JP2015128788A - Manufacturing method of bearing outer ring - Google Patents

Manufacturing method of bearing outer ring Download PDF

Info

Publication number
JP2015128788A
JP2015128788A JP2014002273A JP2014002273A JP2015128788A JP 2015128788 A JP2015128788 A JP 2015128788A JP 2014002273 A JP2014002273 A JP 2014002273A JP 2014002273 A JP2014002273 A JP 2014002273A JP 2015128788 A JP2015128788 A JP 2015128788A
Authority
JP
Japan
Prior art keywords
peripheral
axial
diameter
cylindrical
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014002273A
Other languages
Japanese (ja)
Other versions
JP6252179B2 (en
Inventor
小林 一登
Kazuto Kobayashi
一登 小林
寛 小山
Hiroshi Koyama
寛 小山
Original Assignee
日本精工株式会社
Nsk Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社, Nsk Ltd filed Critical 日本精工株式会社
Priority to JP2014002273A priority Critical patent/JP6252179B2/en
Priority claimed from US14/151,272 external-priority patent/US9056375B2/en
Publication of JP2015128788A publication Critical patent/JP2015128788A/en
Application granted granted Critical
Publication of JP6252179B2 publication Critical patent/JP6252179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To expose an intermediate part metal material 29 existing at an intermediate cylindrical portion 27 which is high in a degree of cleaning out of a cylindrical raw material 10 at an entire portion becoming outer ring raceways 2, 2.SOLUTION: An outer ring 3 which constitutes a back-face combined type double-row angular type ball bearing is formed by sequentially applying the swaging processing of (A)→(B), the fore-and-aft simultaneous extrusion processing of (C)→(D), the punching processing of (D)→(E), the rolling processing of (D)→(E), and finishing processing to a cylindrical raw material 10. In the fore-and-aft simultaneous extrusion processing, a radial-center shifted portion of a first intermediate raw material 11a is crushed to an axial direction by using a floating die 31 having a die-side circular protrusion 34 at a bottom plate part 35, and a punch 33 having a punch-side circular protrusion 37 at a tip face. Then, a metal material constituting the first intermediate raw material 11a is moved substantially equally to both sides of the punch 33 in an extrusion direction (frontward and rearward) while moving it to the outside of a radial direction.

Description

この発明は、自動車、工作機械、産業機械等、各種機械装置の回転支持部に組み込む複列アンギュラ型の転がり軸受を構成する軸受外輪の製造方法の改良に関する。   The present invention relates to an improvement in a manufacturing method of a bearing outer ring constituting a double-row angular type rolling bearing incorporated in a rotation support portion of various machines such as automobiles, machine tools, industrial machines, and the like.

各種機械装置の回転支持部分を構成する為に、図7に示す様な、背面組み合わせ型の複列アンギュラ型玉軸受1が、広く使用されている。この複列アンギュラ型玉軸受1は、内周面に複列の外輪軌道2、2を備えた外輪3と、それぞれの外周面に内輪軌道4、4を形成した1対の内輪5、5と、これら両外輪軌道2、2とこれら両内輪5、5の内輪軌道4、4との間にそれぞれ複数個ずつ転動自在に設けられた玉6、6と、これら各玉6、6を保持する為の1対の保持器7、7とを備える。この様な複列アンギュラ型玉軸受1は、例えば、前記外輪3をハウジング8に内嵌固定すると共に、前記両内輪5、5を回転軸9に外嵌固定する。そして、このハウジング8の内側にこの回転軸9を、回転自在に支持する。   In order to constitute the rotation support part of various mechanical devices, a double-row angular ball bearing 1 of a rear combination type as shown in FIG. 7 is widely used. This double-row angular ball bearing 1 includes an outer ring 3 having double-row outer ring raceways 2 and 2 on the inner peripheral surface, and a pair of inner rings 5 and 5 having inner ring raceways 4 and 4 formed on the respective outer peripheral surfaces. A plurality of balls 6, 6 are provided between the outer ring raceways 2, 2 and the inner ring raceways 4, 4 of the inner rings 5, 5, respectively, and hold these balls 6, 6. And a pair of cages 7 and 7 for the purpose. In such a double-row angular ball bearing 1, for example, the outer ring 3 is fitted and fixed to the housing 8, and the inner rings 5 and 5 are fitted and fixed to the rotary shaft 9. The rotating shaft 9 is rotatably supported inside the housing 8.

この様な複列アンギュラ型玉軸受1を構成する、前記外輪3及び前記両内輪5、5は、例えば特許文献1〜5等に記載されて周知の様に、鍛造加工、ローリング加工、切削乃至研削加工を施す事により、所定の形状及び寸法に加工している。例えば、前記外輪3に関しては、従来から、図8に示す様な工程で造っていた。先ず、この従来の軸受外輪の製造方法に就いて説明する。   The outer ring 3 and the both inner rings 5 and 5 constituting such a double-row angular ball bearing 1 are described in, for example, Patent Documents 1 to 5 and the like, as is well known in the art. By grinding, it is processed into a predetermined shape and size. For example, the outer ring 3 has been conventionally manufactured by a process as shown in FIG. First, the conventional method for manufacturing a bearing outer ring will be described.

この図8に示した、従来から知られている軸受外輪の製造方法では、先ず、(A)に示した様な円柱状の原素材10を、長尺な原材料を所定長さに切断する事により得る。   In the conventionally known method for manufacturing a bearing outer ring shown in FIG. 8, first, a cylindrical raw material 10 as shown in (A) is cut into a predetermined length from a long raw material. By

次いで、この原素材10に、1対の金型の互いに対向する押圧面同士の間で軸方向に押し潰す、据え込み加工を施す事により、(B)に示す様な、母線形状が略円弧形である第一中間素材11とする。   Next, the raw material 10 is subjected to upsetting by crushing in the axial direction between the pressing surfaces of the pair of molds facing each other, so that the shape of the bus bar as shown in FIG. The first intermediate material 11 is arc-shaped.

次いで、この第一中間素材11に、(C)→(D)に示した後方押出加工を施す事により、(D)に示した第二中間素材12とする。   Next, the second intermediate material 12 shown in (D) is obtained by subjecting the first intermediate material 11 to backward extrusion shown in (C) → (D).

前記後方押出加工は、ダイス13とパンチ14との間で前記第一中間素材11の径方向中央部分を軸方向に押し潰すと共に、径方向外寄り部分を前記パンチ14の押し込み方向後方に塑性変形させる事により行う。前記ダイス13は有底円筒状で、円形の底板部15と、この底板部15の外周縁部から上方に立上った周壁部16とを備える。このうちの底板部15の外径寄り部分には環状凹溝17を、全周に亙って形成している。又、前記周壁部16の内周面は、開口部寄り(中間部乃至上端部)の内周面側大径部18と、前記底板部15寄り(下端部)の内周面側小径部19とを、軸方向中間部の内周面側傾斜部20により連続させた、段付形状としている。このうちの内周面側小径部19は、前記環状凹溝17の外径寄り内周面と単一円筒面上に位置している。又、前記パンチ14は、外周面を、先端寄り(下半部)の外周面側小径部21と、基端寄り(上半部)の外周面側大径部22とを、軸方向中間部の外周面側傾斜部23により連続させた、段付形状としている。それぞれが上述の様に構成される前記ダイス13とパンチ14とは、プレス加工機のテーブルとラムとに、互いに同心に支持固定する。即ち、前記ダイス13をこのテーブルの上面に、前記パンチ14を前記ラムの下端面に、それぞれ支持固定する。   In the backward extrusion process, the radially central portion of the first intermediate material 11 is crushed between the die 13 and the punch 14 in the axial direction, and the radially outward portion is plastically deformed backward in the pushing direction of the punch 14. To do. The die 13 has a bottomed cylindrical shape, and includes a circular bottom plate portion 15 and a peripheral wall portion 16 that rises upward from an outer peripheral edge portion of the bottom plate portion 15. An annular groove 17 is formed over the entire circumference of the bottom plate portion 15 near the outer diameter. Further, the inner peripheral surface of the peripheral wall portion 16 has an inner peripheral surface side large diameter portion 18 near the opening (intermediate portion or upper end portion) and an inner peripheral surface side small diameter portion 19 near the bottom plate portion 15 (lower end portion). Is a stepped shape made continuous by the inner peripheral surface side inclined portion 20 of the intermediate portion in the axial direction. Among these, the inner peripheral surface side small-diameter portion 19 is located on the inner peripheral surface near the outer diameter of the annular groove 17 and a single cylindrical surface. In addition, the punch 14 has an outer peripheral surface that includes an outer peripheral surface side small-diameter portion 21 near the distal end (lower half portion) and an outer peripheral surface-side large diameter portion 22 close to the base end (upper half portion). The stepped shape is made continuous by the outer peripheral surface side inclined portion 23. The die 13 and the punch 14 each configured as described above are supported and fixed concentrically with each other on a table and a ram of a press machine. That is, the die 13 is supported and fixed on the upper surface of the table, and the punch 14 is supported and fixed on the lower end surface of the ram.

前記後方押出加工を行う際には、前記ラムと共に前記パンチ14を上昇させた状態で、前記第一中間素材11を前記ダイス13内にセットする。従来の製造方法の場合、この第一中間素材11の外径は、少なくとも下端寄り部分で前記内周面側小径部19内に入り込む部分で、この内周面側小径部19の内径よりも小さくしている。従って、前記第一中間素材11を前記ダイス13内にセットした状態では、(C)に示す様に、この第一中間素材11の下面が前記底板部15の上面で前記環状凹溝17の内側部分に当接する。そこで、この状態から前記ラムにより前記パンチ14を下降させて、(D)に示す様に、このパンチ14の先端面と前記ダイス13の底板部15の上面との間で、前記第一中間素材11の中央部を軸方向に押し潰す。   When the backward extrusion process is performed, the first intermediate material 11 is set in the die 13 with the punch 14 raised together with the ram. In the case of the conventional manufacturing method, the outer diameter of the first intermediate material 11 is smaller than the inner diameter of the inner peripheral surface side small-diameter portion 19 at a portion that enters the inner peripheral surface-side small diameter portion 19 at least near the lower end. doing. Therefore, in a state where the first intermediate material 11 is set in the die 13, the lower surface of the first intermediate material 11 is the upper surface of the bottom plate portion 15 and the inner side of the annular groove 17 as shown in FIG. Abuts the part. Therefore, the punch 14 is lowered by the ram from this state, and the first intermediate material is placed between the tip surface of the punch 14 and the upper surface of the bottom plate portion 15 of the die 13 as shown in FIG. 11 is crushed in the axial direction.

この押し潰しにより、前記底板部15の上面と前記パンチ14の先端面との間から径方向外方に押し出された金属材料は、前記第一中間素材11の径方向外寄り部分に存在する金属材料と共に、前記パンチ14の押し込み方向後方(上方)に移動する。この様にしてこのパンチ14の押し込み方向後方に移動した金属材料は、このパンチ14の外周面と前記周壁部16の内周面との形状に倣って、内外両周面が段付円筒面である、段付円筒状となる。又、前記金属材料の一部は、前記環状凹溝17内に入り込んで、当該部分の形状を糸底状とする。この様にして行う前記後方押出加工により、(D)に示す様な、内外両周面が段付円筒面で全体が有底円筒状の、前記第二中間素材12を得られる。   By this crushing, the metal material pushed radially outward from between the upper surface of the bottom plate portion 15 and the tip end surface of the punch 14 is a metal present in the radially outward portion of the first intermediate material 11. Along with the material, the punch 14 moves backward (upward) in the pushing direction. In this way, the metal material that has moved rearward in the pressing direction of the punch 14 follows the shape of the outer peripheral surface of the punch 14 and the inner peripheral surface of the peripheral wall portion 16, and both the inner and outer peripheral surfaces are stepped cylindrical surfaces. It becomes a stepped cylindrical shape. A part of the metal material enters the annular groove 17 and the shape of the part is a thread bottom. As a result of the backward extrusion performed in this manner, the second intermediate material 12 can be obtained in which both the inner and outer peripheral surfaces are stepped cylindrical surfaces and the whole is a bottomed cylindrical shape as shown in (D).

次いで、この様な第二中間素材12に、この第二中間素材12の底部24を打ち抜き除去する打ち抜き加工を施す事により、(E)に示す様な、段付円筒状の第三中間素材25とする。この打ち抜き加工は、プラス加工機により打ち抜きパンチを、前記第二中間素材12に突き通す事により行う。   Next, the second intermediate material 12 is subjected to a punching process for punching and removing the bottom portion 24 of the second intermediate material 12 to thereby form a stepped cylindrical third intermediate material 25 as shown in FIG. And This punching is performed by piercing the second intermediate material 12 with a punching punch using a plus processing machine.

この様にして、前記第三中間素材25を造った後、この第三中間素材25に冷間でローリング加工(CRF)を施して、(F)に示す様な第四中間素材26とする。この冷間ローリング加工では、例えば前記第三中間素材25を、この第三中間素材25の(大径側の)外径と一致する内径を有し、内周面を円筒面とした外径側ローラに内嵌する。そして、前記第三中間素材25の内径よりも十分に小さな外径を有し、外周面の母線形状を前記第四中間素材26の内周面の母線形状に見合う(凹凸が逆になった)形状とした内径側ローラを、前記第三中間素材25の内周面に押し付ける。そして、この内径側ローラを回転させつつ、この第三中間素材25の内周面に押し付ける。前記外径側ローラは、回転のみ自在に(径方向の変位を阻止された状態で)支持されているので、前記内径側ローラの回転に伴って前記第三中間素材25が、前記外径側ローラと共に回転する。この為、この第三中間素材25の内周面に前記内径側ローラの外周面の母線形状が全周に亙って転写されると共に、この第三中間素材25の外周面が円筒面に加工される。   In this way, after the third intermediate material 25 is manufactured, the third intermediate material 25 is cold-rolled (CRF) to obtain a fourth intermediate material 26 as shown in FIG. In this cold rolling process, for example, the third intermediate material 25 has an inner diameter that matches the outer diameter of the third intermediate material 25 (on the large diameter side), and the outer peripheral side has an inner peripheral surface as a cylindrical surface. Fits into the roller. The outer diameter of the third intermediate material 25 is sufficiently smaller than the inner diameter of the third intermediate material 25, and the bus bar shape of the outer peripheral surface matches the bus bar shape of the inner peripheral surface of the fourth intermediate material 26 (unevenness is reversed). The shaped inner diameter side roller is pressed against the inner peripheral surface of the third intermediate material 25. Then, the inner diameter side roller is pressed against the inner peripheral surface of the third intermediate material 25 while rotating. Since the outer diameter side roller is supported only rotatably (in a state in which radial displacement is prevented), the third intermediate material 25 is moved to the outer diameter side as the inner diameter side roller rotates. Rotates with the roller. For this reason, the bus bar shape of the outer peripheral surface of the inner diameter side roller is transferred to the inner peripheral surface of the third intermediate material 25 over the entire periphery, and the outer peripheral surface of the third intermediate material 25 is processed into a cylindrical surface. Is done.

尚、前記ローリング加工は、互いに反対方向に回転する1対のローラ同士の間に前記第三中間素材25の周方向の一部を挟持し、これら両ローラを互いに近付く方向に押圧しつつ、これら両ローラの外周面の形状を前記第三中間素材25の内外両周面に転写する状態で行う場合もある。何れにしても、前記(F)に示す様な第四中間素材26を得られる。この第四中間素材26は、外周面が軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である。   In the rolling process, a part of the circumferential direction of the third intermediate material 25 is sandwiched between a pair of rollers rotating in directions opposite to each other, and these two rollers are pressed in a direction approaching each other. In some cases, the shape of the outer peripheral surfaces of both rollers is transferred to the inner and outer peripheral surfaces of the third intermediate material 25. In any case, the fourth intermediate material 26 as shown in (F) can be obtained. In the fourth intermediate material 26, the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface has the smallest inner diameter in the axial intermediate portion, and the inner diameter increases toward both axial end portions. Is a shape inclined in the direction of gradually increasing.

この様にして得られた、前記第四中間素材26には、必要な仕上加工を施す事により、前述の図7に示した様な、複列アンギュラ型玉軸受1を構成する外輪3として完成する。即ち、前記第四中間素材26のうちの余肉部を削り取る事で、図8の(F)及び図9に鎖線で示した形状の外輪3とする。又、この外輪3の内周面に形成した1対の外輪軌道2、2部分に、研削加工や超仕上加工等、これら両外輪軌道2、2の表面の性状を整える加工を施す。   The fourth intermediate material 26 thus obtained is finished as the outer ring 3 constituting the double-row angular ball bearing 1 as shown in FIG. 7 by performing necessary finishing. To do. That is, by cutting off the surplus portion of the fourth intermediate material 26, the outer ring 3 having the shape shown by the chain line in FIG. Further, the pair of outer ring raceways 2 and 2 formed on the inner peripheral surface of the outer ring 3 is subjected to processing for adjusting the surface properties of both the outer ring raceways 2 and 2 such as grinding and super finishing.

ところで、前記外輪3を造る為の、前記原素材10は、鉄鋼メーカーで押し出し成形された、断面円形の長尺材を所定長さに切断する事で造られた、円柱状のものを使用する。この様にして得られる円柱状の原素材10の組成(清浄度)は均一でないこと、即ち、前記原素材10の中央部40%の範囲(中心から半径の40%までの中央寄り円柱状部分)は、非金属介在物が存在し易い事が、前記特許文献6の記載等により、従来から知られている。又、前記原素材10の外径寄り20%の範囲(中心から半径の80%よりも外周面側に存在する円筒状部分)に関しても、酸化物や非金属介在物が存在し易い等により、清浄度が低い事が知られている。そして、中心寄り、外周面寄り、何れの部分に存在する金属材料にしても、清浄度が低い金属材料が、前記外輪3の内周面に設けた1対の外輪軌道2、2のうちで、特に玉6、6(図7)の転動面が転がり接触する部分に露出すると、この部分の転がり疲れ寿命の確保が難しくなる。   By the way, the said raw material 10 for making the said outer ring | wheel 3 uses the column-shaped thing produced by cut | disconnecting the elongate material of a circular cross section to the predetermined length extruded by the steel manufacturer. . The composition (cleanliness) of the columnar raw material 10 obtained in this way is not uniform, that is, the range of the central part 40% of the raw material 10 (the central cylindrical part from the center to 40% of the radius) ) Has been conventionally known from the description of Patent Document 6 and the like that non-metallic inclusions are likely to exist. Further, regarding the range of 20% closer to the outer diameter of the raw material 10 (cylindrical portion existing on the outer peripheral surface side than 80% of the radius from the center), oxides and non-metallic inclusions are easily present, etc. It is known that the cleanliness is low. And even if it is a metal material which exists in any part near the center and the outer peripheral surface, a metal material with low cleanliness is a pair of outer ring raceways 2 and 2 provided on the inner peripheral surface of the outer ring 3. In particular, when the rolling surfaces of the balls 6 and 6 (FIG. 7) are exposed to the portion that comes into contact with rolling, it is difficult to ensure the rolling fatigue life of this portion.

これらの事を考慮し、且つ、素材中の酸化物や非金属介在物の分布のばらつきや、製造作業時に発生する(押圧力等の)各種ばらつきを考慮した場合、前記原素材10の中央部50%の範囲、及び、前記原素材10の外径寄り30%の範囲に存在する金属材料が、前記両外輪軌道2、2のうちで、少なくとも転動面が転がり接触する部分に露出しない様にする事が好ましい。言い換えれば、前記両外輪軌道2、2のうちの少なくとも転動面が転がり接触する部分には、前記原素材10のうちで、中心からの半径が50〜70%の範囲である、中間円筒状部分27{図8の(A)に斜格子を付した部分。他の、図1、図2、図5、図6、図8の(B)〜(F)、及び図9に関しても、斜格子を付した部分は、前記中間円筒状部分27に存在した金属材料(中間部金属材料29)により構成されている事を表している。}に存在する金属材料を露出させる事が好ましい。   In consideration of these things, and taking into account variations in the distribution of oxides and non-metallic inclusions in the material and various variations (such as pressing force) that occur during manufacturing operations, the central portion of the raw material 10 The metal material existing in the range of 50% and in the range of 30% near the outer diameter of the raw material 10 is not exposed to at least the portion of the outer ring races 2 and 2 where the rolling contact surface is in rolling contact. Is preferable. In other words, at least a portion of the outer ring raceways 2 and 2 where the rolling contact surface is in rolling contact is an intermediate cylindrical shape having a radius from the center of 50 to 70% in the raw material 10. Part 27 {A part with a diagonal lattice added to FIG. 1, 2, 5, 6, 8 (B) to (F), and FIG. 9, the hatched portion is the metal present in the intermediate cylindrical portion 27. It shows that it is comprised with material (intermediate part metal material 29). } Is preferably exposed.

ところが、本発明の製造方法の対象となる様な、軸方向中間部の内径が小さく、内周面の軸方向2箇所位置でこの内径が小さくなった部分の両側に複列の外輪軌道2、2を備えた外輪3を鍛造加工により造る場合、前記中間円筒状部分27に存在する金属材料を前記両軌道面に露出させる事が難しい。例えば、前述の図8に示した様な方法で、前記図9に鎖線で示した外輪3を造ると、前記原素材10中の各部の金属材料、即ち、中心から半径の50%までの中央寄り円柱状部分に存在する中心側金属材料28と、中心からの半径が50〜70%の範囲である、前記中間円筒状部分27に存在する中間部金属材料29と、外径寄り30%の範囲の外径寄り円筒状部分に存在する外径側金属材料30とは、前記図9に示す様に、前記外輪3中に分布する。この外輪3は、前述の様に、鍛造加工により図9に実線で示した第四中間素材26を造った後、切削加工及び研削加工により、この図9に鎖線で示す状態にまで前記第四中間素材26を削り取り、前記外輪3として完成する。   However, the inner diameter of the intermediate portion in the axial direction, which is the object of the manufacturing method of the present invention, is small, and double rows of outer ring raceways 2 are formed on both sides of the portion where the inner diameter is reduced at two positions in the axial direction of the inner peripheral surface. When the outer ring 3 provided with 2 is made by forging, it is difficult to expose the metal material present in the intermediate cylindrical portion 27 on the both raceway surfaces. For example, when the outer ring 3 shown by the chain line in FIG. 9 is made by the method shown in FIG. 8, the metal material of each part in the raw material 10, that is, the center from the center to 50% of the radius. A center side metal material 28 present in the near columnar part, an intermediate part metal material 29 present in the intermediate cylindrical part 27 having a radius from the center in the range of 50 to 70%, and an outer diameter near 30%. The outer diameter side metal material 30 existing in the cylindrical portion near the outer diameter in the range is distributed in the outer ring 3 as shown in FIG. As described above, after forming the fourth intermediate material 26 shown by the solid line in FIG. 9 by forging as described above, the outer ring 3 is cut into the state shown by the chain line in FIG. 9 by cutting and grinding. The intermediate material 26 is scraped off to complete the outer ring 3.

この様な第四中間素材26と外輪3とを示した図9中、斜格子で示した、前記中間円筒状部分27に存在する中間部金属材料29が、1対の外輪軌道2、2のうちで、少なくとも玉の転動面が転がり接触する部分に露出すれば、これら両外輪軌道2、2の転がり疲れ寿命を確保し、前記外輪3を含む、前記複列アンギュラ型玉軸受1の耐久性確保を図り易くなる。ところが、前記図9から明らかな通り、従来の製造方法により前記外輪3を造ると、前記中央寄り円柱状部分の中心側金属材料28が、前記両外輪軌道2、2のうちの一方(図9の下方)の外輪軌道2の表面全体に露出する。例えば、図9の矢印αは、各玉6(図7参照)の接触角を40度(接触角の余角である中心軸に対する角度=50度)とした場合に、前記各玉6、6から前記両外輪軌道2、2に加わる荷重の作用方向を示している。前記外輪3の断面形状を表す前記図9の鎖線上で、前記各矢印αが指している部分に前記中間部金属材料29が存在すれば、前記両外輪軌道2、2の転がり疲れ寿命を確保し易いが、図9の下方の内輪軌道2に関しては、前記図9の鎖線上で前記各矢印αが指している部分に、中心側金属材料28が存在する。この為、従来から知られている軸受外輪の製造方法では、前記複列アンギュラ型玉軸受1の耐久性確保を図る為の設計の自由度が限られる。   In FIG. 9 showing such a fourth intermediate material 26 and the outer ring 3, the intermediate metal material 29 present in the intermediate cylindrical portion 27, which is indicated by an oblique lattice, is formed by a pair of outer ring raceways 2, 2. Among these, if at least the rolling surface of the ball is exposed to the rolling contact portion, the rolling fatigue life of both the outer ring raceways 2 and 2 is secured, and the durability of the double-row angular ball bearing 1 including the outer ring 3 is ensured. It is easy to ensure the performance. However, as apparent from FIG. 9, when the outer ring 3 is manufactured by the conventional manufacturing method, the center side metal material 28 of the central cylindrical portion is one of the outer ring raceways 2 and 2 (FIG. 9). Exposed to the entire surface of the outer ring raceway 2. For example, the arrow α in FIG. 9 indicates that when the contact angle of each ball 6 (see FIG. 7) is 40 degrees (the angle with respect to the central axis that is the remainder of the contact angle = 50 degrees), The direction of the action of the load applied to both the outer ring raceways 2 and 2 is shown. If the intermediate metal material 29 is present at the portion indicated by the arrow α on the chain line in FIG. 9 representing the cross-sectional shape of the outer ring 3, the rolling fatigue life of the outer ring races 2 and 2 is ensured. However, with respect to the inner ring raceway 2 in the lower part of FIG. 9, the center-side metal material 28 exists in the part indicated by the arrows α on the chain line in FIG. 9. For this reason, the conventionally known methods for manufacturing a bearing outer ring limit the degree of freedom in design for ensuring the durability of the double-row angular ball bearing 1.

特開平9−176740号公報JP-A-9-176740 特開平9−280255号公報JP-A-9-280255 特開平11−140543号公報JP-A-11-140543 特開2002−79347号公報JP 2002-79347 A 特開2003−230927号公報JP 2003-230927 A 特開2006−250317号公報JP 2006-250317 A

本発明は、上述の様な事情に鑑みて、内周面の軸方向中間部の内径が両側部分の内径よりも小さく、且つ、この内径が小さくなった部分を挟む軸方向2箇所位置に複列の外輪軌道を備えた軸受外輪を、円柱状の素材を塑性変形させる事により造る場合に、前記両外輪軌道となる部分全体に、素材のうちで清浄度の高い中間円筒状部分の金属材料を露出させられる軸受外輪の製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has an inner diameter at the intermediate portion in the axial direction that is smaller than the inner diameters at both side portions, and is positioned at two positions in the axial direction sandwiching the portion with the smaller inner diameter. When a bearing outer ring having a row of outer ring raceways is made by plastically deforming a cylindrical material, the metal material of the intermediate cylindrical portion having a high degree of cleanliness among the raw materials is formed on the entire portion to be the outer ring raceways. The invention was invented to realize a method of manufacturing a bearing outer ring that exposes the bearing.

本発明の製造方法の対象となる軸受外輪は、内周面の軸方向2箇所位置に複列の背面組み合わせ型の外輪軌道を備える。   The bearing outer ring which is the object of the manufacturing method of the present invention includes double-row rear combination type outer ring raceways at two positions in the axial direction of the inner peripheral surface.

この様な軸受外輪を製造する為に、本発明の製造方法のうち、請求項1に記載した軸受外輪の製造方法の場合、金属製で円柱状の原素材に、据え込み加工と、前後方同時押出加工と、打ち抜き加工と、ローリング加工と、仕上加工とを順次施す。
このうちの据え込み加工では、前記原素材を軸方向に押し潰して、軸方向中間部の外径が軸方向両端部の外径よりも大きくなった第一中間素材とする。
又、前記前後方同時押出加工では、フローティングダイスと押圧パンチとの間で、前記第一中間素材の中央部を軸方向に押し潰す。このうちのフローティングダイスは、弾性部材により上方に向いた弾力を付与された周壁部と、この周壁部の底部に配置され、上面中央部に円形凸部を設けた底板部とから構成している。そして、この円形凸部の外周面と前記周壁部の内周面との間を円筒状成形空間としている。又、前記押圧パンチは、先端部の外径をこの周壁部の内径よりも小さくしている。そして、前記押し潰しに伴い径方向外方に押し出された金属材料及び前記第一中間素材の径方向外寄り部分に存在する金属材料を、前記押圧パンチの押し込み方向前方に存在する前記円筒状成形空間と、この押圧パンチの押し込み方向後方でこの押圧パンチの先端部外周面と前記周壁部の内周面との間に存在する円筒状の空間とに、それぞれ移動させる。これと共に、前記第一中間素材の外周面と前記周壁部の内周面との間に作用する摩擦に基づきこの周壁部を前記弾性部材の弾力に抗して下降させ、円筒部の軸方向中間部の内径側に隔壁部を設けた第二中間素材とする。
又、前記打ち抜き加工では、前記第二中間素材の隔壁部を打ち抜き除去する事で、全体が円筒状の第三中間素材とする。
又、前記ローリング加工では、この第三中間素材の内外両周面を塑性変形させて、外周面が軸方向に関し外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である第四中間素材とする。尚、軸方向に関して外径が実質的に変化しない円筒面とは、軸方向両端縁部に設けた面取り部を除き、外径が変化しない形状を言う(本明細書全体及び特許請求の範囲で同じ)。
又、前記仕上加工では、前記第四中間素材の内周面を削り取る事により、この内周面に前記両外輪軌道を形成する。
In order to manufacture such a bearing outer ring, among the manufacturing methods of the present invention, in the case of the manufacturing method of a bearing outer ring according to claim 1, an upsetting process and a front-rear process are performed on a metal and cylindrical raw material. Simultaneous extrusion, punching, rolling, and finishing are sequentially performed.
In the upsetting process, the raw material is crushed in the axial direction to obtain a first intermediate material in which the outer diameter of the axially intermediate portion is larger than the outer diameters of the axially opposite ends.
In the front-rear simultaneous extrusion process, the central portion of the first intermediate material is crushed in the axial direction between the floating die and the pressing punch. Of these, the floating die is composed of a peripheral wall portion provided with an upward elastic force by an elastic member, and a bottom plate portion disposed at the bottom of the peripheral wall portion and provided with a circular convex portion at the center of the upper surface. . A space between the outer peripheral surface of the circular convex portion and the inner peripheral surface of the peripheral wall portion is a cylindrical molding space. Further, the pressing punch has an outer diameter at the tip portion smaller than an inner diameter of the peripheral wall portion. Then, the cylindrical molding that exists in the front of the pressing punch in the pressing direction of the metal material that has been extruded radially outward with the crushing and the metal material that exists in the radially outer portion of the first intermediate material The space and the cylindrical space existing between the outer peripheral surface of the front end portion of the press punch and the inner peripheral surface of the peripheral wall portion are moved behind the press punch in the pressing direction. At the same time, based on the friction acting between the outer peripheral surface of the first intermediate material and the inner peripheral surface of the peripheral wall portion, the peripheral wall portion is lowered against the elastic force of the elastic member, thereby The second intermediate material is provided with a partition wall on the inner diameter side.
Further, in the punching process, the partition wall portion of the second intermediate material is punched and removed, so that the whole is formed into a cylindrical third intermediate material.
In the rolling process, both the inner and outer peripheral surfaces of the third intermediate material are plastically deformed, and the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface is the intermediate axial direction. The fourth intermediate material has the smallest inner diameter and is inclined in a direction in which the inner diameter gradually increases as both side portions of the axial intermediate portion move toward both axial end portions. The cylindrical surface whose outer diameter does not substantially change in the axial direction refers to a shape whose outer diameter does not change except for chamfered portions provided at both end edges in the axial direction (in the entire specification and claims). the same).
In the finishing process, the outer peripheral raceway is formed on the inner peripheral surface by scraping the inner peripheral surface of the fourth intermediate material.

一方、請求項2に記載した軸受外輪の製造方法の場合、金属製で円柱状の原素材に、据え込み加工と、前方押出加工と、後方押出加工と、打ち抜き加工と、ローリング加工と、仕上加工とを順次施す事により、前記軸受外輪とする。即ち、上述の請求項1に記載した軸受外輪の製造方法のうち、前後方同時押出加工に代えて、前方押出加工及び後方押出加工を採用する。前記請求項2に記載した軸受外輪の製造方法は、これら前方押出加工及び後方押出加工を採用している点以外に就いては、前記請求項1に記載した軸受外輪の製造方法と同様である。   On the other hand, in the case of the method for manufacturing a bearing outer ring according to claim 2, an upsetting process, a forward extrusion process, a backward extrusion process, a punching process, a rolling process, a finishing process are performed on a metal cylindrical raw material. The bearing outer ring is obtained by sequentially performing processing. That is, in the bearing outer ring manufacturing method according to the first aspect described above, a front extrusion process and a rear extrusion process are employed instead of the front-rear simultaneous extrusion process. The method for manufacturing the bearing outer ring according to the second aspect is the same as the method for manufacturing the bearing outer ring according to the first aspect except that the forward extrusion process and the backward extrusion process are employed. .

前記前方押出加工では、フローティングダイスと第一押圧パンチとの間で、第一中間素材の中央部を軸方向に押し潰す。このうちのフローティングダイスは、弾性部材により上方に向いた弾力を付与された周壁部と、この周壁部の底部に配置され、上面中央部に円形凸部を設けた底板部とから構成している。そして、この円形凸部の外周面と前記周壁部の内周面との間を円筒状成形空間としている。又、前記第一押圧パンチは、外径をこの周壁部の内径と実質的に同じにしている(この周壁部の内径側を軸方向に変位可能とする為の円環状の微小隙間を設けるべく、この周壁部の内径よりも僅かに小さくしている)。前記押し潰しに伴って径方向外方に押し出された金属材料及び前記第一中間素材の径方向外寄り部分に存在する金属材料を、前記第一押圧パンチの押し込み方向前方に存在する前記円筒状成形空間に移動させる。これと共に、前記第一中間素材の外周面と前記周壁部の内周面との間に作用する摩擦に基づきこの周壁部を前記弾性部材の弾力に抗して下降させ、円柱部の軸方向片端面に開口する円形凹部を設けた予備中間素材とする。   In the forward extrusion process, the central portion of the first intermediate material is crushed in the axial direction between the floating die and the first pressing punch. Of these, the floating die is composed of a peripheral wall portion provided with an upward elastic force by an elastic member, and a bottom plate portion disposed at the bottom of the peripheral wall portion and provided with a circular convex portion at the center of the upper surface. . A space between the outer peripheral surface of the circular convex portion and the inner peripheral surface of the peripheral wall portion is a cylindrical molding space. The first pressing punch has an outer diameter substantially the same as the inner diameter of the peripheral wall portion (in order to provide an annular minute gap for enabling the inner diameter side of the peripheral wall portion to be displaced in the axial direction). The inner wall is slightly smaller than the inner diameter). The cylindrical material present in the pushing direction of the first pressing punch is a metal material extruded radially outward with the crushing and a metal material present in a radially outward portion of the first intermediate material. Move to molding space. At the same time, the peripheral wall portion is lowered against the elastic force of the elastic member based on the friction acting between the outer peripheral surface of the first intermediate material and the inner peripheral surface of the peripheral wall portion, and the axial piece of the cylindrical portion The preliminary intermediate material is provided with a circular recess opening on the end face.

又、前記後方押出加工では、有底円筒状で、底部内面の形状を前記予備中間素材の軸方向片端部に見合う形状としたダイスと、先端部の外径がこのダイスの内径よりも小さい第二押圧パンチとの間で前記予備中間素材の中央部を軸方向に押し潰す。そして、この押し潰しに伴い径方向外方に押し出された金属材料及び前記予備中間素材の径方向外寄り部分に存在する金属材料を、前記第二押圧パンチの押し込み方向後方でこの第二押圧パンチの先端部外周面と前記ダイスの内周面との間に存在する円筒状の空間に移動させて、円筒部の軸方向中間部の内径側に隔壁部を設けた第二中間素材とする。   Further, in the backward extrusion process, a die having a bottomed cylindrical shape and an inner surface of the bottom portion corresponding to one end portion in the axial direction of the preliminary intermediate material and an outer diameter of the tip portion are smaller than the inner diameter of the die. Between the two pressing punches, the central portion of the preliminary intermediate material is crushed in the axial direction. Then, the metal material pushed outward in the radial direction with the crushing and the metal material existing in the radially outward portion of the preliminary intermediate material are transferred to the second press punch behind the second press punch. Is moved to a cylindrical space existing between the outer peripheral surface of the tip of the die and the inner peripheral surface of the die, thereby forming a second intermediate material having a partition wall provided on the inner diameter side of the axially intermediate portion of the cylindrical portion.

上述の様な本発明の軸受外輪の製造方法を実施する場合に好ましくは、請求項3に記載した発明の様に、前記第一中間素材の軸方向長さを、前記原素材の軸方向長さの70%以下にする。
又、好ましくは請求項4に記載した発明の様に、前記第二中間素材の隔壁部の軸方向に関する厚さを、前記第一中間素材の軸方向長さの30%以下にする。
Preferably, when the bearing outer ring manufacturing method of the present invention as described above is performed, the axial length of the first intermediate material is set to the axial length of the raw material as in the invention described in claim 3. 70% or less.
Preferably, as in the invention described in claim 4, the thickness of the partition wall portion of the second intermediate material in the axial direction is set to 30% or less of the axial length of the first intermediate material.

上述の様に構成する本発明の軸受外輪の製造方法によれば、内周面のうち、内径が最も小さくなった部分を挟んだ、軸方向に離隔した2箇所位置に形成した1対の外輪軌道となる部分全体に、原素材のうちで清浄度の高い中間円筒状部分の金属材料を露出させられる。この為、前記両外輪軌道の転がり疲れ寿命を確保し、これら両外輪軌道を備えた軸受外輪を含む、複列転がり軸受の耐久性確保の為の設計の自由度向上を図れる。
即ち、本発明の場合、第一中間素材の中央部を押し潰し、この押し潰しに伴ってこの第一中間素材を構成する金属材料を、押圧パンチの押し込み方向前方に存在する円筒状成形空間に移動させる際に、フローティングダイスを構成する周壁部を下降させる。この為、前記第一中間素材を塑性変形させ、円筒部の軸方向中間部の内径側に隔壁部を設けた第二中間素材とする過程で、前記金属材料を軸方向に関しほぼ均等に移動させ、この第二中間素材を軸方向に関しほぼ対称にできる。この結果、前記両外輪軌道となる部分全体に、前記清浄度の高い中間円筒状部分の金属材料を確実に露出させられる。
According to the bearing outer ring manufacturing method of the present invention configured as described above, a pair of outer rings formed at two positions spaced apart in the axial direction across the portion of the inner peripheral surface with the smallest inner diameter. The metal material of the intermediate cylindrical portion having a high cleanliness among the raw materials can be exposed to the entire portion serving as the track. For this reason, the rolling fatigue life of the both outer ring raceways can be ensured, and the degree of freedom in design for ensuring the durability of the double row rolling bearing including the bearing outer ring provided with both the outer ring raceways can be improved.
That is, in the case of the present invention, the central portion of the first intermediate material is crushed, and the metal material constituting the first intermediate material is squeezed into the cylindrical forming space existing forward of the pressing punch in the pressing direction. When moving, the peripheral wall part which comprises a floating die is dropped. For this reason, in the process of plastically deforming the first intermediate material to form a second intermediate material having a partition wall provided on the inner diameter side of the axial intermediate portion of the cylindrical portion, the metal material is moved substantially uniformly in the axial direction. The second intermediate material can be made almost symmetrical with respect to the axial direction. As a result, the metal material of the intermediate cylindrical portion having a high cleanliness can be reliably exposed to the entire portion that becomes the outer ring raceways.

本発明の実施の形態の第1例を、工程順に、中央寄り円柱状部分の金属材料と、中間円筒状部分の金属材料と、外径寄り円筒状部分の金属材料との分布状況が変化する状況と共に示す、原素材乃至第四中間素材、並びに、フローティングダイス及び押圧パンチの断面図。In the first example of the embodiment of the present invention, the distribution state of the metal material of the cylindrical portion near the center, the metal material of the intermediate cylindrical portion, and the metal material of the cylindrical portion near the outer diameter changes in the order of steps. Sectional drawing of a raw material thru | or a 4th intermediate material, a floating die, and a press punch shown with a condition. 第四中間素材の段階での、中央寄り円柱状部分の金属材料と、中間円筒状部分の金属材料と、外径寄り円筒状部分の金属材料との分布状況を示す断面図。Sectional drawing which shows the distribution condition of the metal material of the cylindrical part near the center, the metal material of the intermediate cylindrical part, and the metal material of the cylindrical part near the outer diameter at the stage of the fourth intermediate material. 図1の(C)の拡大図(A)と、同図の(D)の拡大図(B)。The enlarged view (A) of (C) of FIG. 1, and the enlarged view (B) of (D) of the figure. 固定式のダイスを用いた場合の問題点を説明する為の、図1の(C)に相当する図(A)と、同図の(D)に相当する図(B)。FIG. 2A is a diagram corresponding to FIG. 1C and FIG. 2B is a diagram corresponding to FIG. 1D for explaining problems when a fixed die is used. パンチの先端面の直径を規制する事の効果を説明する為の、図1の(C)に相当する図(A)と、同図の(D)に相当する図(B)と、同図の(F)に相当する図(C)。FIG. 1A corresponding to FIG. 1C and FIG. 2B corresponding to FIG. 1D for explaining the effect of regulating the diameter of the front end surface of the punch. Figure (C) corresponding to (F). 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 本発明の製造方法の対象となる軸受外輪を備えたアンギュラ型の複列玉軸受を備えた回転支持部の1例を示す断面図。Sectional drawing which shows an example of the rotation support part provided with the angular type double row ball bearing provided with the bearing outer ring used as the object of the manufacturing method of this invention. 従来から知られている軸受外輪の製造方法を示す、図1と同様の図。The figure similar to FIG. 1 which shows the manufacturing method of the bearing outer ring | wheel conventionally known. 同じく図2と同様の図。The same figure as FIG.

[実施の形態の第1例]
図1〜3は、請求項1、3、4に対応する、本発明の実施の形態の第1例を示している。本例の製造方法は、図1の(A)に示した、中炭素鋼、軸受鋼、浸炭鋼の如き鉄系合金等の、塑性加工後に焼き入れ硬化可能な、金属製で円柱状の原素材10に、順次、塑性加工或いは打ち抜き加工を施す。そして、(B)に示した第一中間素材11a、(D)に示した第二中間素材12a、(E)に示した第三中間素材25aを経て、(F)に示した第四中間素材26aを得る。更に、この第四中間素材26aに、必要とする切削加工及び研削加工を施して、前述の図7に示した様な複列アンギュラ型玉軸受1を構成する外輪3とする。以下、前記原素材10を前記第四中間素材26aに加工する工程に就いて、順番に説明する。尚、以下の加工のうち、(A)→(E)に示した、据え込み加工と、後方押出加工と、打ち抜き加工とは、基本的には総て熱間若しくは温間で行い、(E)→(F)に示したローリング加工は冷間で行うが、小型の外輪3を形成し、しかも金属材料として優れた延性を有するものを使用する場合等、可能であれば、全工程を冷間で行っても良い。
[First example of embodiment]
1-3 show a first example of an embodiment of the present invention corresponding to claims 1, 3 and 4. The manufacturing method of this example is a metal columnar raw material that can be hardened by hardening after plastic working, such as an iron-based alloy such as medium carbon steel, bearing steel, and carburized steel shown in FIG. The material 10 is sequentially subjected to plastic working or punching. Then, after passing through the first intermediate material 11a shown in (B), the second intermediate material 12a shown in (D), and the third intermediate material 25a shown in (E), the fourth intermediate material shown in (F). 26a is obtained. Further, the fourth intermediate material 26a is subjected to necessary cutting and grinding to form the outer ring 3 constituting the double row angular ball bearing 1 as shown in FIG. Hereinafter, the process of processing the raw material 10 into the fourth intermediate material 26a will be described in order. Of the following processes, the upsetting process, the backward extrusion process, and the punching process shown in (A) → (E) are basically performed hot or warm. ) → The rolling process shown in (F) is performed cold, but if possible, the entire process can be cooled if a small outer ring 3 is formed and a metal material having excellent ductility is used. You may go between.

先ず、図1の(A)→(B)に示す様に、前記原素材10に据え込み加工を施して、この原素材10を軸方向に押し潰しつつ外径を拡げ、この原素材10を、軸方向中間部が膨らんだ、前記第一中間素材11aとする。この様な据え込み加工の基本的な実施状況に関しては、前述の図8に示した、従来の製造方法での据え込み工程と同様である。即ち、前記原素材10を、1対の金型の押圧面同士の間で押し潰す、据え込み加工を施す事により、母線形状が略円弧形でビヤ樽型の前記第一中間素材11aとする。この据え込み加工での前記原素材10の加工量(押し潰し量)は、この第一中間素材11aの軸方向長さL11が、この原素材10の軸方向長さL10の70%以下(L11≦0.7L10)となる様に規制する。前記第一中間素材11aの軸方向長さL11を、前記原素材10の軸方向長さL10の70%よりも長くした場合、次の前後方同時押出工程で前記第一中間素材11aを構成する金属材料の動きを適切に規制できなくなる可能性がある。この結果、前記原素材10のうち、中心からの半径が50〜70%の範囲である中間円筒状部分27に存在する、清浄度の高い中間部金属材料29を、複列の外輪軌道2、2となる部分全体に亙り露出させ難くなる。但し、前記押し潰し量が過度に大きくすると(前記第一中間素材11aの軸方向長さL11が過度に短いと)、次の前後方同時押出加工に於いて押圧パンチ33の押し込みに伴い、前記第一中間素材11aを構成する金属材料を径方向外方に移動させつつ、前記押圧パンチ33の押し込み方向両側にほぼ均等に移動させられなくなる可能性がある。従って、前記押し潰し量は、上述の条件(L11≦0.7L10)を満たし、且つ、前記前後方同時押出加工で前記第一中間素材11aを構成する金属材料の移動を適切に行える範囲で設計的に定める。 First, as shown in FIG. 1 (A) → (B), the raw material 10 is upset and the outer diameter is expanded while the raw material 10 is crushed in the axial direction. The first intermediate material 11a has an axially intermediate portion swelled. The basic implementation status of such upsetting is the same as the upsetting process in the conventional manufacturing method shown in FIG. That is, the raw material 10 is crushed between the pressing surfaces of a pair of molds, and is subjected to an upsetting process, thereby forming the first intermediate material 11a having a substantially circular arc shape and a beer barrel shape. . The processing amount (crushing amount) of the raw material 10 in this upsetting process is such that the axial length L 11 of the first intermediate material 11 a is 70% or less of the axial length L 10 of the raw material 10. (L 11 ≦ 0.7L 10) and made to regulate as. The axial length L 11 of the first intermediate material 11a, when longer than 70% of the axial length L 10 of the original material 10, the first intermediate material 11a in the next front and rear co-extrusion process There is a possibility that the movement of the constituent metal material cannot be properly regulated. As a result, in the raw material 10, the intermediate metal material 29 having a high cleanliness existing in the intermediate cylindrical portion 27 having a radius from the center in the range of 50 to 70% is replaced with the double row outer ring raceway 2, It becomes difficult to be exposed over the entire portion that becomes 2. However, the the crushing amount is excessively increased (the axial length L 11 of the first intermediate material 11a is excessively short), with the push of the pushing punch 33 at the next front and rear co-extrusion process, There is a possibility that the metal material constituting the first intermediate material 11a may not be moved substantially evenly on both sides of the pressing punch 33 in the pressing direction while moving the metal material radially outward. Therefore, the crushing amount satisfies the above-described condition (L 11 ≦ 0.7L 10 ), and the range in which the metal material constituting the first intermediate material 11a can be appropriately moved by the front-rear simultaneous extrusion process. Design by design.

尚、前記据え込み加工の際、前記原素材10の軸方向両端面と、前記両金型の押圧面との間には摩擦力が作用する為、この原素材10の軸方向両端部に於いてはこの原素材10を構成する金属材料、延いてはこの原素材10のうち、前記中間部金属材料29の移動量を小さく抑えられる。従って、この中間円筒状部分27の、据え込み加工後の外径d11は、据え込み加工前の外径d10とほぼ等しくなる(d10≒d11)。 Note that, during the upsetting process, frictional force acts between both axial end surfaces of the raw material 10 and the pressing surfaces of both molds. In this case, the amount of movement of the intermediate metal material 29 can be kept small in the metal material constituting the raw material 10. Accordingly, the outer diameter d 11 of the intermediate cylindrical portion 27 after the upsetting is substantially equal to the outer diameter d 10 before the upsetting (d 10 ≈d 11 ).

上述の様な第一中間素材11aに、次に図1の(C)→(D)に示す様な、前後方同時押出加工を施して、第二中間素材12aとする。この様な前後方同時押出加工では、この第二中間素材12aの表面形状に合致する内面形状を有する、フローティングダイス31及び外面形状を有する押圧パンチ33を使用して、前記第一中間素材11aの径方向中央寄り部分を軸方向に押し潰しこの第一中間素材11aを構成する金属材料を、径方向外方に移動させつつ、前記押圧パンチ33の押し込み方向両側(前方及び後方)にほぼ均等に移動させる。前記フローティングダイス31は、円筒状の周壁部32と、この周壁部32の底部に配置された底板部35とから構成される。このうちの周壁部32は、下方に向いた大きな力が加わった場合に下降する様に、例えばばね、油圧シリンダ等の弾性部材45、45により上方に向いた弾力を付与している。又、前記底板部35は上面の中央部に、前記周壁部32の高さの1/2未満の高さを有するダイス側円形凸部34を設けている。このダイス側円形凸部34は、外径D34を前記周壁部32の内径R32よりも小さくし(D34<R32)、先端面の直径d34を前記中間円筒状部分27の据え込み加工後の外径d11以上(d34≧d11)、好ましくはこの外径d11よりも大きく(d34>d11)している。この理由は、前記ダイス側円形凸部34の先端面と前記第一中間素材11aの端面との間に作用する摩擦により、この第一中間素材11aを構成する金属材料の移動量を規制して、前記中間部金属材料29を前記両外輪軌道2、2となる部分全体に露出させる為である。前記外径d34を過度に大きくした場合、前記中間部金属材料29の、前記第二中間素材12aの円筒部38への移動量が(過度に)少なくなり、この中間部金属材料29を前記両外輪軌道2、2となる部分全体に露出させられなくなる可能性がある。従って、前記外径d34は、上述の条件(d34≧d11)を満たした上で、前記中間部金属材料29を前記両外輪軌道2、2となる部分全体に露出させる様に設計的に定める。又、前記ダイス側円形凸部34は、先端面と外周面とを断面形状が部分円弧形の凸曲面により連続している。そして、このダイス側円形凸部34の外周面と、前記周壁部32の内周面との間を、円筒状成形空間36としている。又、前記押圧パンチ33は先端部に、前記ダイス側円形凸部34を上下方向に反転させた形状を有するパンチ側円形凸部37を備える。 Next, the first intermediate material 11a as described above is subjected to front-rear simultaneous extrusion as shown in FIG. 1C to form a second intermediate material 12a. In such a front-rear simultaneous extrusion process, the floating die 31 and the pressing punch 33 having the outer surface shape having the inner surface shape that matches the surface shape of the second intermediate material 12a are used. The metal material constituting the first intermediate material 11a is crushed in the axial direction at a portion near the center in the radial direction and moved outward in the radial direction while being substantially evenly distributed on both sides (front and rear) of the pressing punch 33 in the pressing direction. Move. The floating die 31 includes a cylindrical peripheral wall portion 32 and a bottom plate portion 35 disposed at the bottom of the peripheral wall portion 32. Of these, the peripheral wall 32 is given upward elasticity by elastic members 45, 45 such as springs and hydraulic cylinders, for example, so as to descend when a large downward force is applied. Further, the bottom plate portion 35 is provided with a die-side circular convex portion 34 having a height less than ½ of the height of the peripheral wall portion 32 at the center of the upper surface. The die-side circular convex portion 34 has an outer diameter D 34 smaller than an inner diameter R 32 of the peripheral wall portion 32 (D 34 <R 32 ), and a tip end diameter d 34 of the intermediate cylindrical portion 27 is set up. The outer diameter d 11 or more after processing (d 34 ≧ d 11 ), preferably larger than the outer diameter d 11 (d 34 > d 11 ). This is because the amount of movement of the metal material constituting the first intermediate material 11a is regulated by the friction acting between the tip surface of the die-side circular convex portion 34 and the end surface of the first intermediate material 11a. This is because the intermediate metal material 29 is exposed to the entire portion to be the outer ring raceways 2 and 2. When the outer diameter d 34 is excessively increased, the amount of movement of the intermediate metal material 29 to the cylindrical portion 38 of the second intermediate material 12a is reduced (too much). There is a possibility that the entire outer ring raceway 2 or 2 cannot be exposed. Therefore, the outer diameter d 34 is designed so that the intermediate metal material 29 is exposed to the entire portion to be the outer ring raceways 2 and 2 after satisfying the above-mentioned condition (d 34 ≧ d 11 ). Stipulated in Further, the die-side circular convex portion 34 has a tip surface and an outer peripheral surface which are continuous by a convex curved surface having a partial arc shape in cross section. A cylindrical molding space 36 is defined between the outer peripheral surface of the die-side circular convex portion 34 and the inner peripheral surface of the peripheral wall portion 32. The pressing punch 33 is provided with a punch-side circular convex portion 37 having a shape obtained by inverting the die-side circular convex portion 34 in the vertical direction at the tip.

即ち、本例の場合、前記前後方同時押出加工では、先ず、図1の(C)に示す様に、前記第一中間素材11aを前記ダイス側円形凸部34の上面に載置する。そして、この状態から、前記押圧パンチ33を下降させ、この押圧パンチ33のパンチ側円形凸部37の先端面{図1の(C)、(D)の下面}により、前記第一中間素材11aを前記フローティングダイス31の底板部35の上面に向けて押し込む。この押し込みの初期段階では、前記第一中間素材11aが拡径しつつ、それぞれが断面形状が部分円弧形である、前記ダイス側円形凸部34の先端面と外周面との連続部及び前記パンチ側円形凸部37の先端面と外周面との連続部に沿って、前記押圧パンチ33の押し込み方向両側に向かって塑性変形する。   That is, in the case of this example, in the front-rear simultaneous extrusion process, first, the first intermediate material 11a is placed on the upper surface of the die-side circular convex portion 34, as shown in FIG. Then, from this state, the pressing punch 33 is lowered, and the first intermediate material 11a is formed by the front end surface {the lower surface of FIGS. 1C and 1D} of the punch-side circular convex portion 37 of the pressing punch 33. Is pushed toward the upper surface of the bottom plate portion 35 of the floating die 31. In the initial stage of the pressing, the continuous portion between the tip surface and the outer peripheral surface of the die-side circular convex portion 34, each of which has a partial arc shape in cross section while the first intermediate material 11a is expanded in diameter, and the The punch side circular convex portion 37 is plastically deformed toward both sides of the pressing punch 33 in the pressing direction along the continuous portion between the front end surface and the outer peripheral surface.

そして、前記第一中間素材11aの外周面が前記周壁部32の内周面に当接した後、更に前記押圧パンチ33を下降させる事で、前記第一中間素材11aの中央部を軸方向(上下方向)両側から押し潰すと共に、この第一中間素材11aの外周面と、前記周壁部32の内周面との間に作用する摩擦に基づき、前記弾性部材45、45の弾力に抗してこの周壁部32を下方に変位させる。そして、押し潰しに伴い径方向外方に押し出された金属材料を、前記第一中間素材11aの径方向外寄り部分に存在する金属材料と共に、前記押圧パンチ33の押し込み方向前方(下方)に存在する前記円筒状成形空間36、及びこの押し込み方向後方(上方)で、前記パンチ側円形凸部37の外周面と前記周壁部32の内周面との間に存在する円筒状の成形用空間46にほぼ均等に移動させる。そこで、前記弾性部材45、45の弾力は、前記押圧パンチ33の押し込みに伴って、前記第一中間素材11aを構成する金属材料をこの押圧パンチ33の押し込み方向両側にほぼ均等に移動させられる大きさに設定する。前記押圧パンチ33の押し込み方向両側に移動した金属材料の内外両周面は、この押圧パンチ33の外周面と前記フローティングダイス31の内面(底面及び内周面)とに見合った形状となる。この結果、前記前後方同時押出加工により、図1の(C)に示した前記第一中間素材11aが、同図の(D)に示す様な、円筒部38の軸方向中間部の内径側に隔壁部39を設けた、前記第二中間素材12aとなる。本例の場合、この隔壁部39の軸方向厚さT39を、前記第一中間素材11aの軸方向長さL11の30%以下(T39≦0.3L11)にしている。前記軸方向厚さT39がこの軸方向長さL11の30%よりも厚いと、前記第一中間素材11aを構成する金属材料の移動量を適切に規制できず、清浄度の高い中間部金属材料29を、前記両外輪軌道2、2となる部分全体に亙り露出させられなくなったり、次の打ち抜き工程で、前記隔壁部39を打ち抜く為に要する力が徒に大きくなる可能性がある。但し、この隔壁部39の軸方向厚さT39を過度に薄くした場合、前記第一中間素材11aの中心から半径50%までの中央寄り円柱状部分に存在する中心側金属材料28の、径方向外方への移動量が多くなる事に伴い、前記中間部金属材料29の径方向外方への移動量が多くなり、この中間部金属材料29を前記両外輪軌道2、2となる部分全体に亙り露出させられなくなる可能性がある。従って、前記隔壁部39の軸方向厚さT39は、上述の条件(T39≦0.3L11)を満たした上で、前記中心側金属材料28の移動量を適切な量に抑えられる範囲で設計的に定める。 Then, after the outer peripheral surface of the first intermediate material 11a comes into contact with the inner peripheral surface of the peripheral wall portion 32, the pressing punch 33 is further lowered so that the central portion of the first intermediate material 11a is axially moved ( (Vertical direction) Crushing from both sides, and against the elasticity of the elastic members 45, 45 based on the friction acting between the outer peripheral surface of the first intermediate material 11a and the inner peripheral surface of the peripheral wall portion 32 The peripheral wall portion 32 is displaced downward. Then, the metal material pushed out in the radial direction along with the crushing is present forward (downward) in the pushing direction of the pressing punch 33 together with the metal material present in the radially outward portion of the first intermediate material 11a. The cylindrical molding space 36 and the cylindrical molding space 46 existing between the outer peripheral surface of the punch-side circular convex portion 37 and the inner peripheral surface of the peripheral wall portion 32 at the rear (upward) in the pushing direction. Move almost evenly. Therefore, the elasticity of the elastic members 45, 45 is such that the metal material constituting the first intermediate material 11a can be moved substantially evenly on both sides of the pressing punch 33 in the pressing direction as the pressing punch 33 is pressed. Set to Both the inner and outer peripheral surfaces of the metal material moved to both sides of the pressing punch 33 in the pressing direction have shapes corresponding to the outer peripheral surface of the pressing punch 33 and the inner surfaces (bottom surface and inner peripheral surface) of the floating die 31. As a result, the first intermediate material 11a shown in FIG. 1C is converted into the inner diameter side of the intermediate portion in the axial direction of the cylindrical portion 38 as shown in FIG. The second intermediate material 12a is provided with a partition wall 39. In the case of this example, the axial thickness T 39 of the partition wall 39 is set to 30% or less (T 39 ≦ 0.3 L 11 ) of the axial length L 11 of the first intermediate material 11a. When the axial thickness T 39 is greater than 30% of the axial length L 11, it can not be adequately restrict the movement of the metal material constituting the first intermediate material 11a, highly clean intermediate portion There is a possibility that the metal material 29 cannot be exposed over the entire portion that becomes both the outer ring raceways 2 and 2 or the force required to punch out the partition wall 39 in the next punching process may increase. However, when the axial thickness T39 of the partition wall 39 is excessively thinned, the diameter of the center-side metal material 28 present in the central cylindrical portion from the center of the first intermediate material 11a to the radius of 50%. As the amount of movement outward in the direction increases, the amount of movement of the intermediate metallic material 29 in the radial outward direction increases, and this intermediate metallic material 29 is used as the two outer ring raceways 2 and 2. There is a possibility that it will not be exposed to the whole. Therefore, the axial thickness T 39 of the partition wall 39 satisfies the above-mentioned condition (T 39 ≦ 0.3L 11 ), and the range in which the movement amount of the center side metal material 28 can be suppressed to an appropriate amount. Design by design.

この様な第二中間素材12aは、図示しないカウンターパンチにより前記隔壁部39を上方に押圧する等により、前記フローティングダイス31から取り出した後、前述した従来の製造方法の場合と同様の打ち抜き加工とローリング加工とを施す事により、図1の(F)及び図2に示す様な、第四中間素材26aとする。このうちの打ち抜き加工では、前記第二中間素材12aを図示しない受型の内周面に保持した状態で、この第二中間素材12aの内径側に図示しない打ち抜きパンチを押し込み、前記隔壁部39を打ち抜き除去する。この様な打ち抜き工程により、図1の(E)に示す様な、略円筒状の、前記第三中間素材25aとする。次いで、前記ローリング加工では、図示しない1対のローラによりこの第三中間素材25aの内外両周面をこれら両ローラの周面に見合う形状に塑性変形させて、前記第四中間素材26aとする。   Such a second intermediate material 12a is removed from the floating die 31 by, for example, pressing the partition wall 39 upward with a counter punch (not shown), and then punched in the same manner as in the conventional manufacturing method described above. By performing the rolling process, the fourth intermediate material 26a as shown in FIG. 1F and FIG. 2 is obtained. In the punching process, a punching punch (not shown) is pushed into the inner diameter side of the second intermediate material 12a in a state where the second intermediate material 12a is held on the inner peripheral surface of the receiving die (not shown), and the partition wall 39 is formed. Remove by punching. By such a punching process, the third intermediate material 25a having a substantially cylindrical shape as shown in FIG. Next, in the rolling process, the inner and outer peripheral surfaces of the third intermediate material 25a are plastically deformed into shapes corresponding to the peripheral surfaces of both rollers by a pair of rollers (not shown) to form the fourth intermediate material 26a.

この第四中間素材26aは、完成後の外輪3{図1の(F)及び図2の鎖線参照}よりも厚肉である。そこで、この第四中間素材26aに、所定の切削(旋削)加工、熱処理及び研削加工を施し、前記外輪3として完成する。図1及び図3に、加工の進行に伴う、中心側、中間部、外径側各金属材料28〜30の分布状態の変化状況を、図1の(F)及び図2に、前記第四中間素材26aの段階での、前記各金属材料28〜30の分布状態と完成後の外輪3の断面形状とを示している。   The fourth intermediate material 26a is thicker than the completed outer ring 3 {see FIG. 1 (F) and the chain line in FIG. 2}. Accordingly, the fourth intermediate material 26a is subjected to predetermined cutting (turning) processing, heat treatment, and grinding processing to complete the outer ring 3. FIG. 1 and FIG. 3 show changes in the distribution state of the metal materials 28 to 30 on the center side, the intermediate part, and the outer diameter side as processing proceeds, and FIG. 1 (F) and FIG. The distribution state of each said metal material 28-30 in the stage of the intermediate material 26a and the cross-sectional shape of the outer ring | wheel 3 after completion are shown.

これら各図から明らかな通り、本例の外輪3の製造方法によれば、この外輪3の内周面の軸方向に離隔した2箇所位置に形成した1対の外輪軌道2、2のうち、少なくとも転動体荷重が作用する部分に、各図に斜格子で示した、前記原素材10のうちで清浄度の高い中間円筒状部分27の中間部金属材料29を露出させられる。特に本例の場合、前記第一中間素材11aから前記第二中間素材12aへの加工を、前記フローティングダイス31を使用し、前記前後方同時押出加工により行う為、前記第二中間素材12aを軸方向に関してほぼ対称な形状とする事ができる。この理由に就いて、図1及び図3に加え、図4を参照しつつ、説明する。即ち、前後方同時押出加工を、図4に示す様な、円形で、上面にダイス側円形凸部34aを設けた底板部15aと、この底板部15aの外周縁部から上方に立上った(下端部内周縁をこの底板部15aの外周縁部に支持固定した)周壁部16aとから成るダイス13aを使用して行った場合、前記第一中間素材11aを構成する金属材料の移動を、押圧パンチ33の押し込み方向両側に均等に行い難い。即ち、この金属材料の移動量は、前記第一中間素材11aの外周面と、前記周壁部16aの内周面との間に作用する摩擦の影響により、図4の(B)に示す様に、前記押圧パンチ33の押し込み方向前方でこの押し込み方向後方よりも小さくなる。これに対し、本例の場合、図1の(C)、(D)に示す様な、前記フローティングダイス31を使用し、前記押圧パンチ33の押し込みに伴ってこのフローティングダイス31を構成する周壁部32を、前記弾性部材45、45の弾力に抗して下方(前記押圧パンチ33の押し込み方向前方)に変位させる為、前記金属材料をこの押圧パンチ33の押し込み方向両側にほぼ均等に移動させる事ができる。この結果、前記第二中間素材12aを軸方向に関してほぼ対称な形状とする事ができる。   As is clear from these figures, according to the method of manufacturing the outer ring 3 of this example, of the pair of outer ring raceways 2 and 2 formed at two positions spaced apart in the axial direction of the inner peripheral surface of the outer ring 3, The intermediate metal material 29 of the intermediate cylindrical portion 27 having a high cleanliness among the raw materials 10, which is indicated by a diagonal grid in each drawing, is exposed to at least a portion where the rolling element load acts. Particularly in the case of this example, since the processing from the first intermediate material 11a to the second intermediate material 12a is performed by the front-rear simultaneous extrusion using the floating die 31, the second intermediate material 12a is pivoted. The shape can be almost symmetrical with respect to the direction. The reason for this will be described with reference to FIG. 4 in addition to FIGS. That is, the front-rear coextrusion process is circular, as shown in FIG. 4, and rises upward from the bottom plate portion 15a provided with the die-side circular convex portion 34a on the upper surface and the outer peripheral edge portion of the bottom plate portion 15a. When the die 13a comprising the peripheral wall portion 16a (with the inner peripheral edge of the lower end portion supported and fixed to the outer peripheral edge portion of the bottom plate portion 15a) is used, the movement of the metal material constituting the first intermediate material 11a is pressed. It is difficult to carry out evenly on both sides of the punch 33 in the pushing direction. That is, the amount of movement of the metal material is as shown in FIG. 4B due to the influence of friction acting between the outer peripheral surface of the first intermediate material 11a and the inner peripheral surface of the peripheral wall portion 16a. The front side of the pressing punch 33 is smaller than the rear side of the pressing direction. On the other hand, in the case of this example, as shown in FIGS. 1C and 1D, the floating die 31 is used, and the peripheral wall portion constituting the floating die 31 as the pressing punch 33 is pushed in. 32 is displaced downward (frontward in the pressing direction of the pressing punch 33) against the elastic force of the elastic members 45, 45, so that the metal material is moved substantially evenly on both sides of the pressing punch 33 in the pressing direction. Can do. As a result, the second intermediate material 12a can be shaped substantially symmetrical with respect to the axial direction.

又、本例の場合、上述の様に、前記第一中間素材11aから前記第二中間素材12aへの加工を、前記前後方同時押出加工により、これら両素材11a、12aの軸方向に関してほぼ対称な状態で行うと共に、前記第一中間素材11aの両端面を軸方向両側から押圧する、前記ダイス側円形凸部34及びパンチ側円形凸部37の先端面の直径を、前記第一中間素材11aを構成する中間円筒状部分27の据え込み加工後の外径以上としている。この為、図1の(C)〜(E)及び図2に示す様に、清浄度の高い中間部金属材料29を、複列の外輪軌道2、2となる部分全体に亙り露出させられる。即ち、本例の場合、前記ダイス側円形凸部34及びパンチ側円形凸部37の先端面と、前記第一中間素材11aの両端面との間に摩擦が作用する為、この第一中間素材11aの両端面でこの第一中間素材11aを構成する金属材料が殆ど移動せず、中間部金属材料29の移動量を適切な大きさに規制できる。これに対し、図5に示す様に、前記前後方同時押出加工に使用するフローティングダイス31a及び押圧パンチ33aとして、ダイス側円形凸部34b及びパンチ側円形凸部37aの先端面の直径d34b、d37aが、中間円筒状部分27の据え込み加工後の外径d11よりも小さいものを使用した場合、中間部金属材料29の移動量を適切に規制できず、図5の(B)に示す様に、この中間部金属材料29が径方向外方に向け大きく(過度に)移動してしまう。この結果、清浄度の高い中間部金属材料29を、複列の外輪軌道2、2となる部分全体に亙り露出させられなくなったり、仕上加工での切削量が増大して、前記外輪3の製造コストが増大する。 In the case of this example, as described above, the processing from the first intermediate material 11a to the second intermediate material 12a is substantially symmetrical with respect to the axial direction of both the materials 11a and 12a by the front-rear simultaneous extrusion. The diameters of the tip end surfaces of the die-side circular convex portion 34 and the punch-side circular convex portion 37 that press both end surfaces of the first intermediate material 11a from both sides in the axial direction are set as the first intermediate material 11a. Is set to be equal to or larger than the outer diameter after the upsetting of the intermediate cylindrical portion 27 constituting the. For this reason, as shown in FIGS. 1C to 1E and FIG. 2, the intermediate metal material 29 having a high cleanliness is exposed over the entire portion that forms the double-row outer ring raceways 2 and 2. That is, in the case of this example, friction acts between the tip surfaces of the die-side circular convex portion 34 and the punch-side circular convex portion 37 and both end surfaces of the first intermediate material 11a. The metal material constituting the first intermediate material 11a hardly moves on both end faces of 11a, and the amount of movement of the intermediate metal material 29 can be regulated to an appropriate size. On the other hand, as shown in FIG. 5, as the floating die 31a and the press punch 33a used for the front-rear simultaneous extrusion process, the diameter d 34b of the tip surface of the die side circular convex portion 34b and the punch side circular convex portion 37a, When the diameter d 37a is smaller than the outer diameter d 11 after the upsetting of the intermediate cylindrical portion 27, the movement amount of the intermediate metal material 29 cannot be properly controlled, and FIG. As shown, the intermediate metal material 29 moves greatly (excessively) radially outward. As a result, the intermediate metal material 29 having a high degree of cleanliness cannot be exposed over the entire portion that forms the double-row outer ring raceways 2 and 2, and the amount of cutting in the finishing process increases, thereby producing the outer ring 3. Cost increases.

以上の様に、本例の軸受外輪の製造方法によれば、清浄度の高い中間部金属材料29を、複列の外輪軌道2、2となる部分全体に亙り露出させられて、これら両外輪軌道2、2の転がり疲れ寿命を十分に確保できる。そして、例えばこれら両外輪軌道2、2を備えた外輪3を含む、車輪支持用転がり軸受ユニットの耐久性確保の為の設計の自由度を、より向上させられる。   As described above, according to the manufacturing method of the bearing outer ring of this example, the intermediate metal material 29 having a high degree of cleanness is exposed over the entire portion that forms the double-row outer ring raceways 2 and 2, and both the outer rings are exposed. The rolling fatigue life of the tracks 2 and 2 can be sufficiently secured. And the freedom degree of the design for ensuring durability of the rolling bearing unit for wheel support including the outer ring | wheel 3 provided with these both outer ring raceways 2 and 2, for example can be improved more.

[実施の形態の第2例]
図6は、請求項2〜4に対応する、本発明の実施の形態の第2例を示している。本例の場合には、前述の図1〜3に記載した実施の形態の第1例で、図1の(C)→(D)で行う、前後方同時押出加工に代え、図6の(C)→(D)に示した前方押出加工、及び同図の(E)→(F)に示した後方押出加工を行う。本例の場合、これら前方押出加工及び後方押出加工を採用した点以外は、前記実施の形態の第1例の製造方法と同様である。
[Second Example of Embodiment]
FIG. 6 shows a second example of an embodiment of the present invention corresponding to claims 2 to 4. In the case of this example, in the first example of the embodiment described in FIGS. 1 to 3 described above, instead of the front-rear coextrusion process performed in (C) → (D) of FIG. The forward extrusion process shown in (C) → (D) and the backward extrusion process shown in (E) → (F) in FIG. In the case of this example, it is the same as that of the manufacturing method of the 1st example of the said embodiment except the point which employ | adopted these forward extrusion processes and back extrusion processes.

前記実施の形態の第1例の場合、ビヤ樽型の第一中間素材11aに前後方同時押出加工を施し、この第一中間素材11aを構成する金属材料を、押圧パンチ33の押し込み方向両側にほぼ均等に移動させる事で、第二中間素材12aとする。但し、前記実施の形態の第1例の場合には、前記第一中間素材11aの外周面と、フローティングダイス31の周壁部32の内周面との間の摩擦が過度に大きくなると、前記金属材料の移動を均等に行い難くなる。即ち、前記第一中間素材11aの外周面と、前記周壁部32の内周面との間に作用する摩擦が大きくなった場合、前記金属材料の移動量は、前記押圧パンチ33の押し込み方向前方でこの押し込み方向後方よりも小さくなる。この押圧パンチ33を大きな力で押し込めば、前記金属材料を、この押し込み方向前方に存在する円筒状成形空間36内全体に進入させる(行き渡らせる)事ができるが、プレス加工機が大型化したり、前記押圧パンチ33の外周面と前記周壁部32の内周面との微小隙間に前記金属材料の一部が入り込んで、当該部分にバリが形成される可能性がある。尚、前記摩擦の大きさは、前記中間素材11aを構成する金属材料の材質、前記フローティングダイス31の周壁部32の内周面の性状等により異なる。   In the case of the first example of the above embodiment, the first intermediate material 11a of the beer barrel type is subjected to the front-rear simultaneous extrusion process, and the metal material constituting the first intermediate material 11a is substantially disposed on both sides of the pressing punch 33 in the pressing direction. By moving evenly, the second intermediate material 12a is obtained. However, in the first example of the embodiment, if the friction between the outer peripheral surface of the first intermediate material 11a and the inner peripheral surface of the peripheral wall portion 32 of the floating die 31 becomes excessively large, the metal It becomes difficult to move the material evenly. That is, when the friction acting between the outer peripheral surface of the first intermediate material 11a and the inner peripheral surface of the peripheral wall portion 32 is increased, the movement amount of the metal material is the front of the pressing punch 33 in the pressing direction. Becomes smaller than the rear in the pushing direction. If the pressing punch 33 is pushed in with a large force, the metal material can enter (spread) the entire cylindrical forming space 36 existing forward in the pushing direction, but the press machine can be enlarged, There is a possibility that a part of the metal material enters a minute gap between the outer peripheral surface of the pressing punch 33 and the inner peripheral surface of the peripheral wall portion 32, and a burr may be formed in the portion. The magnitude of the friction varies depending on the material of the metal material constituting the intermediate material 11a, the properties of the inner peripheral surface of the peripheral wall portion 32 of the floating die 31, and the like.

これに対し、本例の場合、図6の(B)に示した第一中間素材11aに、前記前方押出加工を施して、図6の(D)に示した予備中間素材40に加工する。この様な前方押出加工では、フローティングダイス31と第一押圧パンチ41とを使用して、前記第一中間素材11aの径方向中央寄り部分を軸方向に押し潰し、金属材料を径方向外方に移動させつつ、前記第一押圧パンチ41の押し込み方向前方(下方)に移動させる。前記フローティングダイス31は、前記実施の形態の第1例の製造方法で使用するもの{図1の(C)、(D)参照}と同様に、円筒状で、下方に向いた大きな力が加わった場合に下降する様に、弾性部材45、45により上方に向いた弾力を付与された周壁部32と、この周壁部32の底部に配置され、上面中央部にこの周壁部32の高さ寸法の1/2未満の高さ寸法を有するダイス側円形凸部34とを設けた底板部35とを備える。一方、前記第一押圧パンチ41は、先端面を平坦面とし、外径を前記周壁部32の内径と実質的に同じとしている。   On the other hand, in the case of this example, the first intermediate material 11a shown in FIG. 6B is subjected to the forward extrusion process to be processed into the preliminary intermediate material 40 shown in FIG. In such forward extrusion processing, the floating die 31 and the first pressing punch 41 are used to squeeze the radially central portion of the first intermediate material 11a in the axial direction, so that the metal material is radially outward. The first pressing punch 41 is moved forward (downward) while being moved. The floating die 31 is cylindrical, like the one used in the manufacturing method of the first example of the embodiment {see (C) and (D) in FIG. 1}, and a large downward force is applied. The peripheral wall portion 32 provided with elastic force directed upward by the elastic members 45, 45, and the bottom of the peripheral wall portion 32, and the height dimension of the peripheral wall portion 32 at the center of the upper surface. And a bottom plate portion 35 provided with a die-side circular convex portion 34 having a height dimension of less than ½. On the other hand, the first pressing punch 41 has a flat end surface and an outer diameter that is substantially the same as the inner diameter of the peripheral wall portion 32.

前記前方押出加工では、先ず、図6の(C)に示す様に、前記第一中間素材11aを前記ダイス側円形凸部34の上面に載置する。そして、この状態から、前記第一押圧パンチ41を下降させ、この第一押圧パンチ41の先端面{図1の(C)、(D)の下端面}により、前記第一中間素材11aを前記フローティングダイス31の底板部35の上面に向けて押し込む。この押し込みの初期段階では、前記第一中間素材11aが拡径しつつ、前記ダイス側円形凸部34の先端面と外周面との連続部に沿って、前記第一押圧パンチ41の押し込み方向前方(下方)に向かって塑性変形する。   In the forward extrusion process, first, as shown in FIG. 6C, the first intermediate material 11a is placed on the upper surface of the die-side circular convex portion. Then, from this state, the first pressing punch 41 is lowered, and the first intermediate material 11a is moved to the front end surface of the first pressing punch 41 (the lower end surface of (C) and (D) of FIG. 1). It pushes toward the upper surface of the bottom plate part 35 of the floating die 31. In the initial stage of the pressing, the first pressing material 41 is pushed forward in the pressing direction along the continuous portion between the tip surface and the outer peripheral surface of the die-side circular convex portion 34 while the first intermediate material 11a expands in diameter. Plastic deformation toward (downward).

そして、前記第一中間素材11aの外周面が前記周壁部32の内周面に当接した後、更に前記第一押圧パンチ41を下降させる事で、前記第一中間素材11aの中央部を下方から押し潰すと共に、この第一中間素材11aの外周面と、前記周壁部32の内周面との間に作用する摩擦に基づき、前記弾性部材45、45の弾力に抗してこの周壁部32を下方に変位させる。そして、押し潰しに伴い径方向外方に押し出された金属材料を、前記第一中間素材11aの径方向外寄り部分に存在する金属材料と共に、前記第一押圧パンチ41の押し込み方向前方(下方)に存在する円筒状成形空間36に移動させる。この様に、この第一押圧パンチ41の押し込み方向前方に移動した金属材料の内外両周面は、前記周壁部32の内周面と前記ダイス側円形凸部34の外周面とで画成される前記円筒状成形空間36に見合った形状となる。この結果、前記前方押出加工により、図6の(B)に示した前記第一中間素材11aが、同図の(D)に示す様な、円柱部42の軸方向片端面(下面)に円形凹部43を設けた、前記予備中間素材40となる。この予備中間素材40は、図示しないカウンターパンチにより前記円形凹部43の底面を上方に押圧する等により、前記フローティングダイス31から取り出す。   Then, after the outer peripheral surface of the first intermediate material 11a comes into contact with the inner peripheral surface of the peripheral wall portion 32, the central portion of the first intermediate material 11a is moved downward by further lowering the first pressing punch 41. The peripheral wall portion 32 against the elastic force of the elastic members 45, 45 based on the friction acting between the outer peripheral surface of the first intermediate material 11 a and the inner peripheral surface of the peripheral wall portion 32. Is displaced downward. Then, the metal material pushed outward in the radial direction along with the crushing is forward (downward) in the pushing direction of the first pressing punch 41 together with the metal material present in the radially outward portion of the first intermediate material 11a. Is moved to a cylindrical forming space 36 existing in Thus, the inner and outer peripheral surfaces of the metal material moved forward in the pressing direction of the first pressing punch 41 are defined by the inner peripheral surface of the peripheral wall portion 32 and the outer peripheral surface of the die-side circular convex portion 34. The shape is commensurate with the cylindrical forming space 36. As a result, the first intermediate material 11a shown in FIG. 6B is circularly formed on one end surface (lower surface) in the axial direction of the cylindrical portion 42 as shown in FIG. The preliminary intermediate material 40 is provided with a recess 43. The preliminary intermediate material 40 is taken out from the floating die 31 by pressing the bottom surface of the circular recess 43 upward with a counter punch (not shown).

次に、前記予備中間素材40に、図6の(E)→(F)に示す様に、後方押出加工を施す事で、第二中間素材12bとする。この様な後方押出加工では、ダイス13bと第二押圧パンチ44とを使用して、前記予備中間素材40の径方向中央寄り部分を軸方向に押し潰し、金属材料を径方向外方に移動させつつ、前記第二押圧パンチ44の押し込み方向後方(上方)に移動させる。前記ダイス13bは有底円筒状で、円形の底板部15bと、この底板部15bの外周縁部から上方に立上った周壁部16bとを備える。このうちの底板部15bの上面中央部には、前記フローティングダイス31の底板部35に設けたダイス側円形凸部34と同様の形状を有する、ダイス側円形凸部34bを設けている。又、前記第二押圧パンチ44は、前記実施の形態の第1例の製造方法で使用する押圧パンチ33{図1の(C)、(D)参照}と同様の形状を有するものであり、先端部に前記ダイス側円形凸部34bを上下方向に反転させた形状を有するパンチ側円形凸部37bを備える。   Next, as shown in (E) → (F) of FIG. 6, the preliminary intermediate material 40 is subjected to a backward extrusion process to obtain the second intermediate material 12 b. In such backward extrusion processing, the die 13b and the second pressing punch 44 are used to crush the radially intermediate portion of the preliminary intermediate material 40 in the axial direction, and move the metal material radially outward. The second pressing punch 44 is moved rearward (upward) in the pressing direction. The die 13b has a bottomed cylindrical shape, and includes a circular bottom plate portion 15b and a peripheral wall portion 16b rising upward from an outer peripheral edge portion of the bottom plate portion 15b. A die-side circular convex portion 34b having the same shape as the die-side circular convex portion 34 provided on the bottom plate portion 35 of the floating die 31 is provided at the center of the upper surface of the bottom plate portion 15b. The second pressing punch 44 has the same shape as the pressing punch 33 {see (C) and (D) of FIG. 1} used in the manufacturing method of the first example of the embodiment. A punch-side circular convex portion 37b having a shape obtained by inverting the die-side circular convex portion 34b in the vertical direction is provided at the tip portion.

前記後方押出加工では、先ず、図6の(E)に示す様に、前記予備中間素材40を、前記円形凹部43を下側にして前記ダイス13b内にセットする。そして、この状態から、前記第二押圧パンチ44を下降させ、この第二押圧パンチ44のパンチ側円形凸部37bの先端面{図6の(E)、(F)の下面}により、前記予備中間素材40を前記ダイス13bの底板部15bの上面に向けて押し込む。この押し込みに伴いこの予備中間素材40の中央部を軸方向に押し潰すと共に、この押し潰しに伴って径方向外方に押し出された金属材料を、前記予備中間素材40の径方向外寄り部分に存在する金属材料と共に、前記第二押圧パンチ44の押し込み方向後方(上方)に移動させる。この様に、この第二押圧パンチ44の押し込み方向後方に移動した金属材料の内外両周面は、この第二押圧パンチ44の外周面と前記ダイス13bの周壁部16bの内周面とに見合った形状となる。この様な前記後方押出加工により、図6の(D)に示した予備中間素材40が、同図の(G)に示した、円筒部38の軸方向中間部内径側に隔壁部39を設けた、前記第二中間素材12bとなる。そして、この第二中間素材12bに、前記実施の形態の第1例の場合と同様、図6の(G)→(H)に示す打ち抜き加工、同じく(H)→(I)に示したローリング加工を施した後、更に仕上加工を施す事により、図6の(I)に鎖線で示す形状を削り出して、複列玉軸受用の外輪3に加工する。   In the backward extrusion process, first, as shown in FIG. 6E, the preliminary intermediate material 40 is set in the die 13b with the circular concave portion 43 facing down. Then, from this state, the second pressing punch 44 is lowered, and the preliminary surface {the lower surface of FIGS. 6 (E) and 6 (F)} is provided by the tip surface of the punch-side circular convex portion 37b of the second pressing punch 44. The intermediate material 40 is pushed toward the upper surface of the bottom plate portion 15b of the die 13b. Along with this pushing, the central portion of the preliminary intermediate material 40 is crushed in the axial direction, and the metal material pushed radially outward in accordance with the crushing is applied to the radially outward portion of the preliminary intermediate material 40. Together with the existing metal material, the second pressing punch 44 is moved rearward (upward) in the pressing direction. In this way, the inner and outer peripheral surfaces of the metal material moved rearward in the pressing direction of the second pressing punch 44 match the outer peripheral surface of the second pressing punch 44 and the inner peripheral surface of the peripheral wall portion 16b of the die 13b. Shape. By such backward extrusion processing, the preliminary intermediate material 40 shown in FIG. 6D is provided with a partition wall 39 on the inner diameter side in the axial direction intermediate portion of the cylindrical portion 38 shown in FIG. In addition, the second intermediate material 12b is obtained. Then, the second intermediate material 12b is punched as shown in (G) → (H) of FIG. 6 and the rolling shown in (H) → (I) as in the first example of the embodiment. After the processing, the finishing process is further performed to cut out the shape indicated by the chain line in FIG. 6I to process the outer ring 3 for a double row ball bearing.

本例の場合、前記第一中間素材11aを構成する金属材料と、前記フローティングダイス31の内周面との間に作用する摩擦抵抗に拘らず、前記第一中間素材11aを、軸方向に関してほぼ対称な形状を有する、前記第二中間素材12bとする事ができる。又、図6の(G)〜(I)から明らかな通り、清浄度の高い中間部金属材料29を、複列の外輪軌道2、2となる部分全体に亙り露出させられる。従って、上述した実施の形態の第1例の場合と同様に、前記両外輪軌道2、2の転がり疲れ寿命を十分に確保でき、例えばこれら両外輪軌道2、2を備えた外輪3を含む、車輪支持用転がり軸受ユニットの耐久性確保の為の設計の自由度を向上させられる。又、本例の場合、前記前方押出加工及び前記後方押出加工を、製造工程中で前記予備中間素材40の上下方向を反転させる事なく行う事ができる為、前記外輪3の製造コストが徒に増大するのを抑えられる。   In the case of this example, regardless of the frictional resistance acting between the metal material constituting the first intermediate material 11a and the inner peripheral surface of the floating die 31, the first intermediate material 11a is substantially the same in the axial direction. The second intermediate material 12b can have a symmetrical shape. Further, as is apparent from FIGS. 6G to 6I, the intermediate metal material 29 having a high cleanliness is exposed over the entire portion that forms the double-row outer ring raceways 2 and 2. Therefore, as in the case of the first example of the embodiment described above, the rolling fatigue life of both the outer ring raceways 2 and 2 can be sufficiently secured. For example, the outer ring 3 including the both outer ring raceways 2 and 2 is included. The degree of freedom in design for ensuring the durability of the wheel bearing rolling bearing unit can be improved. Further, in the case of this example, since the forward extrusion process and the backward extrusion process can be performed without inverting the vertical direction of the preliminary intermediate material 40 during the manufacturing process, the manufacturing cost of the outer ring 3 can be reduced. The increase can be suppressed.

上述した実施の形態の各例は、本発明の製造方法により、複列アンギュラ型玉軸受を構成する外輪を造る場合に就いて説明した。これに対して本発明の軸受外輪の製造方法は、複列アンギュラ型円すいころ軸受を構成する外輪を造る場合に利用する事もできる。この場合、外輪の内周面に形成する複列の外輪軌道の幅、仕上加工による削り代等を考慮して、ダイス(フローティングダイス)及び押圧パンチの形状を工夫する。   Each example of embodiment mentioned above demonstrated about the case where the outer ring | wheel which comprises a double row angular type ball bearing was made with the manufacturing method of this invention. On the other hand, the method for manufacturing a bearing outer ring according to the present invention can also be used when an outer ring constituting a double-row angular tapered roller bearing is manufactured. In this case, the shapes of the die (floating die) and the press punch are devised in consideration of the width of the double row outer ring raceway formed on the inner peripheral surface of the outer ring, the machining allowance due to finishing, and the like.

1 複列アンギュラ型玉軸受
2 外輪軌道
3 外輪
4 内輪軌道
5 内輪
6 玉
7 保持器
8 ハウジング
9 回転軸
10 原素材
11、11a 第一中間素材
12、12a、12b 第二中間素材
13、13a、13b ダイス
14 パンチ
15、15a、15b 底板部
16、16a、16b 周壁部
17 環状凹溝
18 内周面側大径部
19 内周面側小径部
20 内周面側傾斜部
21 外周面側小径部
22 外周面側大径部
23 外周面側傾斜部
24 底部
25、25a、25b 第三中間素材
26、26a、26b 第四中間素材
27 中間円筒状部分
28 中心側金属材料
29 中間部金属材料
30 外径側金属材料
31、31a フローティングダイス
32 周壁部
33、33a 押圧パンチ
34、34a、34b ダイス側円形凸部
35 底板部
36 円筒状成形空間
37、37a、3b パンチ側円形凸部
38 円筒部
39 隔壁部
40 予備中間素材
41 第一押圧パンチ
42 円柱部
43 円形凹部
44 第二押圧パンチ
45 弾性部材
46 成形用空間
DESCRIPTION OF SYMBOLS 1 Double row angular contact ball bearing 2 Outer ring raceway 3 Outer ring 4 Inner ring raceway 5 Inner ring 6 Ball 7 Cage 8 Housing 9 Rotating shaft 10 Raw material 11, 11a First intermediate material 12, 12a, 12b Second intermediate material 13, 13a, 13b Die 14 Punch 15, 15a, 15b Bottom plate part 16, 16a, 16b Peripheral wall part 17 Annular groove 18 Inner peripheral surface side large diameter part 19 Inner peripheral surface side small diameter part 20 Inner peripheral surface side inclined part 21 Outer peripheral surface side small diameter part 22 outer peripheral surface side large diameter portion 23 outer peripheral surface side inclined portion 24 bottom portion 25, 25a, 25b third intermediate material 26, 26a, 26b fourth intermediate material 27 intermediate cylindrical portion 28 center side metal material 29 intermediate portion metal material 30 outside Diameter side metal material 31, 31a Floating die 32 Peripheral wall portion 33, 33a Press punch 34, 34a, 34b Dice side circular convex portion 35 Bottom plate portion 36 Cylindrical forming space 37, 37a, 3b Punch side circular convex portion 38 Cylindrical portion 39 Partition portion 40 Preliminary intermediate material 41 First pressing punch 42 Column portion 43 Circular concave portion 44 Second pressing punch 45 Elastic member 46 Molding space

Claims (4)

  1. 内周面の軸方向2箇所位置に複列の背面組み合わせ型の外輪軌道を備える軸受外輪の製造方法であって、
    金属製で円柱状の原素材を軸方向に押し潰して、軸方向中間部の外径が軸方向両端部の外径よりも大きくなった第一中間素材とする据え込み加工と、
    弾性部材により上方に向いた弾力を付与された周壁部と、この周壁部の底部に配置され、上面中央部に円形凸部を設けた底板部とから構成され、この円形凸部の外周面と前記周壁部の内周面との間を円筒状成形空間としたフローティングダイスと、先端部の外径がこの周壁部の内径よりも小さい押圧パンチとの間で、前記第一中間素材の中央部を軸方向に押し潰し、この押し潰しに伴って径方向外方に押し出された金属材料及び前記第一中間素材の径方向外寄り部分に存在する金属材料を、前記押圧パンチの押し込み方向前方に存在する前記円筒状成形空間と、この押圧パンチの押し込み方向後方でこの押圧パンチの先端部外周面と前記周壁部の内周面との間に存在する円筒状の空間とに、それぞれ移動させると共に、前記第一中間素材の外周面と前記周壁部の内周面との間に作用する摩擦に基づきこの周壁部を前記弾性部材の弾力に抗して下降させ、円筒部の軸方向中間部の内径側に隔壁部を設けた第二中間素材とする前後方同時押出加工と、
    前記第二中間素材の隔壁部を打ち抜き除去する事で、全体が円筒状の第三中間素材とする打ち抜き加工と、
    前記第三中間素材の内外両周面を塑性変形させて、外周面が軸方向に関し外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である第四中間素材とするローリング加工と、
    この第四中間素材の内周面を削り取る事により、この内周面に前記両外輪軌道を形成する仕上加工とを
    順次施す軸受外輪の製造方法。
    A method for manufacturing a bearing outer ring comprising double row rear combination type outer ring raceways at two axial positions on the inner peripheral surface,
    An upsetting process in which a cylindrical raw material made of metal is crushed in the axial direction to form a first intermediate material in which the outer diameter of the axial intermediate portion is larger than the outer diameter of both axial end portions,
    It is composed of a peripheral wall portion provided with an elastic force directed upward by an elastic member, and a bottom plate portion disposed at the bottom portion of the peripheral wall portion and provided with a circular convex portion at the center of the upper surface, and an outer peripheral surface of the circular convex portion Between the floating die having a cylindrical molding space between the inner peripheral surface of the peripheral wall portion and the pressing punch whose outer diameter of the tip portion is smaller than the inner diameter of the peripheral wall portion, the central portion of the first intermediate material The metal material pushed in the axial direction along with the crushing and the metal material existing in the radially outward portion of the first intermediate material are moved forward in the pushing direction of the pressing punch. The cylindrical forming space is moved to the cylindrical space existing between the tip outer peripheral surface of the press punch and the inner peripheral surface of the peripheral wall portion in the rear of the press punch in the pushing direction. Outside the first intermediate material The peripheral wall portion is lowered against the elastic force of the elastic member based on the friction acting between the surface and the inner peripheral surface of the peripheral wall portion, and a partition wall portion is provided on the inner diameter side of the intermediate portion in the axial direction of the cylindrical portion. Front and rear simultaneous extrusion processing as the second intermediate material,
    By punching and removing the partition wall of the second intermediate material, the entire punching process to be a cylindrical third intermediate material,
    The inner and outer peripheral surfaces of the third intermediate material are plastically deformed, and the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface has the smallest inner diameter in the axial intermediate portion, Rolling processing as a fourth intermediate material having a shape inclined in a direction in which the inner diameter gradually increases as both side portions of the axial intermediate portion move toward both axial end portions,
    A method for manufacturing a bearing outer ring, in which the inner circumferential surface of the fourth intermediate material is scraped to sequentially perform finish processing for forming the outer ring raceways on the inner circumferential surface.
  2. 内周面の軸方向2箇所位置に複列の背面組み合わせ型の外輪軌道を備える軸受外輪の製造方法であって、
    金属製で円柱状の原素材を軸方向に押し潰して、軸方向中間部の外径が軸方向両端部の外径よりも大きくなった第一中間素材とする据え込み加工と、
    弾性部材により上方に向いた弾力を付与された周壁部と、この周壁部の底部に配置され、上面中央部に円形凸部を設けた底板部とから構成され、この円形凸部の外周面と前記周壁部の内周面との間を円筒状成形空間としたフローティングダイスと、外径がこの周壁部の内径と実質的に同じである第一押圧パンチとの間で、前記第一中間素材の中央部を軸方向に押し潰し、この押し潰しに伴って径方向外方に押し出された金属材料及び前記第一中間素材の径方向外寄り部分に存在する金属材料を、前記第一押圧パンチの押し込み方向前方に存在する前記円筒状成形空間に移動させると共に、前記第一中間素材の外周面と前記周壁部の内周面との間に作用する摩擦に基づきこの周壁部を前記弾性部材の弾力に抗して下降させ、円柱部の軸方向片端面に開口する円形凹部を設けた予備中間素材とする前方押出加工と、
    有底円筒状で、底部内面の形状を前記予備中間素材の軸方向片端部に見合う形状としたダイスと、先端部の外径がこのダイスの内径よりも小さい第二押圧パンチとの間で前記予備中間素材の中央部を軸方向に押し潰し、この押し潰しに伴って径方向外方に押し出された金属材料及び前記予備中間素材の径方向外寄り部分に存在する金属材料を、前記第二押圧パンチの押し込み方向後方でこの第二押圧パンチの先端部外周面と前記ダイスの内周面との間に存在する円筒状の空間に移動させて、円筒部の軸方向中間部の内径側に隔壁部を設けた第二中間素材とする後方押出加工と、
    この第二中間素材の隔壁部を打ち抜き除去する事で、全体が円筒状の第三中間素材とする打ち抜き加工と、
    前記第三中間素材の内外両周面を塑性変形させて、外周面が軸方向に関し外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である第四中間素材とするローリング加工と、
    この第四中間素材の内周面を削り取る事により、この内周面に前記両外輪軌道を形成する仕上加工とを
    順次施す軸受外輪の製造方法。
    A method for manufacturing a bearing outer ring comprising double row rear combination type outer ring raceways at two axial positions on the inner peripheral surface,
    An upsetting process in which a cylindrical raw material made of metal is crushed in the axial direction to form a first intermediate material in which the outer diameter of the axial intermediate portion is larger than the outer diameter of both axial end portions,
    It is composed of a peripheral wall portion provided with an elastic force directed upward by an elastic member, and a bottom plate portion disposed at the bottom portion of the peripheral wall portion and provided with a circular convex portion at the center of the upper surface, and an outer peripheral surface of the circular convex portion Between the floating die having a cylindrical forming space between the inner peripheral surface of the peripheral wall portion and the first pressing punch whose outer diameter is substantially the same as the inner diameter of the peripheral wall portion, the first intermediate material The first pressing punch is formed by crushing the central portion of the first axial punch in the axial direction, the metal material extruded radially outward along with the crushing, and the metal material present in the radially outer portion of the first intermediate material. The circumferential wall portion is moved to the cylindrical molding space existing forward in the pushing direction of the first intermediate material, and the peripheral wall portion is formed on the elastic member based on the friction acting between the outer peripheral surface of the first intermediate material and the inner peripheral surface of the peripheral wall portion. Lowering against the elasticity, one end of the cylindrical part in the axial direction A front extrusion to preliminary intermediate material provided with a circular recess which opens,
    Between the die having a bottomed cylindrical shape and the shape of the inner surface of the bottom portion commensurate with one end portion in the axial direction of the preliminary intermediate material, and the second pressing punch whose outer diameter of the tip portion is smaller than the inner diameter of the die. The central portion of the preliminary intermediate material is crushed in the axial direction, and the metal material extruded radially outward along with the crushing and the metal material present in the radially outward portion of the preliminary intermediate material are Move to a cylindrical space existing between the outer peripheral surface of the tip of the second press punch and the inner peripheral surface of the die behind the pressing punch in the pressing direction, and move to the inner diameter side of the axial intermediate portion of the cylindrical portion. Back extrusion process as a second intermediate material provided with a partition,
    By punching and removing the partition wall of this second intermediate material, the entire punching process to make a cylindrical third intermediate material,
    The inner and outer peripheral surfaces of the third intermediate material are plastically deformed, and the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface has the smallest inner diameter in the axial intermediate portion, Rolling processing as a fourth intermediate material having a shape inclined in a direction in which the inner diameter gradually increases as both side portions of the axial intermediate portion move toward both axial end portions,
    A method for manufacturing a bearing outer ring, in which the inner circumferential surface of the fourth intermediate material is scraped to sequentially perform finish processing for forming the outer ring raceways on the inner circumferential surface.
  3. 前記第一中間素材の軸方向長さを、前記原素材の軸方向長さの70%以下にする、請求項1〜2のうちの何れか1項に記載した軸受外輪の製造方法。   3. The method for manufacturing a bearing outer ring according to claim 1, wherein an axial length of the first intermediate material is 70% or less of an axial length of the raw material.
  4. 前記第二中間素材の隔壁部の軸方向に関する厚さを、前記第一中間素材の軸方向長さの30%以下にする、請求項1〜3のうちの何れか1項に記載した軸受外輪の製造方法。   The bearing outer ring according to any one of claims 1 to 3, wherein a thickness of the partition wall portion of the second intermediate material in the axial direction is 30% or less of an axial length of the first intermediate material. Manufacturing method.
JP2014002273A 2014-01-09 2014-01-09 Manufacturing method of bearing outer ring Active JP6252179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002273A JP6252179B2 (en) 2014-01-09 2014-01-09 Manufacturing method of bearing outer ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014002273A JP6252179B2 (en) 2014-01-09 2014-01-09 Manufacturing method of bearing outer ring
US14/151,272 US9056375B2 (en) 2009-12-02 2014-01-09 Manufacturing method for bearing outer ring

Publications (2)

Publication Number Publication Date
JP2015128788A true JP2015128788A (en) 2015-07-16
JP6252179B2 JP6252179B2 (en) 2017-12-27

Family

ID=53759968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002273A Active JP6252179B2 (en) 2014-01-09 2014-01-09 Manufacturing method of bearing outer ring

Country Status (1)

Country Link
JP (1) JP6252179B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1971083A (en) * 1930-11-29 1934-08-21 Schlaa Friedrich Im Production of ball races and the like
JPH1085890A (en) * 1996-09-19 1998-04-07 O S Tec:Kk Warm or hot longitudinally simultaneous extrusion high speed type forging method and device
JP2008173677A (en) * 2007-01-22 2008-07-31 Nsk Ltd Manufacturing method of raceway ring member
JP2009269082A (en) * 2008-05-12 2009-11-19 Nsk Ltd Method for producing ring-type orbital ring blank
JP2012101264A (en) * 2010-11-12 2012-05-31 Okita Tekkosho:Kk Method for forging inner and outer rings for double ball bearing
JP2013006218A (en) * 2007-01-16 2013-01-10 Nsk Ltd Manufacturing method for bearing outer ring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1971083A (en) * 1930-11-29 1934-08-21 Schlaa Friedrich Im Production of ball races and the like
JPH1085890A (en) * 1996-09-19 1998-04-07 O S Tec:Kk Warm or hot longitudinally simultaneous extrusion high speed type forging method and device
JP2013006218A (en) * 2007-01-16 2013-01-10 Nsk Ltd Manufacturing method for bearing outer ring
JP2008173677A (en) * 2007-01-22 2008-07-31 Nsk Ltd Manufacturing method of raceway ring member
JP2009269082A (en) * 2008-05-12 2009-11-19 Nsk Ltd Method for producing ring-type orbital ring blank
JP2012101264A (en) * 2010-11-12 2012-05-31 Okita Tekkosho:Kk Method for forging inner and outer rings for double ball bearing

Also Published As

Publication number Publication date
JP6252179B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
CN101802425B (en) Bearing device for wheel, and axle module
US9346097B2 (en) Process for manufacturing rolling contact member, process for manufacturing rolling bearing, raceway member of rolling bearing and rolling bearing
EP2239069A1 (en) Method for manufacturing outward-flanged metallic member
JP5376234B2 (en) Manufacturing method of rolling bearing device for wheel
EP1970141A1 (en) Process for manufacturing raceway ring member as constituent of roller bearing unit for wheel support
JP2002364651A (en) Rolling bearing retainer
EP2672132B1 (en) Method of manufacturing bearing ring of rolling bearing
US20100129022A1 (en) Rolling bearing cage composed of a plurality of parts
CN101720260A (en) Method for the production of a roller bearing without machining
JP2005147364A (en) Holder for roller bearings, and its manufacturing method
CN102472379B (en) Cam follower and method for producing cam follower
JP4517759B2 (en) Method for manufacturing roller bearing cage
US20070060429A1 (en) Chain and method for blanking hole in chain plate
JP2016117079A (en) Manufacturing method of hub ring and inner member of wheel bearing device
US8166657B2 (en) Needle roller bearing
WO2009084362A1 (en) Roller bearing retainer, needle roller bearing, and method of producing roller bearing retainer
CN102172765B (en) Manufacturing method for bearing outer ring
JP5464821B2 (en) Roller bearing cage, roller bearing and roller bearing cage manufacturing method
CN101583444A (en) Method for manufacturing raceway ring member
JP2019517923A (en) Spindle nut, screw drive and method of manufacturing a spindle nut
US20080089631A1 (en) Raceway Ring for Radial Ball Bearing and Manufacturing Method Thereof, and Manufacturing Method of High Accurate Ring and Manufacturing Apparatus Thereof
JP2003230927A (en) Rough shape material for bearing ring reduced in quenching strain and its manufacturing method
JP2016129890A (en) Manufacturing method for ring-shaped member
JP5309690B2 (en) Manufacturing method of inner and outer rings of rolling bearing
JP2004202499A (en) Method for manufacturing metallic ring-like shape material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6252179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150