JP2015154777A - Malt steeping method - Google Patents

Malt steeping method Download PDF

Info

Publication number
JP2015154777A
JP2015154777A JP2015088479A JP2015088479A JP2015154777A JP 2015154777 A JP2015154777 A JP 2015154777A JP 2015088479 A JP2015088479 A JP 2015088479A JP 2015088479 A JP2015088479 A JP 2015088479A JP 2015154777 A JP2015154777 A JP 2015154777A
Authority
JP
Japan
Prior art keywords
soaking
malt
water
time
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015088479A
Other languages
Japanese (ja)
Inventor
史基 上遠野
Fuminori Katoono
史基 上遠野
哲也 有田
Tetsuya Arita
哲也 有田
広樹 藤田
Hiroki Fujita
広樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Holdings Ltd
Original Assignee
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Holdings Ltd filed Critical Suntory Holdings Ltd
Priority to JP2015088479A priority Critical patent/JP2015154777A/en
Publication of JP2015154777A publication Critical patent/JP2015154777A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new malt steeping method for producing beer, by controlling the KI value as indicator of the degree of decomposition of protein of malt after steeping and the Calcofluor modification value as indicator of the degree of decomposition of cell walls within prescribed ranges, respectively, while maintaining the water content of the malt (malt steeping degree) after malt steeping within a prescribed range.
SOLUTION: The malt steeping method for controlling the water content of the malt (malt steeping degree) within a prescribed range by repeating steeping (soaking in water) and dewatering (water cutting off) in order to impart moisture and oxygen required for the germination of barley in beer production includes the steps of: performing a primary steeping for 0.5 to 1.5 hours; and then performing a primary water cutting off for 16 to 19 hours, while maintaining the germination temperature at 13 to 20°C, and the malt steeping degree at 40% or more after the malt steeping.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、ビール製造における浸麦方法に関する。より詳しくは、本発明は、穀物メジャーにより供給される大麦品種において、浸麦条件を最適化することにより、所定の浸麦度を維持しながら、所定範囲の蛋白質分解率と細胞壁分解率に制御することを特徴とする浸麦方法に関する。   The present invention relates to a soaking method in beer production. More specifically, the present invention controls barley varieties supplied by grain majors by optimizing the soaking conditions to control the rate of proteolysis and cell wall degradation within a predetermined range while maintaining a predetermined degree of soaking. The present invention relates to a soaking method characterized by:

一般に、ビールは以下の工程を経て製造される。
麦芽の製造(以下、浸麦工程又は浸麦方法ともいう。):この工程で大麦は溶け易く、分解され易い状態の麦芽に加工される。まず、原料大麦からホコリやゴミをきれいに取り除き、浸麦槽で水分を含ませ、発芽室で適度に発芽させた後、乾燥室で熱風により焙燥される。このときにビールに必要な成分と独特の色、そして芳しい香りをもつようになる。
Generally, beer is manufactured through the following steps.
Production of malt (hereinafter also referred to as a soaking step or a soaking method): In this step, barley is easily melted and processed into malt in a state of being easily decomposed. First, dust and debris are removed from raw barley cleanly, water is added in a soaking tank, and the germination chamber is appropriately germinated, followed by drying with hot air in a drying chamber. At this time, it comes to have the necessary ingredients, unique color and fragrance of beer.

仕込み工程:細かく砕いた麦芽と場合によっては米などの副原料を温水と混ぜ合わせる。適度な温度で、適当な時間保持すると、麦芽の酵素の働きで、でんぷん質は糖分に変わり、糖化液の状態になる。これをろ過してホップを加え、煮沸する。ホップはビールに特有の苦味と香りをつけると同時に麦汁中の蛋白質を凝固分離させ、液を澄ませる大切な働きをする。こうしてできた熱麦汁は発酵工程に移される。   Preparation process: A mixture of finely crushed malt and, in some cases, auxiliary ingredients such as rice, with warm water. When held at an appropriate temperature for an appropriate period of time, the starch is converted into sugar by the action of the malt enzyme and becomes a saccharified solution. Filter this, add hops and boil. Hops give the bitterness and aroma peculiar to beer, and at the same time, coagulate and separate proteins in wort and play an important role in clarifying the liquid. The hot wort thus produced is transferred to the fermentation process.

発酵工程:熱麦汁を5℃くらいに冷却し、これに酵母を加えて発酵タンクに入れる。7〜8日の間に酵母の働きによって、麦汁中の糖分のほとんどがアルコールと炭酸ガスに分解される。こうしてできあがったビールは若ビールと呼ばれ、まだビール本来の味、香りは十分ではない。   Fermentation process: Hot wort is cooled to about 5 ° C., yeast is added to this, and it is placed in a fermentation tank. During the 7 to 8 days, most of the sugar in the wort is decomposed into alcohol and carbon dioxide by the action of the yeast. The resulting beer is called young beer, and the beer's original taste and aroma are not yet sufficient.

貯酒工程:若ビールは貯酒タンクに移され、0℃くらいの低温で数十日間貯蔵される。この間にビールはゆっくり熟成し、調和のとれたビールの味と香りが生まれてくる。熟成の終わったビールはろ過され、透きとおった琥珀色のビールができあがる。   Storage process: Young beer is transferred to a storage tank and stored at a low temperature of about 0 ° C for several tens of days. During this time, the beer matures slowly and a harmonious beer taste and aroma is born. The aged beer is filtered and a clear amber beer is produced.

容器詰め工程:こうしてできあがるまでに凡そ2〜3ヶ月かかる。いよいよビールはびん・缶又は樽に詰められて市場に出荷される。びん・缶詰めビールは生ビールが大部分であるが、一部に熱による処理(パストリゼーション)をしたビールもある。   Container filling process: It takes about 2 to 3 months to complete in this way. The beer is finally packed in bottles, cans or barrels and shipped to the market. The majority of bottled and canned beer is draft beer, but some beer is treated with heat (pastration).

ところで、ビール製造に用いられる麦芽は、製造工程の時間短縮や煮沸などのエネルギーコスト低減を目指した結果、麦芽成分を効率的に溶出させるように細胞壁分解が進んだものが、世界的に好んで用いられる傾向にある。また、仕込み工程におけるマッシングで得られた麦汁を用いた醗酵が効率的に進むために、麦芽の蛋白質分解も進んだものが好まれる傾向にある。このため、このようなスペックの麦芽をもつ大麦品種(例えば、代表的には、穀物メジャーから供給されるヨーロッパ品種(以下、EU品種ともいう。)の栽培が盛んであり、流通の大半を占めるのが現状である。このようなスペックの麦芽を用いて製造されたビールは、味わいの面においては、ビール特有の品質であるコクや飲み応えは抑えられ、すっきりとした味わいを特徴としたものになっている。   By the way, malt used in beer production is the world's favorite, because cell wall decomposition has progressed so that malt components can be efficiently eluted as a result of shortening the manufacturing process time and reducing energy costs such as boiling. Tend to be used. Moreover, in order for fermentation using the wort obtained by the mashing in a preparation process to advance efficiently, the thing which the protein decomposition of malt advanced also tends to be liked. For this reason, barley varieties having malt of such specifications (for example, typically European varieties (hereinafter also referred to as EU varieties) supplied from grain majors are actively cultivated and occupy most of the distribution. Beer made using malt with such specifications is characterized by a refreshing taste, with a reduced taste and taste that are peculiar to beer in terms of taste. It has become.

Technology Brewing and Malting 3rd international edition, WOLFGANG KUNZETechnology Brewing and Malting 3rd international edition, WOLFGANG KUNZE Use of X-ray Microanalysis to study Hydration patterns in Barley, BRI 1991, Journal of Cereal ScienceUse of X-ray Microanalysis to study Hydration patterns in Barley, BRI 1991, Journal of Cereal Science The structure of barley endosperm-An important determination of malt modification, BRI 1999, Journal of Food and AgricultureThe structure of barley endosperm-An important determination of malt modification, BRI 1999, Journal of Food and Agriculture 50 Years of Progress in Quality of Malting Barley Grown in the Czech Republic, RIBM 2009, The Institute of Brewing & Distilling50 Years of Progress in Quality of Malting Barley Grown in the Czech Republic, RIBM 2009, The Institute of Brewing & Distilling

前記した理由により、現状では、原料麦芽の品種は限られ、すっきりした味わいのビールの流通が大半を占めており、消費者の選択肢も限られたものになっている。換言すれば、消費者のビール品質の選択肢を広げるため、ビール特有のコクや旨み、飲み応えがしっかりと感じられるビールを製造しようとしても、現在広く栽培されているスペックとは異なる麦芽品種を入手することは現実的には困難な状況にある。
かかる状況下、本発明が解決しようとする課題は、現在広く流通している麦芽品種と同じものを原料として使用しても、コクや飲み応えといった味わいの違うビールの製造を可能する新規浸麦方法を提供することである。
For the reasons described above, at present, the variety of raw malt is limited, and the distribution of beer with a refreshing taste occupies the majority, and the options for consumers are also limited. In other words, in order to expand consumers' choice of beer quality, even if they try to produce beer that has a strong beer, umami, and drinking response, you can obtain malt varieties that differ from the currently widely cultivated specs. It is actually difficult to do.
Under such circumstances, the problem to be solved by the present invention is that a new barley that can produce beer with different tastes such as richness and drinking response even if the same malt variety currently widely distributed is used as a raw material. Is to provide a method.

本発明者らは、前記課題を解決すべく、パイロット試醸品の官能評価や様々な麦芽スペックの分析を繰り返したところ、コクや飲み応えがしっかり感じられるビールを製造するための麦芽スペックは、EU品種の麦芽といった現在多く流通する麦芽よりも蛋白質分解がより低い(指標:KI値38%以下の)ものであることが示唆された。尚、現在の主流麦芽スペックの対応KI値は40%以上である。   In order to solve the above problems, the inventors repeated sensory evaluation of pilot brewed products and analysis of various malt specs, and the malt specs for producing beer that feels rich and responsive to drinking are, It was suggested that the proteolysis is lower (index: KI value of 38% or less) than malt currently in circulation such as malt of EU variety. In addition, the corresponding KI value of the current mainstream malt specifications is 40% or more.

通常、浸麦工程における成分分解(溶け)に関しては、蛋白質分解と細胞壁分解とがパラレルに進行するため、原料麦芽として現在多く流通する麦芽(例えば、EU品種の麦芽)を使用してコクや旨味があるビールを製造するための目標とする麦芽スペックを達成するためには、蛋白質と細胞壁の分解のバランスを変更・制御する必要がある。そこで、溶けに及ぼす影響が大きい浸麦・発芽条件に着目して蛋白質分解率と細胞壁分解率の制御技術を確立する必要性がある。   Usually, with regard to component decomposition (melting) in the malting process, since protein decomposition and cell wall decomposition proceed in parallel, malt (eg, malt of EU varieties) currently in circulation as raw material malt is used for richness and umami. In order to achieve the target malt specifications for producing a beer, it is necessary to change and control the balance of protein and cell wall degradation. Therefore, it is necessary to establish a technique for controlling the protein degradation rate and cell wall degradation rate, focusing on the soaking and germination conditions that have a large effect on melting.

本願発明者らは、試醸評価による検証を進めたところ、先に説明した浸麦工程において、低蛋白質分解率(指標:KI値)の麦芽を使用した場合に、ビール特有のコクや旨味をより引き出す可能性が示唆された。そこで、パイロット試醸品の官能評価や様々な麦芽を分析した結果を元に、目標麦芽スペックを「蛋白質分解率(KI値):38(%)以下、及び細胞壁分解率(Calcofluor modification値):80〜100%」に設定した。かかる目標麦芽スペックは、日本のビール製造において通常使用されているEU品種の麦芽と比較すると、蛋白質分解が低いが、細胞壁分解率は同程度であるスペックである。   The inventors of the present application have proceeded with verification by trial brewing evaluation, and when malt having a low protein degradation rate (index: KI value) is used in the above-described malting process, the richness and taste unique to beer are obtained. This suggests the possibility of further extraction. Therefore, based on the sensory evaluation of the pilot brewed product and the analysis of various malts, the target malt spec was determined as “Proteolysis rate (KI value): 38 (%) or less, and cell wall degradation rate (Calcofluor modification value): 80-100% ". This target malt spec is a spec that has a low proteolysis but a comparable cell wall degradation rate compared to malt of EU varieties that are usually used in Japanese beer production.

このように、本願発明者らは、かかる課題を解決すべく鋭意検討し実験を重ねた結果、浸麦工程における浸麦条件(浸水時間、断水時間、浸麦度等)を特定することで、蛋白質分解率と細胞壁分解率を制御し、従来と異なるバランスである蛋白質分解率を抑えた麦芽を製造できることを見出し、本発明を完成するに至ったものである。   As described above, the inventors of the present application have conducted intensive studies and experiments to solve such problems, and by specifying the soaking conditions in the soaking process (flooding time, water shutoff time, degree of soaking, etc.) It has been found that malt can be produced by controlling the rate of proteolysis and cell wall degradation and suppressing the rate of proteolysis which is different from the conventional one, and has completed the present invention.

すなわち、本発明は、以下の通りのものである。
[1]大麦が発芽を開始するために必要な水分と酸素を与えるために浸漬(浸水)と水切り(断水)を繰り返して所定範囲の水分含量(浸麦度)に調製するためのビール製造における浸麦方法において、以下の工程:
一次浸水時間を0.5〜1.5時間に、かつ、その後の一次断水時間を16〜19時間として、発芽温度を13〜20℃に、かつ、浸麦後の麦芽の浸麦度を40%以上に維持する、
を含む前記浸麦方法。
That is, the present invention is as follows.
[1] In beer production for preparing water content (soaking degree) in a predetermined range by repeatedly dipping (watering) and draining (water breaking) to give water and oxygen necessary for barley to start germination In the soaking method, the following steps:
The primary soaking time is 0.5 to 1.5 hours, the subsequent primary water shutoff time is 16 to 19 hours, the germination temperature is 13 to 20 ° C., and the malt degree of malt after soaking is 40 % Or more,
The said soaking method containing.

[2]前記大麦が、醸造用二条大麦である、前記[1]に記載の浸麦方法。   [2] The soaking method according to [1], wherein the barley is Nijo barley for brewing.

[3]前記大麦は、一次浸水時間が略5時間であり、一次断水時間が略19時間であり、そして二次浸水が略4時間であるプログラムで浸麦した場合に、その蛋白質分解を指標するKI値が40%以上であり、かつ、その細胞壁分解率を指標するCalcofluor modification値が80〜100%であるものである、前記[1]又は[2]に記載の浸麦方法。   [3] When the barley is soaked with a program in which the primary flooding time is approximately 5 hours, the primary flooding time is approximately 19 hours, and the secondary flooding is approximately 4 hours, its proteolysis is indicated. The soaking method according to the above [1] or [2], wherein the KI value is 40% or more and the Calcofluor modification value indicating the cell wall degradation rate is 80 to 100%.

[4]前記[1]〜[3]のいずれかに記載の方法により浸麦された麦芽であって、その蛋白質分解を指標するKI値が38%以下に、かつ、その細胞壁分解率を指標するCalcofluor modification値が80〜100%となっている前記麦芽。   [4] Malt soaked by the method according to any one of [1] to [3], wherein the KI value indicating its protein degradation is 38% or less, and its cell wall degradation rate is an index. The malt having a Calcofluor modification value of 80-100%.

本発明に係る浸麦方法により、原料大麦として醸造用二条大麦、例えばCargill Malt社により供給されるPrestige種を使用した場合にも、一次浸水時間を0.5〜1.5時間に、かつ、その後の一次断水時間を16〜19時間として、発芽温度を13〜20℃に、かつ、浸麦後の麦芽の浸麦度を40%以上に維持しながら、浸麦後の麦芽の蛋白質分解(KI値)を32〜38%に、かつ、細胞壁分解率(Calcofluor modification値)を80〜100%に制御することが可能になる。したがって、例えば、Prestige種のようなEU品種を使用しても、コクや旨味があるビールを製造することが可能になる。
また、本願発明は、浸麦工程において蛋白質分解率と細胞壁分解率の制御技術の確立に寄与するものであり、国産大麦使用における長年のテーマである大麦品質バラツキ由来の麦芽品質バラツキ解消への技術展開が期待される。
By using the soaking method according to the present invention, when using Nijo barley for brewing as raw barley, for example, Prestige seed supplied by Cargill Malt, the primary soaking time is 0.5 to 1.5 hours, and Proteolysis of malt after soaking while maintaining a germination temperature of 13 to 20 ° C. and a malting degree of malt after soaking at 40% or more with a primary water shutoff time of 16 to 19 hours thereafter. KI value) can be controlled to 32 to 38%, and the cell wall degradation rate (Calcofluor modification value) can be controlled to 80 to 100%. Therefore, for example, even if EU varieties such as Prestige are used, it is possible to produce beer with richness and taste.
In addition, the present invention contributes to the establishment of a control technology for the protein degradation rate and cell wall degradation rate in the soaking process, and a technique for eliminating malt quality variation derived from barley quality variation, which is a long-standing theme in the use of domestic barley. Expansion is expected.

一次浸水時間と浸麦度との関係を示すグラフである。It is a graph which shows the relationship between a primary flooding time and the degree of soaking. 一次断水時間と浸麦度との関係を示すグラフである。It is a graph which shows the relationship between a primary water stop time and the degree of soaking. 二次浸水時間と浸麦度との関係を示すグラフである。It is a graph which shows the relationship between secondary flooding time and the degree of soaking. 浸麦度と細胞壁分解率(Calcofluor modification値)との関係を示すグラフである。It is a graph which shows the relationship between the degree of soaking and the cell wall degradation rate (Calcofluor modification value). 浸麦度と蛋白質分解率(KI値)との関係を示すグラフである。It is a graph which shows the relationship between a degree of soaking and a protein degradation rate (KI value). 細胞壁分解率(Calcofluor modification値)と蛋白質分解率(KI値)との関係を示すグラフである。It is a graph which shows the relationship between a cell wall degradation rate (Calcofluor modification value) and a protein degradation rate (KI value). 一次浸水時間と浸麦度との関係を示すグラフである。It is a graph which shows the relationship between a primary flooding time and the degree of soaking. 一次断水時間と浸麦度との関係を示すグラフである。It is a graph which shows the relationship between a primary water stop time and the degree of soaking. 浸麦度と細胞壁分解率(Calcofluor modification値)との関係を示すグラフである。It is a graph which shows the relationship between the degree of soaking and the cell wall degradation rate (Calcofluor modification value). 浸麦度と蛋白質分解率(KI値)との関係を示すグラフである。It is a graph which shows the relationship between a degree of soaking and a protein degradation rate (KI value).

細胞壁分解率(Calcofluor modification値)と蛋白質分解率(KI値)との関係を示すグラフである。It is a graph which shows the relationship between a cell wall degradation rate (Calcofluor modification value) and a protein degradation rate (KI value). 大麦中に水が浸透する現象における「吸水」と「拡散」の説明図である(非特許文献1からの引用)。It is explanatory drawing of "water absorption" and "diffusion" in the phenomenon that water penetrates into barley (cited from Non-Patent Document 1). 大麦の胚乳における水部分布を示す図である(非特許文献2からの引用)。It is a figure which shows the water part distribution in the endosperm of barley (cited from nonpatent literature 2). 浸水、断水中の水分の拡散を示すグラフである(非特許文献2からの引用)。It is a graph which shows the spreading | diffusion of the water | moisture content in water immersion and a water break (citation from nonpatent literature 2). 大麦の胚乳におけるβグルカンの分布を示す図である(非特許文献3からの引用)。It is a figure which shows distribution of (beta) glucan in the endosperm of barley (cited from nonpatent literature 3). 大麦の胚乳における蛋白質の分布を示す図である(非特許文献3からの引用)。It is a figure which shows distribution of the protein in the endosperm of barley (cited from nonpatent literature 3).

以下、本発明を詳細に説明する。
前記した浸麦工程は、大麦が発芽を開始するために必要な水分と酸素を与えることが主な役割である。浸漬(浸水)と水切り(断水)を繰り返して、狙いの水分含量(浸麦度)に調整していく。浸麦度(大麦中の水分含量(重量%))は、浸水・断水時間、浸水温度、穀粒サイズ、窒素含量、品種、収穫年が影響するとされる。大麦は、吸水(細胞内へ水が入り込む)すると膨潤し、発芽へ向けた代謝が開始される。吸水は毛細管現象で進んでいくと考えられており、浸水させ続けるよりも一定時間の断水を間に入れることで、効率的に浸麦度(大麦中の水分含量%)を上昇させることができると考えられる。そこで、従来から、一次浸水、一次断水、二次浸水、二次断水・・・を繰り返すことが行われている。しかしながら、従来の浸麦方法においては、浸麦度、すなわち、大麦中の水分含量を目標に、大麦に一定以上の水分含量があればよいということに留まった運転管理が行われていた。
Hereinafter, the present invention will be described in detail.
The main role of the above-mentioned soaking process is to give water and oxygen necessary for barley to start germination. Repeat soaking (water soaking) and draining (water breaking) to adjust to the target moisture content (soaking degree). The degree of soaking (water content (% by weight) in barley) is said to be affected by the time of soaking and water outage, water temperature, grain size, nitrogen content, variety, and harvest year. Barley swells when water is absorbed (water enters the cells), and metabolism toward germination is started. Water absorption is thought to proceed by capillarity, and it is possible to efficiently increase the degree of soaking (water content in barley) by inserting a water break for a certain period of time rather than continuing to soak. it is conceivable that. Thus, conventionally, primary flooding, primary water breakage, secondary water flooding, secondary water breakage, etc. have been repeated. However, in the conventional soaking method, the operation management was limited to the fact that the barley should have a certain water content or more with the target of the degree of soaking, that is, the water content in the barley.

非特許文献1に記載されるように、浸麦工程において、大麦中へ水が浸透する現象は、「吸収」と「拡散」に分けられる。図12に示すように、浸水中に水は大麦の胚及び穀皮、主に胚に取り込まれ、断水中に胚から胚乳内に水が拡散していくと考えられている。吸水により胚へ取り込まれた水は胚盤からのホルモン分泌を促し、それによりアロイロン層で酵素発現が誘導されて、胚乳内に拡散した水を媒体として酵素が拡散して各成分の分解が起こっていくと考えられている。   As described in Non-Patent Document 1, the phenomenon that water penetrates into barley in the soaking process is divided into “absorption” and “diffusion”. As shown in FIG. 12, it is considered that water is taken into barley embryos and husks, mainly embryos during water immersion, and water diffuses from the embryos into endosperm during water breakage. Water taken into the embryo by water absorption promotes hormone secretion from the scutellum, which induces enzyme expression in the aleurone layer, and the enzyme diffuses using the water diffused in the endosperm as a medium, causing decomposition of each component It is thought to go.

これまでに実施したマイクロモルティング(以下、MMと略す。)結果から、浸麦度に比例して細胞壁分解率(指標:Calcofluor modification値)と蛋白質分解率(指標:KI値)の両者が進行することが確認できている。細胞壁は主にβグルカンから構成されており、図15に示すように、βグルカンは、大麦胚乳中心部に存在しているため、分解を効果的に進めるには胚乳中へ水を拡散させて、酵素反応を均一に進めることが重要だと考えられる。一方、図16に示すように、蛋白質は、胚乳内の外側に分布していることが分かっている。   From the results of micro-malting (hereinafter abbreviated as MM) carried out so far, both cell wall degradation rate (index: Calcofluor modification value) and protein degradation rate (index: KI value) progress in proportion to the degree of soaking. It has been confirmed that. The cell wall is mainly composed of β-glucan, and as shown in FIG. 15, β-glucan is present in the center of barley endosperm, so that water can be diffused into the endosperm for effective degradation. It is thought that it is important to proceed the enzyme reaction uniformly. On the other hand, as shown in FIG. 16, it is known that the protein is distributed outside the endosperm.

細胞壁分解率と蛋白質分解のバランスを変えた麦芽を得る際に、例えば、蛋白質分解率が低い麦芽を得るためには、相対的に細胞壁分解率(指標:Calcofluor modification値)を促進させることが有効であり、βグルカンと蛋白質の存在位置の違いから、βグルカンをより効果的に分解するためには、浸麦度は同等であっても、より胚乳の隅々まで水が拡散した状態を作り出すことが望ましいと考えられる。そこで、本願発明者らは、以下の実施例において、蛋白質分解率(指標:KI値)を抑制しつつ、細胞壁分解率(指標:Calcofluor modification値)を促進させるための手段として、水の与え方(浸水・断水時間の組合せ)が「浸麦度」及び「溶け」に及ぼす影響を評価するための実験を行った。   When obtaining malt with a different balance between cell wall degradation rate and protein degradation, for example, in order to obtain malt with low protein degradation rate, it is effective to relatively promote cell wall degradation rate (index: Calcofluor modification value) From the difference in the location of β-glucan and protein, in order to decompose β-glucan more effectively, even if the degree of malting is the same, it creates a state where water is more diffused throughout the endosperm Is considered desirable. Therefore, the inventors of the present application, as a means for promoting the cell wall degradation rate (index: Calcofluor modification value) while suppressing the protein degradation rate (index: KI value) in the following examples, Experiments were conducted to evaluate the effect of (combination of water immersion and water shutoff time) on “degree of soaking” and “melting”.

以下の実施例に示すMM結果から(図9、10、11参照)から、一次浸水時間を延ばすのではなく、一次断水時間を延ばすことで、細胞壁分解がより促進され、一方、蛋白質分解が抑制できることが判明した。   From the MM results shown in the following examples (see FIGS. 9, 10, and 11), cell wall decomposition is further promoted by prolonging the primary water-blowing time rather than prolonging the primary water-immersion time, while proteolysis is suppressed. It turns out that you can.

本願発明者らは、特定の理論に拘束されることは望まないが、その原因は、以下のようなものであると考える。
一次断水時間を延ばした場合には、胚乳中への水の拡散が進む、すなわち、細胞壁分解が促進されるのに対して、一次浸水時間を延ばした場合には、胚や穀皮に近い胚乳の外側部分の水分含量が上がる、すなわち、蛋白質分解が促進されるという、水の局在による差が細胞壁分解と蛋白質分解の相対的な差に影響を及ぼしていると考えられる。
すなわち、浸麦後に、胚乳の外側に水があり、水の拡散が不十分である状態(浸水時間を延ばした場合)では、酵素反応の媒体となる水が十分に胚乳内に未だ十分に行き渡っておらず、胚乳中心部に局在する細胞壁は分解されに難い一方、胚乳内の外側に分布する蛋白質は分解され易いと考えられる。これに対して、断水時間を延ばして胚乳内への水の拡散を促進させた場合には、胚乳中心部まで水が行き渡り、細胞壁分解は促進されるが、胚乳の外側には水がないので、蛋白質分解の効率が低下し、KIが低下すると考えられる。
The inventors of the present application do not want to be bound by a specific theory, but consider that the cause is as follows.
If the primary water outage time is extended, the diffusion of water into the endosperm proceeds, i.e. cell wall degradation is promoted, whereas if the primary water immersion time is extended, the endosperm close to the embryo or husk It is considered that the difference in water localization that the water content of the outer part of the cell increases, that is, proteolysis is accelerated, affects the relative difference between cell wall degradation and protein degradation.
That is, after soaking, in the state where there is water outside the endosperm and the water is not sufficiently diffused (when the soaking time is extended), the water that is the medium for the enzyme reaction is still sufficiently distributed in the endosperm. The cell wall localized in the endosperm center is difficult to be decomposed, whereas the protein distributed outside the endosperm is considered to be easily decomposed. On the other hand, if the water shutoff time is extended to promote the diffusion of water into the endosperm, the water spreads to the endosperm center and cell wall decomposition is promoted, but there is no water outside the endosperm. It is thought that the efficiency of proteolysis decreases and KI decreases.

尚、図13に示すように、断水中の水の浸透は、穀皮に近い大麦の腹側部分から進行することが知られており、また、図14に示すように、胚乳中心部への水の拡散は主に断水中に生じることがわかっている(図14中、黒棒:浸水6時間後、斜線棒:浸水6時間、断水18時間後)。しかしながら、具体的に一次浸水時間と一次断水時間を如何なる値にすれば、所定の発芽温度において所定の浸麦度を維持しながら、所定範囲の蛋白質分解率と細胞壁分解率に制御することができるのかを予測することは、これらの従来技術をもってしても予測不能であった。本願発明者らは、以下の実施例により実験を重ねた結果、初めて所定の発芽温度において所定の浸麦度を維持しながら、所定範囲の蛋白質分解率と細胞壁分解率に制御する浸麦方法を提供することができたのである。   In addition, as shown in FIG. 13, it is known that the penetration of water during the breakwater proceeds from the ventral portion of barley close to the husk, and as shown in FIG. It is known that the diffusion of water mainly occurs in the water breakage (in FIG. 14, black bar: after 6 hours of flooding, hatched bar: 6 hours of flooding, 18 hours after water breakage). However, if the primary water immersion time and the primary water break time are specifically set to any values, it is possible to control the proteolysis rate and cell wall decomposition rate within a predetermined range while maintaining a predetermined degree of soaking at a predetermined germination temperature. It was unpredictable even with these conventional techniques to predict whether or not. As a result of repeated experiments according to the following examples, the inventors of the present application, for the first time, maintain a predetermined degree of soaking at a predetermined germination temperature, and control a soaking method for controlling a proteolysis rate and a cell wall degradation rate within a predetermined range. We were able to provide it.

以下、実施例により本発明を具体的に説明する。
<実施例1:浸麦実験1>
大麦として、醸造用二条大麦として広く流通している品種であるPrestigeの07cropを使用した。浸麦条件としては、以下に規定するマイクロモルティング(MM)プログラムを基本プログラムとして用いた。各工程時間を変動させた場合の浸麦度及び麦芽溶けへの影響を評価した。浸麦度の測定は、最終の浸水工程終了から20時間経過後に行った。発芽温度は13〜20℃に維持した。
<MMプログラム>
・基本プログラム<一次浸水:5時間、一次断水:19時間、二次浸水:4時間>
・試験プログラム<(一次浸水:5、4、3、2、及び1時間)+(一次断水:27、19、10、及び1時間)+(2次浸水:4、3、2、1、及び0時間)>
溶けの評価には、蛋白質分解率(指標:KI値)(%)、及び細胞壁分解率(指標:Calcofluor modification値)(%)を用いた。
Hereinafter, the present invention will be described specifically by way of examples.
<Example 1: Barley experiment 1>
As barley, we used 07crop from Prestige, a variety widely distributed as Nijo barley for brewing. As the soaking conditions, a micro malting (MM) program defined below was used as a basic program. The effect on the degree of malting and malt melting when each process time was varied was evaluated. The degree of soaking was measured 20 hours after the end of the final water immersion process. The germination temperature was maintained at 13-20 ° C.
<MM program>
・ Basic program <Primary flooding: 5 hours, Primary flooding: 19 hours, Secondary flooding: 4 hours>
Test program <(primary flooding: 5, 4, 3, 2, and 1 hour) + (primary flooding: 27, 19, 10, and 1 hour) + (secondary flooding: 4, 3, 2, 1, and 0 hours)>
For the evaluation of dissolution, the protein degradation rate (index: KI value) (%) and the cell wall degradation rate (index: Calcofluor modification value) (%) were used.

実験に使用した大麦の分析値を以下の表1に示す:   The analytical values of barley used in the experiment are shown in Table 1 below:

Figure 2015154777
Figure 2015154777

また、水準毎の浸麦度、KI値、及びCalcofluor modification値の分析結果を以下の表2に示す:   The analysis results of the degree of soaking, KI value, and Calcofluor modification value for each level are shown in Table 2 below:

Figure 2015154777
Figure 2015154777

表2中、基本プログラムは、水準(丸1)であり、一次浸水時間の変動は水準(丸2〜丸5)であり、一次断水時間の変動は水準(丸6〜丸8)であり、そして二次浸水時間の変動は水準(丸9〜丸12)である。   In Table 2, the basic program is the level (circle 1), the fluctuation of the primary flooding time is the level (circle 2 to circle 5), the fluctuation of the primary flooding time is the level (circle 6 to circle 8), And the fluctuation | variation of secondary inundation time is a level (circle 9-circle 12).

表2に示す浸麦条件(各工程時間、すなわち、一次浸水時間、一次断水時間、及び二次浸水時間)と浸麦度との関係を、それぞれ、図1、2、及び3に示す。横軸は変動させた各工程時間(時間)、縦軸は浸麦度(%)を示す。各工程時間と浸麦度には正の相関が見られた。   The relationship between the soaking conditions shown in Table 2 (each process time, that is, the primary soaking time, the primary water-blowing time, and the secondary soaking time) and the soaking degree are shown in FIGS. 1, 2, and 3, respectively. The horizontal axis represents each process time (hours) varied, and the vertical axis represents the degree of soaking (%). A positive correlation was found between each process time and degree of soaking.

次に、図4と図5に、ぞれぞれ、浸麦度とCalcofluor modification値及びKI値との関係を示す。図4と5中、基本プログラム(黒菱形印)、一次浸水時間変動(白四角印))、一次断水時間変動(黒四角印)、及び二次浸水時間変動(白丸印))のプロットを示す。浸麦度に比例してCalcofluor modification、KI値は上昇した。Calcofluormodificationの目標スペック(80〜100%)に対しては、上記各工程どれでも合わせ込みが可能であるのに対し、KI値は二次浸水工程では浸麦度が最初からほぼ上がりきっている状態であり、KI目標スペック(38%以下)内に抑制するのは難しい結果となった。   Next, FIGS. 4 and 5 show the relationship between the degree of soaking, the Calcofluor modification value, and the KI value, respectively. 4 and 5, the basic program (black diamond mark), primary flooding time fluctuation (white square mark)), primary flooding time fluctuation (black square mark), and secondary flooding time fluctuation (white circle mark)) are plotted. . The Calcofluor modification and KI values increased in proportion to the degree of soaking. The target specifications (80-100%) of Calcofluormodification can be adjusted in any of the above-mentioned processes, but the KI value is almost completely increased from the beginning in the secondary flooding process. Therefore, it was difficult to keep it within the KI target specification (38% or less).

図6に、図4と図5の結果をCalcofluor modification値とKI値の散布図で示す。一次浸水時間変動(白四角印)と一次断水時間変動(黒四角印)では、Calcofluor modification値とKI値に高い相関が見られた。KI値目標スペック(タンパク質分解のみを抑制)に対しては、一次浸水時間を1時間(浸麦度41.8%)とした水準(丸5)で目標スペック内の結果が得られた。一次断水時間変動(水準丸1、丸6〜8)では若干KIが高めとなったが、一次浸水時間を5時間に固定しているため、このような結果となったと考えられる。この結果から一次浸水時間をより短くすることで効果的にKI値目標スペック内へ造り込めることが示唆された。具体的な工程設計へ反映できる条件を検証するため、以下の実施例2において、一次浸水時間及び一次断水時間に関してより詳細に条件設定を変えてMMを実施した。   FIG. 6 shows the results of FIGS. 4 and 5 in a scatter diagram of Calcofluor modification values and KI values. In the primary inundation time fluctuation (white square mark) and the primary water break time fluctuation (black square mark), a high correlation was found between the Calcofluor modification value and the KI value. For the KI value target specification (suppressing only proteolysis), the result within the target specification was obtained at a level (circle 5) where the primary water immersion time was 1 hour (flooding degree 41.8%). Although the KI slightly increased in the primary water interruption time fluctuation (level circle 1, circles 6 to 8), it is considered that such a result was obtained because the primary water immersion time was fixed at 5 hours. From this result, it was suggested that the primary inundation time can be shortened to effectively build the KI value target specification. In order to verify the conditions that can be reflected in the specific process design, in Example 2 below, MM was performed by changing the condition settings in more detail with respect to the primary inundation time and the primary water outage time.

<実施例2:浸麦実験2>
浸麦実験1の結果に基づき、一次浸水時間を0.5、1.0、1.5、及び2.0とし、一次断水時間を6、8、10、12、14、16、及び18とすることでKI値及びCalcofluor modification値目標スペックの造り込み可否を検証した。
大麦としては、浸麦実験1で用いたものと同じPrestigeを使用した。浸麦実験1の結果を元に、実験条件として、以下の表3に示す一次浸水時間及び一次断水時間のマトリックスから、網掛け部分を選択した。尚、二次浸水時間は4時間とした(基本プログラム)。その他の条件は浸麦実験1と同様であり、また、評価も浸麦実験1と同様に行った。以下の表4に結果を示す。
<Example 2: Barley experiment 2>
Based on the results of the soaking experiment 1, the primary flooding time was set to 0.5, 1.0, 1.5, and 2.0, and the primary flooding time was 6, 8, 10, 12, 14, 16, and 18; By doing so, it was verified whether or not the KI value and Calcofluor modification value target specifications could be built.
As barley, the same Prestige used in the barley experiment 1 was used. Based on the results of the soaking experiment 1, a shaded portion was selected as an experimental condition from a matrix of primary flooding time and primary flooding time shown in Table 3 below. The secondary flooding time was 4 hours (basic program). The other conditions were the same as in the barley experiment 1, and the evaluation was performed in the same manner as the barley experiment 1. The results are shown in Table 4 below.

Figure 2015154777
Figure 2015154777

水平方向:一次浸水時間は可変、一次断水時間は12時間、二次浸水時間は4時間に固定
垂直方向:一次断水時間は可変、一次浸水時間は1.5時間、二次浸水時間は4時間に固定
Horizontal direction: primary flooding time is variable, primary flooding time is 12 hours, secondary flooding time is fixed at 4 hours Vertical direction: primary flooding time is variable, primary flooding time is 1.5 hours, secondary flooding time is 4 hours Fixed to

Figure 2015154777
Figure 2015154777

図7と図8に、それぞれ、各工程時間と浸麦度との関係を示す。横軸は変動させた工程時間(時間)、縦軸は浸麦度(%)を示す。各工程時間と浸麦度の間には正の相関が見られた。
図9と図10に、浸麦度(%)とCalcofluor modification値及びKI値との関係を、それぞれ示す。図9と図10に、一次浸水時間変動(白四角印)と一次断水時間変動(黒四角印)をプロットで示す。図9と図10から、ぞれぞれ、Calcofluor modification値80%以上を達成するには、一次浸水時間変動:41.6%以上、一次断水時間変動:40.9%以上が必要であり、KI値38%以下を達成するには、一次浸水時間変動:40.6%以下、一次断水時間変動:41.2%以下が必要であることが分かった。これらの結果から、一次浸水時間を変動させることで浸麦度をコントロールするだけではCalcofluor modification値とKI値の目標スペックを両立することが困難であることが判明した。
7 and 8 show the relationship between each process time and the degree of soaking, respectively. The horizontal axis represents the changed process time (hours), and the vertical axis represents the degree of soaking (%). A positive correlation was found between each process time and the degree of soaking.
FIGS. 9 and 10 show the relationship between the degree of soaking (%), the Calcofluor modification value, and the KI value, respectively. FIG. 9 and FIG. 10 are plots showing the primary flooding time fluctuation (white square mark) and the primary water cutoff time fluctuation (black square mark). From FIG. 9 and FIG. 10, in order to achieve a Calcofluor modification value of 80% or more, primary water immersion time fluctuation: 41.6% or more and primary water interruption time fluctuation: 40.9% or more are required. In order to achieve a KI value of 38% or less, it was found that the primary flooding time fluctuation: 40.6% or less and the primary flooding time fluctuation: 41.2% or less are necessary. From these results, it was found that it is difficult to achieve both the target specifications of the Calcofluor modification value and the KI value only by controlling the degree of soaking by changing the primary soaking time.

図11に、Calcofluor modification値とKI値との関係を示す。図11から、一次断水時間を略18時間かつ、浸水時間を1.5時間以下にすることでCalcofluor modification値とKI値の両者の目標スペック内へ造り込めることが示唆される結果が得られた。本実験結果から、大麦Prestigeでは、一次浸水時間0.5〜1.5時間、一次断水時間16〜19時間、二次浸水時間4時間の条件で浸麦を行うことで、Calcofluor modification値とKI値の両者の目標スペックへの造り込みが可能と考える。   FIG. 11 shows the relationship between the Calcofluor modification value and the KI value. From FIG. 11, a result suggesting that by setting the primary water shut-off time to about 18 hours and the water immersion time to 1.5 hours or less, it is possible to build within the target specifications of both the Calcofluor modification value and the KI value. . From the results of this experiment, in barley Prestige, by performing soaking under the conditions of a primary water immersion time of 0.5 to 1.5 hours, a primary water interruption time of 16 to 19 hours, and a secondary water immersion time of 4 hours, the Calcofluor modification value and KI We think that it is possible to build both values into the target specifications.

本発明に係る浸麦方法は、浸麦条件を最適化することにより、所定の浸麦度を維持しながら、所定範囲の蛋白質分解率と細胞壁分解率を制御することができるため、ビール製造において好適に利用可能である。   In the beer production, the soaking method according to the present invention can control the proteolysis rate and cell wall degradation rate within a predetermined range while maintaining a predetermined degree of soaking by optimizing the soaking conditions. It can be suitably used.

Claims (4)

大麦が発芽を開始するために必要な水分と酸素を与えるために浸漬(浸水)と水切り(断水)を繰り返して所定範囲の水分含量(浸麦度)に調製するためのビール製造における浸麦方法において、以下の工程:
一次浸水時間を0.5〜1.5時間に、かつ、その後の一次断水時間を16〜19時間として、発芽温度を13〜20℃に、かつ、浸麦後の麦芽の浸麦度を40%以上に維持する、
を含む前記浸麦方法。
A method of soaking in beer for producing a moisture content (degree of soaking) in a predetermined range by repeating soaking (water soaking) and draining (water shut-off) to give water and oxygen necessary for barley to start germination In the following steps:
The primary soaking time is 0.5 to 1.5 hours, the subsequent primary water shutoff time is 16 to 19 hours, the germination temperature is 13 to 20 ° C., and the malt degree of malt after soaking is 40 % Or more,
The said soaking method containing.
前記大麦が、醸造用二条大麦である、請求項1に記載の浸麦方法。   The soaking method according to claim 1, wherein the barley is Nijo barley for brewing. 前記大麦は、一次浸水時間が略5時間であり、一次断水時間が略19時間であり、そして二次浸水が略4時間であるプログラムで浸麦した場合に、その蛋白質分解を指標するKI値が40%以上であり、かつ、その細胞壁分解率を指標するCalcofluor modification値が80〜100%であるものである、請求項1又は2に記載の浸麦方法。   The barley has a KI value indicative of its proteolysis when it is soaked in a program in which the primary water immersion time is approximately 5 hours, the primary water interruption time is approximately 19 hours, and the secondary water immersion is approximately 4 hours. The soaking method according to claim 1 or 2, wherein the value is 40% or more and the Calcofluor modification value indicating the cell wall degradation rate is 80 to 100%. 請求項1〜3のいずれか1項に記載の方法により浸麦された麦芽であって、その蛋白質分解を指標するKI値が38%以下に、かつ、その細胞壁分解率を指標するCalcofluor modification値が80〜100%となっている前記麦芽。   A malt soaked by the method according to any one of claims 1 to 3, wherein a KI value indicating its protein degradation is 38% or less, and a Calcofluor modification value indicating its cell wall degradation rate The malt is 80-100%.
JP2015088479A 2015-04-23 2015-04-23 Malt steeping method Pending JP2015154777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088479A JP2015154777A (en) 2015-04-23 2015-04-23 Malt steeping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088479A JP2015154777A (en) 2015-04-23 2015-04-23 Malt steeping method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011082225A Division JP5881305B2 (en) 2011-04-01 2011-04-01 Soaking method

Publications (1)

Publication Number Publication Date
JP2015154777A true JP2015154777A (en) 2015-08-27

Family

ID=54774547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088479A Pending JP2015154777A (en) 2015-04-23 2015-04-23 Malt steeping method

Country Status (1)

Country Link
JP (1) JP2015154777A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004034A (en) * 1971-07-26 1977-01-18 Grandes Malteries Modernes Process for the manufacture of worts
JPH08510913A (en) * 1993-06-04 1996-11-19 クエスト・インターナショナル・ビー・ブイ Method for improving the properties of malted cereals
WO2001047364A1 (en) * 1999-12-15 2001-07-05 Cargill Incorporated Method for malting seeds
US20060057684A1 (en) * 2002-07-25 2006-03-16 Novozymes A/S Mashing process
JP2008017760A (en) * 2006-07-12 2008-01-31 Asahi Breweries Ltd Method for producing malt freed from plumule
JP2008017758A (en) * 2006-07-12 2008-01-31 Asahi Breweries Ltd Method for processing malt having premature yeast flocculation ability and method for producing fermented malt beverage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004034A (en) * 1971-07-26 1977-01-18 Grandes Malteries Modernes Process for the manufacture of worts
JPH08510913A (en) * 1993-06-04 1996-11-19 クエスト・インターナショナル・ビー・ブイ Method for improving the properties of malted cereals
WO2001047364A1 (en) * 1999-12-15 2001-07-05 Cargill Incorporated Method for malting seeds
US20060057684A1 (en) * 2002-07-25 2006-03-16 Novozymes A/S Mashing process
JP2008017760A (en) * 2006-07-12 2008-01-31 Asahi Breweries Ltd Method for producing malt freed from plumule
JP2008017758A (en) * 2006-07-12 2008-01-31 Asahi Breweries Ltd Method for processing malt having premature yeast flocculation ability and method for producing fermented malt beverage

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6015007191; ビール醸造技術 , 19991228, P.5-8,126-135, 株式会社食品産業新聞社 *
JPN6015007192; Journal of The Institute of Brewing Vol.111, No.3, 2005, P.275-281 *
JPN6016008065; International Journal of Food Science and Technology Vol.43, 2008, p.2047-2055 *
JPN6016008067; Industrial Crops and Products Vol.30, 2009, p.366-371 *

Similar Documents

Publication Publication Date Title
JP5881305B2 (en) Soaking method
JP5252823B2 (en) Fermented alcoholic beverage containing furfurylthiol at high concentration and method for producing the same
JP6007174B2 (en) Energy-saving brewing method
KR20120003569A (en) Process for preparing makgeolli(korean rice wine) containing cereals
JP2014525243A (en) Beer brewing method
KR101976565B1 (en) Method for producing germinated brown rice malt and method for producing rice beer using the same
JP2015154777A (en) Malt steeping method
JP2018093826A (en) Method for producing fermented organic matter
JP6345989B2 (en) Malt and malt beverage
JP5950748B2 (en) Beer-like malt beverage with reduced grain flavor
KR101918214B1 (en) Process for producing liquor using Job&#39;s-tear and method for producing liquor
CN105441291B (en) A kind of mixed-flavouring liquor and preparation method thereof
WO2007030872A1 (en) Process for biofortification of grains
RU2425144C1 (en) Method for production of flavoured pale beer
CN110603314A (en) Saccharified solution, method for producing saccharified solution, food and drink, distillate for whisky, and whisky
JP4108588B2 (en) Happoshu production method
RU2425143C1 (en) Method for production of flavoured pale beer
KR20210021366A (en) Method for making grain-based beverages from malt and malt roots
Mosher et al. Overview of the Brewing Process
CN107312684A (en) A kind of brewing method of new formula grain wine
RU2385912C1 (en) Procedure for production of aromatised dark beer
RU2425104C1 (en) Method for production of flavoured pale beer
RU2009134544A (en) METHOD FOR PRODUCING LIGHT BEER &#34;na BEERlin&#34;
Nehra et al. Introduction of Brewing Process and Malting
JP6490933B2 (en) Raw material liquid, beverage and method related thereto

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823