JP2015185858A - flexible waveguide - Google Patents

flexible waveguide Download PDF

Info

Publication number
JP2015185858A
JP2015185858A JP2014057630A JP2014057630A JP2015185858A JP 2015185858 A JP2015185858 A JP 2015185858A JP 2014057630 A JP2014057630 A JP 2014057630A JP 2014057630 A JP2014057630 A JP 2014057630A JP 2015185858 A JP2015185858 A JP 2015185858A
Authority
JP
Japan
Prior art keywords
waveguide
dielectric
flat foil
conductor layer
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014057630A
Other languages
Japanese (ja)
Other versions
JP6343827B2 (en
Inventor
末定 新治
Shinji Suesada
新治 末定
哲彦 村上
Tetsuhiko Murakami
哲彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2014057630A priority Critical patent/JP6343827B2/en
Publication of JP2015185858A publication Critical patent/JP2015185858A/en
Application granted granted Critical
Publication of JP6343827B2 publication Critical patent/JP6343827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-weight waveguide, having flexibility, excellent in workability by winding a flat foil yarn having conductivity by making a flexible dielectric body as a core.SOLUTION: By winding a conductive flat foil yarn by making a flexible dielectric body having continuous cross sections of the same shape to be a core, a conductor layer is formed at an outer surface of the dielectric body. By compressively deforming the dielectric body with tension of the flat foil yarn and utilizing a restoring force with regard to the compressive deformation of the dielectric body, a cross section shape of the conductor layer is maintained.

Description

本発明は、高周波の電波、電気信号を伝送する線路の一種である導波管に関する。   The present invention relates to a waveguide that is a kind of line for transmitting high-frequency radio waves and electrical signals.

近年、大容量高速通信の必要性から、電気信号の周波数が高くなっており、マイクロ波帯は一般に使用され、一部ミリ波帯にまで使用数波数帯は高周波化している。
これら高周波の伝送に用いられる導波管は、可撓性に乏しく施工性が悪いために、通常のケーブルのように可撓性と柔軟性に富んだ、軽量な導波管が求められている。
In recent years, the frequency of electrical signals has increased due to the necessity of high-capacity high-speed communication, and the microwave band is generally used, and the number of used frequency bands has been increased to some millimeter waves.
Since these waveguides used for high-frequency transmission have poor flexibility and poor workability, there is a need for lightweight waveguides that are as flexible and flexible as ordinary cables. .

特許文献1では、複数の糸を束ねて芯となる誘電体を構成しており、この誘電体は弾性的に圧縮されないため復元力を持たず、誘電体内部から外側へ向かう圧力がないので、導波管を曲げた時に断面形状の変形に抗する力がなく、誘電体外側の導体層に皺が発生し、導波管の伝送損失が増加する。   In Patent Document 1, a core is formed by bundling a plurality of yarns, and since this dielectric is not elastically compressed, there is no restoring force, and there is no pressure toward the outside from the inside of the dielectric. When the waveguide is bent, there is no force that resists deformation of the cross-sectional shape, so that wrinkles occur in the conductor layer outside the dielectric, and the transmission loss of the waveguide increases.

特許文献2のフレキシブル導波管は、可動部が金属を波形に整形した蛇腹管を導波管の外導体としており、可撓性をもつ部分は導波管の一部に限られ、しかも質量は従来の導波管よりも大きい。   In the flexible waveguide of Patent Document 2, a bellows tube whose movable part is shaped into a corrugated metal is used as the outer conductor of the waveguide, and the flexible part is limited to a part of the waveguide, and the mass Is larger than conventional waveguides.

特許文献3では、導波管の外導体は、平箔糸の幅を広くした形状の単一の金属箔テープを、誘電体棒を芯にして右回りまたは左回りに一方向にのみ巻き付けて構成されており、予め誘電体が弾性的に圧縮変形されていないため復元力がなく、内部から外向きに外導体を押す圧力が無いので、導波管を曲げた時には外導体に皺が発生し伝送損失が増加する。
また、金属箔テープを一方向に巻いているために、導波管を右方向に曲げた時と左方向に曲げた時とでは、外導体に皺の寄り方が異なり、伝送損失にも影響する。
In Patent Document 3, the outer conductor of the waveguide is wound only in one direction clockwise or counterclockwise with a dielectric rod as a core, with a flat metal foil tape having a wide width. Since the dielectric is not elastically compressed and deformed in advance, there is no restoring force and there is no pressure to push the outer conductor from the inside to the outside, so wrinkles are generated in the outer conductor when the waveguide is bent However, transmission loss increases.
In addition, since the metal foil tape is wound in one direction, the direction of the wrinkles on the outer conductor differs depending on whether the waveguide is bent rightward or leftward, which affects transmission loss. To do.

特開2008−28523号公報JP 2008-28523 A 特開2008−271333号公報JP 2008-271333 A 特開平8−195605号公報JP-A-8-195605

本発明は、施工性に優れた軽量で柔軟性がある、伝送損失の増加を抑えた可撓性導波管を提供する。   The present invention provides a flexible waveguide that is lightweight and flexible with excellent workability and suppresses an increase in transmission loss.

マイクロ波帯やミリ波帯の高周波伝送では、同軸ケーブルに比べて導波管の伝送損失が小さくなる。このため、微少電力を扱う通信システムでは、同軸ケーブルではなく導波管を伝送線路として設置する。
例えば、船舶や航空機のレーダ、衛星通信など微少電力を受信する必要のあるアンテナシステムでは、アンテナに給電する伝送線路として金属製の導波管が使われる。
In high frequency transmission in the microwave band and millimeter wave band, the transmission loss of the waveguide is smaller than that of the coaxial cable. For this reason, in a communication system that handles minute power, a waveguide is installed as a transmission line instead of a coaxial cable.
For example, in an antenna system that needs to receive a small amount of power, such as a ship or aircraft radar or satellite communication, a metal waveguide is used as a transmission line for supplying power to the antenna.

しかし、金属製導波管は重量物であり可撓性がなく、施工性に劣る欠点がある。従来の金属製導波管を曲げて施工する必要のあるときには、曲管と呼ばれる曲がった金属製導波管を使い直線導波管とフランジによって、ネジ止めして繋ぐ作業が必要である。
また、重量物であり可撓性がなく巻き取ることができないため、一本の金属製導波管には長さに限りがあり、長距離の伝送線路を施工するには何本もの金属製導波管をフランジで繋ぐ必要があった。また、繋ぐ導波管の本数が多くなるほど、フランジ部分での伝送損失の増加が避けられず、伝送線路としての品質を劣化させる要因になっていた。
However, metal waveguides are heavy, inflexible, and have the disadvantage of poor workability. When it is necessary to bend and construct a conventional metal waveguide, it is necessary to use a bent metal waveguide called a curved tube and screw it together with a straight waveguide and a flange.
Also, since it is heavy and not flexible and cannot be wound, there is a limit to the length of a single metal waveguide, and many metal cables are required to construct long-distance transmission lines. It was necessary to connect the waveguides with flanges. Further, as the number of waveguides to be connected increases, an increase in transmission loss at the flange portion is unavoidable, which causes a deterioration in quality as a transmission line.

また、アンテナを直接給電することが多い導波管の施工は、高所での作業になることがあり、重量物の高所作業は危険がともなう。このため作業員の負荷低減のためには、導波管の軽量化が必要である。   Moreover, the construction of a waveguide, which often feeds an antenna directly, can be a work at a high place, and the work at a high place with heavy objects is dangerous. For this reason, it is necessary to reduce the weight of the waveguide in order to reduce the load on workers.

特許文献1の導波管では、芯となる誘電体が糸を束ねただけの材料であり、圧縮に対する復元力が無いため、導波管を曲げたとき、曲がり部分の導体層には不規則な皺がよることで、内部を伝搬する電磁界に散乱が生じることにより伝送損失が増加する。
また、特許文献2の導波管は曲げる必要のある部分だけが、蛇腹状外導体からなる可撓性のある金属製導波管で、曲管以外は従来の金属製導波管と同じであり、施工性が改善されることにはならない。
In the waveguide of Patent Document 1, the core dielectric is only a material in which yarns are bundled and has no restoring force against compression. Therefore, when the waveguide is bent, the conductor layer in the bent portion is irregular. As a result, the transmission loss increases due to scattering in the electromagnetic field propagating inside.
Further, the waveguide of Patent Document 2 is a flexible metal waveguide made of a bellows-like outer conductor only in a portion that needs to be bent, and is the same as a conventional metal waveguide except for the bent tube. Yes, workability will not be improved.

特許文献3では可撓性のある誘電体棒を芯とした導波管であるが、金属テープが右向きまたは左向きに一方向のみに巻きつけられており、加えて誘電体棒には圧縮に対する復元力が無く、導波管を曲げたときには特許文献1の導波管と同じような問題が起こる。
また、金属箔テープが一方向に巻き付けられているために、導波管の可撓性に方向性が生じ、導波管を右側に曲げた時と左側に曲げた時とでは、曲げ易さが異なるとともに伝送特性にも影響する。
In Patent Document 3, the waveguide has a flexible dielectric rod as the core, but the metal tape is wound in one direction, either rightward or leftward, and in addition, the dielectric rod is restored to compression. When there is no force and the waveguide is bent, a problem similar to that of the waveguide of Patent Document 1 occurs.
In addition, since the metal foil tape is wound in one direction, directionality occurs in the flexibility of the waveguide, and it is easy to bend when the waveguide is bent to the right and to the left. As well as the transmission characteristics.

上記目的を達成するためには、圧縮変形に対して復元力を有する誘電体を芯とし、導電性のある平箔糸で外導体を形成することで解決できる。   In order to achieve the above object, it is possible to solve the problem by forming an outer conductor with a conductive flat foil thread with a dielectric having a restoring force against compression deformation as a core.

即ち(1)、同一形状の断面が長手方向に連続する可撓性のある誘電体を芯として、誘電体の外側表面を導体層で覆った導波管であって、前記誘電体は圧縮変形に対して復元力を有する材料からなり、前記導体層は、扁平な断面形状で導電性を有する所要数の平箔糸が、前記誘電体に巻き付けられて形成されており、前記平箔糸の半数は、前記誘電体の長手方向に対して傾斜するように右回りに巻き付けられ、かつ残りの半数の前記平箔糸は、右回りの平箔糸と同じ角度で、前記誘電体の長手方向に対して傾斜するように左回りに巻き付られていることで、前記平箔糸の張力によって、前記誘電体が圧縮変形された状態を維持している導波管にある。   That is, (1) a waveguide having a flexible dielectric having a cross section of the same shape continuous in the longitudinal direction as a core and the outer surface of the dielectric covered with a conductor layer, the dielectric being compressed and deformed The conductor layer is formed by winding a required number of flat foil yarns having conductivity in a flat cross-sectional shape around the dielectric, and the conductor layer is formed of a material having a restoring force. Half of the foil is wound clockwise so as to be inclined with respect to the longitudinal direction of the dielectric, and the remaining half of the flat foil yarn is at the same angle as the clockwise flat foil yarn, and the longitudinal direction of the dielectric. Since the coil is wound counterclockwise so as to be inclined, the dielectric is in a waveguide that maintains the state in which the dielectric is compressed and deformed by the tension of the flat foil yarn.

そして(2)、前記平箔糸は、金属箔とフィルムを積層して形成されていることを特徴とする、上記1に記載の導波管にある。   (2) The waveguide according to 1 above, wherein the flat foil yarn is formed by laminating a metal foil and a film.

そして(3)、前記フィルムは、導電性を備えていることを特徴とする、上記2に記載の導波管にある。   (3) The waveguide according to (2) above, wherein the film has conductivity.

そして(4)、前記誘電体は比誘電率が2より小さい材料からなることを特徴とする、上記1から上記3のいずれかに記載の導波管にある。   (4) In the waveguide according to any one of (1) to (3), the dielectric is made of a material having a relative dielectric constant smaller than 2.

本発明の導波管は、上記のように構成されているので、軽量で可撓性があり施工性に優れた導波管を実現できる。   Since the waveguide of the present invention is configured as described above, it is possible to realize a waveguide that is lightweight, flexible, and excellent in workability.

本発明の導波管では、誘電体材料を芯にして導体層が外側表面を覆っているので、誘電体の内部を電磁界が伝搬し導波管として動作する。しかも、その芯となる誘電体は可撓性がありかつ圧縮に対して復元力を有する材料であって、導体層を形成している平箔糸の張力によって圧縮され、誘電体の断面形状が相似的に弾性収縮しているので、誘電体が復元力をもつ。
よって、誘電体内部から外側に向かって導体層を押す圧力が生じることになり、この力と平箔糸の張力が釣り合うことで、曲げに対しても導体層の断面形状が維持される。
In the waveguide of the present invention, since the conductor layer covers the outer surface with a dielectric material as a core, an electromagnetic field propagates through the inside of the dielectric and operates as a waveguide. Moreover, the core dielectric is a material that is flexible and has a restoring force against compression, and is compressed by the tension of the flat foil yarn forming the conductor layer, so that the cross-sectional shape of the dielectric is Since the elastic contraction is similar, the dielectric has a restoring force.
Therefore, a pressure is generated to push the conductor layer from the inside of the dielectric toward the outside, and the cross-sectional shape of the conductor layer is maintained even against bending by balancing this force with the tension of the flat foil yarn.

芯となる誘電体は、平箔糸を巻き付ける際の張力によって、その断面積が数パーセント縮んでおり、その外側に平箔糸の導電性に依存した導体層が形成される。この導体層の導電率と断面形状、および圧縮された誘電体の比誘電率とが、導波管の伝送特性を決定する。   The dielectric as the core has a cross-sectional area reduced by several percent due to the tension when winding the flat foil yarn, and a conductor layer depending on the conductivity of the flat foil yarn is formed on the outside thereof. The conductivity and cross-sectional shape of the conductor layer and the relative dielectric constant of the compressed dielectric determine the transmission characteristics of the waveguide.

平箔糸によって形成された導体層は、圧縮された誘電体の復元力によって内側から圧力が加わることにより、一定で安定した導波管の断面形状が保持される。この内部から外側へ向かう圧力は導波管を曲げた時にも効果的であり、導波管断面の形状変化を抑え伝送損失の増加を抑制することができる。   The conductor layer formed of the flat foil yarn is maintained with a constant and stable cross-sectional shape of the waveguide by applying pressure from the inside due to the restoring force of the compressed dielectric. The pressure from the inside to the outside is effective even when the waveguide is bent, and the change in the shape of the waveguide cross section can be suppressed and an increase in transmission loss can be suppressed.

また導体層は、同数の右回りの平箔糸と左回りの平箔糸とによって構成されているため、導波管を曲げる方向による歪みの差が小さくなり、導波管の可撓性が、曲げる方向に依存することがなくなって施工性が向上する。   Also, since the conductor layer is composed of the same number of clockwise and counterclockwise flat foil yarns, the difference in distortion due to the bending direction of the waveguide is reduced, and the flexibility of the waveguide is reduced. The workability is improved by not depending on the bending direction.

本発明の導波管は柔軟性があり、また製造できる長さに事実上の制限がないので、通常の同軸ケーブルと同じように巻きとりながら生産、出荷、搬送、施工できる利点がある。
この導波管の接続点を少なくできる利点は、施工上のみならず、伝送損失を低減する上でも有益である。
Since the waveguide of the present invention is flexible and has virtually no limitation on the length that can be manufactured, it has the advantage that it can be produced, shipped, transported, and constructed in the same manner as a normal coaxial cable.
The advantage of reducing the number of waveguide connection points is beneficial not only in construction but also in reducing transmission loss.

本発明の導波管では、電磁界が誘電体中を伝搬するので、伝搬中に誘電体の誘電損失による減衰を受ける。このため、誘電体の比誘電率が小さい材料ほど伝搬損失は小さくなる。
通常のプラスチックなどの誘電体は、比誘電率が2以上であるが、空気層を含んだ誘電体は2以下の比誘電率を示し、導波管の芯材として適している。
In the waveguide of the present invention, since the electromagnetic field propagates through the dielectric, it is attenuated by the dielectric loss of the dielectric during propagation. For this reason, a propagation loss becomes small, so that the dielectric constant of a dielectric material is small.
A dielectric such as an ordinary plastic has a relative dielectric constant of 2 or more, but a dielectric including an air layer exhibits a relative dielectric constant of 2 or less and is suitable as a core material for a waveguide.

本発明の典型的な導波管の構成を示した図である。It is the figure which showed the structure of the typical waveguide of this invention. 本発明の導波管の外側を覆う導体層を形成する典型的な平箔糸の図である。FIG. 3 is a view of a typical flat foil yarn forming a conductor layer covering the outside of the waveguide of the present invention. 本発明の25GHz帯の導波管に対する伝送特性を実測した実施例である。It is the Example which measured the transmission characteristic with respect to the 25 GHz band waveguide of this invention. 特許文献1により構成した25GHz帯導波管の伝送特性を、図3と比較するための比較例である。It is a comparative example for comparing the transmission characteristic of the 25 GHz band waveguide comprised by patent document 1 with FIG. 本発明の15GHz帯の導波管に対して、幅1mmの平箔糸で導体層を形成した時の伝送特性を実測した実施例である。It is the Example which measured the transmission characteristic when a conductor layer was formed with the flat foil thread | yarn of width 1mm with respect to the waveguide of 15 GHz band of this invention. 本発明の15GHz帯の導波管に対して、幅1.5mmの平箔糸で導体層を形成した時の伝送特性を実測した実施例である。It is the Example which measured the transmission characteristic when a conductor layer was formed with the flat foil thread | yarn of width 1.5mm with respect to the waveguide of 15 GHz band of this invention. 本発明の50GHz帯の導波管に対する伝送特性を実測した実施例である。It is the Example which measured the transmission characteristic with respect to the 50 GHz band waveguide of this invention. 本発明の導波管と、市販されている純銅製導波管、それぞれの伝送損失と質量を比較した実施例である。It is the Example which compared the waveguide loss of this invention, the waveguide made from a pure copper, and each transmission loss and mass.

以下、実施の形態を、図面を参照しながら詳細に説明する。図1は本発明の導波管の典型的な断面図で、圧縮変形に対して復元力のある誘電体1を芯として、細幅の平箔糸2,3を、誘電体の外側に巻き付けることで、導波管を形成している。   Hereinafter, embodiments will be described in detail with reference to the drawings. FIG. 1 is a typical cross-sectional view of a waveguide according to the present invention, and a thin flat foil yarn 2, 3 is wound around the outside of a dielectric with a dielectric 1 having a restoring force against compressive deformation as a core. Thus, a waveguide is formed.

芯となる誘電体1は、復元力と可撓性があり、低い誘電率を有する材料である。また誘電体は棒状で、断面形状は長手方向に一定である。   The core dielectric 1 is a material having a restoring force and flexibility and having a low dielectric constant. The dielectric is rod-shaped and the cross-sectional shape is constant in the longitudinal direction.

誘電体1の外側に、所要数の平箔糸2,3を巻き付けている。半数の平箔糸2は誘電体に左回りに巻き付けられ、残りの半数の平箔糸3は誘電体に右回りに巻き付けられている。
平箔糸2,3は、棒状の誘電体の長手方向に対して、左回りと右回り共に同じ角度で傾斜して巻き付けられ、誘電体の外側表面を隙間なく覆っている。
A required number of flat foil yarns 2 and 3 are wound around the outside of the dielectric 1. Half of the flat foil yarns 2 are wound around the dielectric counterclockwise, and the remaining half of the flat foil yarns 3 are wound around the dielectric clockwise.
The flat foil yarns 2 and 3 are wound while being inclined at the same angle both counterclockwise and clockwise with respect to the longitudinal direction of the rod-shaped dielectric material, and cover the outer surface of the dielectric material without a gap.

誘電体1の材料として、例えば棒状の発泡ポリエチレンがあり、平箔糸を巻き付ける時の張力で、その断面積が数パーセント程度縮む程度の弾性を持っており、空気層を含むために誘電率は小さくなり、比誘電率が1.2程度の低誘電率を示す可撓性材料である。   As a material of the dielectric 1, for example, there is a rod-like foamed polyethylene, and the elasticity when the cross-sectional area is reduced by several percent by the tension at the time of winding the flat foil yarn, and since the dielectric constant is included because of including the air layer It is a flexible material that is small and exhibits a low dielectric constant of about 1.2.

通常、断面形状が一定の長尺品を曲げた時、湾曲部の外側では引っ張りの力が働き内側では圧縮の力が働くことによって、長尺品の長軸方向と直交する断面の形状は、潰れるように扁平に変形する。
同軸ケーブルや導波管などの伝送線路では、電磁界が伝搬する方向と直交する伝送線路の断面形状の変化は、電磁界の伝送特性に影響をおよぼす。従って、一般の同軸ケーブルでは、電磁界の伝送特性に対して、伝送線路の断面形状変化の影響が無視できる曲率の範囲内で使用することが決められている。
Normally, when a long product with a constant cross-sectional shape is bent, a tensile force works on the outside of the curved portion and a compression force works on the inside, so that the cross-sectional shape orthogonal to the long axis direction of the long product is Deforms flat so that it collapses.
In a transmission line such as a coaxial cable or a waveguide, a change in the cross-sectional shape of the transmission line perpendicular to the direction in which the electromagnetic field propagates affects the transmission characteristics of the electromagnetic field. Therefore, it is determined that a general coaxial cable is used within the curvature range in which the influence of the change in the cross-sectional shape of the transmission line can be ignored with respect to the transmission characteristics of the electromagnetic field.

同軸ケーブルの場合、誘電体外側の導体層は、所要数の金属細線を巻き付けて形成されており金属線間には隙間があるために、同軸ケーブルを曲げた時、湾曲部では引っ張りと圧縮の力が多くの金属細線に分散され、隙間に歪みが緩和されることによって、導体層の断面形状の変化を抑制している。
曲がりとともに同軸ケーブルの誘電体層は、その湾曲部の断面が潰れるように変形するが、その潰れ方が同軸ケーブルの伝送特性に影響する許容値以内の曲率が、同軸ケーブルの曲げ限界である。
In the case of a coaxial cable, the conductor layer outside the dielectric is formed by wrapping the required number of fine metal wires, and there are gaps between the metal wires. The force is dispersed in many fine metal wires, and the strain is relaxed in the gaps, thereby suppressing the change in the cross-sectional shape of the conductor layer.
Along with the bend, the dielectric layer of the coaxial cable is deformed so that the cross section of the curved portion is crushed, and the curvature within an allowable value that the crushed manner affects the transmission characteristics of the coaxial cable is the bending limit of the coaxial cable.

後述する実施例に示す導波管の平箔糸による導体層と、一般の同軸ケーブルの金属細線で形成された導体層とは、巻き付けている組織は同じ編組組織である。しかし、同軸ケーブルの誘電体の外側表面を覆う導体層は、誘電体との力学的な相互作用がない点と、曲げに対して歪みを緩和する機構が、本発明の導波管の導体層と異なる。   The conductor layer formed of the flat foil yarn of the waveguide shown in the examples to be described later and the conductor layer formed of a thin metal wire of a general coaxial cable have the same braided structure. However, the conductor layer covering the outer surface of the dielectric of the coaxial cable has a feature that there is no mechanical interaction with the dielectric and a mechanism for reducing strain against bending. And different.

一般の同軸ケーブルの誘電体外側の導体層は、円形断面をもつ複数の金属細線を束にして一本の金属細線ストランドにした後、所要数のストランドを使って編組組織に仕上げて形成される。また、金属細線ストランドには内側の誘電体を収縮させる程には張力をかけず、金属細線だけで断面形状を維持している。
よって、同軸ケーブルの導体層には隙間が多く、同軸ケーブルを曲げた時の湾曲部で生じる歪みを、個々の金属細線がこの隙間を動くことによって緩和している。
The conductor layer outside the dielectric of a general coaxial cable is formed by bundling a plurality of fine metal wires having a circular cross section into a single fine metal wire strand, and then finishing it into a braided structure using the required number of strands. . Further, the metal thin wire strand is not tensioned enough to shrink the inner dielectric, and the cross-sectional shape is maintained only by the metal thin wire.
Therefore, there are many gaps in the conductor layer of the coaxial cable, and the distortion generated in the curved portion when the coaxial cable is bent is alleviated by the movement of the individual fine metal wires through the gap.

これに対して後述する実施例の導波管では、導体層を形成する平箔糸は編組組織に隙間がない。扁平な断面を持つ平箔糸が隙間なく組み合って編組組織を作っており、導体層に隙間がないことが導波管の伝搬特性を向上させている。
また、本発明の導波管では、導体層を形成している平箔糸の張力によって誘電体を圧縮し、その反作用として誘電体が導体層に圧力を加えて、それらの力が平衡して断面形状が安定している機構が、同軸ケーブルを形成している導体層とは異なる。
On the other hand, in the waveguide of the embodiment described later, the flat foil yarn forming the conductor layer has no gap in the braided structure. Flat foil yarns having flat cross sections are combined without gaps to form a braided structure, and the absence of gaps in the conductor layer improves the propagation characteristics of the waveguide.
In the waveguide of the present invention, the dielectric is compressed by the tension of the flat foil yarn forming the conductor layer, and as a reaction, the dielectric applies pressure to the conductor layer, and these forces are balanced. The mechanism in which the cross-sectional shape is stable is different from the conductor layer forming the coaxial cable.

本発明の導波管を曲げた時、導体層を形成している平箔糸には、湾曲部の外側で張力が増し内側の平箔糸では減るような張力の変化が生じる。導体層を作っている編組組織には隙間がないので、平箔糸は平箔糸の長軸方向の動きだけが可能で、この方向に各々の平箔糸が動くことで導体層に生じる張力の変化を緩和する。   When the waveguide of the present invention is bent, a change in tension occurs in the flat foil yarn forming the conductor layer so that the tension increases outside the curved portion and decreases in the inner flat foil yarn. Since there is no gap in the braided structure forming the conductor layer, the flat foil yarn can only move in the long axis direction of the flat foil yarn, and the tension generated in the conductor layer as each flat foil yarn moves in this direction To alleviate changes.

また、芯となっている誘電体にも導波管の曲げによって、湾曲部の外側では伸張し内側では圧縮される力が加わる。そのため圧縮される部分では、誘電体の内部から外側に向かう正の向きの圧力が発生し、伸張する部分では内側に向かう負の向きの圧力が発生する。
本発明の導波管では、芯となっている誘電体は平箔糸の巻き付けにより、最初から圧縮され正の圧力が発生している。このため導波管の曲げによって、誘電体が伸張する負の圧力が発生する部分でも、導波管の曲げの曲率が小さい範囲では正の圧力が維持され、導体層に皺が発生することがなく、断面形状の変化は小さい。
最初から圧縮されていない場合、導波管の曲げにより誘電体が伸張する部分で、誘電体の圧力は負の方向になるため、導体層と誘電体の間に隙間が生じ、導体層に皺が発生して、断面形状の変化が大きくなり伝送損失が増加する。
In addition, the core dielectric is also subjected to a force that expands outside the curved portion and compresses inside due to bending of the waveguide. Therefore, a pressure in a positive direction from the inside of the dielectric toward the outside is generated in the portion to be compressed, and a pressure in a negative direction inward is generated in the portion that is expanded.
In the waveguide of the present invention, the core dielectric is compressed from the beginning by the winding of a flat foil yarn, and a positive pressure is generated. For this reason, even in a portion where a negative pressure is generated by expansion of the dielectric due to the bending of the waveguide, the positive pressure is maintained in a range where the bending curvature of the waveguide is small, and the conductor layer may be wrinkled. There is little change in the cross-sectional shape.
If the dielectric is not compressed from the beginning, the dielectric is stretched by bending the waveguide, and the dielectric pressure is in the negative direction. Occurs, the change in the cross-sectional shape increases and the transmission loss increases.

本発明の導波管も他の伝送線路と同じように、曲げに伴う断面形状の変化が、伝送特性に影響を与えない範囲で使用することができる。   Similarly to other transmission lines, the waveguide of the present invention can be used within a range in which a change in cross-sectional shape due to bending does not affect transmission characteristics.

図2は典型的な平箔糸の実施例で、金属箔5とフィルム4とを貼り合わせて細幅に裁断している。フィルム4を貼り合わせず、金属箔5のみによる平箔糸も可能である。
また、フィルム4を導電性とすることにより、絶縁性のフィルム4を金属箔5と貼り合わせた場合よりも、導体層の導電率を高くできるので、導波管の伝送損失を小さくすることができる。
FIG. 2 shows an example of a typical flat foil yarn, in which a metal foil 5 and a film 4 are bonded and cut into a narrow width. A flat foil yarn using only the metal foil 5 without the film 4 being bonded is also possible.
Further, by making the film 4 conductive, the conductivity of the conductor layer can be made higher than when the insulating film 4 is bonded to the metal foil 5, so that the transmission loss of the waveguide can be reduced. it can.

通常、誘電体中を伝搬する電磁界は、誘電体の誘電損失に起因する伝送損失を受ける。そのため、導波管内部を充填する材料は、電磁気的に真空に近い材料が望ましく、比誘電率が1に近い材料が良い。
発泡した誘電体は空気層を含み、比誘電率を2以下にすることが可能で、その内部を伝搬する電磁界の誘電損を小さくする効果があって、伝送損失をさらに低減できる。
Normally, an electromagnetic field propagating in a dielectric is subjected to transmission loss due to dielectric loss of the dielectric. Therefore, the material filling the inside of the waveguide is desirably a material that is electromagnetically close to vacuum, and a material having a relative dielectric constant close to 1 is preferable.
The foamed dielectric includes an air layer and can have a relative dielectric constant of 2 or less, which has the effect of reducing the dielectric loss of the electromagnetic field propagating therein, and can further reduce transmission loss.

以下の実施例で、本発明の導波管の伝送損失の測定には、専用に開発したコネクタを導波管の両端に装着し、ネットワークアナライザによって測定した。測定値は、コネクタのみの伝送損失を差し引いて、導波管の長さ1mあたりの伝送損失に換算している。
導波管の配置は、導波管を一箇所、曲率半径100mmで180度だけ曲げて、ネットワークアナライザに接続し、伝送特性を測定している。
In the following examples, the transmission loss of the waveguide of the present invention was measured by attaching a specially developed connector to both ends of the waveguide and measuring with a network analyzer. The measured value is converted into the transmission loss per 1 m of the waveguide length by subtracting the transmission loss of only the connector.
The waveguide is placed at one place, bent at 180 degrees with a radius of curvature of 100 mm, connected to a network analyzer, and transmission characteristics are measured.

<実施例1>
図3は、25GHz帯導波管の1mあたりの伝送損失を測定した、実施例である。縦4mm横9mmの断面に整形した発泡ポリエチレンを芯にして、幅1mmの平箔糸を巻き付けている。
導電層の形成工程は、16本の平箔糸を用いて、ブレーディングマシン(株式会社コクブンリミテッド製:101−C中型キャリアブレーダー)により巻き付けている。
この平箔糸は、厚さ9μmの銅箔と厚さ25μmのPET(ポリエチレンテレフタレート)フィルムを貼り合わせている。この導波管の最小伝送損失は、−1.6dB/mである。
この値は、純銅製の25GHz帯導波管の伝送損失の理論値−0.4dB/mに比べると大きいが、前述したような施工上の長所を考慮すると、本発明の導波管を使用した場合、装置全体としての建設費用の低減、運用、保守における利点がある(図3)。
<Example 1>
FIG. 3 shows an example in which the transmission loss per meter of a 25 GHz band waveguide is measured. A flat foil yarn having a width of 1 mm is wound around a foamed polyethylene shaped into a cross section of 4 mm in length and 9 mm in width.
In the conductive layer forming step, 16 flat foil yarns were used and wound by a braiding machine (manufactured by Kokbun Limited: 101-C medium-sized carrier blader).
This flat foil yarn is obtained by bonding a 9 μm thick copper foil and a 25 μm thick PET (polyethylene terephthalate) film. The minimum transmission loss of this waveguide is -1.6 dB / m.
This value is larger than the theoretical value of transmission loss of pure copper 25 GHz band waveguide -0.4 dB / m, but considering the advantages in construction as described above, the waveguide of the present invention is used. In this case, there are advantages in reducing the construction cost, operation and maintenance of the entire device (FIG. 3).

<比較例1>
図4は、特許文献1の導波管の導体層を本発明と同じ製法で形成した比較例である。図3の25GHz帯導波管とは、芯となる誘電体を発泡ポリエチレンからポリプロピレン繊維束に変更した以外は、図3の導波管と同じ構成からなる。導波管を曲げたときに、芯となっている誘電体の繊維束に復元力がないため、平箔糸で形成した導体層に皺がより、図3と比較すると伝送損失が著しく増加する(図4)。
<Comparative Example 1>
FIG. 4 is a comparative example in which the conductor layer of the waveguide of Patent Document 1 is formed by the same manufacturing method as that of the present invention. The 25 GHz band waveguide of FIG. 3 has the same configuration as the waveguide of FIG. 3 except that the core dielectric is changed from foamed polyethylene to a polypropylene fiber bundle. When the waveguide is bent, there is no restoring force in the core fiber bundle of the dielectric, so that the conductor layer formed of flat foil yarn has wrinkles and the transmission loss is significantly increased compared to FIG. (FIG. 4).

<実施例2>
図5は本発明の15GHz帯導波管の伝送損失を測定した実施例で、発泡ポリエチレン断面形状を縦9mm横17mmに整形し、幅1mmの平箔糸で導体層を形成した。長さ1mあたりの最小の伝送損失は−1.3dB/mである(図5)。
<Example 2>
FIG. 5 shows an example in which the transmission loss of the 15 GHz band waveguide of the present invention was measured. The cross-sectional shape of the foamed polyethylene was 9 mm long and 17 mm wide, and a conductor layer was formed with a flat foil yarn having a width of 1 mm. The minimum transmission loss per meter of length is -1.3 dB / m (FIG. 5).

<実施例3>
図6は、幅1.5mmの平箔糸で導体層を形成したとき、15GHz帯導波管の伝送損失を1mあたりに換算しており、最小の伝送損失は約−0.8dB/mである。同じ15GHz帯の導波管である図5の導波管とは、導電層を形成する平箔糸の幅が異なっており、同じ構造をもつ平箔糸であれば、より幅が大きい平箔糸を使って導体層を形成する方が、伝送損失の低減には有利である(図6)。
<Example 3>
FIG. 6 shows that when a conductor layer is formed of a flat foil thread having a width of 1.5 mm, the transmission loss of a 15 GHz band waveguide is converted per 1 m, and the minimum transmission loss is about −0.8 dB / m. is there. The width of the flat foil yarn forming the conductive layer is different from the waveguide of FIG. 5 which is the same 15 GHz band waveguide. If the flat foil yarn has the same structure, the flat foil having a larger width is used. Forming the conductor layer using yarn is advantageous in reducing transmission loss (FIG. 6).

図7は本発明の50GHz帯導波管の伝送損失を測定した実施例で、発泡ポリエチレン断面形状を縦3mm横5mmに整形し、幅0.5mmの平箔糸で導体層を形成した時、最小の伝送損失は−3.4dB/mである。この実施例は、本発明の導波管がミリ波帯でも使用可能であることを示している(図7)。   FIG. 7 is an example in which the transmission loss of the 50 GHz band waveguide of the present invention was measured. When the cross-sectional shape of the foamed polyethylene was 3 mm long and 5 mm wide, and a conductor layer was formed with a flat foil thread having a width of 0.5 mm, The minimum transmission loss is -3.4 dB / m. This example shows that the waveguide of the present invention can also be used in the millimeter wave band (FIG. 7).

図8は、本発明の導波管と純銅製導波管について、伝送損失と質量の関係を、1mあたりの長さで比較した実施例である。本発明の導波管は、純銅製導波管に比べ一桁以上軽いことを示している(図8)。   FIG. 8 is an example in which the relationship between transmission loss and mass is compared in terms of length per meter for the waveguide of the present invention and the waveguide made of pure copper. The waveguide of the present invention is lighter by one digit or more than a pure copper waveguide (FIG. 8).

マイクロ波やミリ波が利用される、航空機、船舶のレーダー、通信設備には導波管が用いられ、その施工には可撓性が必要とされている。また、航空機用には軽量化した導波管が必要とされる。   Waveguides are used in aircraft, marine radar, and communication equipment that use microwaves and millimeter waves, and their construction requires flexibility. In addition, a lightweight waveguide is required for aircraft.

通信設備には高い信頼性がもとめられており、本発明の導波管は金属製導波管に比べ、接続部が少ない長所があるうえに、軽量で可撓性があることにより振動に対して強い特長がある。
このように本発明の導波管を用いた通信設備は、重量のある金属製導波管をフランジを用いてネジ止めすることと比べて、地震等の災害に対する信頼性は格段に高い。
Communication equipment is required to have high reliability, and the waveguide of the present invention has advantages in that it has fewer connection parts than a metal waveguide, and is light and flexible. And has strong features.
As described above, the communication equipment using the waveguide according to the present invention has remarkably high reliability against a disaster such as an earthquake as compared with a case where a heavy metal waveguide is screwed using a flange.

無線通信の一般化にともない、電波の周波数利用は高周波数側に移行しており、今後マイクロ波やミリ波を利用する通信設備が増加する傾向がある。
このような通信設備に使用される伝送線路は導波管であり、これら設備を安価で迅速に施工するためには、軽量で可撓性のある本発明の導波管は有用である。
With the generalization of wireless communication, the frequency usage of radio waves has shifted to the high frequency side, and there is a tendency that communication facilities using microwaves and millimeter waves will increase in the future.
The transmission line used in such communication equipment is a waveguide, and the lightweight and flexible waveguide of the present invention is useful for constructing these equipment inexpensively and quickly.

1 誘電体
2 平箔糸
3 平箔糸
4 フィルム
5 金属箔
1 Dielectric
2 Flat foil yarn 3 Flat foil yarn 4 Film 5 Metal foil

Claims (4)

同一形状の断面が長手方向に連続する可撓性のある誘電体を芯として、誘電体の外側表面を導体層で覆った導波管であって、前記誘電体は圧縮変形に対して復元力を有する材料からなり、前記導体層は、扁平な断面形状で導電性を有する所要数の平箔糸が、前記誘電体に巻き付けられて形成されており、前記平箔糸の半数は、前記誘電体の長手方向に対して傾斜するように右回りに巻き付けられ、かつ残りの半数の前記平箔糸は、右回りの平箔糸と同じ角度で、前記誘電体の長手方向に対して傾斜するように左回りに巻き付られていることで、前記平箔糸の張力によって、前記誘電体が圧縮変形された状態を維持している導波管。   A waveguide having a flexible dielectric with a cross section of the same shape continuous in the longitudinal direction as a core and the outer surface of the dielectric covered with a conductor layer, the dielectric having a restoring force against compressive deformation The conductor layer is formed by winding a required number of flat foil yarns having a flat cross-sectional shape and conductivity around the dielectric, and half of the flat foil yarns are formed of the dielectric material. Wrapped clockwise to incline with respect to the longitudinal direction of the body, and the remaining half of the flat foil yarns incline with respect to the longitudinal direction of the dielectric at the same angle as the clockwise flat foil yarns. Thus, the waveguide is maintained in a state where the dielectric is compressed and deformed by the tension of the flat foil yarn. 前記平箔糸は、金属箔とフィルムを積層して形成されていることを特徴とする請求項1に記載の導波管。 The waveguide according to claim 1, wherein the flat foil yarn is formed by laminating a metal foil and a film. 前記フィルムは、導電性を備えていることを特徴とする請求項2に記載の導波管。 The waveguide according to claim 2, wherein the film has conductivity. 前記誘電体は比誘電率が2より小さい材料からなることを特徴とする請求項1から請求項3のいずれかに記載の導波管。
The waveguide according to any one of claims 1 to 3, wherein the dielectric is made of a material having a relative dielectric constant smaller than 2.
JP2014057630A 2014-03-20 2014-03-20 Flexible waveguide Active JP6343827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057630A JP6343827B2 (en) 2014-03-20 2014-03-20 Flexible waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057630A JP6343827B2 (en) 2014-03-20 2014-03-20 Flexible waveguide

Publications (2)

Publication Number Publication Date
JP2015185858A true JP2015185858A (en) 2015-10-22
JP6343827B2 JP6343827B2 (en) 2018-06-20

Family

ID=54352013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057630A Active JP6343827B2 (en) 2014-03-20 2014-03-20 Flexible waveguide

Country Status (1)

Country Link
JP (1) JP6343827B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228839A (en) * 2016-06-20 2017-12-28 日立金属株式会社 Waveguide
WO2018203452A1 (en) * 2017-05-02 2018-11-08 オリンパス株式会社 Waveguide, image transmission device having waveguide, endoscope having waveguide, and endoscope system
JP2018201163A (en) * 2017-05-29 2018-12-20 株式会社ヨコオ Flexible waveguide
KR101959496B1 (en) * 2018-11-27 2019-07-02 (주)지엠디텔레콤 Satellite waveguide and manufacturing method thereof
JP2020010234A (en) * 2018-07-10 2020-01-16 オリンパス株式会社 Flexible wave guide, manufacturing method of the flexible wave guide, and video image transmission device using the flexible wave guide
JP2020058524A (en) * 2018-10-09 2020-04-16 オリンパス株式会社 Flexible waveguide, image transmission device having flexible waveguide, endoscope and endoscope system having flexible waveguide
CN112670692A (en) * 2020-12-07 2021-04-16 电子科技大学 Integral untwistable terahertz soft waveguide structure and preparation method thereof
JP2021103819A (en) * 2019-12-24 2021-07-15 オリンパス株式会社 Waveguide connection structure, waveguide connector, mode converter, and waveguide unit
WO2021145041A1 (en) * 2020-01-17 2021-07-22 オリンパス株式会社 Braiding machine and method for manufacturing flexible waveguide
WO2023112921A1 (en) * 2021-12-15 2023-06-22 三井化学株式会社 Flexible waveguide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849570U (en) * 1971-10-09 1973-06-28
JPS4878485A (en) * 1972-01-05 1973-10-22
JPS4933187A (en) * 1972-08-02 1974-03-27
JPS62178601U (en) * 1986-04-30 1987-11-13
JPH07273511A (en) * 1994-04-01 1995-10-20 Junkosha Co Ltd Leakage dielectric line
JPH08195605A (en) * 1995-01-17 1996-07-30 Nippon Telegr & Teleph Corp <Ntt> Waveguide
JP2009272210A (en) * 2008-05-09 2009-11-19 Fujikura Ltd Cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849570U (en) * 1971-10-09 1973-06-28
JPS4878485A (en) * 1972-01-05 1973-10-22
JPS4933187A (en) * 1972-08-02 1974-03-27
JPS62178601U (en) * 1986-04-30 1987-11-13
JPH07273511A (en) * 1994-04-01 1995-10-20 Junkosha Co Ltd Leakage dielectric line
JPH08195605A (en) * 1995-01-17 1996-07-30 Nippon Telegr & Teleph Corp <Ntt> Waveguide
JP2009272210A (en) * 2008-05-09 2009-11-19 Fujikura Ltd Cable

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228839A (en) * 2016-06-20 2017-12-28 日立金属株式会社 Waveguide
US11045069B2 (en) 2017-05-02 2021-06-29 Olympus Corporation Waveguide, image transmission apparatus including waveguide, endoscope including waveguide, and endoscope system
WO2018203452A1 (en) * 2017-05-02 2018-11-08 オリンパス株式会社 Waveguide, image transmission device having waveguide, endoscope having waveguide, and endoscope system
JP2018191137A (en) * 2017-05-02 2018-11-29 オリンパス株式会社 Waveguide, image transmission device with waveguide, endoscope with waveguide, and endoscope system
JP2018201163A (en) * 2017-05-29 2018-12-20 株式会社ヨコオ Flexible waveguide
JP2020010234A (en) * 2018-07-10 2020-01-16 オリンパス株式会社 Flexible wave guide, manufacturing method of the flexible wave guide, and video image transmission device using the flexible wave guide
JP2020058524A (en) * 2018-10-09 2020-04-16 オリンパス株式会社 Flexible waveguide, image transmission device having flexible waveguide, endoscope and endoscope system having flexible waveguide
JP7152716B2 (en) 2018-10-09 2022-10-13 オリンパス株式会社 Flexible waveguide, image transmission device having flexible waveguide, endoscope and endoscope system having flexible waveguide
KR101959496B1 (en) * 2018-11-27 2019-07-02 (주)지엠디텔레콤 Satellite waveguide and manufacturing method thereof
JP2021103819A (en) * 2019-12-24 2021-07-15 オリンパス株式会社 Waveguide connection structure, waveguide connector, mode converter, and waveguide unit
CN114631227A (en) * 2019-12-24 2022-06-14 奥林巴斯株式会社 Waveguide connection structure, waveguide connector, mode converter, and waveguide unit
JP7333518B2 (en) 2019-12-24 2023-08-25 オリンパス株式会社 WAVEGUIDE CONNECTION STRUCTURE, WAVEGUIDE CONNECTOR, AND WAVEGUIDE UNIT
US12046793B2 (en) 2019-12-24 2024-07-23 Olympus Corporation Connection structure of waveguide, waveguide connector, mode converter, and waveguide unit
WO2021145041A1 (en) * 2020-01-17 2021-07-22 オリンパス株式会社 Braiding machine and method for manufacturing flexible waveguide
JP2021114679A (en) * 2020-01-17 2021-08-05 オリンパス株式会社 Round braided string making machine for waveguide outer conductor and manufacturing method of flexible waveguide
US11693175B2 (en) 2020-01-17 2023-07-04 Olympus Corporation Braider and method of manufacturing flexible waveguide
JP7325047B2 (en) 2020-01-17 2023-08-14 オリンパス株式会社 Circular braid-making machine for waveguide outer conductor and method for manufacturing flexible waveguide
CN112670692A (en) * 2020-12-07 2021-04-16 电子科技大学 Integral untwistable terahertz soft waveguide structure and preparation method thereof
WO2023112921A1 (en) * 2021-12-15 2023-06-22 三井化学株式会社 Flexible waveguide

Also Published As

Publication number Publication date
JP6343827B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6343827B2 (en) Flexible waveguide
US8575488B2 (en) Differential signal transmission cable
US8390402B2 (en) Waveguide comprised of various flexible inner dielectric regions
US9892820B2 (en) Differential signal transmission cable having a metal foil shield conductor
US20140321822A1 (en) Optoelectrical composite cable
US3016503A (en) Helix wave guide
JP2012133991A (en) Cable for differential signal
JP2010225571A (en) Cable
US20140079359A1 (en) Optical-electrical composite cable
US9551851B2 (en) Optical-electric composite cable
JPH08195605A (en) Waveguide
JP2011249022A (en) Photoelectricity composite cable
US9514862B2 (en) Low loss and low packaged volume coaxial RF cable
WO2013161124A1 (en) Leaky coaxial cable
CN104036874B (en) Shielded flexible cable for robot
CN111599528A (en) Coaxial cable
JP6066387B2 (en) Photoelectric composite cable
JP5863156B2 (en) Differential signal transmission cable
CN104051073A (en) Shielding type data cable for mechanical arm
JP6865106B2 (en) Flexible waveguide
CN114207936A (en) Dielectric waveguide
CN220272736U (en) Telescopic fish bone signal transmitting line suitable for antenna equipment
JP6604222B2 (en) Differential signal transmission cable
JP6654739B2 (en) Leaky coaxial cable
JP7147536B2 (en) radio wave transmission cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180426

R150 Certificate of patent or registration of utility model

Ref document number: 6343827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250