JP2015130263A - Organic el device manufacturing apparatus - Google Patents

Organic el device manufacturing apparatus Download PDF

Info

Publication number
JP2015130263A
JP2015130263A JP2014000982A JP2014000982A JP2015130263A JP 2015130263 A JP2015130263 A JP 2015130263A JP 2014000982 A JP2014000982 A JP 2014000982A JP 2014000982 A JP2014000982 A JP 2014000982A JP 2015130263 A JP2015130263 A JP 2015130263A
Authority
JP
Japan
Prior art keywords
camera
inspection
substrate
imaging device
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014000982A
Other languages
Japanese (ja)
Other versions
JP6270205B2 (en
Inventor
功二 羽根
Koji Hane
功二 羽根
和彦 小泉
Kazuhiko Koizumi
和彦 小泉
清隆 矢野
Kiyotaka Yano
清隆 矢野
元気 関根
Genki Sekine
元気 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014000982A priority Critical patent/JP6270205B2/en
Publication of JP2015130263A publication Critical patent/JP2015130263A/en
Application granted granted Critical
Publication of JP6270205B2 publication Critical patent/JP6270205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To ensure measurement accuracy for a workpiece and a mask.SOLUTION: A manufacturing apparatus 10 of an organic EL device by passing a plurality of zones Z2 arranged in a deposition chamber S having a single internal space S1 comprises: a plurality of inspection means C30 for inspecting a deposition condition of a workpiece W after completion of deposition which are built in atmospheric boxes BO1, BO2, BO3 and provided in a width direction Hb in a manner such that an inspection region by the inspection means covers a whole area in the width direction of the workpiece.

Description

本発明は、有機ELデバイスの製造装置に用いて好適な技術に関する。   The present invention relates to a technique suitable for use in an organic EL device manufacturing apparatus.

有機ELデバイス等の製造工程においては、被処理体であるフィルムあるいは基板の表面に所定の薄膜を成膜する工程を有することがあり、この成膜工程には、基板等に対して所定のパターンで成膜する等、特定の領域に成膜範囲を制限(限定)して成膜する場合がある。真空蒸着法にて基板に対して所定のパターンで成膜する場合を例に説明すると、処理室内に蒸発源と基板とを配置し、真空下で蒸発源から所定の材料を蒸発させる。このとき、基板の蒸発源側に、成膜範囲を限定するマスクを配置し、マスク越しに成膜することで、特定の領域にのみ成膜される。ここで、基板の特定の領域に精度よく成膜するには、処理室内で相互に対向配置される基板とマスクとの配置を精度よく計測する必要がある。   A manufacturing process of an organic EL device or the like may include a process of forming a predetermined thin film on the surface of a film or substrate that is an object to be processed. In this film forming process, a predetermined pattern is formed on the substrate or the like. In some cases, the film forming range is limited (restricted) to a specific region, such as the film forming process. A case where a film is formed in a predetermined pattern on a substrate by vacuum deposition will be described as an example. An evaporation source and a substrate are arranged in a processing chamber, and a predetermined material is evaporated from the evaporation source under vacuum. At this time, a mask for limiting the film formation range is disposed on the evaporation source side of the substrate, and film formation is performed only over a specific region by forming the film over the mask. Here, in order to form a film on a specific region of the substrate with high accuracy, it is necessary to accurately measure the arrangement of the substrate and the mask that are arranged to face each other in the processing chamber.

特許文献1に示されるように、基板とマスクとが処理チャンバ内で真空雰囲気に保たれるのに対して、センサであるカメラや照明手段等は、真空外であるチャンバ外に配置され、チャンバ壁に設けられた窓部から計測をおこなっている。   As shown in Patent Document 1, the substrate and the mask are kept in a vacuum atmosphere in the processing chamber, whereas the camera, the illumination means, and the like that are sensors are arranged outside the chamber that is outside the vacuum, Measurements are taken from the windows on the wall.

また、有機ELデバイスの製造においては、特許文献2に示されるように、成膜処理終了後に成膜状態を検査することがある。   In manufacturing an organic EL device, as shown in Patent Document 2, the film formation state may be inspected after the film formation process is completed.

特開2013−001947号公報JP 2013-001947 A 特開2011−070920号公報JP 2011-070920 A

しかし、有機ELデバイスの大型化に伴って、被処理体である基板が大型化しチャンバの容量が増えたにもかかわらず、チャンバ内における基板の搬送位置はほぼ変化させられないことにより、チャンバ外に位置するセンサと基板との距離が離間して、必要な精度で適確な測定ができなくなるという問題が生じてきた。特に、基板およびマスクと計測手段であるカメラとの距離は、WD(Working distance)とも称され、必要な精度を維持するために、これらの距離を極めて厳密に設定することが必要である。   However, with the increase in size of organic EL devices, the substrate transfer position in the chamber remains almost unchanged, despite the fact that the substrate to be processed has increased in size and the capacity of the chamber has increased. A problem has arisen in that the distance between the sensor located on the substrate and the substrate is separated and accurate measurement cannot be performed with the required accuracy. In particular, the distance between the substrate and the mask and the camera as the measurement means is also referred to as WD (Working distance), and it is necessary to set these distances very strictly in order to maintain the required accuracy.

さらに、センサ等の計測デバイスの多くは真空仕様に対応していないため、チャンバ壁部を必要な形状に変形させてセンサの位置が計測可能な配置となるように対応することが考えられるが、基板の大型化に伴いチャンバ壁が複雑な凹凸形状となってしまい、このような場合、蒸着装置のメンテナンス作業性が低下するという問題が起きる可能性があり、また、複雑な凹凸形状となってしまうチャンバ壁部からのリークや真空度の低下が発生するという問題が起きる可能性があり好ましくない。
さらに、これらの問題を解決する際に低コストに対応したいという要求があった。
Furthermore, since many measuring devices such as sensors are not compatible with vacuum specifications, it is conceivable that the chamber wall can be deformed to the required shape and the sensor position can be measured. As the substrate becomes larger, the chamber wall becomes a complicated uneven shape. In such a case, there is a possibility that the maintenance workability of the vapor deposition apparatus is lowered, and there is a complicated uneven shape. This may cause problems such as leakage from the chamber wall and a decrease in the degree of vacuum.
Furthermore, there has been a demand to cope with low costs when solving these problems.

また、有機ELデバイスの製造においては、成膜処理終了後、速やかに成膜状態を検査したいという要求がある。つまり、成膜後、同一チャンバ内で検査をおこないたいという要求がある。しかし、特許文献2に示されたような紫外線等を照射する発光層などの成膜状態検査に必要な装置は極めて大型であり、成膜処理をおこなったチャンバとは別の場所に設定されて、この検査装置まで処理後の基板を移送していたため、成膜雰囲気から一度、チャンバ外を搬送した後、再度検査雰囲気にする必要があった。   Further, in the manufacture of organic EL devices, there is a demand for inspecting the film forming state immediately after the film forming process is completed. That is, there is a demand to perform inspection in the same chamber after film formation. However, the apparatus required for the film formation state inspection such as the light emitting layer that irradiates ultraviolet rays or the like as shown in Patent Document 2 is extremely large and is set in a place different from the chamber where the film formation process is performed. Since the processed substrate was transferred to the inspection apparatus, it was necessary to transfer the outside of the chamber from the film formation atmosphere once and then to make the inspection atmosphere again.

このように成膜雰囲気から、搬送雰囲気、検査雰囲気と切り替えることにより、表面汚染等により歩留まりが低下する可能性がある、さらにまた、チャンバ外で検査を実施すると作業時間を余計に要する、他装置の搬送を待つ必要があるという問題がある。さらに、真空内に設置する事で、リアルタイムに成膜情報をフィードバックすることを可能としたいという要求があった。しかも、蒸着処理において、基板チャック等で保持していた基板(被処理体)を、処理室外に出すために保持を解除し、処理室外での搬送時や検査装置内での検査時に再度保持する必要があり、このように際保持あるいは検査用に載置する際などに、蒸着膜にダメージを与える可能性があるという問題があった。さらに、検査用に再度位置合わせをする必要があり、作業効率が悪くなるためこれを改善したいという要求があった。
さらに、基板の全面においては、成膜状態検査から漏れた領域がないように、しかも、一回の動作で、一度に基板の成膜状態に対する検査を精度よくおこない、製造工程における検査にかかる時間を短縮したいという要求があった。
By switching from the film formation atmosphere to the transfer atmosphere and the inspection atmosphere in this way, there is a possibility that the yield may decrease due to surface contamination, etc. Further, if the inspection is performed outside the chamber, an extra work time is required. There is a problem that it is necessary to wait for the transfer. Furthermore, there has been a demand that it is possible to feed back film formation information in real time by installing it in a vacuum. In addition, in vapor deposition, the substrate (object to be processed) held by the substrate chuck or the like is released in order to take it out of the processing chamber, and is held again during transportation outside the processing chamber or during inspection in the inspection apparatus. Thus, there is a problem in that the deposited film may be damaged when mounted for inspection or inspection. Furthermore, since it is necessary to perform alignment again for inspection, work efficiency has deteriorated, and there has been a demand to improve this.
Furthermore, on the entire surface of the substrate, there is no area leaked from the film formation state inspection, and the inspection for the film formation state of the substrate is accurately performed at a time by one operation, and the time required for the inspection in the manufacturing process. There was a request to shorten.

本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
1.同一チャンバ内で検査をおこない、検査精度を確保すること。
2.処理雰囲気および検査雰囲気におけるリーク発生や真空度の低下を低コストに防止すること。
3.メンテナンス性の低下を安価に防止すること。
4.歩留まりの向上と有機ELデバイスの製造コスト低減とを図ること。
The present invention has been made in view of the above circumstances, and intends to achieve the following object.
1. Perform inspection in the same chamber to ensure inspection accuracy.
2. Preventing the occurrence of leaks and a decrease in vacuum in the processing atmosphere and inspection atmosphere at low cost.
3. Preventing deterioration of maintainability at low cost.
4). To improve yield and reduce manufacturing cost of organic EL devices.

本発明の有機ELデバイスの製造装置は、前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に設けられた、減圧可能な単一の内部空間を有する成膜室を備え、前記処理室Aから前記成膜室へ搬入された被処理体が、該成膜室の内部空間内に配された複数のゾーンを通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置であって、
前記複数のゾーンとして、
保持手段を用いて前記被処理体の裏面を保持する第一ゾーン、
前記保持手段により保持された前記被処理体の表面上に蒸着膜を形成する第二ゾーン、
前記保持手段から前記被処理体の保持を解除する第三ゾーン、
が順に並んで構成されており、
前記第二ゾーンにおける成膜終了後に前記被処理体の成膜状態を検査する検査手段を有する第三ゾーンが設けられ、
前記検査手段が前記内部空間に対して密閉された大気ボックスに内蔵されるとともに、前記検査手段による検査領域が前記被処理体の幅方向全域をカバーするように前記検査手段が前記被処理体の幅方向に複数設けられることにより上記課題を解決した。
本発明は、前記検査手段が前記被処理体の搬送方向に複数列設けられることが好ましい。
本発明は、前記大気ボックスには、前記計測対象を所定の波長の照射光で照らすための照射手段が搭載されることができる。
The organic EL device manufacturing apparatus of the present invention includes a film forming chamber having a single internal space that can be decompressed, provided between a processing chamber A that performs a preceding process and a processing chamber B that performs a subsequent process. The object to be processed carried into the film forming chamber from the processing chamber A passes through a plurality of zones arranged in the internal space of the film forming chamber, and is then transferred to the processing chamber B to be organic. An apparatus for manufacturing an EL device,
As the plurality of zones,
A first zone for holding the back surface of the object to be processed using a holding means;
A second zone for forming a deposited film on the surface of the object to be processed held by the holding means;
A third zone for releasing the holding of the object to be processed from the holding means;
Are arranged in order,
A third zone having inspection means for inspecting the film formation state of the object to be processed after the film formation in the second zone is completed;
The inspection means is built in an atmospheric box sealed with respect to the internal space, and the inspection means is disposed on the object to be processed so that an inspection region by the inspection means covers the entire width direction of the object to be processed. The above-mentioned problem has been solved by providing a plurality in the width direction.
In the present invention, it is preferable that the inspection means is provided in a plurality of rows in the conveyance direction of the object to be processed.
In the present invention, the atmospheric box may be equipped with an irradiating means for illuminating the measurement object with irradiation light of a predetermined wavelength.

本発明の有機ELデバイスの製造装置は、前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に(仕切りバルブを介して)設けられた、減圧可能な単一の内部空間を有する成膜室(チャンバ)Sを備え、前記処理室Aから前記成膜室Sへ搬入された(平板状の)被処理体が、該成膜室Sの内部空間内に配された複数のゾーンを通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置であって、
前記複数のゾーンとして、
保持手段(基板チャック)を用いて前記被処理体の裏面(一面)を保持する第一ゾーン、
前記保持手段により保持された前記被処理体の表面(他面)上に(陽極として機能するITOなどの)第一導電膜を蒸着し、前記第一導電膜上に正孔輸送層を蒸着し、前記正孔輸送層上に発光層を蒸着し、前記発光層上に電子輸送層を蒸着し、前記電子輸送層上に(陰極として機能する)第二導電膜を蒸着する第二ゾーン、
が順に並んで構成されており、
前記第二ゾーンンの各蒸着位置のいずれかにおける成膜終了後に前記被処理体の成膜状態を検査する検査手段を有する第三ゾーンが設けられ、
前記検査手段が前記内部空間に対して密閉された大気ボックスに内蔵されるとともに、前記検査手段による検査領域が前記被処理体の幅方向全域をカバーするように前記検査手段が前記被処理体の幅方向に複数設けられることにより、成膜後ただちに同一チャンバ内において、大気圧中でないと動作保証がされていないデバイスを備えた検査装置を用いてその精度を確保して検査をおこなうことが可能となる。同時に、蒸着をおこなった成膜雰囲気から、搬送雰囲気、検査雰囲気と切り替える必要がないので、蒸着した膜への雰囲気切り替えによる影響をなくすことができる。
The organic EL device manufacturing apparatus of the present invention has a single internal pressure-reducible interior (via a partition valve) provided between a processing chamber A that performs a preceding process and a processing chamber B that performs a subsequent process. A film forming chamber (chamber) S having a space is provided, and a (planar) object to be processed carried into the film forming chamber S from the processing chamber A is disposed in the inner space of the film forming chamber S. An apparatus for manufacturing an organic EL device by passing through a plurality of zones and being carried out to the processing chamber B,
As the plurality of zones,
A first zone for holding the back surface (one surface) of the object to be processed using a holding means (substrate chuck);
A first conductive film (such as ITO functioning as an anode) is vapor-deposited on the surface (other surface) of the object held by the holding means, and a hole transport layer is vapor-deposited on the first conductive film. A second zone in which a light emitting layer is deposited on the hole transport layer, an electron transport layer is deposited on the light emitting layer, and a second conductive film (functioning as a cathode) is deposited on the electron transport layer,
Are arranged in order,
A third zone having inspection means for inspecting the film formation state of the object to be processed after film formation at any of the deposition positions of the second zone is provided;
The inspection means is built in an atmospheric box sealed with respect to the internal space, and the inspection means is disposed on the object to be processed so that an inspection region by the inspection means covers the entire width direction of the object to be processed. By providing multiple devices in the width direction, it is possible to perform inspection with high accuracy using an inspection device equipped with a device that is not guaranteed to operate unless it is under atmospheric pressure in the same chamber immediately after film formation. It becomes. At the same time, since it is not necessary to switch from the film forming atmosphere to which the vapor deposition has been performed to the transport atmosphere and the inspection atmosphere, it is possible to eliminate the influence of the atmosphere switching on the vapor deposited film.

本発明は、前記検査手段が前記被処理体の搬送方向に複数列設けられることにより、一回の動作で、一度に基板の成膜状態に対する検査を精度よくおこない、製造工程における検査にかかる時間を短縮することが可能となる。同時に、各ゾーンにおける成膜をおこなう位置での搬送動作と同じ動作により検査ゾーンでの検査動作をおこなうことができるため作業効率を安価により向上することができる。   According to the present invention, the inspection means is provided in a plurality of rows in the conveyance direction of the object to be processed, so that the inspection of the film formation state of the substrate can be accurately performed at a time by one operation, and the time required for the inspection in the manufacturing process. Can be shortened. At the same time, since the inspection operation in the inspection zone can be performed by the same operation as the transport operation at the position where film formation is performed in each zone, work efficiency can be improved at low cost.

本発明は、前記大気ボックスには、前記計測対象を所定の波長の照射光で照らすための照射手段が搭載されることにより、紫外線等を照射する発光層などの成膜状態検査をおこなうことができる。   In the present invention, the atmospheric box is equipped with an irradiation means for illuminating the measurement target with irradiation light of a predetermined wavelength, so that a film formation state inspection of a light emitting layer or the like that irradiates ultraviolet rays or the like can be performed. it can.

本発明によれば、基板サイズの大型化に対応し、成膜処理終了後、成膜雰囲気から、搬送雰囲気、検査雰囲気へと切り替えることなく、同一チャンバ内で速やかに成膜状態検査を可能とすることができる。しかも、蒸着処理において、基板チャック等で保持していた基板(被処理体)を、搬送時や検査時に再度保持あるいは検査用に載置して再度位置合わせをする必要がなく、作業効率を改善することができる。
さらに、基板の全面において漏れがないように、しかも、一回の動作で、一度に基板の成膜状態に対する検査を精度よくおこない、製造工程における検査にかかる時間を短縮することができる。同時に、検査手段(光学系カメラ)におけるWD(Working distance)を所定の範囲内に設定して、成膜室内の真空度の低下やリークを生じることなく、メンテナンスの作業性の低下を防止でき、製品コストの増大を防止することが可能となる、という効果を奏することができる。
According to the present invention, in response to an increase in substrate size, it is possible to quickly perform a film formation state inspection in the same chamber without switching from a film formation atmosphere to a transfer atmosphere and an inspection atmosphere after the film formation process is completed. can do. Moreover, in the vapor deposition process, it is not necessary to hold the substrate (object to be processed) held by the substrate chuck or the like again during transportation or inspection, and to place it again for inspection, thereby improving the work efficiency. can do.
Furthermore, it is possible to accurately inspect the film formation state of the substrate at a time with a single operation so that there is no leakage on the entire surface of the substrate, and to shorten the time required for the inspection in the manufacturing process. At the same time, the WD (Working distance) in the inspection means (optical system camera) is set within a predetermined range, so that the deterioration of the maintenance workability can be prevented without causing a decrease in the degree of vacuum or leakage in the film forming chamber. There is an effect that it is possible to prevent an increase in product cost.

本発明に係る有機ELデバイスの製造装置の一実施形態を示す模式正面図である。It is a schematic front view which shows one Embodiment of the manufacturing apparatus of the organic EL device which concerns on this invention. 有機ELデバイスの製造工程を示す模式断面図である。It is a schematic cross section which shows the manufacturing process of an organic EL device. 本発明に係る有機ELデバイスの製造装置の一実施形態における検査手段を示す模式平面図である。It is a schematic plan view which shows the test | inspection means in one Embodiment of the manufacturing apparatus of the organic EL device which concerns on this invention.

以下、本発明に係る有機ELデバイスの製造装置の一実施形態を、図面に基づいて説明する。
図1は、本実施形態における有機ELデバイスの製造装置を示す模式正面図であり、図において、符号10は、有機ELデバイスの製造装置である。
Hereinafter, an embodiment of an organic EL device manufacturing apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic front view showing an organic EL device manufacturing apparatus according to the present embodiment. In the figure, reference numeral 10 denotes an organic EL device manufacturing apparatus.

本実施形態における有機ELデバイスの製造装置10は、図1に示すように、前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に、仕切りバルブA1、B1を介して設けられた、減圧可能な単一の内部空間S1を有する成膜室(チャンバ)Sを備え、前記処理室Aから前記成膜室Sへ搬入された平板状の被処理体Wが、該成膜室Sの内部空間S1内に配された複数のゾーンZ1〜Z3を通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置である。   As shown in FIG. 1, the organic EL device manufacturing apparatus 10 according to the present embodiment includes partition valves A <b> 1 and B <b> 1 between a processing chamber A that performs a preceding process and a processing chamber B that performs a subsequent process. A plate-shaped workpiece W carried into the film formation chamber S from the process chamber A is provided with a film formation chamber (chamber) S having a single internal space S1 that can be decompressed. It is an apparatus for manufacturing an organic EL device by passing through a plurality of zones Z1 to Z3 arranged in the internal space S1 of the film chamber S and being carried out to the processing chamber B.

本実施形態における有機ELデバイスの製造装置10によって製造される有機ELデバイスは、図3にその一例を示すように、ガラスや可撓性材料等とされる透明基板Wに、陽極として機能するITO等の第一導電膜V1が形成され、前記第一導電膜V1上に正孔輸送層V2が形成され、前記正孔輸送層V2上に発光層V3が形成され、前記発光層V3上に電子輸送層V4が形成され、前記電子輸送層V4上に陰極として機能する第二導電膜V5が形成されている。   The organic EL device manufactured by the organic EL device manufacturing apparatus 10 according to the present embodiment is an ITO that functions as an anode on a transparent substrate W made of glass or a flexible material, as shown in FIG. The first conductive film V1 is formed, the hole transport layer V2 is formed on the first conductive film V1, the light emitting layer V3 is formed on the hole transport layer V2, and the electrons are formed on the light emitting layer V3. A transport layer V4 is formed, and a second conductive film V5 functioning as a cathode is formed on the electron transport layer V4.

有機ELデバイスの製造装置10において、図1に示すように、チャンバSに前記複数のゾーンZ1〜Z3として、保持手段(基板チャック)Tを用いて前記被処理体Wの裏面(一面)を保持する第一ゾーンZ1、前記保持手段Tにより保持された前記被処理体Wの表面(他面)上に陽極として機能するITO等の第一導電膜V1を形成し、前記第一導電膜V1上に正孔輸送層V2を形成し、前記正孔輸送層V2上に発光層V3を形成し、前記発光層V3上に電子輸送層V4を形成し、前記電子輸送層V4上に陰極として機能する第二導電膜V5を形成する第二ゾーンZ2、前記被処理体Wの移動方向における前記第二ゾーンZ2よりも下流側位置で被処理体Wの成膜状態を検査するとともに保持手段Tから被処理体Wの保持を解除する第三ゾーン(検査ゾーン)Z3、が順に並んで構成されている。なおこれらの第二ゾーンZ2の各蒸着位置における蒸着源E等は、模式的に示されたものであり、それぞれの蒸着膜V1〜V5等に対応して設けられるものであり、また、蒸着源を加熱する加熱手段、温度測定手段、膜厚制御用のシャッター等は図示を省略する。また、有機ELデバイスの製造装置10における雰囲気ガス制御手段も図示を省略する。   In the organic EL device manufacturing apparatus 10, as shown in FIG. 1, the back surface (one surface) of the workpiece W is held in the chamber S as the plurality of zones Z <b> 1 to Z <b> 3 using a holding means (substrate chuck) T. A first conductive film V1 such as ITO that functions as an anode is formed on the surface (other surface) of the workpiece W held by the holding means T, and the first conductive film V1 is formed on the first conductive film V1. A hole transport layer V2 is formed, a light emitting layer V3 is formed on the hole transport layer V2, an electron transport layer V4 is formed on the light emitting layer V3, and functions as a cathode on the electron transport layer V4. The film formation state of the object to be processed W is inspected at the second zone Z2 for forming the second conductive film V5 and the downstream side of the second zone Z2 in the moving direction of the object to be processed W, and the object to be processed is held from the holding means T. Third to release the holding of the processing body W Over emissions (test zone) Z3, but are configured arranged in order. In addition, the vapor deposition source E etc. in each vapor deposition position of these 2nd zones Z2 are typically shown, are provided corresponding to each vapor deposition film V1-V5 etc., and are vapor deposition sources. A heating means, a temperature measuring means, a film thickness controlling shutter, etc. are not shown. Also, the atmospheric gas control means in the organic EL device manufacturing apparatus 10 is not shown.

有機ELデバイスの製造装置10において、図1に示すように、第一ゾーンZ1〜第三ゾーンZ2に亘って、基板Wを吸着した基板チャックTを搬送する基板搬送部(搬送手段)L1として、基板チャックTの移動方向と直交する軸線を有するローラLaが水平方向に多数並設され、図示しない駆動手段により、基板チャックTを搬送方向Hに搬送する。第三ゾーンZ3の基板搬送部L1より下側位置には、大気ボックスに収納された検査手段(光学系カメラ)C30が設けられる。   In the organic EL device manufacturing apparatus 10, as shown in FIG. 1, as a substrate transport unit (transport means) L <b> 1 that transports the substrate chuck T that has adsorbed the substrate W over the first zone Z <b> 1 to the third zone Z <b> 2, A large number of rollers La having an axis perpendicular to the moving direction of the substrate chuck T are arranged in parallel in the horizontal direction, and the substrate chuck T is conveyed in the conveying direction H by driving means (not shown). An inspection means (optical camera) C30 housed in an atmospheric box is provided at a position below the substrate transport portion L1 in the third zone Z3.

有機ELデバイスの製造装置10では、検査手段(光学系カメラ)C30によって、第二ゾーンZ2の各蒸着位置において、それぞれ蒸着源Eと被処理体(基板)Wの表面側との間に所望のマスクMを設けておこなった所定の成膜状態に対して第三ゾーンZにおいて検査処理をおこなうように、図1に示すように、第三ゾーンZ3の基板搬送部L1より下側位置に設けられ基板チャックTに保持された基板Tを蒸着面側から検査するものとされる。検査手段C30は、第二ゾーンZ2の各蒸着位置のいずれかにおける成膜終了後に基板(被処理体)Wの成膜状態を検査するものとされ、図1に示すように、内部空間S1に対して密閉された大気ボックスBO1,BO2,BO3に内蔵される。光学系カメラとしては、CCDカメラやCMOSセンサなど、発熱の少ないものを採用することが好ましい。     In the organic EL device manufacturing apparatus 10, a desired means is provided between the evaporation source E and the surface side of the object to be processed (substrate) W at each evaporation position in the second zone Z2 by the inspection means (optical system camera) C30. As shown in FIG. 1, it is provided at a position below the substrate transfer portion L1 in the third zone Z3 so that the inspection process is performed in the third zone Z for a predetermined film formation state performed by providing the mask M. The substrate T held on the substrate chuck T is inspected from the vapor deposition surface side. The inspection means C30 inspects the film formation state of the substrate (object to be processed) W after completion of the film formation at any of the vapor deposition positions in the second zone Z2, and as shown in FIG. The air boxes BO1, BO2, and BO3 are enclosed in sealed air boxes. As the optical system camera, it is preferable to employ a camera that generates little heat, such as a CCD camera or a CMOS sensor.

検査手段(光学系カメラ)C30は、基板Wの搬送方向Hと直交する基板幅方向Hbに複数設けられる。具体的には、図3に示すように、第三ゾーンZ3においては搬送方向Hに沿って順に大気ボックスBO1、大気ボックスBO2、大気ボックスBO3が並べられる。大気ボックスBO1には、撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33、撮像装置(カメラ)C36が平面視して基板幅方向Hbに一列となるように収納される。大気ボックスBO2には、撮像装置(カメラ)C34、撮像装置(カメラ)C35が平面視して基板幅方向Hbに異なる列となる位置に収納されるとともに、撮像装置(カメラ)C34aが、撮像装置(カメラ)C34と基板幅方向Hbにおいて同じ位置となるように、搬送方向Hに2列に設けられる。   A plurality of inspection means (optical system cameras) C30 are provided in the substrate width direction Hb orthogonal to the transport direction H of the substrate W. Specifically, as shown in FIG. 3, in the third zone Z3, an atmospheric box BO1, an atmospheric box BO2, and an atmospheric box BO3 are arranged in order along the transport direction H. In the atmospheric box BO1, an imaging device (camera) C31, an imaging device (camera) C32, an imaging device (camera) C33, and an imaging device (camera) C36 are accommodated in a line in the substrate width direction Hb in plan view. The In the atmospheric box BO2, the imaging device (camera) C34 and the imaging device (camera) C35 are housed in different positions in the substrate width direction Hb in plan view, and the imaging device (camera) C34a includes the imaging device. (Camera) Provided in two rows in the transport direction H so as to be at the same position in the substrate width direction Hb as C34.

大気ボックスBO3には、撮像装置(カメラ)C31a、撮像装置(カメラ)C32a、撮像装置(カメラ)C33aが平面視して基板幅方向Hbに一列となるように収納される。大気ボックスBO3に収納された撮像装置(カメラ)C31a、撮像装置(カメラ)C32a、撮像装置(カメラ)C33aと、は、大気ボックスBO1に収納された撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33とは、それぞれ、対応する番号を付したものどうしが基板幅方向Hbにおいて同じ位置となるように配置され、検査手段C30として、搬送方向Hに2列の撮像装置(カメラ)が設けられている。   In the atmospheric box BO3, an imaging device (camera) C31a, an imaging device (camera) C32a, and an imaging device (camera) C33a are accommodated in a line in the substrate width direction Hb in plan view. The imaging device (camera) C31a, the imaging device (camera) C32a, and the imaging device (camera) C33a accommodated in the atmospheric box BO3 are the imaging device (camera) C31 and imaging device (camera) accommodated in the atmospheric box BO1. C32 and imaging device (camera) C33 are arranged such that corresponding numbers are placed in the same position in the substrate width direction Hb, and two rows of imaging devices in the transport direction H as the inspection means C30 (Camera) is provided.

大気ボックスBO1,BO2,BO3には、撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33、撮像装置(カメラ)C34、撮像装置(カメラ)C35、撮像装置(カメラ)C36、撮像装置(カメラ)C31a、撮像装置(カメラ)C32a、撮像装置(カメラ)C33a、撮像装置(カメラ)C34aのレンズに対応する位置に検査窓部Bbが設けられて、この検査窓部Bbを介して基板Wの撮像をおこなう。   The atmospheric boxes BO1, BO2, and BO3 include an imaging device (camera) C31, an imaging device (camera) C32, an imaging device (camera) C33, an imaging device (camera) C34, an imaging device (camera) C35, and an imaging device (camera). C36, an imaging device (camera) C31a, an imaging device (camera) C32a, an imaging device (camera) C33a, and an inspection window Bb are provided at positions corresponding to the lenses of the imaging device (camera) C34a. The substrate W is imaged via

また、大気ボックスBO1に収納された撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33は、それぞれ、基板幅方向Hbにおいて互いに離間した状態に配置されるが、基板幅方向Hbでこれらの間となる位置には、大気ボックスBO2に収納された撮像装置(カメラ)C34と撮像装置(カメラ)C35が位置して、撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33、撮像装置(カメラ)C34、撮像装置(カメラ)C35により、第三ゾーンZ3において検査手段C30の下側位置を搬送される基板W2(W)の基板幅方向Hbにおける全幅をカバーして検査可能なように配置されている。   Further, the imaging device (camera) C31, the imaging device (camera) C32, and the imaging device (camera) C33 housed in the atmospheric box BO1 are arranged in a state of being separated from each other in the board width direction Hb. An imaging device (camera) C34 and an imaging device (camera) C35 housed in the atmospheric box BO2 are located at a position between these in the direction Hb, and the imaging device (camera) C31 and imaging device (camera) C32 are located. In the substrate width direction Hb of the substrate W2 (W) conveyed by the imaging device (camera) C33, the imaging device (camera) C34, and the imaging device (camera) C35 at the lower position of the inspection means C30 in the third zone Z3. It is arranged to cover the entire width and be inspected.

また、大気ボックスBO1に収納された撮像装置(カメラ)C36は、第三ゾーンZ3において検査手段C30の下側位置を搬送される基板W2(W)の縁部を認識し、被検査基板W2(W)の全幅となる全領域が検査されるように、基板Wの位置を測定するものとされる。   Further, the imaging device (camera) C36 stored in the atmospheric box BO1 recognizes the edge of the substrate W2 (W) transported in the lower position of the inspection means C30 in the third zone Z3, and the substrate to be inspected W2 ( The position of the substrate W is measured so that the entire area having the full width W) is inspected.

これらの撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33、撮像装置(カメラ)C34、撮像装置(カメラ)C35、撮像装置(カメラ)C36、撮像装置(カメラ)C31a、撮像装置(カメラ)C32a、撮像装置(カメラ)C33a、撮像装置(カメラ)C34aには、それぞれ、基板幅方向Hbにおいて同じ位置となるように、照射手段Lが設けられる。照射手段Lはいずれも、各照射手段Lに対応した検査窓部Bbを介して所定の波長の照射光で基板Wを照らすためのものとされ、蒸着される各層における有機EL材料の吸光特性により、発光層V3が吸光する吸光波長を除いて吸光しない波長のみを照射可能となっている。   These imaging device (camera) C31, imaging device (camera) C32, imaging device (camera) C33, imaging device (camera) C34, imaging device (camera) C35, imaging device (camera) C36, imaging device (camera) C31a The imaging device (camera) C32a, the imaging device (camera) C33a, and the imaging device (camera) C34a are each provided with irradiation means L so as to be at the same position in the substrate width direction Hb. All of the irradiation means L are for illuminating the substrate W with irradiation light of a predetermined wavelength through the inspection window portion Bb corresponding to each irradiation means L, and depending on the light absorption characteristics of the organic EL material in each layer to be deposited In addition, it is possible to irradiate only wavelengths that do not absorb light except for the light absorption wavelength at which the light emitting layer V3 absorbs light.

例えば、検査窓部Bbの照射部分にフィルタとしての光学的反射防止膜が設けられて、発光層V3が吸光する吸光波長を除いて吸光しない波長のみを照射可能とすることができる。また、照射手段L36は、撮像装置(カメラ)C36によって基板Wの位置を測定可能な照明光を照射可能なものとされる。   For example, an optical antireflection film as a filter is provided on the irradiated portion of the inspection window portion Bb, and it is possible to irradiate only the wavelengths that do not absorb light except the light absorbing wavelength that the light emitting layer V3 absorbs. The irradiation unit L36 can irradiate illumination light capable of measuring the position of the substrate W by the imaging device (camera) C36.

検査手段C30においては、撮像装置(カメラ)C31と撮像装置(カメラ)C31a、撮像装置(カメラ)C32と撮像装置(カメラ)C32a、撮像装置(カメラ)C33と撮像装置(カメラ)C33a、撮像装置(カメラ)C34と撮像装置(カメラ)C34aは、基板幅方向Hbで同じ位置、つまり、搬送される基板Wの同じ領域を、異なる撮像装置(カメラ)で、2度検査するものとされる。これにより、撮像装置(カメラ)C31における検査精度の再現性を撮像装置(カメラ)C31aにより担保している。同様に、撮像装置(カメラ)C32における検査精度の再現性を撮像装置(カメラ)C32aにより担保し、撮像装置(カメラ)C33における検査精度の再現性を撮像装置(カメラ)C33aにより担保し、撮像装置(カメラ)C34における検査精度の再現性を撮像装置(カメラ)C34aにより担保している。   In the inspection means C30, an imaging device (camera) C31 and an imaging device (camera) C31a, an imaging device (camera) C32 and an imaging device (camera) C32a, an imaging device (camera) C33 and an imaging device (camera) C33a, an imaging device The (camera) C34 and the imaging device (camera) C34a are to inspect the same position in the substrate width direction Hb, that is, the same region of the substrate W to be transported twice with different imaging devices (cameras). Thereby, the reproducibility of the inspection accuracy in the imaging device (camera) C31 is secured by the imaging device (camera) C31a. Similarly, the reproducibility of inspection accuracy in the imaging device (camera) C32 is secured by the imaging device (camera) C32a, and the reproducibility of inspection accuracy in the imaging device (camera) C33 is secured by the imaging device (camera) C33a. The reproducibility of inspection accuracy in the apparatus (camera) C34 is secured by the imaging apparatus (camera) C34a.

大気ボックスBO1,BO2,BO3には、いずれも真空性能として、収納側となる内部が大気圧、外部が例えば1×10−5Pa程度の高真空であっても、歪み発生がないという条件を設定することができる。検査手段C30は、大気ボックスBO1,BO2,BO3の内部から図示しない真空対応の端子および真空対応のケーブルによってチャンバSの外部に設けられた図示しない制御部等に接続されて検査結果を出力する。また、大気ボックスBO1,BO2,BO3を搬送方向Hに3分割された構成としたが、単一の大気ボックス、あるいは、他の個数の大気ボックスとすることもできる。 The atmospheric boxes BO1, BO2 and BO3 all have a vacuum performance such that there is no distortion even if the inside on the storage side is atmospheric pressure and the outside is a high vacuum of about 1 × 10 −5 Pa, for example. Can be set. The inspection means C30 is connected from the inside of the atmospheric boxes BO1, BO2, and BO3 to a control unit (not shown) provided outside the chamber S by a vacuum compatible terminal and a vacuum compatible cable (not shown), and outputs the inspection result. In addition, although the atmospheric boxes BO1, BO2, and BO3 are divided into three in the transport direction H, a single atmospheric box or other number of atmospheric boxes can be used.

次に、本実施形態の有機ELデバイスの製造装置10における有機ELデバイスの製造動作について説明する。   Next, an organic EL device manufacturing operation in the organic EL device manufacturing apparatus 10 of the present embodiment will be described.

本実施形態においては、処理室Aにおいて前段のプロセスを行い、この前処理が終了した基板Wを図示しない、搬送手段により仕切りバルブA1を介してチャンバS内に搬送する。
次いで、第一ゾーンZ1において、基板チャック(保持手段)Tを用いて基板(被処理体)Wの裏面(一面)を保持する。
In the present embodiment, the previous process is performed in the processing chamber A, and the substrate W after the preprocessing is transferred into the chamber S via the partition valve A1 by a transfer means (not shown).
Next, in the first zone Z1, the back surface (one surface) of the substrate (object to be processed) W is held using the substrate chuck (holding means) T.

次いで、基板チャックTを基板搬送部L1によって第二ゾーンZ2の第一の蒸着位置に移動し、基板Wの表面(下面)上に陽極として機能するITO等の第一導電膜V1を形成する。   Next, the substrate chuck T is moved to the first vapor deposition position in the second zone Z2 by the substrate transport unit L1, and the first conductive film V1 such as ITO functioning as an anode is formed on the surface (lower surface) of the substrate W.

次いで、基板チャックTを基板搬送部L1によって第二の蒸着位置に移動し、同様にして、第一導電膜V1上にマスクMのパターンMaに応じた正孔輸送層V2を形成する。   Next, the substrate chuck T is moved to the second vapor deposition position by the substrate transport unit L1, and similarly, the hole transport layer V2 corresponding to the pattern Ma of the mask M is formed on the first conductive film V1.

次いで、基板チャックTを基板搬送部L1によって第三の蒸着位置に移動し、同様にして、正孔輸送層V2上にマスクMのパターンMaに応じた発光層V3を形成する。   Next, the substrate chuck T is moved to the third vapor deposition position by the substrate transport unit L1, and similarly, the light emitting layer V3 corresponding to the pattern Ma of the mask M is formed on the hole transport layer V2.

次いで、基板チャックTを基板搬送部L1によって第四の蒸着位置に移動し、同様にして、発光層V3上にマスクMのパターンMaに応じた電子輸送層V4を形成する。   Next, the substrate chuck T is moved to the fourth deposition position by the substrate transport unit L1, and similarly, the electron transport layer V4 corresponding to the pattern Ma of the mask M is formed on the light emitting layer V3.

次いで、基板チャックTを基板搬送部L1によって第五の蒸着位置に移動し、同様にして、電子輸送層V4上にマスクMのパターンMaに応じた第二導電膜V5を形成する。   Next, the substrate chuck T is moved to the fifth vapor deposition position by the substrate transfer portion L1, and similarly, the second conductive film V5 corresponding to the pattern Ma of the mask M is formed on the electron transport layer V4.

本実施形態の有機ELデバイスの製造装置10においては、第二ゾーンZ2の第五の蒸着位置までの成膜終了後に同一のチャンバS内において検査手段C30により基板Wの成膜状態を検査する。   In the organic EL device manufacturing apparatus 10 of the present embodiment, the film formation state of the substrate W is inspected by the inspection means C30 in the same chamber S after the film formation up to the fifth vapor deposition position in the second zone Z2 is completed.

具体的には、図3に示すように、蒸着処理(成膜処理)の終了した基板W1(W)が基板搬送部L1により第三ゾーンZ3に搬送されてくると、基板W2(W)として示す位置まできたときに、照射手段L36により照明するとともに撮像装置(カメラ)C36により、基板Wの縁部を撮像して計測し、基板W2が基板幅方向Hbにおいて所定の場所に位置して、基板幅方向Hbの全域でこの基板W2が検査可能かどうかを確認する。同時に、照射手段Lによって所定の照射光を照射しつつ、撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33によって、基板Wを搬送方向Hに沿った帯状に連続撮像し、欠陥等の不具合の有無検出および膜厚測定をおこなう。これにより、基板Wの搬送方向Hの全長に亘って各カメラC31,C32,C33が帯状に検査をおこなう。   Specifically, as shown in FIG. 3, when the substrate W1 (W) after the deposition process (film formation process) is transferred to the third zone Z3 by the substrate transfer unit L1, the substrate W2 (W) is obtained. When the position shown in the figure is reached, the illumination means L36 illuminates and the imaging device (camera) C36 images and measures the edge of the substrate W, and the substrate W2 is positioned at a predetermined location in the substrate width direction Hb. It is confirmed whether or not the substrate W2 can be inspected over the entire region in the substrate width direction Hb. At the same time, the substrate W is continuously imaged in a belt shape along the transport direction H by the imaging device (camera) C31, the imaging device (camera) C32, and the imaging device (camera) C33 while irradiating predetermined irradiation light by the irradiation means L. Then, the presence / absence of defects such as defects is detected and the film thickness is measured. Thereby, each camera C31, C32, C33 inspects in strip shape over the full length of conveyance direction H of substrate W.

さらに、基板Wが搬送されると、同様にして、撮像装置(カメラ)C34、撮像装置(カメラ)C35によって、基板Wを搬送方向Hに沿った帯状に連続撮像し、欠陥等の不具合の有無検出および膜厚測定をおこなう。このとき、撮像装置(カメラ)C34は、撮像装置(カメラ)C31と撮像装置(カメラ)C32とで撮像した帯状領域の間の帯状部分を、また、撮像装置(カメラ)C35は、撮像装置(カメラ)C32と撮像装置(カメラ)C33とで撮像した帯状領域の間の帯状部分を撮像する。これにより、第1段となる撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33、撮像装置(カメラ)C34、撮像装置(カメラ)C35によって、基板Wの全域が検査される。   Further, when the substrate W is transported, similarly, the imaging device (camera) C34 and the imaging device (camera) C35 continuously image the substrate W in a belt shape along the transport direction H, and whether there is a defect such as a defect. Perform detection and film thickness measurement. At this time, the imaging device (camera) C34 uses the imaging device (camera) C31 and the imaging device (camera) C32 to capture the band-like portion between the belt-like regions, and the imaging device (camera) C35 uses the imaging device (camera) C35. The belt-like portion between the belt-like regions imaged by the camera) C32 and the imaging device (camera) C33 is imaged. Accordingly, the entire area of the substrate W is inspected by the imaging device (camera) C31, the imaging device (camera) C32, the imaging device (camera) C33, the imaging device (camera) C34, and the imaging device (camera) C35 as the first stage. Is done.

さらに、基板Wが搬送されると、同様にして、第2段となる撮像装置(カメラ)C34a、撮像装置(カメラ)C31a、撮像装置(カメラ)C32a、撮像装置(カメラ)C33aによって、再度、基板W3(W)が検査される。このとき、第1段のカメラと、第2段のカメラで、同様の波長帯の照射光による同じ検査を2度して検査の制限製を担保することもできるし、異なる波長帯の照射光による異なる内容の検査をおこなうように設定することも可能である。   Further, when the substrate W is transported, the image pickup device (camera) C34a, the image pickup device (camera) C31a, the image pickup device (camera) C32a, and the image pickup device (camera) C33a, which are the second stage, are again used. The substrate W3 (W) is inspected. At this time, with the first stage camera and the second stage camera, the same inspection with the irradiation light of the same wavelength band can be performed twice to ensure limited inspection, or the irradiation light of different wavelength bands It is also possible to set to inspect different contents according to.

検査手段C30の検査終了後、図3に示すように、基板W4(W)は判別工程である第八ゾーンZ8へと搬送され、検査手段C30の検査結果によって、良好と判定された場合には、矢印W6に示すようにライン上を次工程へ搬送され、不良と判断された場合には、矢印W5に示すように製造ラインから待避させる。不良と判断された基板Wは、一時保管した後、蒸着工程に戻すこともできるし、処理室S外に取り出すこともできる。   After completion of the inspection by the inspection means C30, as shown in FIG. 3, the substrate W4 (W) is transported to the eighth zone Z8, which is a discrimination process, and if determined to be good by the inspection result of the inspection means C30 If it is determined that the line is conveyed to the next process as indicated by an arrow W6 and is determined to be defective, it is retracted from the production line as indicated by an arrow W5. The substrate W determined to be defective can be temporarily stored and then returned to the vapor deposition process or taken out of the processing chamber S.

次いで、検査・判定工程が終了した基板Wは、基板チャックTによる保持を解除するとともに、このチャンバS内における処理が終了した基板Wを、図示しない搬送手段により仕切りバルブB1を介して処理室Bにおける後段のプロセスへと搬送する。   Next, the substrate W that has been inspected / determined is released from being held by the substrate chuck T, and the substrate W that has been processed in the chamber S is transferred to the processing chamber B via the partition valve B1 by a transfer means (not shown). To the subsequent process.

本実施形態における有機ELデバイスの製造装置10によれば、基板幅方向Hbおよび搬送方向Hに複数列・複数段配置された撮像装置(カメラ)C31、撮像装置(カメラ)C32、撮像装置(カメラ)C33、撮像装置(カメラ)C34、撮像装置(カメラ)C35、撮像装置(カメラ)C36、撮像装置(カメラ)C31a、撮像装置(カメラ)C32a、撮像装置(カメラ)C33a、撮像装置(カメラ)C34aを有する検査手段C30によって、蒸着成膜後ただちに同一チャンバS内において検査をおこなうことにより、蒸着をおこなった成膜雰囲気から、雰囲気を切り替えることなく成膜状態の検査をおこなうことができる。これにより、蒸着した膜への雰囲気切り替えによる影響をなくすことができる。基板サイズが大型化した場合であってもこれに対応して、成膜室S内の真空度の低下やリークを生じることなく、一度に基板Wの成膜状態に対する検査を精度よくおこない、製造工程における検査にかかる時間を短縮することが可能となる。同時に、第二ゾーンZ2の各蒸着位置における成膜をおこなう位置での搬送動作と同じ動作により検査ゾーンZ3での検査動作をおこなうことができるため作業効率を安価により向上することができる。   According to the organic EL device manufacturing apparatus 10 of the present embodiment, an imaging device (camera) C31, an imaging device (camera) C32, and an imaging device (camera) arranged in a plurality of rows and stages in the substrate width direction Hb and the transport direction H. ) C33, imaging device (camera) C34, imaging device (camera) C35, imaging device (camera) C36, imaging device (camera) C31a, imaging device (camera) C32a, imaging device (camera) C33a, imaging device (camera) By inspecting in the same chamber S immediately after the vapor deposition film formation by the inspection means C30 having C34a, the film formation state can be inspected without switching the atmosphere from the film formation atmosphere in which the vapor deposition has been performed. Thereby, the influence by the atmosphere switch to the deposited film can be eliminated. Corresponding to this, even when the substrate size is increased, the inspection of the film formation state of the substrate W is accurately performed at one time without causing a decrease in the degree of vacuum or leakage in the film formation chamber S. It becomes possible to shorten the time required for the inspection in the process. At the same time, since the inspection operation in the inspection zone Z3 can be performed by the same operation as the transfer operation at the position where film formation is performed at each vapor deposition position in the second zone Z2, work efficiency can be improved at low cost.

さらに、大気ボックスBO1〜BO3が密閉されていることにより、検査デバイス等の計測手段が良好に動作して精度よく検査することが可能となる。また、計測手段C30を大気ボックスBOの内部に収納したことにより、計測手段(光学系カメラ)C30におけるWD(Working distance)を所定の範囲内に設定して、基板Wへの蒸着状態、特に、発光層V3などの検査を精度よくおこなうことを安価に可能とすることができる。同時に、真空中では正常動作が確実でない計測デバイスを用いても安価にかつ精度よく計測をおこなうことができる。また、チャンバSの内壁形状を、この計測用に複雑な凹凸形状とする必要がないので、メンテナンス性を確保し、また、リーク発生の可能性を低減して、同時に、製品コストの増大を防止することが可能となる。   Furthermore, since the atmospheric boxes BO1 to BO3 are hermetically sealed, the measuring means such as the inspection device operates favorably and can be inspected with high accuracy. Further, by storing the measuring means C30 in the atmospheric box BO, the WD (Working distance) in the measuring means (optical system camera) C30 is set within a predetermined range, and the deposition state on the substrate W, in particular, It is possible to inexpensively perform the inspection of the light emitting layer V3 and the like with high accuracy. At the same time, measurement can be carried out at low cost and with high accuracy even when using a measurement device whose normal operation is not reliable in vacuum. In addition, since the inner wall shape of the chamber S does not need to be a complicated uneven shape for this measurement, maintenance is ensured, and the possibility of occurrence of leakage is reduced, and at the same time, an increase in product cost is prevented. It becomes possible to do.

10…有機ELデバイスの製造装置
C30…検査手段
C31,C31a,C32,C32a,C33,C33a,C34,C34a,C35,C36,…撮像手段(カメラ)
Z1〜Z3…ゾーン
L1…基板搬送部(搬送手段)
BO1,BO2,BO3…大気ボックス
Bb…検査窓部
H…搬送方向(進行方向)
Hb…基板幅方向
M…マスク
E…蒸着源
W…基板(被処理体)
T…基板チャック(保持手段)
S…チャンバ(成膜室)
S1…内部空間
XY…XYステージ(調整手段)
L,L36…照射手段
A1,B1…仕切りバルブ
10 ... Organic EL device manufacturing apparatus C30 ... Inspection means C31, C31a, C32, C32a, C33, C33a, C34, C34a, C35, C36, ... Imaging means (camera)
Z1 to Z3 ... Zone L1 ... Substrate transport section (transport means)
BO1, BO2, BO3 ... atmospheric box Bb ... inspection window H ... transport direction (traveling direction)
Hb ... substrate width direction M ... mask E ... evaporation source W ... substrate (object to be processed)
T ... Substrate chuck (holding means)
S ... Chamber (deposition chamber)
S1 ... Internal space XY ... XY stage (adjustment means)
L, L36 ... Irradiation means A1, B1 ... Partition valve

Claims (3)

前段のプロセスを行う処理室Aと後段のプロセスを行う処理室Bとの間に設けられた、減圧可能な単一の内部空間を有する成膜室を備え、前記処理室Aから前記成膜室へ搬入された被処理体が、該成膜室の内部空間内に配された複数のゾーンを通過して前記処理室Bへ搬出されることにより有機ELデバイスを製造する装置であって、
前記複数のゾーンとして、
保持手段を用いて前記被処理体の裏面を保持する第一ゾーン、
前記保持手段により保持された前記被処理体の表面上に蒸着膜を形成する第二ゾーン、
前記保持手段から前記被処理体の保持を解除する第三ゾーン、
が順に並んで構成されており、
前記第二ゾーンにおける成膜終了後に前記被処理体の成膜状態を検査する検査手段を有する第三ゾーンが設けられ、
前記検査手段が前記内部空間に対して密閉された大気ボックスに内蔵されるとともに、前記検査手段による検査領域が前記被処理体の幅方向全域をカバーするように前記検査手段が前記被処理体の幅方向に複数設けられることを特徴とする有機ELデバイスの製造装置。
A film formation chamber having a single internal space that can be decompressed is provided between a process chamber A that performs a preceding process and a process chamber B that performs a subsequent process. An object for manufacturing an organic EL device by passing an object to be processed to a processing chamber B through a plurality of zones arranged in the internal space of the film forming chamber,
As the plurality of zones,
A first zone for holding the back surface of the object to be processed using a holding means;
A second zone for forming a deposited film on the surface of the object to be processed held by the holding means;
A third zone for releasing the holding of the object to be processed from the holding means;
Are arranged in order,
A third zone having inspection means for inspecting the film formation state of the object to be processed after the film formation in the second zone is completed;
The inspection means is built in an atmospheric box sealed with respect to the internal space, and the inspection means is disposed on the object to be processed so that an inspection region by the inspection means covers the entire width direction of the object to be processed. 2. An organic EL device manufacturing apparatus, comprising a plurality of organic EL devices provided in the width direction.
前記検査手段が前記被処理体の搬送方向に複数列設けられることを特徴とする請求項1記載の有機ELデバイスの製造装置。   The organic EL device manufacturing apparatus according to claim 1, wherein the inspection unit is provided in a plurality of rows in the transport direction of the object to be processed. 前記大気ボックスには、前記計測対象を所定の波長の照射光で照らすための照射手段が搭載されることを特徴とする請求項3記載の有機ELデバイスの製造装置。   4. The organic EL device manufacturing apparatus according to claim 3, wherein an irradiation unit for illuminating the measurement target with irradiation light of a predetermined wavelength is mounted on the atmospheric box.
JP2014000982A 2014-01-07 2014-01-07 Organic EL device manufacturing equipment Active JP6270205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000982A JP6270205B2 (en) 2014-01-07 2014-01-07 Organic EL device manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000982A JP6270205B2 (en) 2014-01-07 2014-01-07 Organic EL device manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2015130263A true JP2015130263A (en) 2015-07-16
JP6270205B2 JP6270205B2 (en) 2018-01-31

Family

ID=53760860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000982A Active JP6270205B2 (en) 2014-01-07 2014-01-07 Organic EL device manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6270205B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085605A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Deposition device
JP2005281859A (en) * 2004-03-03 2005-10-13 Sanyo Electric Co Ltd Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
JP2007265850A (en) * 2006-03-29 2007-10-11 Konica Minolta Holdings Inc Method and device of manufacturing organic electroluminescent element
US20120009332A1 (en) * 2010-07-12 2012-01-12 Kim Sang-Yeol Method of manufacturing organic light-emitting display device
JP2012502177A (en) * 2008-09-05 2012-01-26 エスエヌユー プレシジョン カンパニー,リミテッド Vapor deposition apparatus and vapor deposition method using the same
JP2013189678A (en) * 2012-03-14 2013-09-26 Hitachi Zosen Corp Vapor deposition apparatus
JP2014515789A (en) * 2011-04-20 2014-07-03 コーニンクレッカ フィリップス エヌ ヴェ Measuring apparatus and method for vapor deposition applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085605A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Deposition device
JP2005281859A (en) * 2004-03-03 2005-10-13 Sanyo Electric Co Ltd Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
JP2007265850A (en) * 2006-03-29 2007-10-11 Konica Minolta Holdings Inc Method and device of manufacturing organic electroluminescent element
JP2012502177A (en) * 2008-09-05 2012-01-26 エスエヌユー プレシジョン カンパニー,リミテッド Vapor deposition apparatus and vapor deposition method using the same
US20120009332A1 (en) * 2010-07-12 2012-01-12 Kim Sang-Yeol Method of manufacturing organic light-emitting display device
JP2014515789A (en) * 2011-04-20 2014-07-03 コーニンクレッカ フィリップス エヌ ヴェ Measuring apparatus and method for vapor deposition applications
JP2013189678A (en) * 2012-03-14 2013-09-26 Hitachi Zosen Corp Vapor deposition apparatus

Also Published As

Publication number Publication date
JP6270205B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
KR101605698B1 (en) Substrate processing apparatus, substrate processing method, program and computer storage medium
KR102125839B1 (en) Position detection device, position detection method, and vapor deposition apparatus
JP4886549B2 (en) Position detection apparatus and position detection method
TWI542867B (en) Apparatus for inspecting edge portion of substrate
KR101807396B1 (en) Testing device for pellicle and method for testing using same
US9666408B2 (en) Apparatus and method for processing sample, and charged particle radiation apparatus
JP6152281B2 (en) Pattern inspection method and pattern inspection apparatus
WO2014027375A1 (en) Plate glass inspection unit and manufacturing facility
KR200487281Y1 (en) Apparatus for examining substrate
JP2012094770A (en) Inspection device and substrate positioning method
KR20180016428A (en) Method for using mask and mask for deposition system
KR102355732B1 (en) Testing apparatus and testing method
TWI655305B (en) Thin film forming apparatus, method for forming thin film
JP6270205B2 (en) Organic EL device manufacturing equipment
US11474438B2 (en) Inspection apparatus
TW201426825A (en) Multi-functional apparatus for testing and etching substrate and substrate processing apparatus including the same
JP5766316B2 (en) Substrate processing apparatus, substrate processing method, program, and computer storage medium
WO2003062806A1 (en) Inspection device using scanning electron microscope
JP5657039B2 (en) Sample loading device
JP2015129326A (en) Manufacturing apparatus for organic el device
JP6330284B2 (en) Deposition mask inspection method and deposition mask inspection jig
JP2013234864A (en) Examination machine
US20140127837A1 (en) Thin film deposition apparatus and method of depositing thin film using the same
TW201916208A (en) Inspection device and inspection method that can accommodate a metal mask sheet at graded manner after inspecting a metal mask sheet
KR20100042340A (en) Apparatus and method for inspecting semi-conductor wafer backside

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6270205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250