated product and the object to be treated, and the volatile matter obtained in the roasting step of Example 1 and the volatile matter, heat-treated product obtained by adding sulfur and an antioxidant as additives to the volatile matter, and The amount of As elution was evaluated by the soil pollution material elution analysis (TCLP) in the US Environmental Protection Agency (EPA). In this elution analysis, volatile substances, eluate and treated material are crushed and the sample is made to have a particle size of less than 9.5 mm (0.5 to 5 mm). The liquid is used, the pH is 2.88, the liquid-solid ratio is 20, the temperature is 22.3 ° C., the shaking method is rotary shaking at 30 rpm, the shaking time is 18 hours, and the solid-liquid separation is pressure filtered (0 Elution analysis was performed as 6 to 0.8 μm GFF filter). The results are shown in FIG.

図6に示すように、添加剤の添加の有無に関係なく、焙焼、第1の熱処理工程、第2の熱処理工程を行うほど、Asの溶出量は減少した。いずれの場合も、最終的に得られる被処理物は、Asの溶出量を1mg/L以下に低減できた。   As shown in FIG. 6, the elution amount of As decreased as the roasting, the first heat treatment step, and the second heat treatment step were performed regardless of whether or not the additive was added. In any case, the processed material finally obtained was able to reduce the elution amount of As to 1 mg / L or less.

(密度)
実施例1の熱処理物と被処理物についてそれぞれ密度を測定したところ、熱処理物の密度は1.0g/cm3であったのに対し、被処理物の密度は2.1g/cm3であった。即ち、第2の加熱処理により熱収縮性フィルムを収縮させるとともに砒素含有物の密度を上げて塊状(ブロック状)とすることで、As溶出性の低いより安定的な形態にすることができた。
(density)
When the densities of the heat-treated product and the object to be treated in Example 1 were measured, the density of the heat-treated material was 1.0 g / cm 3 , whereas the density of the object to be treated was 2.1 g / cm 3. It was. That is, the heat-shrinkable film was shrunk by the second heat treatment and the density of the arsenic-containing material was increased to form a block (block shape), thereby making it possible to obtain a more stable form with low As elution. .

1:内層
2:外層
1: Inner layer 2: Outer layer

Claims (5)

砒素を含む銅鉱石を非酸化性雰囲気下において焙焼し、黄銅鉱と、砒素硫化物を含む揮発物とに分離させる焙焼工程と、
前記焙焼工程で得られた前記揮発物を非酸化性雰囲気下において熱処理し、前記揮発物中の砒素硫化物を溶融させて熱処理物を得る第1の熱処理工程と、
前記熱処理物を耐熱温度120℃以上の熱収縮性フィルムで被覆し、被覆物を作製する被覆工程と、
前記被覆物を加熱する第2の熱処理工程と
を含むことを特徴とする砒素の処理方法。
A roasting step of roasting copper ore containing arsenic in a non-oxidizing atmosphere and separating it into chalcopyrite and volatiles containing arsenic sulfide;
A first heat treatment step of heat-treating the volatile matter obtained in the roasting step in a non-oxidizing atmosphere to melt the arsenic sulfide in the volatile matter to obtain a heat-treated product;
A coating step of coating the heat-treated product with a heat-shrinkable film having a heat-resistant temperature of 120 ° C. or higher;
And a second heat treatment step of heating the coating.
前記第1の熱処理工程は、前記揮発物を200〜600℃で加熱することを含み、前記第2の熱処理工程は、前記被覆物を120℃〜200℃で加熱することを含む請求項1に記載の砒素の処理方法。   The first heat treatment step includes heating the volatile material at 200 to 600 ° C, and the second heat treatment step includes heating the coating at 120 ° C to 200 ° C. The arsenic processing method as described. 前記熱収縮性フィルムがポリ塩化ビニリデンを含む請求項1又は2に記載の砒素の処理方法。   The method for treating arsenic according to claim 1, wherein the heat-shrinkable film contains polyvinylidene chloride. 前記第1の熱処理工程において硫黄を添加することを更に含む請求項1〜3のいずれか1項に記載の砒素の処理方法。   The method for treating arsenic according to claim 1, further comprising adding sulfur in the first heat treatment step. 前記第1の熱処理工程において老化防止剤を更に添加することを含む請求項1〜4のいずれか1項に記載の砒素の処理方法。   The method for treating arsenic according to any one of claims 1 to 4, further comprising adding an anti-aging agent in the first heat treatment step.
JP2014073837A 2014-03-31 2014-03-31 Arsenic treatment method Active JP6267042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073837A JP6267042B2 (en) 2014-03-31 2014-03-31 Arsenic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073837A JP6267042B2 (en) 2014-03-31 2014-03-31 Arsenic treatment method

Publications (2)

Publication Number Publication Date
JP2015196848A true JP2015196848A (en) 2015-11-09
JP6267042B2 JP6267042B2 (en) 2018-01-24

Family

ID=54546737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073837A Active JP6267042B2 (en) 2014-03-31 2014-03-31 Arsenic treatment method

Country Status (1)

Country Link
JP (1) JP6267042B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113267A1 (en) * 2015-12-31 2017-07-06 耒阳市焱鑫有色金属有限公司 Method for removing arsenic from arsenic-rich material by sublimation
CN109355508A (en) * 2018-11-21 2019-02-19 湖南锐异资环科技有限公司 A kind of comprehensive recovering process of the more metal materials containing indium of high arsenic
CN110983059A (en) * 2019-12-09 2020-04-10 黑龙江紫金铜业有限公司 Method for recovering copper and arsenic from copper smelting white smoke leachate and arsenic filter cake
WO2020203608A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Method for determining roasting conditions of copper concentrates and method for roasting copper concentrates
WO2021045489A1 (en) * 2019-09-05 2021-03-11 조선대학교산학협력단 Gold recovery method using microwaves
JP2022010288A (en) * 2021-11-15 2022-01-14 Jx金属株式会社 Determination method of roast condition of copper pure ore and roast method of copper pure ore
CN114538509A (en) * 2022-02-25 2022-05-27 北京理工大学 Two-dimensional black arsenic nanosheet with controllable thickness and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102881A (en) * 1976-02-26 1977-08-29 Nippon Mining Co Ltd Sealing and fixing of noxious waste materials
JPS5659627A (en) * 1979-10-13 1981-05-23 Sumitomo Metal Mining Co Ltd Treatment of arsenic sulfide precipitate
JP2009039666A (en) * 2007-08-09 2009-02-26 Dowa Metals & Mining Co Ltd Method of treating arsenic by using resin, and method of transporting/storing arsenic-containing compound and arsenic
JP2012087400A (en) * 2010-10-20 2012-05-10 Jx Nippon Mining & Metals Corp Copper concentrate treatment method
JP2013209719A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for treating copper concentrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102881A (en) * 1976-02-26 1977-08-29 Nippon Mining Co Ltd Sealing and fixing of noxious waste materials
JPS5659627A (en) * 1979-10-13 1981-05-23 Sumitomo Metal Mining Co Ltd Treatment of arsenic sulfide precipitate
JP2009039666A (en) * 2007-08-09 2009-02-26 Dowa Metals & Mining Co Ltd Method of treating arsenic by using resin, and method of transporting/storing arsenic-containing compound and arsenic
JP2012087400A (en) * 2010-10-20 2012-05-10 Jx Nippon Mining & Metals Corp Copper concentrate treatment method
JP2013209719A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for treating copper concentrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113267A1 (en) * 2015-12-31 2017-07-06 耒阳市焱鑫有色金属有限公司 Method for removing arsenic from arsenic-rich material by sublimation
CN109355508A (en) * 2018-11-21 2019-02-19 湖南锐异资环科技有限公司 A kind of comprehensive recovering process of the more metal materials containing indium of high arsenic
WO2020203608A1 (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Method for determining roasting conditions of copper concentrates and method for roasting copper concentrates
JP2020164928A (en) * 2019-03-29 2020-10-08 Jx金属株式会社 Determination method of baking condition of copper concentrate, and baking method of copper concentrate
JP7179665B2 (en) 2019-03-29 2022-11-29 Jx金属株式会社 Method for determining roasting conditions for copper concentrate and method for roasting copper concentrate
WO2021045489A1 (en) * 2019-09-05 2021-03-11 조선대학교산학협력단 Gold recovery method using microwaves
CN110983059A (en) * 2019-12-09 2020-04-10 黑龙江紫金铜业有限公司 Method for recovering copper and arsenic from copper smelting white smoke leachate and arsenic filter cake
CN110983059B (en) * 2019-12-09 2021-07-06 黑龙江紫金铜业有限公司 Method for recovering copper and arsenic from copper smelting white smoke leachate and arsenic filter cake
JP2022010288A (en) * 2021-11-15 2022-01-14 Jx金属株式会社 Determination method of roast condition of copper pure ore and roast method of copper pure ore
JP7155379B2 (en) 2021-11-15 2022-10-18 Jx金属株式会社 Method for roasting copper concentrate
CN114538509A (en) * 2022-02-25 2022-05-27 北京理工大学 Two-dimensional black arsenic nanosheet with controllable thickness and preparation method thereof

Also Published As

Publication number Publication date
JP6267042B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6267042B2 (en) Arsenic treatment method
JP5881638B2 (en) Arsenic treatment method
AU2011318944B2 (en) Copper concentrate treatment method
WO2015016086A1 (en) Method for recovering zinc from electric-furnace steelmaking dust and device for recovering zinc from electric-furnace steelmaking dust
US9970085B2 (en) Method for producing pellets and method for producing iron-nickel alloy
JP2013139618A (en) Treatment method for smoke ash
US4409020A (en) Recovery of metals from grinding sludges
JP5840644B2 (en) Arsenic treatment method
Yin et al. Arsenic removal from copper–silver ore by roasting in vacuum
JP2015124095A (en) Manufacturing method of slug
JP6784789B2 (en) Arsenic treatment method and arsenic-containing compounds
WO2015011981A1 (en) Method for manufacturing briquettes and reduced iron
KR102044481B1 (en) Method of recovering cobalt from byproduct generated in smelting of zinc
JP2014084509A (en) Production method of zinc oxide ore
CN109293177B (en) Method for high-temperature solidification of lead-containing sludge
KR102113558B1 (en) Manufacturing process of various metals and derivatives derived from copper and sulfur
WO2016131445A1 (en) Processing method and processing device for arsenopyrite concentrates
JP2021021090A (en) Smelting method of oxide ore
US5391215A (en) Method for producing high-purity metallic chromium
CA2844453A1 (en) Method for processing arsenic
US957231A (en) Process of treating impure copper matte and ores.
CA1097950A (en) Vacuum smelting process for producing ferrotungsten
JP2021031705A (en) Smelting method of oxide ore
JP2019151863A (en) Method for recovering tin from copper smelting dust and recovered tin
JP2019151862A (en) Method for recovering tin from copper smelting dust and recovered tin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6267042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250