JP2015143666A - Dielectric refraction index detection method and apparatus therefor, film thickness detection method and apparatus therefor, and surface roughness detection method and apparatus therefor - Google Patents

Dielectric refraction index detection method and apparatus therefor, film thickness detection method and apparatus therefor, and surface roughness detection method and apparatus therefor Download PDF

Info

Publication number
JP2015143666A
JP2015143666A JP2014017376A JP2014017376A JP2015143666A JP 2015143666 A JP2015143666 A JP 2015143666A JP 2014017376 A JP2014017376 A JP 2014017376A JP 2014017376 A JP2014017376 A JP 2014017376A JP 2015143666 A JP2015143666 A JP 2015143666A
Authority
JP
Japan
Prior art keywords
dielectric
intensity
viewing angle
intensity signal
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014017376A
Other languages
Japanese (ja)
Other versions
JP6281941B2 (en
Inventor
福地 哲生
Tetsuo Fukuchi
哲生 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2014017376A priority Critical patent/JP6281941B2/en
Publication of JP2015143666A publication Critical patent/JP2015143666A/en
Application granted granted Critical
Publication of JP6281941B2 publication Critical patent/JP6281941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric refraction index detection method capable of highly accurately detecting a refraction index of a dielectric or the like in a case of detecting the refraction index of the dielectric or the like by reflection of an electromagnetic wave.SOLUTION: A terahertz wave is incident perpendicularly on a rough surface 13A of a dielectric 13 via a lens 8, and an intensity signal I representing intensity of the terahertz wave reflected by the rough surface 13A is detected. On the other hand, the terahertz wave is incident perpendicularly on a mirror surface 12A of a metallic plate 12 via the lens 8, and an intensity signal Irepresenting intensity of the terahertz wave reflected by the mirror surface 12A is detected. Furthermore, the intensity signals I and Iare each detected at a plurality of viewing angles φ of the lens 8, respectively, a ratio (I/I) of the intensity signal I to the intensity signal Iat each viewing angle φ is obtained and a characteristic curve representing the ratio (I/I) for the viewing angle φ is obtained, and the characteristic curve is extrapolated toward a viewing angle φ=0, whereby a mirror surface reflectivity Rat the viewing angle φ=0 is obtained and a refractive index of a measurement sample 13 is detected on the basis of the mirror surface reflectivity R.

Description

本発明は誘電体の屈折率の検出方法およびその装置、膜厚検出方法およびその装置ならびに表面粗さ検出方法およびその装置に関し、例えばガスタービン用の遮熱コーティングのトップコートの屈折率、膜厚および表面粗さを検出する場合に適用して有用なものである。   The present invention relates to a method and an apparatus for detecting a refractive index of a dielectric, a film thickness detecting method and an apparatus therefor, and a surface roughness detecting method and an apparatus therefor, for example, the refractive index and film thickness of a top coat of a thermal barrier coating for a gas turbine. It is useful when applied to the detection of surface roughness.

近年、光波と電波の間の周波数領域における電磁波であるテラヘルツ波(周波数0.1〜10THz)の非破壊検査応用が進んでいる。テラヘルツ波はプラスチック、セラミック、木材、塗料等の誘電体を比較的よく透過するため、内部構造の画像化、内部欠陥の検出とともに、膜厚測定に利用されている(非特許文献1参照)。   In recent years, non-destructive inspection applications of terahertz waves (frequency 0.1 to 10 THz), which are electromagnetic waves in the frequency region between light waves and radio waves, have advanced. Since terahertz waves pass through dielectrics such as plastic, ceramic, wood, and paint relatively well, they are used for film thickness measurement as well as imaging internal structures and detecting internal defects (see Non-Patent Document 1).

テラヘルツ波を誘電体の膜厚測定に適用する場合には、テラヘルツ帯における測定対象である誘電体の屈折率が必要になる。通常、屈折率は透過型配置におけるテラヘルツ時間領域分光法(THz−TDS)により測定される。THz−TDSでは、テラヘルツ波の伝搬経路中に既知の長さの測定対象の挿入前後における透過波の振幅と位相の変化から屈折率を算出している。したがって、金属表面上の誘電体に関しては、透過波が得られないため適用できず、この場合には反射型配置による測定が必要になる。   When terahertz waves are applied to the dielectric film thickness measurement, the refractive index of the dielectric material to be measured in the terahertz band is required. Typically, the refractive index is measured by terahertz time domain spectroscopy (THz-TDS) in a transmissive configuration. In THz-TDS, a refractive index is calculated from changes in amplitude and phase of a transmitted wave before and after insertion of a measurement object of a known length in a terahertz wave propagation path. Accordingly, the dielectric on the metal surface cannot be applied because a transmitted wave cannot be obtained, and in this case, measurement by a reflection type arrangement is required.

例えばガスタービンのブレード等、燃焼環境で使用する高温部品の基材を保護するためブレードとなる基材の表面には遮熱コーティング(TBC)が施される。TBCはセラミックスを金属表面に溶射して施工される。この場合、TBCのセラミックス層の屈折率は溶射条件やその後の高温環境における焼結等により変化する。したがって、TBCの材料であるセラミックスの屈折率が分かっていても、セラミックス層の屈折率と一致するとは限らない。しかも、セラミックス層は金属基板上に一体となって溶射されているので、透過測定を行うことはできない。   For example, a thermal barrier coating (TBC) is applied to the surface of the base material to be a blade in order to protect the base material of a high-temperature component used in a combustion environment, such as a gas turbine blade. TBC is applied by spraying ceramics on the metal surface. In this case, the refractive index of the TBC ceramic layer changes depending on the thermal spraying conditions and subsequent sintering in a high temperature environment. Therefore, even if the refractive index of the ceramic, which is the material of TBC, is known, it does not always coincide with the refractive index of the ceramic layer. In addition, since the ceramic layer is integrally sprayed on the metal substrate, transmission measurement cannot be performed.

このように金属と一体となったTBC等、誘電体の屈折率は、テラヘルツ波等の電磁波を利用した反射測定で求める必要がある。しかしながら、反射測定の結果は、測定対象である誘電体の表面粗さの影響を受ける。そこで、テラヘルツ波の反射により誘電体の屈折率を求める場合は、測定対象となる誘電体の表面粗さを仮定する等、特別な工夫をする必要があった(非特許文献2参照)。   Thus, the refractive index of a dielectric such as TBC integrated with a metal needs to be obtained by reflection measurement using electromagnetic waves such as terahertz waves. However, the result of the reflection measurement is affected by the surface roughness of the dielectric that is the measurement target. Therefore, when obtaining the refractive index of the dielectric by reflection of terahertz waves, special measures such as assuming the surface roughness of the dielectric to be measured have been required (see Non-Patent Document 2).

テラヘルツ波を用いたガスタービン用遮熱コーティングのトップコート膜厚測定 福地 哲生 他(5名);電学論A 132巻2号 P166〜172 平成24年Measurement of topcoat thickness of thermal barrier coating for gas turbines using terahertz waves Tetsuo Fukuchi et al. (5 persons); Electrical Engineering A Vol. 132, No. 2, P166-172 2012 テラヘルツ波を用いたガスタービン翼遮熱コーティングのトップコート膜厚測定 福地 哲生 他(6名);電学論A 133巻7号 P395〜401 平成25年Measurement of top coat thickness of gas turbine blade thermal barrier coating using terahertz waves Tetsuo Fukuchi et al. (6 persons); Electrical Engineering A 133, No. 7, P395-401 2013

しかしながら、非特許文献2において仮定した表面粗さは真値とは異なり、高精度に真値を反映したものとはいえない場合が多いので、検出された屈折率の値とその真値とのズレが大きく、結果として前記屈折率を利用した膜厚の検出値の誤差も大きくなる。   However, since the surface roughness assumed in Non-Patent Document 2 is different from the true value and often cannot be said to reflect the true value with high accuracy, the detected refractive index value and its true value The deviation is large, and as a result, the error of the detected value of the film thickness using the refractive index becomes large.

本発明は、上述の点に鑑み、電磁波の反射により誘電体の屈折率等を検出する場合において高精度に屈折率等を検出し得る誘電体の屈折率の検出方法およびその装置、膜厚検出方法およびその装置ならびに表面粗さ検出方法およびその装置を提供することを目的とする。   In view of the above-mentioned points, the present invention provides a method for detecting a refractive index of a dielectric, a device for detecting the refractive index, and the like, which can detect the refractive index of the dielectric by reflection of electromagnetic waves with high accuracy. It is an object of the present invention to provide a method and an apparatus thereof, a surface roughness detection method and an apparatus thereof.

上記目的を達成する本発明は、テラヘルツ波等の電磁波の反射特性を利用して表面が粗面である誘電体の表面粗さの影響を除去することが、高精度屈折率の測定において必須となる点に思い至り、当該測定において表面粗さの影響を除去する方法を検討した。すなわち、誘電体の屈折率を、テラヘルツ波等の電磁波を利用して、高精度に検出するには、粗面である誘電体の表面粗さの影響を可及的に除去することが肝要であり、そのためには誘電体の実質的な鏡面反射率を求めれば良いことに思い至った。誘電体の鏡面反射率を求めるには、鏡面反射が入射波と同じ経路を戻ること、散乱は入射波よりも広い角度分布を有することから、その一部のみが入射波と同じ経路を戻ることを利用すれば良い。   In the present invention that achieves the above object, it is essential to measure the refractive index of a dielectric that has a rough surface by utilizing the reflection characteristics of electromagnetic waves such as terahertz waves in the measurement of high-precision refractive index. As a result, a method for removing the influence of the surface roughness in the measurement was examined. In other words, in order to detect the refractive index of a dielectric with high accuracy using electromagnetic waves such as terahertz waves, it is important to remove as much as possible the influence of the surface roughness of the dielectric, which is a rough surface. In order to do so, the inventors have come up with the idea that the substantial specular reflectance of the dielectric should be obtained. To obtain the specular reflectivity of a dielectric, specular reflection returns along the same path as the incident wave, and since scattering has a wider angular distribution than the incident wave, only a part of it returns along the same path as the incident wave. Can be used.

そこで、図1に示すように、送受信器の手前にレンズ01の視野角φを制限するための視野絞り02を配設し、視野角φを変えながら金属板03の鏡面03Aからの反射波と誘電体04の粗面04Aからの反射波を測定する。図1(a)は鏡面03Aからの反射波を大きい視野角φで測定する場合、図1(b)は粗面04Aからの反射波を大きい視野角φで測定する場合、図1(c)は鏡面03Aからの反射波を小さい視野角φで測定する場合、図1(d)は粗面04Aからの反射波を小さい視野角φで測定する場合をそれぞれ概念的に示している。   Therefore, as shown in FIG. 1, a field stop 02 for limiting the viewing angle φ of the lens 01 is arranged in front of the transceiver, and the reflected wave from the mirror surface 03A of the metal plate 03 is changed while changing the viewing angle φ. A reflected wave from the rough surface 04A of the dielectric 04 is measured. 1A shows a case where the reflected wave from the mirror surface 03A is measured at a large viewing angle φ, and FIG. 1B shows a case where the reflected wave from the rough surface 04A is measured at a large viewing angle φ. FIG. 1D conceptually shows a case where the reflected wave from the mirror surface 03A is measured with a small viewing angle φ, and FIG. 1D conceptually shows a case where the reflected wave from the rough surface 04A is measured with a small viewing angle φ.

図1(a)および図1(c)に示す場合において、鏡面03Aから得られる反射波の強度信号Iは、視野絞り02を通過して鏡面03Aに到達し、鏡面反射した後、再び視野絞り02を通過し、レンズ01からビームスプリッター05を介して受信器に到達する反射波の強度を表す。ここで、鏡面03Aの反射率R=1であり、これは視野角φにおいて受信できる最大強度である。一方、粗面04Aから得られる反射波の強度信号Iは、同様に受信器へ到達する反射波の強度であるが、粗面4Aの鏡面反射率RはR<1であること、散乱によって損失が生じることを考慮すると、全ての視野角φにおいてI<Iとなる。 In the cases shown in FIGS. 1 (a) and 1 (c), the reflected wave intensity signal I M obtained from the mirror surface 03A passes through the field stop 02 and reaches the mirror surface 03A. It represents the intensity of the reflected wave that passes through the aperture 02 and reaches the receiver from the lens 01 via the beam splitter 05. Here, the reflectance R S = 1 of the mirror surface 03A is 1, which is the maximum intensity that can be received at the viewing angle φ. On the other hand, the intensity signal I of the reflected wave obtained from the rough surface 04A is the intensity of the reflected wave similarly reaching the receiver, but the specular reflectance R S of the rough surface 4A is R S <1, Is taken into consideration, I <I M at all viewing angles φ.

送信時に視野絞り02を通過した電磁波に対する鏡面反射波は、視野角φに関わらず、原理的にはその全てが再び視野絞り02を通過して受信器へ戻る。一方、散乱した電磁波はより広い角度分布を有するため、その一部のみ(鏡面反射に近い角度に散乱された電磁波のみ)が再び視野絞り02を通過できる。すなわち、図1(d)に示すように、視野角φが十分小さいと、散乱の大部分は視野外に戻り受信されない。つまり,受信される強度信号Iの大部分が鏡面反射によるものとなる。したがって、I/Iを最小視野角φ=0まで外挿すれば(実際にφ=0とすると反射波を測定できないため、十分小さい視野角φまで測定する)、散乱の影響を取り除くことができる。よって、式(1)が成り立つ。 Regardless of the viewing angle φ, the specular reflected wave with respect to the electromagnetic wave that has passed through the field stop 02 at the time of transmission returns to the receiver through the field stop 02 again in principle. On the other hand, since the scattered electromagnetic wave has a wider angular distribution, only a part thereof (only the electromagnetic wave scattered at an angle close to specular reflection) can pass through the field stop 02 again. That is, as shown in FIG. 1 (d), if the viewing angle φ is sufficiently small, most of the scattering returns outside the field of view and is not received. That is, most of the received intensity signal I is due to specular reflection. Therefore, if I / I M is extrapolated to the minimum viewing angle φ = 0 (the reflected wave cannot be measured if φ = 0 is actually measured, the influence of scattering is removed). it can. Therefore, Expression (1) is established.

鏡面反射率Rが求まれば、式(2)から誘電体の屈折率を求めることができる。 If the specular reflectance RS is obtained, the refractive index of the dielectric can be obtained from the equation (2).

逆に,視野角φが大きいと、鏡面反射に対する散乱の割合が増し、散乱に伴う損失によって受信器へ戻る入射波の割合は低下する。すなわち、見かけ上の反射率は低下する。ここでI/Iを最大視野角φ=πまで外挿すれば(実際にφ=πとすると反射波を測定できないため、十分大きい視野角φまで測定する)、見かけ上の反射率Rは散乱の影響を最大限含んだ値となる。見かけ上の反射率Rは式(3)で与えられる。 Conversely, when the viewing angle φ is large, the ratio of scattering to specular reflection increases, and the ratio of incident waves that return to the receiver due to loss due to scattering decreases. That is, the apparent reflectance decreases. Here (can not measure the reflected wave to be actually phi = [pi, measured to a sufficiently large viewing angle φ) I / I M a extrapolating up view angle phi = [pi lever, the reflectivity of the apparent R D Is a value that includes the maximum effect of scattering. The apparent reflectance RD is given by equation (3).

かかる検討結果から、見かけ上の反射率I/Iは視野角φに依存することが分かる。式(1)および式(3)から、I/Iの視野角φに対する依存性は図2に示すような形となることが想定される。すなわち、視野角φに対する比(I/I)を表す視野角依存特性曲線が視野角φ=0となる点で鏡面反射率Rが与えられ、この鏡面反射率Rを前記式(2)に代入することにより誘電体04の表面が粗面04Aであることの影響を除去した屈折率nを得る。 From this examination result, it can be seen that the apparent reflectance I / I M depends on the viewing angle φ. From the equations (1) and (3), it is assumed that the dependency of I / IM on the viewing angle φ is as shown in FIG. That is, the ratio (I / I M) mirror reflectivity R S at the point where the viewing angle dependence characteristic curve is viewing angle phi = 0 representing the is given with respect to the viewing angle phi, the equation of this specular reflectivity R S (2 ) To obtain a refractive index n that eliminates the effect of the surface of the dielectric 04 being a rough surface 04A.

かかる知見を基礎とする本発明の第1の態様は、
誘電体である測定試料の粗面にレンズを介して電磁波を垂直に入射させ、前記粗面で反射された前記電磁波の強度を表す第1の強度信号Iを検出する一方、金属板の鏡面に前記レンズを介して前記電磁波を垂直に入射させ、前記鏡面で反射された前記電磁波の強度を表す第2の強度信号Iを検出し、
さらに前記第1および第2の強度信号I,Iを前記レンズの複数の視野角においてそれぞれ検出するとともに、各視野角における前記第1および第2の強度信号I,Iの比を求めて前記視野角に対する前記比を表す特性曲線を得、
前記特性曲線を視野角零に向けて外挿することにより視野角が零のときの鏡面反射率Rを求め、該鏡面反射率Rに基づき前記測定試料の屈折率を検出することを特徴とする誘電体の屈折率の検出方法にある。
The first aspect of the present invention based on such knowledge is as follows:
An electromagnetic wave is vertically incident on the rough surface of the measurement sample, which is a dielectric, through a lens, and a first intensity signal I representing the intensity of the electromagnetic wave reflected by the rough surface is detected, while the first surface is reflected on the mirror surface of the metal plate. It is incident perpendicularly the electromagnetic wave through the lens, detecting a second intensity signal I M indicating the intensity of the electromagnetic waves reflected by the mirror surface,
Further, the first and second intensity signals I and I M are detected at a plurality of viewing angles of the lens, respectively, and a ratio of the first and second intensity signals I and I M at each viewing angle is obtained. Obtaining a characteristic curve representing the ratio to the viewing angle;
Wherein the viewing angle by extrapolating the calculated specular reflectivity R S when the zero detecting the refractive index of the measurement sample based on said mirror surface reflectivity R S toward the curve on the viewing angle zero And a method of detecting the refractive index of the dielectric.

本態様によれば、電磁波の反射を利用した粗面である誘電体の屈折率の検出の際に、粗面の表面粗さの影響を実質的に除去することができるので、粗面である誘電体の屈折率を高精度に検出し得る。   According to this aspect, the influence of the surface roughness of the rough surface can be substantially removed when detecting the refractive index of the dielectric that is the rough surface using the reflection of electromagnetic waves. The refractive index of the dielectric can be detected with high accuracy.

本発明の第2の態様は、
第1の態様に記載する誘電体の屈折率の検出方法において、
前記外挿は、前記特性曲線において屈曲点を与える視野角より小さい視野角の範囲で、複数の測定点において前記第1および第2の強度信号I,Iの比が一定となる特性曲線の一端を視野角零に向けて行なうことを特徴とする誘電体の屈折率の検出方法にある。
The second aspect of the present invention is:
In the method for detecting a refractive index of a dielectric according to the first aspect,
The extrapolation is a characteristic curve in which a ratio of the first and second intensity signals I and I M is constant at a plurality of measurement points in a range of a viewing angle smaller than a viewing angle that gives a bending point in the characteristic curve. A method of detecting a refractive index of a dielectric is characterized in that one end is directed toward a viewing angle of zero.

本態様によれば、特性曲線の外挿を、視野角=0に向けて適確に実施し得る。   According to this aspect, the extrapolation of the characteristic curve can be accurately performed toward the viewing angle = 0.

本発明の第3の態様は、
第1または第2の態様に記載する誘電体の屈折率の検出方法において検出した屈折率をn、光速をc、前記誘電体を前記電磁波が一往復する時間をΔtとするとき、前記測定試料の膜厚dをd=(c・Δt/2n)で求めることを特徴とする誘電体の膜厚の検出方法にある。
The third aspect of the present invention is:
When the refractive index detected in the method for detecting the refractive index of a dielectric according to the first or second aspect is n, the speed of light is c, and the time for which the electromagnetic wave makes one round trip through the dielectric is Δt, the measurement sample In this method, the thickness d of the dielectric is obtained by d = (c · Δt / 2n).

本態様によれば、d=(c・Δt/2n)で与えられる膜厚dを高精度に検出された屈折率nを用いて求めることができるので、膜厚も高精度に検出し得る。   According to this aspect, since the film thickness d given by d = (c · Δt / 2n) can be obtained using the refractive index n detected with high accuracy, the film thickness can also be detected with high accuracy.

本発明の第4の態様は、
誘電体である測定試料の粗面にレンズを介して電磁波を垂直に入射させ、前記粗面で反射された前記電磁波の強度の時間特性を表す時間領域の第1の強度信号Iを前記レンズの複数の視野角においてそれぞれ検出する一方、金属板の鏡面に前記レンズを介して前記電磁波を垂直に入射させ、前記鏡面で反射された前記電磁波の強度の時間特性を表す時間領域の第2の強度信号Iを検出し、
さらに前記第1の強度信号Iをフーリエ変換することにより周波数領域の第3の強度信号I(f)を得るとともに、前記第2の強度信号Iをフーリエ変換することにより周波数領域の第4の強度信号I(f)を得、
前記第3の強度信号I(f)と第4の強度信号I(f)との比が式(4)
の関係があることを利用して、式(4)の傾きとして表面粗さδを求めることを特徴とする誘電体の表面粗さの検出方法にある。
The fourth aspect of the present invention is:
An electromagnetic wave is vertically incident on the rough surface of the measurement sample, which is a dielectric, through the lens, and a first intensity signal I in the time domain representing the time characteristic of the intensity of the electromagnetic wave reflected by the rough surface is obtained from the lens. While detecting at each of a plurality of viewing angles, the electromagnetic wave is vertically incident on the mirror surface of the metal plate via the lens, and the second intensity in the time domain representing the time characteristic of the intensity of the electromagnetic wave reflected by the mirror surface to detect the signal I M,
Furthermore the first intensity signal I with obtaining a third intensity signal I (f) in the frequency domain by Fourier transform, the fourth frequency region by Fourier transform to the second intensity signal I M Obtaining an intensity signal I M (f),
The ratio between the third intensity signal I (f) and the fourth intensity signal I M (f) is expressed by the equation (4).
The method of detecting the surface roughness of the dielectric is characterized in that the surface roughness δ is obtained as the slope of the equation (4) using the above relationship.

本態様によれば、高精度に検出された誘電体の屈折率を既知の式に代入するだけで、正確な表面粗さを容易かつ適切に求めることができる。すなわち、触診式の粗さ計を用いる場合に較べ、測定試料の表面に接触することなく非接触で所望の測定試料の表面粗さを検出し得る。したがって、測定試料が、美術品等である場合に特に有用なものとなる。   According to this aspect, accurate surface roughness can be obtained easily and appropriately simply by substituting the refractive index of the dielectric detected with high accuracy into a known equation. That is, the surface roughness of the desired measurement sample can be detected in a non-contact manner without contacting the surface of the measurement sample, compared to the case where a palpation type roughness meter is used. Therefore, it is particularly useful when the measurement sample is an art work or the like.

本発明の第5の態様は、
誘電体である測定試料の粗面にレンズを介して電磁波を垂直に入射させ、前記粗面で反射された前記電磁波の強度を表す第1の強度信号Iを検出するとともに、金属板の鏡面に前記レンズを介して前記電磁波を垂直に入射させ、前記鏡面で反射された前記電磁波の強度を表す第2の強度信号Iを検出する反射波検出手段と、
前記レンズから前記粗面および前記鏡面に向かって照射される前記電磁波を絞るように前記レンズの視野角を調整する視野絞り手段と、
それぞれ複数の前記視野角において検出した前記第1の強度信号および第2の強度信号の強度の時間軸特性を記憶している記憶手段と、
各視野角における前記第1および第2の強度信号I,Iの情報を前記記憶手段から読み出し、前記第1および前記第2の強度信号I,Iの比を求めて前記視野角に対する前記比を表す特性曲線を得るとともに、前記特性曲線を視野角零に向けて外挿することにより前記視野角が零のときの鏡面反射率Rを求め、該鏡面反射率Rに基づき前記測定試料の屈折率を演算する演算手段とを有することを特徴とする誘電体の屈折率の検出装置にある。
According to a fifth aspect of the present invention,
An electromagnetic wave is vertically incident on the rough surface of the measurement sample, which is a dielectric, via a lens, and a first intensity signal I representing the intensity of the electromagnetic wave reflected by the rough surface is detected, and on the mirror surface of the metal plate It is incident perpendicularly the electromagnetic wave through the lens, and the reflected wave detection means for detecting a second intensity signal I M indicating the intensity of the electromagnetic waves reflected by the mirror surface,
A field stop means for adjusting a viewing angle of the lens so as to stop the electromagnetic wave irradiated from the lens toward the rough surface and the mirror surface;
Storage means for storing time-axis characteristics of the intensity of the first intensity signal and the second intensity signal respectively detected at a plurality of the viewing angles;
The information of the first and second intensity signals I and I M at each viewing angle is read from the storage means, and the ratio of the first and second intensity signals I and I M is obtained to determine the ratio with respect to the viewing angle. with obtaining the characteristic curves representing the ratio, the characteristics the viewing angle by extrapolating curves toward the viewing angle zero is determined specular reflectivity R S when the zero, the measurement on the basis of said mirror surface reflectivity R S An apparatus for detecting a refractive index of a dielectric has an arithmetic means for calculating a refractive index of a sample.

本態様によれば、電磁波の反射を利用した測定試料の屈折率の検出の際に、誘電体の表面粗さの影響を実質的に除去することができるので、測定試料が、一般に粗面である誘電体であってもその屈折率を高精度に検出し得る。   According to this aspect, the influence of the surface roughness of the dielectric can be substantially removed when detecting the refractive index of the measurement sample using reflection of electromagnetic waves, so that the measurement sample is generally rough. Even for a certain dielectric, the refractive index can be detected with high accuracy.

本発明の第6の態様は、
第5の態様に記載する誘電体の屈折率の検出装置において、
前記外挿は、前記特性曲線において屈曲点を与える視野角より小さい視野角の範囲で、複数の測定点において前記第1および第2の強度信号I,Iの比が一定となる特性曲線の一端を視野角零に向けて行なうことを特徴とする誘電体の屈折率の検出装置にある。
The sixth aspect of the present invention is:
In the dielectric refractive index detection device according to the fifth aspect,
The extrapolation is a characteristic curve in which a ratio of the first and second intensity signals I and I M is constant at a plurality of measurement points in a range of a viewing angle smaller than a viewing angle that gives a bending point in the characteristic curve. An apparatus for detecting a refractive index of a dielectric is characterized in that one end is directed toward a viewing angle of zero.

本態様によれば、特性曲線の外挿を視野角=0に向けて適確に実施し得る。   According to this aspect, the extrapolation of the characteristic curve can be appropriately performed toward the viewing angle = 0.

本発明の第7の態様は、
第5または第6の態様に記載する誘電体の屈折率の検出装置において検出した屈折率をn、光速をc、前記測定試料を前記電磁波が一往復する時間をΔtとするとき、前記測定試料の膜厚dをd=(c・Δt/2n)で求めるように前記演算手段を構成したことを特徴とする誘電体の膜厚の検出装置にある。
The seventh aspect of the present invention is
When the refractive index detected in the dielectric refractive index detection device according to the fifth or sixth aspect is n, the speed of light is c, and the time for which the electromagnetic wave makes one round trip of the measurement sample is Δt, the measurement sample An apparatus for detecting a dielectric film thickness is characterized in that the calculation means is configured to obtain the film thickness d of the following: d = (c · Δt / 2n).

本態様によれば、d=(c・Δt/2n)で与えられる膜厚dを高精度に検出された屈折率nを用いて求めることができるので、膜厚も高精度に検出し得る。   According to this aspect, since the film thickness d given by d = (c · Δt / 2n) can be obtained using the refractive index n detected with high accuracy, the film thickness can also be detected with high accuracy.

本発明の第8の態様は、
第5または第6の態様に記載する演算手段は、さらに前記第1の強度信号Iをフーリエ変換することにより周波数領域の第3の強度信号I(f)を得るとともに、前記第2の強度信号Iをフーリエ変換することにより周波数領域の第4の強度信号I(f)を得、前記第3の強度信号I(f)と第4の強度信号I(f)との比が式(5)
の関係があることを利用して、式(5)の傾きとして表面粗さδを求めるように構成したことを特徴とする誘電体の表面粗さの検出装置にある。
The eighth aspect of the present invention is
The computing means described in the fifth or sixth aspect further obtains a third intensity signal I (f) in the frequency domain by Fourier-transforming the first intensity signal I, and the second intensity signal. The fourth intensity signal I M (f) in the frequency domain is obtained by Fourier transforming I M , and the ratio of the third intensity signal I (f) and the fourth intensity signal I M (f) is expressed by the equation (5)
The dielectric surface roughness detecting device is characterized in that the surface roughness δ is obtained as the slope of the equation (5) by utilizing the above relationship.

本態様によれば、高精度に検出された誘電体の屈折率を既知の式に代入するだけで、正確な表面粗さを容易かつ適切に求めることができる。すなわち、触診式の粗さ計を用いる場合に較べ、測定試料の表面に接触することなく非接触で所望の測定試料の表面粗さを検出し得る。したがって、測定試料が、美術品等である場合に特に有用なものとなる。   According to this aspect, accurate surface roughness can be obtained easily and appropriately simply by substituting the refractive index of the dielectric detected with high accuracy into a known equation. That is, the surface roughness of the desired measurement sample can be detected in a non-contact manner without contacting the surface of the measurement sample, compared to the case where a palpation type roughness meter is used. Therefore, it is particularly useful when the measurement sample is an art work or the like.

本発明によれば、誘電体の表面粗さの影響を実質的に除去して粗面である誘電体の屈折率を正確に検出することができる。また、かかる屈折率を利用して前記誘電体の膜厚および表面粗さも高精度に求めることができる。   According to the present invention, the influence of the surface roughness of the dielectric can be substantially removed, and the refractive index of the dielectric that is a rough surface can be accurately detected. In addition, the film thickness and surface roughness of the dielectric can be obtained with high accuracy using such a refractive index.

本発明の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of this invention. 視野角と、強度信号I,Iの比との関係を示す特性図である。And the viewing angle, the intensity signal I, is a characteristic diagram showing the relationship between the ratio of I M. 本発明の実施の形態に係る誘電体の屈折率の検出装置を示すブロック図であるIt is a block diagram which shows the detection apparatus of the refractive index of the dielectric material concerning embodiment of this invention. 強度信号I(実線)と強度信号I(点線)時間特性を視野絞りの複数の開口径oおよび視野角φをパラメータとして示す特性図である。FIG. 6 is a characteristic diagram showing time characteristics of an intensity signal I (solid line) and an intensity signal I M (dotted line) using a plurality of aperture diameters o and viewing angles φ of the field stop as parameters. 視野角を変化させて行った測定における強度信号I,Iの比を表す特性曲線を示す特性図である。Intensity signal I in the measurement were carried out by varying the viewing angle, it is a characteristic view showing characteristic curves representing the ratio of I M. テラヘルツ波の照射により誘電体の膜厚を測定する場合の態様を示す説明図である。It is explanatory drawing which shows the aspect in the case of measuring the film thickness of a dielectric material by irradiation of a terahertz wave.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<誘電体の屈折率の検出>
図3は本発明の実施の形態に係る誘電体の屈折率の検出装置を示すブロック図である。同図に示すように、本形態に係る誘電体の屈折率の検出装置は、反射波検出部1、テラヘルツ波の送信器2、テラヘルツ波の受信器3、記憶部4、演算部5および表示部6を有する。反射波検出部1は、同一の垂直な光軸の上下2箇所に配設されている2枚のレンズ7,8を有しており、レンズ8の下方に配設された金属板12の表面である鏡面12Aまたは測定試料である誘電体13の粗面13Aにテラヘルツ波を収束させて垂直入射させる。ここで、金属板12は、例えばSUS板を好適に使用でき、誘電体13は、例えばタービン翼に溶射される遮熱コーティング(TBC)のトップコートを形成する部材であり、その表面が粗面13Aとなっている。この誘電体13が、屈折率の測定対象である。ここで、誘電体13の粗面13Aの表面粗さは未知である。
<Detection of refractive index of dielectric>
FIG. 3 is a block diagram showing an apparatus for detecting a refractive index of a dielectric according to an embodiment of the present invention. As shown in the figure, the dielectric refractive index detection device according to this embodiment includes a reflected wave detection unit 1, a terahertz wave transmitter 2, a terahertz wave receiver 3, a storage unit 4, a calculation unit 5, and a display. Part 6. The reflected wave detection unit 1 has two lenses 7 and 8 disposed at two positions above and below the same vertical optical axis, and the surface of the metal plate 12 disposed below the lens 8. The terahertz wave is converged and vertically incident on the mirror surface 12A or the rough surface 13A of the dielectric 13 as the measurement sample. Here, for example, a SUS plate can be suitably used as the metal plate 12, and the dielectric 13 is a member that forms a top coat of a thermal barrier coating (TBC) sprayed on, for example, a turbine blade, and the surface thereof is rough. 13A. This dielectric 13 is an object for measuring the refractive index. Here, the surface roughness of the rough surface 13A of the dielectric 13 is unknown.

レンズ8の下方にはレンズ8の視野を絞る視野絞り10が配設してある。ここで、視野絞り10はレンズ8から基準試料12または測定試料13の表面に向かうテラヘルツ波を絞ることができるものであれば、特にその構造に限定はない。例えば、通常のカメラレンズの絞り構造を適用して好適に構成することができる。   Below the lens 8, a field stop 10 that restricts the field of the lens 8 is disposed. Here, the structure of the field stop 10 is not particularly limited as long as it can stop the terahertz wave directed from the lens 8 toward the surface of the reference sample 12 or the measurement sample 13. For example, it can be suitably configured by applying a diaphragm structure of a normal camera lens.

ビームスプリッター9は、レンズ7,8の光軸に対し45°傾斜させてレンズ7,8の間に配設されている。かくして、金属板12の鏡面12Aまたは誘電体13の粗面13Aで反射され、レンズ8を介して戻ってきたテラヘルツ波をビームスプリッター9で45°屈曲させてレンズ11に入射させる。   The beam splitter 9 is disposed between the lenses 7 and 8 with an inclination of 45 ° with respect to the optical axes of the lenses 7 and 8. Thus, the terahertz wave reflected by the mirror surface 12A of the metal plate 12 or the rough surface 13A of the dielectric 13 and returned through the lens 8 is bent by 45 ° by the beam splitter 9 and is incident on the lens 11.

レンズ11はテラヘルツ波の反射波を受信器3に入射させる。受信器3に入射された反射波は反射強度の時間特性を表す電気信号に変換されて記憶部4に記憶される。   The lens 11 causes the reflected wave of the terahertz wave to enter the receiver 3. The reflected wave incident on the receiver 3 is converted into an electric signal representing the time characteristic of the reflection intensity and stored in the storage unit 4.

以下、金属板12の鏡面12Aで反射された反射波の反射強度をI、測定試料である誘電体13の粗面13Aで反射された反射波の反射強度をIの符号で表す。 Hereinafter, the reflection intensity of the reflected wave reflected by the mirror surface 12A of the metal plate 12 is represented by I M , and the reflection intensity of the reflected wave reflected by the rough surface 13A of the dielectric 13 serving as a measurement sample is represented by the symbol I.

受信器3で検出され、記憶部4に記憶される強度信号Iと強度信号Iの時間特性を図4に示す。同図において、実線が強度信号Iの時間特性を、点線が強度信号Iの時間特性をそれぞれ示している。各時間特性は、図4に示す視野絞り10の複数の開口径oおよび視野角φをパラメータとして示している。 Detected by the receiver 3, the time characteristic of the intensity signal I and the intensity signal I M that is stored in the storage unit 4 shown in FIG. In the drawing, the time characteristic of the solid line intensity signal I, the dotted line indicates the time characteristic of the intensity signal I M, respectively. Each time characteristic indicates a plurality of aperture diameters o and viewing angles φ of the field stop 10 shown in FIG. 4 as parameters.

上述の如き時間特性は、コントローラ13でレーザーパルス発生器12、遅延装置14および記憶部4を制御することにより記憶部4にデータとして記憶される。さらに詳言すると、レーザーパルス発生器12はコントローラ13の制御信号によりレーザーパルスを発生させ、このレーザーパルスにより送信器2からテラヘルツ波を照射させるとともに、遅延装置14を介して受信器3を動作させることによりテラヘルツ波の反射波を受信させる。ここで、前記レーザーパルスは遅延装置14で所定時間ずつ遅延される。この結果、受信器3における反射波の取り込みタイミングが逐次遅延される。かくして、受信器3では、時間軸上でスキャンした離散的な値としての反射波の強度を表わすデータが得られ、かかるデータが記憶部4に読み込まれる。この結果、図4に示す強度信号I、Iが生成される。記憶部4の読み込みタイミングは、受信器3における反射波の取り込みタイミングに同期するように、コントローラ13で制御される。 The time characteristics as described above are stored as data in the storage unit 4 by controlling the laser pulse generator 12, the delay device 14 and the storage unit 4 with the controller 13. More specifically, the laser pulse generator 12 generates a laser pulse according to a control signal of the controller 13, irradiates the terahertz wave from the transmitter 2 with this laser pulse, and operates the receiver 3 via the delay device 14. Thus, the reflected wave of the terahertz wave is received. Here, the laser pulse is delayed by the delay device 14 by a predetermined time. As a result, the reflected wave capturing timing in the receiver 3 is sequentially delayed. Thus, the receiver 3 obtains data representing the intensity of the reflected wave as a discrete value scanned on the time axis, and the data is read into the storage unit 4. As a result, intensity signals I and I M shown in FIG. 4 are generated. The read timing of the storage unit 4 is controlled by the controller 13 so as to be synchronized with the reflected wave capture timing in the receiver 3.

演算部5は、記憶部4に記憶している強度信号Iの時間特性および強度信号Iの時間特性を表すデータに基づき所定の演算を行うことにより測定試料である誘電体13の屈折率nを求める。すなわち、各視野角φにおける強度信号I,Iの比を求めて視野角φに対する強度信号I,Iの比(I/I)を表す図5に示すような特性曲線を得る。その後、前記特性曲線を視野角φ=0に向けて外挿することにより視野角φ=0のときの鏡面反射率Rを求める。最後に、鏡面反射率Rに基づき誘電体13の屈折率nを演算する。ここで、外挿は、図5に示す特性曲線において屈曲点Pを与える視野角φより小さい視野角φの範囲で、複数の測定点において前記第1および第2の強度信号I,Iの比が一定となる特性曲線の一端を、視野角零に向けて延長することにより実施する。 The calculation unit 5 performs a predetermined calculation based on the data representing the time characteristic of the intensity signal I and the time characteristic of the intensity signal I M stored in the storage unit 4 to thereby make the refractive index n of the dielectric 13 as a measurement sample. Ask for. That is, the characteristic curve as shown in FIG. 5 representing the ratio (I / I M ) of the intensity signals I and I M to the viewing angle φ is obtained by obtaining the ratio of the intensity signals I and I M at each viewing angle φ. Thereafter, the specular reflectance RS when the viewing angle φ = 0 is obtained by extrapolating the characteristic curve toward the viewing angle φ = 0. Finally, the refractive index n of the dielectric 13 is calculated based on the specular reflectance R S. Here, extrapolation is performed for the first and second intensity signals I and I M at a plurality of measurement points in a range of a viewing angle φ smaller than the viewing angle φ giving the bending point P in the characteristic curve shown in FIG. This is performed by extending one end of a characteristic curve with a constant ratio toward a viewing angle of zero.

ここで、測定対象である誘電体13の粗面13Aの屈折率nは、図5に示す特性曲線を視野角φ=0に向けて外挿することにより得た鏡面反射率Rを式(6)に代入することにより求める。 Here, the refractive index n of the rough surface 13A of the dielectric 13 to be measured is an expression of the specular reflectance R S obtained by extrapolating the characteristic curve shown in FIG. 5 toward the viewing angle φ = 0. Obtained by substituting in 6).

演算部5による演算結果は表示部6に表示される。   The calculation result by the calculation unit 5 is displayed on the display unit 6.

かかる本形態では、まず金属板12をレンズ8の下方に配置した状態で、その鏡面12Aに、送信器2から照射されるテラヘルツ波をレンズ7、8を介して垂直に入射させる。次に、鏡面12Aで反射されたテラヘルツ波の強度を表す強度信号Iを検出して記憶部4に記憶させる。同様の操作を視野絞り10で視野角φを変えて複数回繰り返す。 In this embodiment, first, with the metal plate 12 disposed below the lens 8, the terahertz wave irradiated from the transmitter 2 is incident vertically on the mirror surface 12 </ b> A via the lenses 7 and 8. Next, it is detected and stored in the storage unit 4 the intensity signal I M indicating the intensity of the terahertz wave reflected by the mirror surface 12A. The same operation is repeated a plurality of times while changing the viewing angle φ with the field stop 10.

さらに、金属板12に代えて粗面13Aを有する誘電体13をレンズ8の下方に配設した状態で、レンズ7、8を介して粗面13Aにテラヘルツ波を垂直に入射させ、粗面13Aで反射されたテラヘルツ波の強度を表す強度信号Iを検出して記憶部4に記憶させる。同様の操作を視野絞り10により視野角φを変えて、金属板12の場合と同様に、複数回繰り返す。   Further, a terahertz wave is vertically incident on the rough surface 13A via the lenses 7 and 8 in a state where the dielectric 13 having the rough surface 13A is disposed below the lens 8 instead of the metal plate 12, and the rough surface 13A The intensity signal I representing the intensity of the terahertz wave reflected by is detected and stored in the storage unit 4. The same operation is repeated a plurality of times as in the case of the metal plate 12 by changing the viewing angle φ by the field stop 10.

最後に、記憶部4に記憶させたI、Iに基づき両者の比を求め、図5に示す特性図を作成するとともに、前記特性曲線を視野角φ=0に向けて外挿することにより視野角φ=0のときの鏡面反射率Rを求める。続いて鏡面反射率Rに基づき所定の演算を行うことにより、誘電体13の屈折率nを求め、その結果を表示部6に表示する。 Finally, by calculating the ratio between the two based on I M and I stored in the storage unit 4, creating a characteristic diagram shown in FIG. 5, and extrapolating the characteristic curve toward the viewing angle φ = 0 The specular reflectance R S when the viewing angle φ = 0 is obtained. Subsequently, a predetermined calculation is performed based on the specular reflectance R S to obtain the refractive index n of the dielectric 13, and the result is displayed on the display unit 6.

<誘電体の膜厚検出>
粗面13Aを有する誘電体13の膜厚は、次のような原理により検出することができる。図6に示すように、誘電体13にテラヘルツ波を照射した場合の反射波は、誘電体13の表面からの反射波(同図(a)参照)と、誘電体13の内部や裏面からの反射波(同図(b)参照)とに分離される。ここで、テラヘルツ波が膜厚d、屈折率nの誘電体13中を1往復するのに要する時間TはT=(2nd/c(cは光速))で与えられる。したがって、膜厚dは、表面反射のパルスと裏面反射のパルスの幅(同図(c)参照)、すなわちテラヘルツ波が屈折率nの誘電体13中を1往復するのに要する時間Tを計測することによりd=(cT/2n)として求めることができる。
<Dielectric film thickness detection>
The film thickness of the dielectric 13 having the rough surface 13A can be detected by the following principle. As shown in FIG. 6, the reflected wave when the dielectric 13 is irradiated with the terahertz wave is reflected from the surface of the dielectric 13 (see FIG. 6A) and from the inside or the back of the dielectric 13. It is separated into reflected waves (see FIG. 5B). Here, the time T required for the terahertz wave to reciprocate once through the dielectric 13 having the film thickness d and the refractive index n is given by T = (2nd / c (c is the speed of light)). Accordingly, the film thickness d is measured by the width of the pulse of the front surface reflection and the pulse of the back surface reflection (see FIG. 5C), that is, the time T required for the terahertz wave to make one round trip through the dielectric 13 having the refractive index n. By doing so, it can be obtained as d = (cT / 2n).

したがって、本実施の形態においては、強度信号IまたはIに基づき時間Tを演算するとともに、この時間Tと上述の実施の形態で求めた屈折率nとを利用することにより、
d=(cT/2n)の式の演算を行なうように、図3に示す演算部5を構成することにより、膜厚dを正確に求めることができる。
Therefore, in the present embodiment, by calculating the time T based on the intensity signal I or I M and using the time T and the refractive index n obtained in the above-described embodiment,
The film thickness d can be accurately obtained by configuring the calculation unit 5 shown in FIG. 3 so as to perform the calculation of the equation d = (cT / 2n).

<誘電体の表面粗さ検出>
図4に示す強度信号Iをフーリエ変換することにより周波数領域の強度信号I(f)を得るとともに、強度信号Iをフーリエ変換することにより周波数領域の強度信号I(f)を得ることができる。
<Detection of surface roughness of dielectric>
The intensity signal I shown in FIG. 4 along with obtaining intensity signals I (f) in the frequency domain by Fourier transform, to obtain the intensity signal I M (f) in the frequency domain by Fourier transform of the intensity signal I M it can.

一方、強度信号I(f)と強度信号I(f)との比(I(f)/I(f))は式(7)の関係が成立している。 On the other hand, the ratio (I (f) / I M (f)) between the intensity signal I (f) and the intensity signal I M (f) satisfies the relationship of the expression (7).

そこで、式(7)の関係を利用すれば、式(7)の傾きとして表面粗さδを求めることができる。   Therefore, if the relationship of Expression (7) is used, the surface roughness δ can be obtained as the slope of Expression (7).

したがって、本実施の形態においては、図3に示す演算部5を、記憶部4に記憶されている時間領域の強度信号Iおよび強度信号Iに基づきこれらをフーリエ変換して周波数領域の強度信号I(f)、強度信号I(f)を生成し、さらに両者の比(I(f)/I(f))を求めるように構成すれば、上式(7)の関係を利用して粗面13Aの表面粗さδを求めることができる。 Accordingly, in this embodiment, the arithmetic unit 5 shown in FIG. 3, on the basis of the intensity signal I and the intensity signal I M in the time domain stored in the storage unit 4 the intensity signals of the Fourier transform the frequency domain If I (f) and the intensity signal I M (f) are generated and the ratio between the two (I (f) / I M (f)) is obtained, the relationship of the above equation (7) is used. Thus, the surface roughness δ of the rough surface 13A can be obtained.

なお、上記実施の形態では電磁波としてテラヘルツ波を用いる場合を説明したが、これに限るものでは勿論ない。測定対象となる誘電体の表面粗さにより適切な波長の電磁波を選定すればよい。   In the above embodiment, the case where a terahertz wave is used as an electromagnetic wave has been described. However, the present invention is not limited to this. An electromagnetic wave having an appropriate wavelength may be selected depending on the surface roughness of the dielectric to be measured.

本発明は製造条件により特性が変わり、しかも溶射等により基材に一体化された誘電体膜、例えばガスタービン用の遮熱コーティングのトップコートの屈折率、膜厚および表面粗さ等を検出する産業分野で利用することができる。   The present invention detects the refractive index, film thickness, surface roughness, etc. of the dielectric film integrated with the substrate by thermal spraying or the like, for example, the top coat of a thermal barrier coating for a gas turbine, according to the present invention. Can be used in industrial fields.

I、I 反射強度
1 反射波検出部
2 送信器
3 受信器
4 記憶部
5 演算部
7,8 レンズ
9 ビームスプリッター
10 視野絞り
12 金属板
12A 鏡面
13 誘電体
13A 粗面
I, I M Reflection intensity 1 Reflected wave detection unit 2 Transmitter 3 Receiver 4 Storage unit 5 Calculation unit 7, 8 Lens 9 Beam splitter 10 Field stop 12 Metal plate 12A Mirror surface 13 Dielectric body 13A Rough surface

Claims (8)

誘電体である測定試料の粗面にレンズを介して電磁波を垂直に入射させ、前記粗面で反射された前記電磁波の強度を表す第1の強度信号Iを検出する一方、金属板の鏡面に前記レンズを介して前記電磁波を垂直に入射させ、前記鏡面で反射された前記電磁波の強度を表す第2の強度信号Iを検出し、
さらに前記第1および第2の強度信号I,Iを前記レンズの複数の視野角においてそれぞれ検出するとともに、各視野角における前記第1および第2の強度信号I,Iの比を求めて前記視野角に対する前記比を表す特性曲線を得、
前記特性曲線を視野角零に向けて外挿することにより視野角が零のときの鏡面反射率Rを求め、該鏡面反射率Rに基づき前記測定試料の屈折率を検出することを特徴とする誘電体の屈折率の検出方法。
An electromagnetic wave is vertically incident on the rough surface of the measurement sample, which is a dielectric, through a lens, and a first intensity signal I representing the intensity of the electromagnetic wave reflected by the rough surface is detected, while the first surface is reflected on the mirror surface of the metal plate. It is incident perpendicularly the electromagnetic wave through the lens, detecting a second intensity signal I M indicating the intensity of the electromagnetic waves reflected by the mirror surface,
Further, the first and second intensity signals I and I M are detected at a plurality of viewing angles of the lens, respectively, and a ratio of the first and second intensity signals I and I M at each viewing angle is obtained. Obtaining a characteristic curve representing the ratio to the viewing angle;
Wherein the viewing angle by extrapolating the calculated specular reflectivity R S when the zero detecting the refractive index of the measurement sample based on said mirror surface reflectivity R S toward the curve on the viewing angle zero A method for detecting the refractive index of a dielectric.
請求項1に記載する誘電体の屈折率の検出方法において、
前記外挿は、前記特性曲線において屈曲点を与える視野角より小さい視野角の範囲で、複数の測定点において前記第1および第2の強度信号I,Iの比が一定となる特性曲線の一端を視野角零に向けて行なうことを特徴とする誘電体の屈折率の検出方法。
The method for detecting a refractive index of a dielectric according to claim 1,
The extrapolation is a characteristic curve in which a ratio of the first and second intensity signals I and I M is constant at a plurality of measurement points in a range of a viewing angle smaller than a viewing angle that gives a bending point in the characteristic curve. A method for detecting a refractive index of a dielectric, wherein one end is directed toward a viewing angle of zero.
請求項1または請求項2に記載する誘電体の屈折率の検出方法において検出した屈折率をn、光速をc、前記誘電体を前記電磁波が一往復する時間をΔtとするとき、前記測定試料の膜厚dをd=(c・Δt/2n)で求めることを特徴とする誘電体の膜厚の検出方法。   When the refractive index detected in the method for detecting a refractive index of a dielectric according to claim 1 or 2 is n, the speed of light is c, and the time for which the electromagnetic wave makes a round trip through the dielectric is Δt, the measurement sample A method for detecting a film thickness of a dielectric material, wherein the film thickness d of the dielectric layer is obtained by d = (c · Δt / 2n). 誘電体である測定試料の粗面にレンズを介して電磁波を垂直に入射させ、前記粗面で反射された前記電磁波の強度の時間特性を表す時間領域の第1の強度信号Iを前記レンズの複数の視野角においてそれぞれ検出する一方、金属板の鏡面に前記レンズを介して前記電磁波を垂直に入射させ、前記鏡面で反射された前記電磁波の強度の時間特性を表す時間領域の第2の強度信号Iを検出し、
さらに前記第1の強度信号Iをフーリエ変換することにより周波数領域の第3の強度信号I(f)を得るとともに、前記第2の強度信号Iをフーリエ変換することにより周波数領域の第4の強度信号I(f)を得、
前記第3の強度信号I(f)と第4の強度信号I(f)との比が式(1)
の関係があることを利用して、式(1)の傾きとして表面粗さδを求めることを特徴とする誘電体の表面粗さの検出方法。
An electromagnetic wave is vertically incident on the rough surface of the measurement sample, which is a dielectric, through the lens, and a first intensity signal I in the time domain representing the time characteristic of the intensity of the electromagnetic wave reflected by the rough surface is obtained from the lens. While detecting at each of a plurality of viewing angles, the electromagnetic wave is vertically incident on the mirror surface of the metal plate via the lens, and the second intensity in the time domain representing the time characteristic of the intensity of the electromagnetic wave reflected by the mirror surface to detect the signal I M,
Furthermore the first intensity signal I with obtaining a third intensity signal I (f) in the frequency domain by Fourier transform, the fourth frequency region by Fourier transform to the second intensity signal I M Obtaining an intensity signal I M (f),
The ratio of the third intensity signal I (f) and the fourth intensity signal I M (f) is expressed by the equation (1).
A method for detecting the surface roughness of a dielectric, characterized in that the surface roughness δ is obtained as the slope of the equation (1) by utilizing the above relationship.
誘電体である測定試料の粗面にレンズを介して電磁波を垂直に入射させ、前記粗面で反射された前記電磁波の強度を表す第1の強度信号Iを検出するとともに、金属板の鏡面に前記レンズを介して前記電磁波を垂直に入射させ、前記鏡面で反射された前記電磁波の強度を表す第2の強度信号Iを検出する反射波検出手段と、
前記レンズから前記粗面および前記鏡面に向かって照射される前記電磁波を絞るように前記レンズの視野角を調整する視野絞り手段と、
それぞれ複数の前記視野角において検出した前記第1の強度信号および第2の強度信号の強度の時間軸特性を記憶している記憶手段と、
各視野角における前記第1および第2の強度信号I,Iの情報を前記記憶手段から読み出し、前記第1および前記第2の強度信号I,Iの比を求めて前記視野角に対する前記比を表す特性曲線を得るとともに、前記特性曲線を視野角零に向けて外挿することにより前記視野角が零のときの鏡面反射率Rを求め、該鏡面反射率Rに基づき前記測定試料の屈折率を演算する演算手段とを有することを特徴とする誘電体の屈折率の検出装置。
An electromagnetic wave is vertically incident on the rough surface of the measurement sample, which is a dielectric, via a lens, and a first intensity signal I representing the intensity of the electromagnetic wave reflected by the rough surface is detected, and on the mirror surface of the metal plate It is incident perpendicularly the electromagnetic wave through the lens, and the reflected wave detection means for detecting a second intensity signal I M indicating the intensity of the electromagnetic waves reflected by the mirror surface,
A field stop means for adjusting a viewing angle of the lens so as to stop the electromagnetic wave irradiated from the lens toward the rough surface and the mirror surface;
Storage means for storing time-axis characteristics of the intensity of the first intensity signal and the second intensity signal respectively detected at a plurality of the viewing angles;
The information of the first and second intensity signals I and I M at each viewing angle is read from the storage means, and the ratio of the first and second intensity signals I and I M is obtained to determine the ratio with respect to the viewing angle. with obtaining the characteristic curves representing the ratio, the characteristics the viewing angle by extrapolating curves toward the viewing angle zero is determined specular reflectivity R S when the zero, the measurement on the basis of said mirror surface reflectivity R S An apparatus for detecting a refractive index of a dielectric, comprising: an arithmetic means for calculating a refractive index of a sample.
請求項5に記載する誘電体の屈折率の検出装置において、
前記外挿は、前記特性曲線において屈曲点を与える視野角より小さい視野角の範囲で、複数の測定点において前記第1および第2の強度信号I,Iの比が一定となる特性曲線の一端を視野角零に向けて行なうことを特徴とする誘電体の屈折率の検出装置。
In the apparatus for detecting a refractive index of a dielectric according to claim 5,
The extrapolation is a characteristic curve in which a ratio of the first and second intensity signals I and I M is constant at a plurality of measurement points in a range of a viewing angle smaller than a viewing angle that gives a bending point in the characteristic curve. An apparatus for detecting a refractive index of a dielectric, wherein one end is directed toward a viewing angle of zero.
請求項5または請求項6に記載する誘電体の屈折率の検出装置において検出した屈折率をn、光速をc、前記測定試料を前記電磁波が一往復する時間をΔtとするとき、前記測定試料の膜厚dをd=(c・Δt/2n)で求めるように前記演算手段を構成したことを特徴とする誘電体の膜厚の検出装置。   The measurement sample when the refractive index detected in the dielectric refractive index detection device according to claim 5 or 6 is n, the speed of light is c, and the time for which the electromagnetic wave makes a round trip of the measurement sample is Δt. An apparatus for detecting a film thickness of a dielectric material, characterized in that the calculation means is configured to obtain a film thickness d of the following: d = (c · Δt / 2n). 請求項5または請求項6に記載する前記演算手段は、さらに前記第1の強度信号Iをフーリエ変換することにより周波数領域の第3の強度信号I(f)を得るとともに、前記第2の強度信号Iをフーリエ変換することにより周波数領域の第4の強度信号I(f)を得、前記第3の強度信号I(f)と第4の強度信号I(f)との比が式(2)
の関係があることを利用して、式(2)の傾きとして表面粗さδを求めるように構成したことを特徴とする誘電体の表面粗さの検出装置。
The calculating means according to claim 5 or 6 further obtains a third intensity signal I (f) in the frequency domain by performing a Fourier transform on the first intensity signal I, and the second intensity. obtain a fourth intensity signal I M in the frequency domain (f) by Fourier transformation of the signal I M, the ratio of the third intensity signal I (f) and a fourth intensity signal I M (f) is Formula (2)
A device for detecting the surface roughness of a dielectric material, characterized in that the surface roughness δ is obtained as the slope of the equation (2) by utilizing the above relationship.
JP2014017376A 2014-01-31 2014-01-31 Dielectric refractive index detection method and apparatus, film thickness detection method and apparatus, and surface roughness detection method and apparatus Active JP6281941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014017376A JP6281941B2 (en) 2014-01-31 2014-01-31 Dielectric refractive index detection method and apparatus, film thickness detection method and apparatus, and surface roughness detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017376A JP6281941B2 (en) 2014-01-31 2014-01-31 Dielectric refractive index detection method and apparatus, film thickness detection method and apparatus, and surface roughness detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2015143666A true JP2015143666A (en) 2015-08-06
JP6281941B2 JP6281941B2 (en) 2018-02-21

Family

ID=53888800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017376A Active JP6281941B2 (en) 2014-01-31 2014-01-31 Dielectric refractive index detection method and apparatus, film thickness detection method and apparatus, and surface roughness detection method and apparatus

Country Status (1)

Country Link
JP (1) JP6281941B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182360A1 (en) * 2017-03-30 2018-10-04 한양대학교 산학협력단 Thickness measurement apparatus, thickness measurement method, and thickness measurement program
CN109490244A (en) * 2018-11-13 2019-03-19 华东理工大学 A kind of thermal barrier coating parallel crack monitoring method based on Terahertz Technology
US10352692B1 (en) 2018-02-20 2019-07-16 Papalab Co., Ltd. Surface roughness determination apparatus using a white light source and determination method
CN110506192A (en) * 2017-03-30 2019-11-26 汉阳大学校产学协力团 Apparatus for measuring thickness, thickness measuring method and thickness measurement program
EP3513180A4 (en) * 2016-10-27 2020-05-20 General Electric Company Nondestructive inspection method for coatings and ceramic matrix composites
CN111288936A (en) * 2020-03-03 2020-06-16 深圳市海翔铭实业有限公司 Measurement and evaluation method for roughness of meshing contact surface of cylindrical gear
CN111999190A (en) * 2020-09-24 2020-11-27 中国民用航空飞行学院 Terahertz detection method and device for low-speed impact damage of composite material test piece
US10872792B2 (en) 2017-09-12 2020-12-22 Samsung Electronics., Ltd. Measurement device and semiconductor manufacturing system including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11099002B2 (en) 2019-12-09 2021-08-24 General Electric Company Systems and methods of assessing a coating microstructure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540089A (en) * 1991-08-06 1993-02-19 Olympus Optical Co Ltd Apparatus for measuring refractive index of thin film
JP2011179971A (en) * 2010-03-01 2011-09-15 Tokyo Electron Ltd Device and method of measuring physical property, thin-film substrate manufacturing system, and program
US20130048859A1 (en) * 2010-03-04 2013-02-28 Maik Scheller Sample analysis using terahertz spectroscopy
JP2013200299A (en) * 2012-02-23 2013-10-03 Canon Inc Roughness evaluation device, object evaluation device using the same, and roughness evaluation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540089A (en) * 1991-08-06 1993-02-19 Olympus Optical Co Ltd Apparatus for measuring refractive index of thin film
JP2011179971A (en) * 2010-03-01 2011-09-15 Tokyo Electron Ltd Device and method of measuring physical property, thin-film substrate manufacturing system, and program
US20130048859A1 (en) * 2010-03-04 2013-02-28 Maik Scheller Sample analysis using terahertz spectroscopy
JP2013200299A (en) * 2012-02-23 2013-10-03 Canon Inc Roughness evaluation device, object evaluation device using the same, and roughness evaluation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3513180A4 (en) * 2016-10-27 2020-05-20 General Electric Company Nondestructive inspection method for coatings and ceramic matrix composites
WO2018182360A1 (en) * 2017-03-30 2018-10-04 한양대학교 산학협력단 Thickness measurement apparatus, thickness measurement method, and thickness measurement program
CN110506192A (en) * 2017-03-30 2019-11-26 汉阳大学校产学协力团 Apparatus for measuring thickness, thickness measuring method and thickness measurement program
US11150080B2 (en) 2017-03-30 2021-10-19 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Thickness measurement apparatus, thickness measurement method, and thickness measurement program
US10872792B2 (en) 2017-09-12 2020-12-22 Samsung Electronics., Ltd. Measurement device and semiconductor manufacturing system including the same
US10352692B1 (en) 2018-02-20 2019-07-16 Papalab Co., Ltd. Surface roughness determination apparatus using a white light source and determination method
CN109490244A (en) * 2018-11-13 2019-03-19 华东理工大学 A kind of thermal barrier coating parallel crack monitoring method based on Terahertz Technology
CN111288936A (en) * 2020-03-03 2020-06-16 深圳市海翔铭实业有限公司 Measurement and evaluation method for roughness of meshing contact surface of cylindrical gear
CN111999190A (en) * 2020-09-24 2020-11-27 中国民用航空飞行学院 Terahertz detection method and device for low-speed impact damage of composite material test piece

Also Published As

Publication number Publication date
JP6281941B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6281941B2 (en) Dielectric refractive index detection method and apparatus, film thickness detection method and apparatus, and surface roughness detection method and apparatus
US9304046B2 (en) Sensor system and method for characterizing a coated body
US10605662B2 (en) Material property determination using photothermal speckle detection
TWI521195B (en) Mothod for measuring refractive index, refractive index measuring device, and method for producing optical element
JP6151721B2 (en) Caliper coating measurement on web with continuous non-uniformity using THZ sensor
Fukuchi et al. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave
Hurley et al. Surface acoustic wave methods to determine the anisotropic elastic properties of thin films
JP5575600B2 (en) Temperature measuring method, storage medium, program
US11009340B2 (en) Film thickness measuring method and film thickness measuring apparatus
JP2015508160A5 (en)
Stanze et al. Multilayer thickness determination using continuous wave THz spectroscopy
WO2016132452A1 (en) Terahertz wave measurement device, terahertz wave measurement method, and computer program
Akbar et al. Nondestructive evaluation of coatings delamination using microwave time domain reflectometry technique
Fukuchi et al. Measurement of topcoat thickness of thermal barrier coating for gas turbines using terahertz waves
TW201314194A (en) Object characteristics measurement system
Li et al. Time-domain dielectric constant measurement of thin film in GHz–THz frequency range near the Brewster angle
US10203202B2 (en) Non-contact determination of coating thickness
CN106257996B (en) Measuring device and its measurement method
Anastasi et al. Terahertz NDE for metallic surface roughness evaluation
Fukuchi et al. Measurement of refractive index of thermal barrier coating using reflection of terahertz waves and variable aperture
RU2660765C1 (en) Method of noncontact measurement of temperature in situ
JP2017026358A (en) Measurement apparatus, imaging device, and program
KR20150101557A (en) Apparatus and method for measurement of nonlinearity parameter using laser
EP3835760A1 (en) Systems and methods of assessing a coating microstructure
Fukuchi et al. Nondestructive testing using terahertz waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6281941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250