JP2015118186A - Optical system, optical instrument, and method for manufacturing optical system - Google Patents

Optical system, optical instrument, and method for manufacturing optical system Download PDF

Info

Publication number
JP2015118186A
JP2015118186A JP2013260469A JP2013260469A JP2015118186A JP 2015118186 A JP2015118186 A JP 2015118186A JP 2013260469 A JP2013260469 A JP 2013260469A JP 2013260469 A JP2013260469 A JP 2013260469A JP 2015118186 A JP2015118186 A JP 2015118186A
Authority
JP
Japan
Prior art keywords
lens
optical
positive
refractive power
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013260469A
Other languages
Japanese (ja)
Inventor
壮基 原田
Masaki Harada
壮基 原田
幸介 町田
Kosuke Machida
幸介 町田
Original Assignee
株式会社ニコン
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン, Nikon Corp filed Critical 株式会社ニコン
Priority to JP2013260469A priority Critical patent/JP2015118186A/en
Publication of JP2015118186A publication Critical patent/JP2015118186A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical system having good optical performance, an optical instrument, and a method for manufacturing an optical system.SOLUTION: The optical system includes, successively from an object side, a first lens group G1 and a second lens group G2 having a positive refractive power. The first lens group G1 includes a negative lens and a positive lens. Upon focusing from an infinite distance object to a close distance object, the first lens group G1 is fixed in an optical axis direction with respect to an image plane I, while the second lens group G2 moves to vary an interval between the first lens group G1 and the second lens group G2. The optical system satisfies conditional expressions (1):0.50<νn/νp<1.60, (2):5.00<|f1|/f<30.00, and (3):1.15<f2/f<1.70.

Description

本発明は、光学系、光学機器及び光学系の製造方法に関する。   The present invention relates to an optical system, an optical apparatus, and a method for manufacturing the optical system.
従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した広角レンズが提案されている(例えば、特許文献1を参照)。   Conventionally, wide-angle lenses suitable for photographic cameras, electronic still cameras, video cameras, and the like have been proposed (see, for example, Patent Document 1).
特開2009−109723号公報JP 2009-109723 A
しかしながら、従来の広角レンズよりも、更なる光学性能の向上が求められている。   However, further improvement in optical performance is required compared to conventional wide-angle lenses.
本発明は、このような問題に鑑みてなされたものであり、良好な光学性能を有する光学系、光学機器及び光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide an optical system, an optical apparatus, and an optical system manufacturing method having good optical performance.
このような目的を達成するため、本発明に係る光学系は、物体側から順に並んだ、第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、前記第1レンズ群は、負レンズと、正レンズとを有し、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群が像面に対して光軸方向に固定され、前記第2レンズ群が移動し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、次の条件式を満足する。   In order to achieve such an object, an optical system according to the present invention includes a first lens group and a second lens group having a positive refractive power, which are arranged in order from the object side, and the first lens group. Has a negative lens and a positive lens, and the first lens group is fixed in the optical axis direction with respect to the image plane when focusing from an object at infinity to a short distance object, and the second lens The group moves, the distance between the first lens group and the second lens group changes, and the following conditional expression is satisfied.
0.50 < νn/νp < 1.60
5.00 < |f1|/f < 30.00
1.15 < f2/f < 1.70
但し、
νn:前記第1レンズ群内で最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
νp:前記第1レンズ群内で最も正の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
f1:前記第1レンズ群の焦点距離、
f2:前記第2レンズ群の焦点距離、
f:無限遠合焦状態における全系の焦点距離。
0.50 <νn / νp <1.60
5.00 <| f1 | / f <30.00
1.15 <f2 / f <1.70
However,
ν n: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the first lens group,
νp: Abbe number based on the d-line of the glass material of the lens having the strongest positive refractive power in the first lens group,
f1: the focal length of the first lens group,
f2: focal length of the second lens group,
f: The focal length of the entire system in the infinitely focused state.
本発明に係る光学系において、前記第1レンズ群は、接合レンズを有することが好ましい。   In the optical system according to the present invention, it is preferable that the first lens group includes a cemented lens.
本発明に係る光学系は、前記第1レンズ群が有する接合レンズのうち、前記最も正の屈折力が強いレンズの物体側で最も近くに位置する接合レンズは、負レンズと、正レンズとからなり、次の条件式を満足することが好ましい。   In the optical system according to the present invention, among the cemented lenses included in the first lens group, the cemented lens positioned closest to the object side of the lens having the most positive refractive power includes a negative lens and a positive lens. Therefore, it is preferable that the following conditional expression is satisfied.
0.20 < ν11/ ν12 < 1.00
但し、
ν11:前記第1レンズ群内で最も正の屈折力が強いレンズの、物体側で最も近くに位置する前記接合レンズを構成する前記正レンズの硝材のd線を基準とするアッベ数、
ν12:前記第1レンズ群内で最も正の屈折力が強いレンズの、物体側で最も近くに位置する前記接合レンズを構成する前記負レンズの硝材のd線を基準とするアッベ数。
0.20 <ν11 / ν12 <1.00
However,
ν11: Abbe number based on the d-line of the glass material of the positive lens constituting the cemented lens closest to the object side of the lens having the strongest positive refractive power in the first lens group,
ν12: Abbe number based on the d-line of the glass material of the negative lens constituting the cemented lens closest to the object side of the lens having the strongest positive refractive power in the first lens group.
本発明に係る光学系において、前記第2レンズ群は、開口絞りと、前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズと、この負レンズの物体側直前に位置する正レンズとを有し、次の条件式を満足することが好ましい。   In the optical system according to the present invention, the second lens group includes an aperture stop, a lens having the strongest negative refracting power in the lens group located on the object side of the aperture stop, and an object side immediately before the negative lens on the object side. It is preferable that the following conditional expression is satisfied.
0.60 < n21/n22 < 1.00
但し、
n21:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する前記正レンズの硝材のd線に対する屈折率、
n22:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの硝材のd線に対する屈折率。
0.60 <n21 / n22 <1.00
However,
n21: The refractive index of the lens material having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop in the second lens group with respect to the d-line of the glass material of the positive lens located immediately before the object side ,
n22: a refractive index with respect to d-line of the glass material of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop in the second lens group.
本発明に係る光学系において、前記第2レンズ群は、開口絞りと、前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズと、この負レンズの物体側直前に位置する正レンズとを有し、次の条件式を満足することが好ましい。   In the optical system according to the present invention, the second lens group includes an aperture stop, a lens having the strongest negative refracting power in the lens group located on the object side of the aperture stop, and an object side immediately before the negative lens on the object side. It is preferable that the following conditional expression is satisfied.
1.40 < ν21/ν22 < 2.80
但し、
ν21:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する前記正レンズの硝材のd線を基準とするアッベ数、
ν22:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数。
1.40 <ν21 / ν22 <2.80
However,
ν 21: Based on the d-line of the glass material of the positive lens located immediately before the object side of the lens unit having the strongest negative refractive power in the lens group located on the object side of the aperture stop in the second lens group Abbe number,
ν22: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop in the second lens group.
本発明に係る光学系において、前記第2レンズ群は、開口絞りと、前記開口絞りよりも物体側に位置する前群と、前記開口絞りよりも像側に位置する後群とを有し、無限遠物体から近距離物体への合焦の際に、前記前群と前記後群との間隔を一定に保持したまま、又は変化させながら、各群をそれぞれ移動させることが好ましい。   In the optical system according to the present invention, the second lens group includes an aperture stop, a front group located closer to the object side than the aperture stop, and a rear group located closer to the image side than the aperture stop, When focusing from an object at infinity to an object at a short distance, it is preferable to move each group while maintaining or changing the distance between the front group and the rear group.
本発明に係る光学系において、前記第2レンズ群は、少なくとも1つの非球面レンズを有することが好ましい。   In the optical system according to the present invention, it is preferable that the second lens group has at least one aspheric lens.
本発明に係る光学機器は、上述のいずれかの光学系を搭載する。   An optical apparatus according to the present invention is equipped with any of the optical systems described above.
本発明に係る光学系の製造方法は、物体側から順に並んだ、第1レンズ群と、正の屈折力を有する第2レンズ群とを有する光学系の製造方法であって、前記第1レンズ群は、負レンズと、正レンズとを有し、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群が像面に対して光軸方向に固定され、前記第2レンズ群が移動し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、次の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。   The method for manufacturing an optical system according to the present invention is a method for manufacturing an optical system having a first lens group and a second lens group having positive refractive power arranged in order from the object side, wherein the first lens The group includes a negative lens and a positive lens, and the first lens group is fixed in the optical axis direction with respect to the image plane when focusing from an object at infinity to an object at a short distance. Each lens is arranged in the lens barrel so that the lens group moves, the distance between the first lens group and the second lens group changes, and the following conditional expression is satisfied.
0.50 < νn/νp < 1.60
5.00 < |f1|/f < 30.00
1.15 < f2/f < 1.70
但し、
νn:前記第1レンズ群内で最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
νp:前記第1レンズ群内で最も正の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
f1:前記第1レンズ群の焦点距離、
f2:前記第2レンズ群の焦点距離、
f:無限遠合焦状態における全系の焦点距離。
0.50 <νn / νp <1.60
5.00 <| f1 | / f <30.00
1.15 <f2 / f <1.70
However,
ν n: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the first lens group,
νp: Abbe number based on the d-line of the glass material of the lens having the strongest positive refractive power in the first lens group,
f1: the focal length of the first lens group,
f2: focal length of the second lens group,
f: The focal length of the entire system in the infinitely focused state.
本発明によれば、良好な光学性能を有する光学系、光学機器及び光学系の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the optical system, optical apparatus, and optical system which have favorable optical performance can be provided.
第1実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 1st Example. 第1実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 4 is a diagram illustrating various aberrations of the optical system according to Example 1, where (a) is an infinitely focused state (imaging magnification β = 0.00), and (b) is a short-distance focused state (imaging magnification β = −1 / 30). ) Respectively. 第2実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations of the optical system according to Example 2, wherein (a) is in an infinite focus state (shooting magnification β = 0.00), and (b) is a close focus state (shooting magnification β = −1 / 30). ) Respectively. 第3実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations of the optical system according to Example 3, wherein (a) is in an infinite focus state (shooting magnification β = 0.00), and (b) is a short distance focus state (shooting magnification β = −1 / 30). ) Respectively. 第4実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 4th Example. 第4実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 10 is a diagram illustrating various aberrations of the optical system according to Example 4, wherein (a) is in the infinite focus state (shooting magnification β = 0.00), and (b) is the close focus state (shooting magnification β = −1 / 30). ) Respectively. 第5実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 5th Example. 第5実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the optical system according to Example 5, wherein (a) is in an infinite focus state (shooting magnification β = 0.00), and (b) is a short distance focus state (shooting magnification β = −1 / 30). ) Respectively. 第6実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 6th Example. 第6実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 11A is a diagram illustrating various aberrations of the optical system according to Example 6, where (a) is in an infinite focus state (shooting magnification β = 0.00), and (b) is a close focus state (shooting magnification β = −1 / 30). ) Respectively. 第7実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 7th Example. 第7実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the optical system according to Example 7, wherein (a) is in an infinite focus state (shooting magnification β = 0.00), and (b) is a short distance focus state (shooting magnification β = −1 / 30). ) Respectively. 第8実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on an 8th Example. 第8実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 10 is a diagram illustrating various aberrations of the optical system according to Example 8, where (a) is in an infinite focus state (shooting magnification β = 0.00), and (b) is a close focus state (shooting magnification β = −1 / 30). ) Respectively. 第9実施例に係る光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the optical system which concerns on 9th Example. 第9実施例に係る光学系の諸収差図であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)をそれぞれ示す。FIG. 10 is a diagram illustrating various aberrations of the optical system according to Example 9, where (a) is in an infinite focus state (shooting magnification β = 0.00), and (b) is a close focus state (shooting magnification β = −1 / 30). ) Respectively. 本実施形態に係る光学系を搭載したカメラの構成を示す図である。It is a figure which shows the structure of the camera carrying the optical system which concerns on this embodiment. 本実施形態に係る光学系の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical system which concerns on this embodiment.
以下、実施形態について、図面を参照しながら説明する。本実施形態に係る光学系WLは、図1に示すように、物体側から順に並んだ、第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有し、第1レンズ群G1は、負レンズと、正レンズとを有し、無限遠物体から近距離物体への合焦(フォーカシング)の際に、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が移動し、第1レンズ群G1と第2レンズ群G2との間隔が変化し、次の条件式(1)〜(3)を満足する。   Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1, the optical system WL according to the present embodiment includes a first lens group G1 and a second lens group G2 having positive refractive power, which are arranged in order from the object side. The group G1 includes a negative lens and a positive lens, and the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during focusing from an object at infinity to an object at a short distance. Then, the second lens group G2 moves and the distance between the first lens group G1 and the second lens group G2 changes, and the following conditional expressions (1) to (3) are satisfied.
0.50 < νn/νp <1.60 …(1)
5.00 < |f1|/f < 30.00 …(2)
1.15 < f2/f < 1.70 …(3)
但し、
νn:第1レンズ群G1内で最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
νp:第1レンズ群G1内で最も正の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
f1:第1レンズ群G1の焦点距離、
f2:第2レンズ群G2の焦点距離、
f:無限遠合焦状態における全系の焦点距離。
0.50 <νn / νp <1.60 (1)
5.00 <| f1 | / f <30.00 (2)
1.15 <f2 / f <1.70 (3)
However,
νn: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the first lens group G1,
νp: Abbe number based on the d-line of the glass material of the lens having the strongest positive refractive power in the first lens group G1,
f1: Focal length of the first lens group G1
f2: focal length of the second lens group G2,
f: The focal length of the entire system in the infinitely focused state.
上記のように、第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有し、無限遠物体から近距離物体への合焦の際に、第1レンズ群G1が固定され、第2レンズ群G2が移動する構成により、鏡筒を小型化できると共に、合焦による収差変動(例えば、球面収差)を良好に補正することができる。   As described above, the first lens group G1 has the first lens group G1 and the second lens group G2 having a positive refractive power, and the first lens group G1 is fixed when focusing from an object at infinity to an object at a short distance. With the configuration in which the second lens group G2 moves, the lens barrel can be reduced in size and aberration variation (for example, spherical aberration) due to focusing can be corrected well.
条件式(1)は、第1レンズ群G1内で最も負の屈折力が強いレンズのアッベ数と、第1レンズ群G1内で最も正の屈折力が強いレンズのアッベ数との比を規定するものである。条件式(1)を満足することにより、色収差を良好に補正することができる。   Conditional expression (1) defines the ratio between the Abbe number of the lens having the strongest negative refractive power in the first lens group G1 and the Abbe number of the lens having the strongest positive refractive power in the first lens group G1. To do. By satisfying conditional expression (1), chromatic aberration can be corrected satisfactorily.
条件式(1)の対応値が上限値を上回ると、負の屈折力のレンズのアッベ数よりも、正の屈折力のレンズのアッベ数が小さくなりすぎるため、色収差補正が過大となる。本実施形態の効果をより確実なものとするために、条件式(1)の上限値を1.45とすることが好ましい。   When the corresponding value of the conditional expression (1) exceeds the upper limit value, the Abbe number of the lens having a positive refractive power becomes too small as compared with the Abbe number of a lens having a negative refractive power, so that chromatic aberration correction becomes excessive. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 1.45.
条件式(1)の対応値が下限値を下回ると、負の屈折力のレンズのアッベ数よりも、正の屈折力のレンズのアッベ数が大きくなりすぎるため、色収差補正が不足する。本実施形態の効果をより確実なものとするために、条件式(1)の下限値を0.65とすることが好ましい。   If the corresponding value of the conditional expression (1) is less than the lower limit value, the Abbe number of the lens having a positive refractive power becomes too large compared to the Abbe number of a lens having a negative refractive power, so that chromatic aberration correction is insufficient. In order to ensure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (1) to 0.65.
条件式(2)は、第1レンズ群G1の焦点距離と、無限遠合焦状態における全系の焦点距離との比を規定するものである。条件式(2)を満足することにより、良好な光学性能を実現することができる。   Conditional expression (2) defines the ratio between the focal length of the first lens group G1 and the focal length of the entire system in the infinitely focused state. Satisfying conditional expression (2) makes it possible to achieve good optical performance.
条件式(2)の対応値が上限値を上回ると、第1レンズ群G1の屈折力が弱くなり、像面湾曲やコマ収差の補正が困難となる。本実施形態の効果をより確実なものとするために、条件式(2)の上限値を25.00とすることが好ましい。   When the corresponding value of the conditional expression (2) exceeds the upper limit value, the refractive power of the first lens group G1 becomes weak, and it becomes difficult to correct field curvature and coma. In order to secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (2) to 25.00.
条件式(2)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強くなり、像面湾曲やコマ収差の補正が困難になる。本実施形態の効果をより確実なものとするために、条件式(2)の下限値を8.00とすることが好ましい。   If the corresponding value of conditional expression (2) is below the lower limit value, the refractive power of the first lens group G1 becomes strong, and it becomes difficult to correct field curvature and coma. In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (2) to 8.00.
条件式(3)は、第2レンズ群G2の焦点距離と、無限遠合焦状態における全系の焦点距離との比を規定するものである。条件式(3)を満足することにより、良好な光学性能を実現することができる。   Conditional expression (3) defines the ratio between the focal length of the second lens group G2 and the focal length of the entire system in the infinitely focused state. Satisfying conditional expression (3) makes it possible to achieve good optical performance.
条件式(3)の対応値が上限値を上回ると、第2レンズ群G2の屈折力が弱くなり、全長が大型化する。また、球面収差とコマ収差の補正が困難となる。本実施形態の効果をより確実なものとするために、条件式(3)の上限値を1.55とすることが好ましい。   When the corresponding value of the conditional expression (3) exceeds the upper limit value, the refractive power of the second lens group G2 becomes weak and the entire length increases. In addition, it becomes difficult to correct spherical aberration and coma. In order to secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (3) to 1.55.
条件式(3)の対応値が下限値を下回ると、第2レンズ群G2の屈折力が強くなり、バックフォーカスの確保が困難となり、加えて像面湾曲やコマ収差の補正が困難になる。本実施形態の効果をより確実なものとするために、条件式(3)の下限値を1.30とすることが好ましい。   When the corresponding value of conditional expression (3) is below the lower limit, the refractive power of the second lens group G2 becomes strong, making it difficult to secure the back focus, and in addition, it becomes difficult to correct field curvature and coma. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 1.30.
本実施形態に係る光学系WLにおいて、第1レンズ群G1は、接合レンズを有することが好ましい。この構成により、軸上色収差、倍率色収差を共に良好に補正することができる。   In the optical system WL according to the present embodiment, the first lens group G1 preferably includes a cemented lens. With this configuration, both axial chromatic aberration and lateral chromatic aberration can be corrected well.
本実施形態に係る光学系WLは、第1レンズ群G1が有する接合レンズのうち、最も正の屈折力が強いレンズの物体側で最も近くに位置する接合レンズは、負レンズと、正レンズとからなり、次の条件式(4)を満足することが好ましい。   In the optical system WL according to the present embodiment, among the cemented lenses included in the first lens group G1, the cemented lens closest to the object side of the lens having the strongest positive refractive power is a negative lens, a positive lens, It is preferable that the following conditional expression (4) is satisfied.
0.20 < ν11/ ν12 < 1.00 …(4)
但し、
ν11:第1レンズ群G1内で最も正の屈折力が強いレンズの、物体側で最も近くに位置する接合レンズを構成する正レンズの硝材のd線を基準とするアッベ数、
ν12:第1レンズ群G1内で最も正の屈折力が強いレンズの、物体側で最も近くに位置する接合レンズを構成する負レンズの硝材のd線を基準とするアッベ数。
0.20 <ν11 / ν12 <1.00 (4)
However,
ν11: Abbe number based on the d-line of the glass material of the positive lens constituting the cemented lens closest to the object side of the lens having the strongest positive refractive power in the first lens group G1,
ν12: Abbe number based on the d-line of the glass material of the negative lens constituting the cemented lens closest to the object side of the lens having the strongest positive refractive power in the first lens group G1.
条件式(4)は、第1レンズ群G1内で最も正の屈折力が強いレンズの物体側で最も近くに位置する接合レンズを構成する、正レンズのアッベ数と、負レンズのアッベ数との比を規定するものである(図1では、第1レンズ群G1内の最も物体側にある接合レンズを構成する正レンズL12と、負レンズL13とが該当)。条件式(4)を満足することにより、色収差を良好に補正することができる。   Conditional expression (4) indicates that the Abbe number of the positive lens and the Abbe number of the negative lens constituting the cemented lens located closest to the object side of the lens having the strongest positive refractive power in the first lens group G1. (In FIG. 1, the positive lens L12 and the negative lens L13 constituting the cemented lens closest to the object side in the first lens group G1 are applicable). By satisfying conditional expression (4), chromatic aberration can be corrected satisfactorily.
条件式(4)の対応値が上限値を上回ると、第1レンズ群G1内の前記接合レンズを構成する正レンズのアッベ数が、負レンズのアッベ数よりも大きくなりすぎるため、色収差の補正が不足する。本実施形態の効果をより確実なものとするために、条件式(4)の上限値を0.80とすることが好ましい。   If the corresponding value of the conditional expression (4) exceeds the upper limit value, the Abbe number of the positive lens constituting the cemented lens in the first lens group G1 becomes too larger than the Abbe number of the negative lens. Is lacking. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 0.80.
条件式(4)の対応値が下限値を下回ると、第1レンズ群G1内の前記接合レンズを構成する正レンズのアッベ数が、負レンズのアッベ数よりも小さくなりすぎるため、色収差の補正が過大となる。本実施形態の効果をより確実なものとするために、条件式(4)の下限値を0.40とすることが好ましい。   When the corresponding value of the conditional expression (4) is less than the lower limit value, the Abbe number of the positive lens constituting the cemented lens in the first lens group G1 is too small than the Abbe number of the negative lens. Becomes excessive. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 0.40.
本実施形態に係る光学系WLにおいて、第2レンズ群G2は、開口絞りSと、開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズと、この負レンズの物体側直前に位置する正レンズとを有し、次の条件式(5)を満足することが好ましい。   In the optical system WL according to the present embodiment, the second lens group G2 includes an aperture stop S, a lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S, and the negative lens. It is preferable to have a positive lens located immediately before the object side and satisfy the following conditional expression (5).
0.60 < n21/n22 < 1.00 …(5)
但し、
n21:第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する正レンズの硝材のd線に対する屈折率、
n22:第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの硝材のd線に対する屈折率。
0.60 <n21 / n22 <1.00 (5)
However,
n21: the refractive index of the lens material having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S in the second lens group G2 with respect to the d-line of the glass material of the positive lens located immediately before the object side;
n22: Refractive index with respect to d-line of the glass material of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S in the second lens group G2.
条件式(5)は、第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する正レンズの屈折率と、第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの屈折率との比を規定するものである(図1では、第2レンズ群G2内の開口絞りSの物体側に位置する接合レンズを構成する正レンズL22と、負レンズL23が該当)。条件式(5)を満足することにより、良好な光学性能を実現することができる。   Conditional expression (5) represents the refractive index of the positive lens located immediately before the object side of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S in the second lens group G2. Defines the ratio with the refractive index of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S in the second lens group G2 (in FIG. 1, the second lens A positive lens L22 and a negative lens L23 constituting a cemented lens positioned on the object side of the aperture stop S in the group G2). Satisfying conditional expression (5) makes it possible to achieve good optical performance.
条件式(5)の対応値が上限値を上回ると、正レンズの屈折率が、負レンズの屈折率よりも大きくなりすぎるため、接合面での球面収差の補正が不足する。本実施形態の効果をより確実なものとするために、条件式(5)の上限値を0.97とすることが好ましい。   When the corresponding value of the conditional expression (5) exceeds the upper limit value, the refractive index of the positive lens becomes too larger than the refractive index of the negative lens, so that correction of spherical aberration at the cemented surface is insufficient. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (5) to 0.97.
条件式(5)の対応値が下限値を下回ると、正レンズの屈折率が、負レンズの屈折率よりも小さくなりすぎるため、接合面での球面収差の補正が過大となる。本実施形態の効果をより確実なものとするために、条件式(5)の下限値を0.80とすることが好ましい。   If the corresponding value of the conditional expression (5) is less than the lower limit value, the refractive index of the positive lens becomes too smaller than the refractive index of the negative lens, so that the correction of spherical aberration at the cemented surface becomes excessive. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 0.80.
本実施形態に係る光学系WLにおいて、第2レンズ群G2は、開口絞りSと、開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズと、この負レンズの物体側直前に位置する正レンズとを有し、次の条件式(6)を満足することが好ましい。   In the optical system WL according to the present embodiment, the second lens group G2 includes an aperture stop S, a lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S, and the negative lens. It is preferable to have a positive lens positioned immediately before the object side and satisfy the following conditional expression (6).
1.40 < ν21/ν22 < 2.80 …(6)
但し、
ν21:第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する正レンズの硝材のd線を基準とするアッベ数、
ν22:第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数。
1.40 <ν21 / ν22 <2.80 (6)
However,
ν21: The d-line of the glass material of the positive lens located immediately before the object side of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S in the second lens group G2 Abbe number,
ν22: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S in the second lens group G2.
条件式(6)は、第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する正レンズのアッベ数と、第2レンズ群G2内で開口絞りSよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズのアッベ数との比を規定するものである(図1では、第2レンズ群G2内の開口絞りSの物体側に位置する接合レンズを構成する正レンズL22と、負レンズL23が該当)。条件式(6)を満足することにより、良好な光学性能を実現することができる。   Conditional expression (6) is the Abbe number of the positive lens located immediately before the object side of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S in the second lens group G2. In the second lens group G2, the ratio to the Abbe number of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop S is defined (in FIG. 1, the second lens A positive lens L22 and a negative lens L23 constituting a cemented lens positioned on the object side of the aperture stop S in the group G2). Satisfying conditional expression (6) makes it possible to achieve good optical performance.
条件式(6)の対応値が上限値を上回ると、正レンズのアッベ数が、負レンズのアッベ数よりも大きくなりすぎるため、色収差の補正が過大となる。本実施形態の効果をより確実なものとするために、条件式(6)の上限値を2.50とすることが好ましい。   If the corresponding value of the conditional expression (6) exceeds the upper limit value, the Abbe number of the positive lens becomes too larger than the Abbe number of the negative lens, so that the correction of chromatic aberration becomes excessive. In order to secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (6) to 2.50.
条件式(6)の対応値が下限値を下回ると、正レンズのアッベ数が、負レンズのアッベ数よりも小さくなりすぎるため、色収差の補正が不足する。本実施形態の効果をより確実なものとするために、条件式(6)の下限値を1.60とすることが好ましい。   When the corresponding value of conditional expression (6) is below the lower limit value, the Abbe number of the positive lens becomes too smaller than the Abbe number of the negative lens, so that correction of chromatic aberration is insufficient. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 1.60.
本実施形態に係る光学系WLにおいて、第2レンズ群G2は、開口絞りSと、開口絞りSよりも物体側に位置する前群G2aと、開口絞りSよりも像側に位置する後群G2bとを有し、無限遠物体から近距離物体への合焦の際に、前群と後群との間隔を一定に保持したまま、又は変化させながら、各群をそれぞれ移動させることが好ましい。この構成により、合焦による収差変動(例えば、コマ収差)を良好に補正することができる。   In the optical system WL according to the present embodiment, the second lens group G2 includes an aperture stop S, a front group G2a positioned on the object side of the aperture stop S, and a rear group G2b positioned on the image side of the aperture stop S. When focusing from an object at infinity to an object at a short distance, it is preferable to move each group while maintaining or changing the distance between the front group and the rear group. With this configuration, it is possible to satisfactorily correct aberration fluctuations (for example, coma aberration) due to focusing.
本実施形態に係る光学系WLにおいて、第2レンズ群G2は、少なくとも1つの非球面レンズを有することが好ましい。この構成により、コマ収差、球面収差、像面湾曲等の諸収差を良好に補正することができる。   In the optical system WL according to the present embodiment, the second lens group G2 preferably has at least one aspheric lens. With this configuration, various aberrations such as coma, spherical aberration, and curvature of field can be favorably corrected.
以上のような構成を備える本実施形態に係る光学系WLによれば、良好な光学性能を有する光学系を実現することができる。   According to the optical system WL according to the present embodiment having the above-described configuration, an optical system having good optical performance can be realized.
次に、図19を参照しながら、上述の光学系WLを備えたカメラ(光学機器)について説明する。カメラ1は、図19に示すように、撮影レンズ2として上述の光学系WLを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより、撮影者はEVF4を介して被写体を観察することができる。また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。   Next, a camera (optical apparatus) including the above-described optical system WL will be described with reference to FIG. As shown in FIG. 19, the camera 1 is an interchangeable lens camera (so-called mirrorless camera) provided with the above-described optical system WL as a photographing lens 2. In this camera 1, light from an object (subject) (not shown) is collected by the taking lens 2, and on the imaging surface of the imaging unit 3 via an OLPF (Optical Low Pass Filter) not shown. A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4. When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
ここで、本カメラ1に撮影レンズ2として搭載した上述の光学系WLは、良好な光学性能を有している。したがって、本カメラ1によれば、良好な光学性能を実現することができる。なお、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述の光学系WLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。また、ビデオカメラに、上述の光学系WLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the above-described optical system WL mounted on the camera 1 as the photographing lens 2 has good optical performance. Therefore, according to the camera 1, good optical performance can be realized. Even when the above-described optical system WL is mounted on a single-lens reflex camera having a quick return mirror and observing a subject with a finder optical system, the same effect as the camera 1 can be obtained. Further, even when the above-described optical system WL is mounted on a video camera, the same effects as the camera 1 can be obtained.
続いて、図20を参照しながら、上述の光学系WLの製造方法について概説する。まず、レンズ鏡筒内に、物体側より順に並んだ、第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有するように、各レンズを配置する(ステップST10)。このとき、第1レンズ群G1は、負レンズと、正レンズとを有するようにする(ステップST20)。無限遠物体から近距離物体への合焦の際に、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が移動し、第1レンズ群G1と第2レンズ群G2との間隔が変化するように、各レンズを配置する(ステップST30)。次の条件式(1)〜(3)を満足するように、各レンズを鏡筒内に配置する(ステップST40)。   Next, the method for manufacturing the above-described optical system WL will be outlined with reference to FIG. First, each lens is arranged in the lens barrel so as to have a first lens group G1 and a second lens group G2 having positive refractive power arranged in order from the object side (step ST10). At this time, the first lens group G1 has a negative lens and a positive lens (step ST20). At the time of focusing from an object at infinity to an object at a short distance, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I, the second lens group G2 moves, and the first lens group G1 and the first lens group G1 Each lens is arranged so that the distance from the second lens group G2 changes (step ST30). Each lens is arranged in the lens barrel so as to satisfy the following conditional expressions (1) to (3) (step ST40).
0.50 < νn/νp < 1.60 …(1)
5.00 < |f1|/f < 30.00 …(2)
1.15 < f2/f < 1.70 …(3)
但し、
νn:第1レンズ群G1内で最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
νp:第1レンズ群G1内で最も正の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
f1:第1レンズ群G1の焦点距離、
f2:第2レンズ群G2の焦点距離、
f:無限遠合焦状態における全系の焦点距離。
0.50 <νn / νp <1.60 (1)
5.00 <| f1 | / f <30.00 (2)
1.15 <f2 / f <1.70 (3)
However,
νn: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the first lens group G1,
νp: Abbe number based on the d-line of the glass material of the lens having the strongest positive refractive power in the first lens group G1,
f1: Focal length of the first lens group G1
f2: focal length of the second lens group G2,
f: The focal length of the entire system in the infinitely focused state.
本実施形態におけるレンズ配置の一例を挙げると、図1に示す光学系WLでは、第1レンズ群G1として、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた正メニスカスレンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14を、鏡筒内に配置している。正の屈折力を有する第2レンズ群G2として、物体側から順に、両凸形状の正レンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズと、開口絞りSと、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27を、鏡筒内に配置している。また、これらのレンズは、条件式(1)〜(3)を満足するように配置している(条件式(1)の対応値は1.053、条件式(2)の対応値は16.633、条件式(3)の対応値は1.475)。   As an example of the lens arrangement in the present embodiment, in the optical system WL shown in FIG. 1, as the first lens group G1, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, and a concave surface facing the object side. A cemented negative lens of a positive meniscus lens L12 and a biconcave negative lens L13, and a biconvex positive lens L14 are arranged in the lens barrel. As the second lens group G2 having positive refractive power, in order from the object side, a biconvex positive lens L21, a cemented negative lens of a biconvex positive lens L22 and a biconcave negative lens L23, and an aperture A diaphragm S, a cemented negative lens of a biconcave negative lens L24 and a biconvex positive lens L25, a biconvex positive lens L26, and a positive meniscus lens L27 having a concave surface facing the object side It is placed inside. These lenses are arranged so as to satisfy conditional expressions (1) to (3) (the corresponding value of conditional expression (1) is 1.053, the corresponding value of conditional expression (2) is 16.633, conditional expression) The corresponding value for (3) is 1.475).
上記の製造方法によれば、良好な光学性能を有する光学系を製造することができる。   According to said manufacturing method, the optical system which has favorable optical performance can be manufactured.
これより本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜表9を示すが、これらは第1実施例〜第9実施例における各諸元の表である。   Each example according to the present embodiment will be described with reference to the drawings. Tables 1 to 9 are shown below, but these are tables of specifications in the first to ninth examples.
なお、第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。   In addition, each reference code with respect to FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.
各実施例では収差特性の算出対象として、d線(波長587.5620nm)、g線(波長435.8350nm)を選んでいる。   In each embodiment, d-line (wavelength 587.5620 nm) and g-line (wavelength 435.8350 nm) are selected as the calculation targets of the aberration characteristics.
表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。物面は物体面、(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示す。空気の屈折率「1.00000」の記載は省略する。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。   In [Lens Specifications] in the table, the surface number is the order of the optical surfaces from the object side along the light traveling direction, R is the radius of curvature of each optical surface, D is the next optical surface from each optical surface ( Or nd is the refractive index of the material of the optical member with respect to the d-line, and νd is the Abbe number based on the d-line of the material of the optical member. The object plane is the object plane, (variable) is the variable plane spacing, the curvature radius “∞” is the plane or aperture, (aperture S) is the aperture stop S, and the image plane is the image plane I. The description of the refractive index “1.00000” of air is omitted. When the optical surface is an aspherical surface, the surface number is marked with *, and the column of curvature radius R indicates the paraxial curvature radius.
表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。 In [Aspherical data] in the table, the shape of the aspherical surface shown in [Lens specifications] is shown by the following equation (a). X (y) is the distance along the optical axis direction from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y, r is the radius of curvature of the reference sphere (paraxial radius of curvature), and κ is Ai represents the i-th aspherical coefficient. “E-n” indicates “× 10 −n ”. For example, 1.234E-05 = 1.234 × 10 −5 .
X(y)=(y2/r)/{1+(1−κ×y2/r21/2}+A4y4+A6y6+A8y8+A10y10 …(a) X (y) = (y 2 / r) / {1+ (1-κ × y 2 / r 2 ) 1/2 } + A4y 4 + A6y 6 + A8y 8 + A10y 10 (a)
表中の[全体諸元]において、fはレンズ全系の焦点距離、FNoはFナンバー、ωは半画角(単位:°)、Ymaxは最大像高、Bfは光軸上でのレンズ最終面から近軸像面までの距離、TLは光学全長(光軸上でのレンズ最前面からレンズ最終面までの距離にBfを加えたもの)を示す。   In [Overall specifications] in the table, f is the focal length of the entire lens system, FNo is the F number, ω is the half angle of view (unit: °), Ymax is the maximum image height, and Bf is the final lens on the optical axis. The distance from the surface to the paraxial image plane, TL, indicates the total optical length (the distance from the lens frontmost surface to the lens final surface on the optical axis plus Bf).
表中の[可変間隔データ]において、無限遠合焦状態(撮影倍率β=0.00)、近距離合焦状態(撮影倍率β=-1/30)のそれぞれにおける可変間隔の値Diを示す。なお、Diは、第i面と第(i+1)面の可変間隔を示す。また、物体からレンズ最前面までの距離をD0とする。   In [Variable interval data] in the table, the variable interval value Di in each of the infinite focus state (shooting magnification β = 0.00) and the short distance focus state (shooting magnification β = −1 / 30) is shown. Di represents a variable interval between the i-th surface and the (i + 1) -th surface. The distance from the object to the forefront of the lens is D0.
表中の[レンズ群データ]において、Gは群番号、群初面は各群の最も物体側の面番号、群焦点距離は各群の焦点距離を示す。   In [Lens Group Data] in the table, G represents the group number, the first group surface represents the surface number of the most object side of each group, and the group focal length represents the focal length of each group.
表中の[条件式]には、上記の条件式(1)〜(6)に対応する値を示す。   [Conditional expression] in the table indicates values corresponding to the conditional expressions (1) to (6).
以下、全ての諸元値において、掲載されている焦点距離、曲率半径、面間隔、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   Hereinafter, in all the specification values, “mm” is generally used for the focal length, the radius of curvature, the surface interval, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged or reduced. However, the same optical performance can be obtained, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。   The description of the table so far is common to all the embodiments, and the description below is omitted.
(第1実施例)
第1実施例について、図1、図2及び表1を用いて説明する。第1実施例に係る光学系WL(WL1)は、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(First embodiment)
A first embodiment will be described with reference to FIGS. 1 and 2 and Table 1. FIG. As shown in FIG. 1, the optical system WL (WL1) according to the first example includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた正メニスカスレンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14とからなる。   The first lens group G1 includes a negative meniscus lens L11 having a convex surface directed toward the object side, a positive meniscus lens L12 having a concave surface directed toward the object side, and a biconcave negative lens L13 arranged in order from the object side. The lens includes a biconvex positive lens L14.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front group G2a of the second lens group G2 is composed of a biconvex positive lens L21 and a cemented negative lens of a biconvex positive lens L22 and a biconcave negative lens L23 arranged in order from the object side. .
第2レンズ群G2の後群G2bは、物体側から順に並んだ、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear group G2b of the second lens group G2 includes, in order from the object side, a cemented negative lens of a biconcave negative lens L24 and a biconvex positive lens L25, a biconvex positive lens L26, And a positive meniscus lens L27 having a concave surface on the side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL1では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL1 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during focusing from a long distance object to a short distance object, and the second lens group G2 Are integrally moved to the object side.
下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜21が、図1に示すm1〜m21の各光学面に対応している。   Table 1 below shows the values of each item in the first example. Surface numbers 1 to 21 in Table 1 correspond to the optical surfaces m1 to m21 shown in FIG.
(表1)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 226.5998 1.900 1.58913 61.22
2 26.3342 13.931
3 -8835.5536 2.725 1.78472 25.64
4 -139.1833 1.500 1.58913 61.22
5 50.3375 2.000
6 37.4060 10.330 1.62299 58.12
7 -74.8089 D7(可変)
8 32.1428 4.462 1.80400 46.60
9 -571.0364 0.434
10 391.7521 3.425 1.59319 67.90
11 -41.6538 2.322 1.67270 32.18
12 30.4662 3.636
13 ∞ 8.575 (絞りS)
14 -16.5791 1.100 1.64769 33.72
15 143.1682 2.537 1.69680 55.52
16 -101.1506 0.180
17 255.4058 5.844 1.77250 49.62
18 -25.5855 0.180
*19 -124.4651 0.150 1.53610 41.21
20 -80.1581 2.534 1.71300 53.96
21 -44.4932 Bf
像面 ∞

[非球面データ]
第19面
κ = 1.0000
A4 =-1.39304E-05
A6 =-6.37142E-09
A8 =-3.21874E-11
A10= 0.00000E+00

[全体諸元]
f 34.5
FNo 1.86
ω 32.68
Ymax 21.6
Bf 38.42
TL 115.40

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1019.325
D7 9.215 8.063

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 574.104
G2 8 50.927

[条件式]
条件式(1) νn/νp = 1.053
条件式(2) |f1|/f = 16.633
条件式(3) f2/f = 1.475
条件式(4) n21/n22 = 0.952
条件式(5) ν21/ν22 = 2.110
条件式(6) ν11/ν12 = 0.419
(Table 1)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 226.5998 1.900 1.58913 61.22
2 26.3342 13.931
3 -8835.5536 2.725 1.78472 25.64
4 -139.1833 1.500 1.58913 61.22
5 50.3375 2.000
6 37.4060 10.330 1.62299 58.12
7 -74.8089 D7 (variable)
8 32.1428 4.462 1.80400 46.60
9 -571.0364 0.434
10 391.7521 3.425 1.59319 67.90
11 -41.6538 2.322 1.67270 32.18
12 30.4662 3.636
13 ∞ 8.575 (Aperture S)
14 -16.5791 1.100 1.64769 33.72
15 143.1682 2.537 1.69680 55.52
16 -101.1506 0.180
17 255.4058 5.844 1.77250 49.62
18 -25.5855 0.180
* 19 -124.4651 0.150 1.53610 41.21
20 -80.1581 2.534 1.71300 53.96
21 -44.4932 Bf
Image plane ∞

[Aspherical data]
19th surface κ = 1.0000
A4 = -1.39304E-05
A6 = -6.37142E-09
A8 = -3.21874E-11
A10 = 0.00000E + 00

[Overall specifications]
f 34.5
FNo 1.86
ω 32.68
Ymax 21.6
Bf 38.42
TL 115.40

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1019.325
D7 9.215 8.063

[Lens group data]
Group number Group first surface Group focal length G1 1 574.104
G2 8 50.927

[Conditional expression]
Conditional expression (1) νn / νp = 1.053
Conditional expression (2) | f1 | /f=16.333
Conditional expression (3) f2 / f = 1.475
Conditional expression (4) n21 / n22 = 0.952
Conditional expression (5) ν21 / ν22 = 2.110
Conditional expression (6) ν11 / ν12 = 0.419
表1から、本実施例に係る光学系WL1は、条件式(1)〜(6)を満たすことが分かる。   From Table 1, it can be seen that the optical system WL1 according to the present example satisfies the conditional expressions (1) to (6).
図2は、第1実施例に係る光学系WL1の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 2 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma aberration diagram and chromatic aberration diagram of magnification) of the optical system WL1 according to the first example, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
各収差図において、FNOはFナンバー、NAは開口数、Yは像高を示す。dはd線、gはg線における収差を示す。また、記載のないものは、d線における収差を示す。球面収差図において、最大口径に対応するFナンバーまたは開口数の値を示す。非点収差図及び歪曲収差図において、Yは像高の最大値をそれぞれ示す。コマ収差図において、Yは各像高の値を示す。また、非点収差図において、実線はサジタル像面、破線はメリジオナル像面を示す。コマ収差図において、実線はメリジオナルコマを示す。以下、各実施例の収差図においても、本実施例と同様の符号を用いる。   In each aberration diagram, FNO represents an F number, NA represents a numerical aperture, and Y represents an image height. d represents the aberration at the d-line, and g represents the aberration at the g-line. Those not described indicate aberrations at the d-line. In the spherical aberration diagram, the F number or numerical aperture corresponding to the maximum aperture is shown. In the astigmatism diagram and the distortion diagram, Y represents the maximum value of the image height. In the coma aberration diagram, Y indicates the value of each image height. In the graph showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. In the coma aberration diagram, the solid line indicates the meridional coma. Hereinafter, also in the aberration diagrams of the respective examples, the same symbols as those of the present example are used.
図2に示す各収差図から、第1実施例に係る光学系WL1は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the aberration diagrams shown in FIG. 2, it can be seen that the optical system WL1 according to the first example has various optical aberrations corrected and has good optical performance.
(第2実施例)
第2実施例について、図3、図4及び表2を用いて説明する。第2実施例に係る光学系WL(WL2)は、図3に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(Second embodiment)
The second embodiment will be described with reference to FIGS. 3 and 4 and Table 2. FIG. As shown in FIG. 3, the optical system WL (WL2) according to the second example includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた正メニスカスレンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14とからなる。   The first lens group G1 includes a negative meniscus lens L11 having a convex surface directed toward the object side, a positive meniscus lens L12 having a concave surface directed toward the object side, and a biconcave negative lens L13 arranged in order from the object side. The lens includes a biconvex positive lens L14.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front group G2a of the second lens group G2 is composed of a biconvex positive lens L21 and a cemented negative lens of a biconvex positive lens L22 and a biconcave negative lens L23 arranged in order from the object side. .
第2レンズ群G2の後群G2bは、物体側から順に並んだ、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear group G2b of the second lens group G2 includes, in order from the object side, a cemented negative lens of a biconcave negative lens L24 and a biconvex positive lens L25, a biconvex positive lens L26, And a positive meniscus lens L27 having a concave surface on the side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL2では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL2 according to the present embodiment, when focusing from a long distance object to a short distance object, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I, and the second lens group G2 Are integrally moved to the object side.
下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜21が、図3に示すm1〜m21の各光学面に対応している。   Table 2 below shows the values of each item in the second embodiment. Surface numbers 1 to 21 in Table 2 correspond to the optical surfaces m1 to m21 shown in FIG.
(表2)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 252.7953 1.500 1.48749 70.41
2 26.5555 12.992
3 -480.3085 4.990 1.77250 49.61
4 -58.0470 1.500 1.49782 82.52
5 40.1063 0.200
6 31.1474 11.000 1.61800 63.37
7 -158.5305 D7(可変)
8 31.7370 4.387 1.80400 46.57
9 -196.5666 0.392
10 2275.2314 2.598 1.48749 70.41
11 -49.7270 1.150 1.68893 31.07
12 28.7264 3.478
13 ∞ 7.191 (絞りS)
14 -15.3838 1.150 1.62588 35.74
15 97.2875 3.084 1.72916 54.66
16 -67.6930 0.200
17 243.6076 5.958 1.75500 52.31
18 -25.5794 0.152
*19 -84.0807 0.150 1.53610 41.21
20 -59.6448 2.616 1.69680 55.52
21 -37.3609 Bf
像面 ∞

[非球面データ]
第19面
κ = 1.0000
A4 =-1.52050E-05
A6 =-7.10240E-09
A8 =-2.84360E-11
A10= 0.00000E+00

[全体諸元]
f 35.5
FNo 1.86
ω 32.02
Ymax 21.6
Bf 38.82
TL 115.02

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1043.924
D7 11.514 10.329

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 437.831
G2 8 46.714

[条件式]
条件式(1) νn/νp = 1.302
条件式(2) |f1|/f = 12.350
条件式(3) f2/f = 1.318
条件式(4) n21/n22 = 0.881
条件式(5) ν21/ν22 = 2.266
条件式(6) ν11/ν12 = 0.783
(Table 2)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 252.7953 1.500 1.48749 70.41
2 26.5555 12.992
3 -480.3085 4.990 1.77250 49.61
4 -58.0470 1.500 1.49782 82.52
5 40.1063 0.200
6 31.1474 11.000 1.61800 63.37
7 -158.5305 D7 (variable)
8 31.7370 4.387 1.80400 46.57
9 -196.5666 0.392
10 2275.2314 2.598 1.48749 70.41
11 -49.7270 1.150 1.68893 31.07
12 28.7264 3.478
13 ∞ 7.191 (Aperture S)
14 -15.3838 1.150 1.62588 35.74
15 97.2875 3.084 1.72916 54.66
16 -67.6930 0.200
17 243.6076 5.958 1.75500 52.31
18 -25.5794 0.152
* 19 -84.0807 0.150 1.53610 41.21
20 -59.6448 2.616 1.69680 55.52
21 -37.3609 Bf
Image plane ∞

[Aspherical data]
19th surface κ = 1.0000
A4 = -1.52050E-05
A6 = -7.10240E-09
A8 = -2.84360E-11
A10 = 0.00000E + 00

[Overall specifications]
f 35.5
FNo 1.86
ω 32.02
Ymax 21.6
Bf 38.82
TL 115.02

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1043.924
D7 11.514 10.329

[Lens group data]
Group number Group first surface Group focal length G1 1 437.831
G2 8 46.714

[Conditional expression]
Conditional expression (1) νn / νp = 1.302
Conditional expression (2) | f1 | /f=12.350
Conditional expression (3) f2 / f = 1.318
Conditional expression (4) n21 / n22 = 0.881
Conditional expression (5) ν21 / ν22 = 2.266
Conditional expression (6) ν11 / ν12 = 0.783
表2から、本実施例に係る光学系WL2は、条件式(1)〜(6)を満たすことが分かる。   From Table 2, it can be seen that the optical system WL2 according to the present example satisfies the conditional expressions (1) to (6).
図4は、第2実施例に係る光学系WL2の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 4 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma aberration diagram and chromatic aberration diagram of magnification) of the optical system WL2 according to the second example, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図4に示す各収差図から、第2実施例に係る光学系WL2は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the respective aberration diagrams shown in FIG. 4, it can be seen that the optical system WL2 according to the second example has favorable optical performance with various aberrations corrected well.
(第3実施例)
第3実施例について、図5、図6及び表3を用いて説明する。第3実施例に係る光学系WL(WL3)は、図5に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 5 and 6 and Table 3. FIG. As shown in FIG. 5, the optical system WL (WL3) according to the third example includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた正メニスカスレンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14とからなる。   The first lens group G1 includes a negative meniscus lens L11 having a convex surface directed toward the object side, a positive meniscus lens L12 having a concave surface directed toward the object side, and a biconcave negative lens L13 arranged in order from the object side. The lens includes a biconvex positive lens L14.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front group G2a of the second lens group G2 is composed of a biconvex positive lens L21 and a cemented negative lens of a biconvex positive lens L22 and a biconcave negative lens L23 arranged in order from the object side. .
第2レンズ群G2の後群G2bは、物体側から順に並んだ、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear group G2b of the second lens group G2 includes, in order from the object side, a cemented negative lens of a biconcave negative lens L24 and a biconvex positive lens L25, a biconvex positive lens L26, And a positive meniscus lens L27 having a concave surface on the side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL3では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL3 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during the focusing from the long distance object to the short distance object, and the second lens group G2 Are integrally moved to the object side.
下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜21が、図5に示すm1〜m21の各光学面に対応している。   Table 3 below shows values of various specifications in the third example. Surface numbers 1 to 21 in Table 3 correspond to the optical surfaces m1 to m21 shown in FIG.
(表3)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 120.2513 1.500 1.48749 70.41
2 25.3354 15.355
3 -266.4456 3.494 1.83481 42.72
4 -75.2895 1.500 1.49782 82.52
5 38.7750 0.366
6 31.0307 11.000 1.61800 63.37
7 -135.6014 D7(可変)
8 35.4304 4.295 1.80400 46.57
9 -217.5622 0.389
10 1951.2792 3.406 1.56384 60.67
11 -32.8327 2.055 1.64769 33.80
12 29.3343 3.436
13 ∞ 7.138 (絞りS)
14 -15.4940 1.150 1.63980 34.56
15 126.4878 3.404 1.72916 54.66
16 -52.2120 0.200
17 507.6958 5.503 1.75500 52.31
18 -26.6794 0.152
*19 -78.3607 0.150 1.53610 41.21
20 -60.3886 2.803 1.69680 55.52
21 -35.6430 Bf
像面 ∞

[非球面データ]
第19面
κ = 1.0000
A4 =-1.37740E-05
A6 =-4.32020E-09
A8 =-1.91520E-11
A10= 0.00000E+00

[全体諸元]
f 35.2
FNo 1.86
ω 32.21
Ymax 21.6
Bf 38.82
TL 116.21

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1044.707
D7 10.100 8.985

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 511.794
G2 8 46.875

[条件式]
条件式(1) νn/νp = 1.302
条件式(2) |f1|/f = 14.547
条件式(3) f2/f = 1.332
条件式(4) n21/n22 = 0.949
条件式(5) ν21/ν22 = 1.822
条件式(6) ν11/ν12 = 0.518
(Table 3)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 120.2513 1.500 1.48749 70.41
2 25.3354 15.355
3 -266.4456 3.494 1.83481 42.72
4 -75.2895 1.500 1.49782 82.52
5 38.7750 0.366
6 31.0307 11.000 1.61800 63.37
7 -135.6014 D7 (variable)
8 35.4304 4.295 1.80400 46.57
9 -217.5622 0.389
10 1951.2792 3.406 1.56384 60.67
11 -32.8327 2.055 1.64769 33.80
12 29.3343 3.436
13 ∞ 7.138 (Aperture S)
14 -15.4940 1.150 1.63980 34.56
15 126.4878 3.404 1.72916 54.66
16 -52.2120 0.200
17 507.6958 5.503 1.75500 52.31
18 -26.6794 0.152
* 19 -78.3607 0.150 1.53610 41.21
20 -60.3886 2.803 1.69680 55.52
21 -35.6430 Bf
Image plane ∞

[Aspherical data]
19th surface κ = 1.0000
A4 = -1.37740E-05
A6 = -4.32020E-09
A8 = -1.91520E-11
A10 = 0.00000E + 00

[Overall specifications]
f 35.2
FNo 1.86
ω 32.21
Ymax 21.6
Bf 38.82
TL 116.21

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1044.707
D7 10.100 8.985

[Lens group data]
Group number Group first surface Group focal length G1 1 511.794
G2 8 46.875

[Conditional expression]
Conditional expression (1) νn / νp = 1.302
Conditional expression (2) | f1 | /f=14.547
Conditional expression (3) f2 / f = 1.332
Conditional expression (4) n21 / n22 = 0.949
Conditional expression (5) ν21 / ν22 = 1.822
Conditional expression (6) ν11 / ν12 = 0.518
表3から、本実施例に係る光学系WL3は、条件式(1)〜(6)を満たすことが分かる。   From Table 3, it can be seen that the optical system WL3 according to the present example satisfies the conditional expressions (1) to (6).
図6は、第3実施例に係る光学系WL3の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 6 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) of the optical system WL3 according to the third example, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図6に示す各収差図から、第3実施例に係る光学系WL3は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the respective aberration diagrams shown in FIG. 6, it can be seen that the optical system WL3 according to the third example has good optical performance with various aberrations corrected well.
(第4実施例)
第4実施例について、図7、図8及び表4を用いて説明する。第4実施例に係る光学系WL(WL4)は、図7に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. 7 and 8 and Table 4. FIG. As shown in FIG. 7, the optical system WL (WL4) according to the fourth example includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14とからなる。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a cemented negative lens of a biconvex positive lens L12 and a biconcave negative lens L13, It consists of a convex positive lens L14.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front lens group G2a of the second lens group G2 is a negative junction of a positive meniscus lens L21 having a convex surface facing the object side, a biconvex positive lens L22, and a biconcave negative lens L23 arranged in order from the object side. It consists of a lens.
第2レンズ群G2の後群G2bは、物体側から順に並んだ、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear group G2b of the second lens group G2 includes, in order from the object side, a cemented negative lens of a biconcave negative lens L24 and a biconvex positive lens L25, a biconvex positive lens L26, And a positive meniscus lens L27 having a concave surface on the side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL4では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL4 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during the focusing from the long distance object to the short distance object, and the second lens group G2 Are integrally moved to the object side.
下記の表4に、第4実施例における各諸元の値を示す。表4における面番号1〜21が、図7に示すm1〜m21の各光学面に対応している。   Table 4 below shows values of various specifications in the fourth embodiment. Surface numbers 1 to 21 in Table 4 correspond to the optical surfaces m1 to m21 shown in FIG.
(表4)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 155.9697 1.900 1.60311 60.67
2 27.8262 17.205
3 12700.7620 3.520 1.85026 32.35
4 -104.0274 1.500 1.51680 64.10
5 42.1967 0.100
6 31.0797 11.000 1.60311 60.67
7 -100.3267 D7(可変)
8 32.8683 4.271 1.80400 46.57
9 18768.8410 0.495
10 241.0389 3.162 1.59319 67.90
11 -46.2065 2.694 1.64769 33.80
12 26.7169 3.688
13 ∞ 7.444 (絞りS)
14 -15.4908 1.100 1.67270 32.11
15 202.7084 2.956 1.69680 55.52
16 -54.3471 0.200
17 381.9504 5.731 1.77250 49.61
18 -25.6649 0.152
*19 -76.0842 0.150 1.53610 41.21
20 -57.7574 2.708 1.71300 53.88
21 -35.6974 Bf
像面 ∞

[非球面データ]
第19面
κ = 1.0000
A4 =-1.42290E-05
A6 =-6.39300E-09
A8 =-2.35130E-11
A10= 0.00000E+00

[全体諸元]
f 35.0
FNo 1.86
ω 32.32
Ymax 21.6
Bf 38.88
TL 117.82

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1029.983
D7 8.965 7.789

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 322.733
G2 8 49.738

[条件式]
条件式(1) νn/νp = 1.000
条件式(2) |f1|/f = 9.221
条件式(3) f2/f = 1.421
条件式(4) n21/n22 = 0.967
条件式(5) ν21/ν22 = 2.009
条件式(6) ν11/ν12 = 0.505
(Table 4)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 155.9697 1.900 1.60311 60.67
2 27.8262 17.205
3 12700.7620 3.520 1.85026 32.35
4 -104.0274 1.500 1.51680 64.10
5 42.1967 0.100
6 31.0797 11.000 1.60311 60.67
7 -100.3267 D7 (variable)
8 32.8683 4.271 1.80400 46.57
9 18768.8410 0.495
10 241.0389 3.162 1.59319 67.90
11 -46.2065 2.694 1.64769 33.80
12 26.7169 3.688
13 ∞ 7.444 (Aperture S)
14 -15.4908 1.100 1.67270 32.11
15 202.7084 2.956 1.69680 55.52
16 -54.3471 0.200
17 381.9504 5.731 1.77250 49.61
18 -25.6649 0.152
* 19 -76.0842 0.150 1.53610 41.21
20 -57.7574 2.708 1.71300 53.88
21 -35.6974 Bf
Image plane ∞

[Aspherical data]
19th surface κ = 1.0000
A4 = -1.42290E-05
A6 = -6.39300E-09
A8 = -2.35130E-11
A10 = 0.00000E + 00

[Overall specifications]
f 35.0
FNo 1.86
ω 32.32
Ymax 21.6
Bf 38.88
TL 117.82

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1029.983
D7 8.965 7.789

[Lens group data]
Group number Group first surface Group focal length G1 1 322.733
G2 8 49.738

[Conditional expression]
Conditional expression (1) νn / νp = 1.000
Conditional expression (2) | f1 | /f=9.221
Conditional expression (3) f2 / f = 1.421
Conditional expression (4) n21 / n22 = 0.967
Conditional expression (5) ν21 / ν22 = 2.009
Conditional expression (6) ν11 / ν12 = 0.505
表4から、本実施例に係る光学系WL4は、条件式(1)〜(6)を満たすことが分かる。   From Table 4, it can be seen that the optical system WL4 according to the present example satisfies the conditional expressions (1) to (6).
図8は、第4実施例に係る光学系WL4の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 8 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram, and chromatic aberration diagram of magnification) of the optical system WL4 according to the fourth example, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図8に示す各収差図から、第4実施例に係る光学系WL4は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the respective aberration diagrams shown in FIG. 8, it can be seen that the optical system WL4 according to the fourth example has good optical performance with various aberrations corrected well.
(第5実施例)
第5実施例について、図9、図10及び表5を用いて説明する。第5実施例に係る光学系WL(WL5)は、図9に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(5th Example)
The fifth embodiment will be described with reference to FIGS. 9 and 10 and Table 5. FIG. As shown in FIG. 9, the optical system WL (WL5) according to the fifth example includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凸形状の正レンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14とからなる。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a cemented negative lens of a biconvex positive lens L12 and a biconcave negative lens L13, It consists of a convex positive lens L14.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front group G2a of the second lens group G2 is composed of a biconvex positive lens L21 and a cemented negative lens of a biconvex positive lens L22 and a biconcave negative lens L23 arranged in order from the object side. .
第2レンズ群G2の後群G2bは、物体側から順に並んだ、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear group G2b of the second lens group G2 includes, in order from the object side, a cemented negative lens of a biconcave negative lens L24 and a biconvex positive lens L25, a biconvex positive lens L26, And a positive meniscus lens L27 having a concave surface on the side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL5では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL5 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during the focusing from the long distance object to the short distance object, and the second lens group G2 Are integrally moved to the object side.
下記の表5に、第5実施例における各諸元の値を示す。表5における面番号1〜21が、図9に示すm1〜m21の各光学面に対応している。   Table 5 below shows values of various specifications in the fifth example. Surface numbers 1 to 21 in Table 5 correspond to the optical surfaces m1 to m21 shown in FIG.
(表5)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 262.9687 1.900 1.60311 60.69
2 26.8316 8.607
3 1403.9715 2.641 1.75520 27.57
4 -125.6341 1.500 1.58913 61.22
5 52.0347 5.000
6 39.3275 12.000 1.62299 58.12
7 -76.8163 D7(可変)
8 33.3127 5.471 1.80400 46.60
9 -324.9547 0.477
10 1244.5691 3.378 1.59319 67.90
11 -38.1119 1.100 1.67270 32.18
12 32.3016 4.496
13 ∞ 8.201 (絞りS)
14 -17.1903 1.100 1.64769 33.72
15 149.6985 2.433 1.69680 55.52
16 -132.9675 0.150
17 202.1298 6.225 1.77250 49.62
18 -26.2794 0.215
*19 -172.5191 0.150 1.53610 41.21
20 -97.3007 2.607 1.77250 49.62
21 -49.3164 Bf
像面 ∞

[非球面データ]
第19面
κ = 1.0000
A4 =-1.31741E-05
A6 =-5.37825E-09
A8 =-2.84732E-11
A10= 0.00000E+00

[全体諸元]
f 34.4
FNo 1.86
ω 32.75
Ymax 21.6
Bf 38.44
TL 115.92

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1017.084
D7 9.830 8.680

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 541.524
G2 8 50.657

[条件式]
条件式(1) νn/νp = 1.053
条件式(2) |f1|/f = 15.725
条件式(3) f2/f = 1.471
条件式(4) n21/n22 = 0.952
条件式(5) ν21/ν22 = 2.110
条件式(6) ν11/ν12 = 0.419
(Table 5)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 262.9687 1.900 1.60311 60.69
2 26.8316 8.607
3 1403.9715 2.641 1.75520 27.57
4 -125.6341 1.500 1.58913 61.22
5 52.0347 5.000
6 39.3275 12.000 1.62299 58.12
7 -76.8163 D7 (variable)
8 33.3127 5.471 1.80400 46.60
9 -324.9547 0.477
10 1244.5691 3.378 1.59319 67.90
11 -38.1119 1.100 1.67270 32.18
12 32.3016 4.496
13 ∞ 8.201 (Aperture S)
14 -17.1903 1.100 1.64769 33.72
15 149.6985 2.433 1.69680 55.52
16 -132.9675 0.150
17 202.1298 6.225 1.77250 49.62
18 -26.2794 0.215
* 19 -172.5191 0.150 1.53610 41.21
20 -97.3007 2.607 1.77250 49.62
21 -49.3164 Bf
Image plane ∞

[Aspherical data]
19th surface κ = 1.0000
A4 = -1.31741E-05
A6 = -5.37825E-09
A8 = -2.84732E-11
A10 = 0.00000E + 00

[Overall specifications]
f 34.4
FNo 1.86
ω 32.75
Ymax 21.6
Bf 38.44
TL 115.92

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1017.084
D7 9.830 8.680

[Lens group data]
Group number Group first surface Group focal length G1 1 541.524
G2 8 50.657

[Conditional expression]
Conditional expression (1) νn / νp = 1.053
Conditional expression (2) | f1 | /f=15.725
Conditional expression (3) f2 / f = 1.471
Conditional expression (4) n21 / n22 = 0.952
Conditional expression (5) ν21 / ν22 = 2.110
Conditional expression (6) ν11 / ν12 = 0.419
表5から、本実施例に係る光学系WL5は、条件式(1)〜(6)を満たすことが分かる。   From Table 5, it can be seen that the optical system WL5 according to the present example satisfies the conditional expressions (1) to (6).
図10は、第5実施例に係る光学系WL5の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 10 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and lateral chromatic aberration diagram) of the optical system WL5 according to Example 5, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図10に示す各収差図から、第5実施例に係る光学系WL5は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the respective aberration diagrams shown in FIG. 10, it can be seen that the optical system WL5 according to the fifth example has favorable optical performance with various aberrations corrected well.
(第6実施例)
第6実施例について、図11、図12及び表6を用いて説明する。第6実施例に係る光学系WL(WL6)は、図11に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIGS. 11 and 12 and Table 6. FIG. As shown in FIG. 11, the optical system WL (WL6) according to the sixth example includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合負レンズと、両凸形状の正レンズL14と物体側に凹面を向けた負メニスカスレンズL15との接合正レンズとからなる。   The first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a biconcave shape, and a positive meniscus lens L13 having a convex surface facing the object side. The lens includes a positive lens L14 having a biconvex shape and a cemented positive lens of a negative meniscus lens L15 having a concave surface facing the object side.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front lens group G2a of the second lens group G2 is a negative junction of a positive meniscus lens L21 having a convex surface facing the object side, a biconvex positive lens L22, and a biconcave negative lens L23 arranged in order from the object side. It consists of a lens.
第2レンズ群G2の後群G2bは、物体側から順に並んだ、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear group G2b of the second lens group G2 includes, in order from the object side, a cemented negative lens of a biconcave negative lens L24 and a biconvex positive lens L25, a biconvex positive lens L26, And a positive meniscus lens L27 having a concave surface on the side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL6では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL6 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during the focusing from the long distance object to the short distance object, and the second lens group G2 Are integrally moved to the object side.
下記の表6に、第6実施例における各諸元の値を示す。表6における面番号1〜22が、図11に示すm1〜m22の各光学面に対応している。   Table 6 below shows values of various specifications in the sixth example. Surface numbers 1 to 22 in Table 6 correspond to the optical surfaces m1 to m22 shown in FIG.
(表6)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 161.0107 1.400 1.58913 61.22
2 24.2058 9.782
3 -204.8402 1.400 1.58913 61.22
4 51.7585 1.841 1.75520 27.57
5 55.4234 3.966
6 42.1254 11.413 1.74397 44.85
7 -31.7310 1.400 1.74118 28.17
8 -71.8021 D8(可変)
9 28.9208 4.796 1.74777 36.94
10 301.5981 0.824
11 148.4800 3.106 1.58913 61.22
12 -100.4800 1.500 1.68893 31.16
13 30.2892 3.772
14 ∞ 7.408 (絞りS)
15 -18.1540 1.500 1.75520 27.58
16 103.1328 3.426 1.74397 44.85
17 -56.7564 0.150
18 204.2182 5.591 1.74397 44.85
19 -28.1452 0.220
*20 -146.3219 0.150 1.55389 38.23
21 -76.9188 2.555 1.60311 60.69
22 -47.6199 Bf
像面 ∞

[非球面データ]
第20面
κ= 1.0000
A4 =-1.39076E-05
A6 =-2.19882E-09
A8 =-3.54595E-11
A10= 0.00000E+00

[全体諸元]
f 34.3
FNo 1.85
ω 32.77
Ymax 21.6
Bf 38.55
TL 114.35

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1014.207
D8 9.600 8.449

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 348.769
G2 9 52.265

[条件式]
条件式(1) νn/νp = 1.365
条件式(2) |f1|/f = 10.165
条件式(3) f2/f = 1.523
条件式(4) n21/n22 = 0.941
条件式(5) ν21/ν22 = 1.965
条件式(6) ν11/ν12 = 0.450
(Table 6)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 161.0107 1.400 1.58913 61.22
2 24.2058 9.782
3 -204.8402 1.400 1.58913 61.22
4 51.7585 1.841 1.75520 27.57
5 55.4234 3.966
6 42.1254 11.413 1.74397 44.85
7 -31.7310 1.400 1.74118 28.17
8 -71.8021 D8 (variable)
9 28.9208 4.796 1.74777 36.94
10 301.5981 0.824
11 148.4800 3.106 1.58913 61.22
12 -100.4800 1.500 1.68893 31.16
13 30.2892 3.772
14 ∞ 7.408 (Aperture S)
15 -18.1540 1.500 1.75520 27.58
16 103.1328 3.426 1.74397 44.85
17 -56.7564 0.150
18 204.2182 5.591 1.74397 44.85
19 -28.1452 0.220
* 20 -146.3219 0.150 1.55389 38.23
21 -76.9188 2.555 1.60311 60.69
22 -47.6199 Bf
Image plane ∞

[Aspherical data]
20th surface κ = 1.0000
A4 = -1.39076E-05
A6 = -2.19882E-09
A8 = -3.54595E-11
A10 = 0.00000E + 00

[Overall specifications]
f 34.3
FNo 1.85
ω 32.77
Ymax 21.6
Bf 38.55
TL 114.35

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1014.207
D8 9.600 8.449

[Lens group data]
Group number Group first surface Group focal length G1 1 348.769
G2 9 52.265

[Conditional expression]
Conditional expression (1) νn / νp = 1.365
Conditional expression (2) | f1 | /f=10.165
Conditional expression (3) f2 / f = 1.523
Conditional expression (4) n21 / n22 = 0.941
Conditional expression (5) ν21 / ν22 = 1.965
Conditional expression (6) ν11 / ν12 = 0.450
表6から、本実施例に係る光学系WL6は、条件式(1)〜(6)を満たすことが分かる。   From Table 6, it can be seen that the optical system WL6 according to the present example satisfies the conditional expressions (1) to (6).
図12は、第6実施例に係る光学系WL6の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 12 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) of the optical system WL6 according to the sixth example, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図12に示す各収差図から、第6実施例に係る光学系WL6は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the aberration diagrams shown in FIG. 12, it can be seen that the optical system WL6 according to the sixth example has various optical aberrations corrected and has good optical performance.
(第7実施例)
第7実施例について、図13、図14及び表7を用いて説明する。第7実施例に係る光学系WL(WL7)は、図13に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(Seventh embodiment)
A seventh embodiment will be described with reference to FIGS. 13 and 14 and Table 7. FIG. As shown in FIG. 13, the optical system WL (WL7) according to the seventh example includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた正メニスカスレンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14と物体側に凹面を向けた負メニスカスレンズL15との接合正レンズとからなる。   The first lens group G1 includes a negative meniscus lens L11 having a convex surface directed toward the object side, a positive meniscus lens L12 having a concave surface directed toward the object side, and a biconcave negative lens L13 arranged in order from the object side. The lens includes a positive lens L14 having a biconvex shape and a cemented positive lens of a negative meniscus lens L15 having a concave surface facing the object side.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front lens group G2a of the second lens group G2 is a negative junction of a positive meniscus lens L21 having a convex surface facing the object side, a biconvex positive lens L22, and a biconcave negative lens L23 arranged in order from the object side. It consists of a lens.
第2レンズ群G2の後群G2bは、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL24と物体側に凹面を向けた正メニスカスレンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear lens group G2b of the second lens group G2 includes a cemented negative lens composed of a negative meniscus lens L24 having a concave surface facing the object side and a positive meniscus lens L25 having a concave surface facing the object side. A positive lens L26 having a shape and a positive meniscus lens L27 having a concave surface facing the object side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL7では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL7 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during focusing from a long distance object to a short distance object, and the second lens group G2 Are integrally moved to the object side.
下記の表7に、第7実施例における各諸元の値を示す。表7における面番号1〜22が、図13に示すm1〜m22の各光学面に対応している。   Table 7 below shows values of each item in the seventh example. Surface numbers 1 to 22 in Table 7 correspond to the optical surfaces m1 to m22 shown in FIG.
(表7)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 153.5749 1.400 1.58913 61.22
2 25.4245 10.376
3 -138.8912 3.062 1.75520 27.57
4 -62.7707 1.000 1.51680 63.88
5 45.7911 1.965
6 37.7423 11.178 1.74400 44.80
7 -37.0168 1.400 1.75520 27.57
8 -84.1449 D8(可変)
9 30.1541 4.744 1.77250 49.62
10 485.2701 0.660
11 242.4579 2.766 1.58913 61.22
12 -115.8962 1.500 1.68893 31.16
13 28.8001 3.800
14 ∞ 8.084 (絞りS)
15 -16.8048 1.500 1.75520 27.57
16 -460.7409 3.561 1.74400 44.80
17 -36.5823 0.150
18 284.5507 5.925 1.74400 44.80
19 -29.1162 0.220
*20 -90.8346 0.150 1.55389 38.23
21 -59.2411 2.760 1.60311 60.69
22 -40.0106 Bf
像面 ∞

[非球面データ]
第20面
κ= 1.0000
A4 =-1.20837E-05
A6 =-1.37637E-09
A8 =-2.30450E-11
A10= 0.00000E+00

[全体諸元]
f 34.5
FNo 1.86
ω 32.59
Ymax 21.6
Bf 38.55
TL 114.35

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1018.989
D8 9.600 8.440

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 338.536
G2 9 48.973

[条件式]
条件式(1) νn/νp = 1.426
条件式(2) |f1|/f = 9.800
条件式(3) f2/f = 1.418
条件式(4) n21/n22 = 0.941
条件式(5) ν21/ν22 = 1.965
条件式(6) ν11/ν12 = 0.432
(Table 7)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 153.5749 1.400 1.58913 61.22
2 25.4245 10.376
3 -138.8912 3.062 1.75520 27.57
4 -62.7707 1.000 1.51680 63.88
5 45.7911 1.965
6 37.7423 11.178 1.74400 44.80
7 -37.0168 1.400 1.75520 27.57
8 -84.1449 D8 (variable)
9 30.1541 4.744 1.77250 49.62
10 485.2701 0.660
11 242.4579 2.766 1.58913 61.22
12 -115.8962 1.500 1.68893 31.16
13 28.8001 3.800
14 ∞ 8.084 (Aperture S)
15 -16.8048 1.500 1.75520 27.57
16 -460.7409 3.561 1.74400 44.80
17 -36.5823 0.150
18 284.5507 5.925 1.74400 44.80
19 -29.1162 0.220
* 20 -90.8346 0.150 1.55389 38.23
21 -59.2411 2.760 1.60311 60.69
22 -40.0106 Bf
Image plane ∞

[Aspherical data]
20th surface κ = 1.0000
A4 = -1.20837E-05
A6 = -1.37637E-09
A8 = -2.30450E-11
A10 = 0.00000E + 00

[Overall specifications]
f 34.5
FNo 1.86
ω 32.59
Ymax 21.6
Bf 38.55
TL 114.35

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1018.989
D8 9.600 8.440

[Lens group data]
Group number Group first surface Group focal length G1 1 338.536
G2 9 48.973

[Conditional expression]
Conditional expression (1) νn / νp = 1.426
Conditional expression (2) | f1 | /f=9.800
Conditional expression (3) f2 / f = 1.418
Conditional expression (4) n21 / n22 = 0.941
Conditional expression (5) ν21 / ν22 = 1.965
Conditional expression (6) ν11 / ν12 = 0.432
表7から、本実施例に係る光学系WL7は、条件式(1)〜(6)を満たすことが分かる。   From Table 7, it can be seen that the optical system WL7 according to the present example satisfies the conditional expressions (1) to (6).
図14は、第7実施例に係る光学系WL7の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 14 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) of the optical system WL7 according to the seventh example, and (a) is focused at infinity. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図14に示す各収差図から、第7実施例に係る光学系WL7は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the aberration diagrams shown in FIG. 14, it can be seen that the optical system WL7 according to the seventh example has various optical aberrations corrected and has good optical performance.
(第8実施例)
第8実施例について、図15、図16及び表8を用いて説明する。第8実施例に係る光学系WL(WL8)は、図15に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(Eighth embodiment)
The eighth embodiment will be described with reference to FIGS. 15 and 16 and Table 8. FIG. As shown in FIG. 15, the optical system WL (WL8) according to the eighth example includes a first lens group G1 having negative refractive power and a second lens having positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた正メニスカスレンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14とからなる。   The first lens group G1 includes a negative meniscus lens L11 having a convex surface directed toward the object side, a positive meniscus lens L12 having a concave surface directed toward the object side, and a biconcave negative lens L13 arranged in order from the object side. The lens includes a biconvex positive lens L14.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front lens group G2a of the second lens group G2 is a negative junction of a biconvex positive lens L21 arranged in order from the object side, a positive meniscus lens L22 having a concave surface facing the object side, and a biconcave negative lens L23. It consists of a lens.
第2レンズ群G2の後群G2bは、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL24と物体側に凹面を向けた正メニスカスレンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear lens group G2b of the second lens group G2 includes a cemented negative lens composed of a negative meniscus lens L24 having a concave surface facing the object side and a positive meniscus lens L25 having a concave surface facing the object side. A positive lens L26 having a shape and a positive meniscus lens L27 having a concave surface facing the object side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL8では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が一体的に物体側へ移動するようになっている。   In the optical system WL8 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during the focusing from the long distance object to the short distance object, and the second lens group G2 Are integrally moved to the object side.
下記の表8に、第8実施例における各諸元の値を示す。表8における面番号1〜21が、図15に示すm1〜m21の各光学面に対応している。   Table 8 below shows values of various specifications in the eighth embodiment. Surface numbers 1 to 21 in Table 8 correspond to the optical surfaces m1 to m21 shown in FIG.
(表8)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 110.5805 1.400 1.69680 55.52
2 27.8981 9.431
3 -131.5963 3.958 1.82971 39.47
4 -50.4495 1.000 1.55247 58.39
5 42.6428 1.665
6 38.8658 7.313 1.81468 46.65
7 -178.6735 D7(可変)
8 38.6831 5.261 1.81600 46.59
9 -152.3909 0.200
10 -435.2892 3.444 1.59319 67.90
11 -42.7218 1.500 1.67270 32.18
12 41.9571 7.054
13 ∞ 8.190 (絞りS)
14 -17.0130 1.500 1.75520 27.57
15 -349.4823 2.357 1.77250 49.62
16 -71.5078 0.200
17 445.8012 5.272 1.80400 46.60
18 -27.2875 0.200
*19 -148.5412 0.200 1.55389 38.23
20 -86.8201 3.388 1.77250 49.62
21 -37.5228 Bf
像面 ∞

[非球面データ]
第19面
κ= 1.0000
A4 =-1.35804E-05
A6 = 2.35944E-10
A8 =-2.81459E-11
A10= 0.00000E+00

[全体諸元]
f 34.0
FNo 1.86
ω 33.01
Ymax 21.6
Bf 38.55
TL 111.69

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1004.995
D8 9.600 8.460

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 -504.559
G2 8 45.000

[条件式]
条件式(1) νn/νp = 1.252
条件式(2) |f1|/f = 14.840
条件式(3) f2/f = 1.324
条件式(4) n21/n22 = 0.952
条件式(5) ν21/ν22 = 2.110
条件式(6) ν11/ν12 = 0.676
(Table 8)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 110.5805 1.400 1.69680 55.52
2 27.8981 9.431
3 -131.5963 3.958 1.82971 39.47
4 -50.4495 1.000 1.55247 58.39
5 42.6428 1.665
6 38.8658 7.313 1.81468 46.65
7 -178.6735 D7 (variable)
8 38.6831 5.261 1.81600 46.59
9 -152.3909 0.200
10 -435.2892 3.444 1.59319 67.90
11 -42.7218 1.500 1.67270 32.18
12 41.9571 7.054
13 ∞ 8.190 (Aperture S)
14 -17.0130 1.500 1.75520 27.57
15 -349.4823 2.357 1.77250 49.62
16 -71.5078 0.200
17 445.8012 5.272 1.80400 46.60
18 -27.2875 0.200
* 19 -148.5412 0.200 1.55389 38.23
20 -86.8201 3.388 1.77250 49.62
21 -37.5228 Bf
Image plane ∞

[Aspherical data]
19th surface κ = 1.0000
A4 = -1.35804E-05
A6 = 2.35944E-10
A8 = -2.81459E-11
A10 = 0.00000E + 00

[Overall specifications]
f 34.0
FNo 1.86
ω 33.01
Ymax 21.6
Bf 38.55
TL 111.69

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1004.995
D8 9.600 8.460

[Lens group data]
Group number Group first surface Group focal length G1 1 -504.559
G2 8 45.000

[Conditional expression]
Conditional expression (1) νn / νp = 1.252
Conditional expression (2) | f1 | /f=14.840
Conditional expression (3) f2 / f = 1.324
Conditional expression (4) n21 / n22 = 0.952
Conditional expression (5) ν21 / ν22 = 2.110
Conditional expression (6) ν11 / ν12 = 0.676
表8から、本実施例に係る光学系WL8は、条件式(1)〜(6)を満たすことが分かる。   From Table 8, it can be seen that the optical system WL8 according to the present example satisfies the conditional expressions (1) to (6).
図16は、第8実施例に係る光学系WL8の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 16 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) of the optical system WL8 according to Example 8, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図16に示す各収差図から、第8実施例に係る光学系WL8は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From the respective aberration diagrams shown in FIG. 16, it can be seen that the optical system WL8 according to the eighth example has favorable optical performance with various aberrations corrected well.
(第9実施例)
第9実施例について、図17、図18及び表9を用いて説明する。第9実施例に係る光学系WL(WL9)は、図17に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成される。第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する前群G2aと、開口絞りSと、正の屈折力を有する後群G2bとから構成される。
(Ninth embodiment)
A ninth embodiment will be described with reference to FIGS. 17 and 18 and Table 9. FIG. As shown in FIG. 17, the optical system WL (WL9) according to the ninth example includes a first lens group G1 having negative refractive power and a second lens having positive refractive power, which are arranged in order from the object side. And a group G2. The second lens group G2 includes a front group G2a having a positive refractive power, an aperture stop S, and a rear group G2b having a positive refractive power, which are arranged in order from the object side.
第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた正メニスカスレンズL12と両凹形状の負レンズL13との接合負レンズと、両凸形状の正レンズL14とからなる。   The first lens group G1 includes a negative meniscus lens L11 having a convex surface directed toward the object side, a positive meniscus lens L12 having a concave surface directed toward the object side, and a biconcave negative lens L13 arranged in order from the object side. The lens includes a biconvex positive lens L14.
第2レンズ群G2の前群G2aは、物体側から順に並んだ、両凸形状の正レンズL21と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合負レンズとからなる。   The front group G2a of the second lens group G2 is composed of a biconvex positive lens L21 and a cemented negative lens of a biconvex positive lens L22 and a biconcave negative lens L23 arranged in order from the object side. .
第2レンズ群G2の後群G2bは、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL24と物体側に凹面を向けた正メニスカスレンズL25との接合負レンズと、両凸形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27とからなる。正メニスカスレンズL27は、物体側レンズ面に、非球面形状の薄いプラスチック樹脂層を備えている。   The rear lens group G2b of the second lens group G2 includes a cemented negative lens composed of a negative meniscus lens L24 having a concave surface facing the object side and a positive meniscus lens L25 having a concave surface facing the object side. A positive lens L26 having a shape and a positive meniscus lens L27 having a concave surface facing the object side. The positive meniscus lens L27 includes an aspheric thin plastic resin layer on the object side lens surface.
本実施例に係る光学系WL9では、遠距離物体から近距離物体へのフォーカシング(合焦)に際して、第1レンズ群G1が像面Iに対して光軸方向に固定され、第2レンズ群G2が物体側へ移動するようになっている。なおこのとき、第2レンズ群G2では、前群G2aと後群G2bとの間隔が縮小するように、前群G2aと開口絞りSとが一体的に移動すると共に、前群G2aおよび開口絞りSとは異なる移動量で後群G2bが移動するようになっている。   In the optical system WL9 according to the present embodiment, the first lens group G1 is fixed in the optical axis direction with respect to the image plane I during the focusing from the long distance object to the short distance object, and the second lens group G2 Moves to the object side. At this time, in the second lens group G2, the front group G2a and the aperture stop S move integrally so that the distance between the front group G2a and the rear group G2b is reduced, and the front group G2a and the aperture stop S are also moved. The rear group G2b moves with a different movement amount.
下記の表9に、第9実施例における各諸元の値を示す。表9における面番号1〜21が、図17に示すm1〜m21の各光学面に対応している。   Table 9 below shows values of various specifications in the ninth embodiment. Surface numbers 1 to 21 in Table 9 correspond to the optical surfaces m1 to m21 shown in FIG.
(表9)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 350.0000 1.400 1.69680 55.52
2 30.6460 9.670
3 -172.9804 4.014 1.81600 46.59
4 -53.7236 1.000 1.51680 63.88
5 48.8553 0.200
6 38.5318 7.582 1.73681 51.06
7 -137.0708 D7(可変)
8 33.5680 5.506 1.81600 46.59
9 -441.5664 0.850
10 452.4992 3.472 1.59319 67.90
11 -51.2236 1.500 1.67270 32.18
12 34.4298 3.501
13 ∞ D13(可変) (絞りS)
14 -17.1577 1.500 1.75520 27.57
15 -196.4053 1.938 1.77250 49.62
16 -107.4521 0.200
17 152.6448 6.188 1.80400 46.60
18 -25.7414 0.200
*19 -147.6868 0.200 1.55389 38.23
20 -76.9492 2.839 1.77250 49.62
21 -43.4978 Bf
像面 ∞

[非球面データ]
第19面
κ = 1.0000
A4 =-1.50665E-05
A6 =-5.88959E-09
A8 =-4.03994E-11
A10= 0.00000E+00

[全体諸元]
f 36.0
FNo 1.86
ω 31.47
Ymax 21.6
Bf 38.55
TL 112.35

[可変間隔データ]
可変間隔 無限遠 近距離
D0 ∞ 1064.367
D7 13.493 12.440
D13 8.547 8.369

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 -750.002
G2 8 47.000

[条件式]
条件式(1) νn/νp = 1.087
条件式(2) |f1|/f = 20.843
条件式(3) f2/f = 1.306
条件式(4) n21/n22 = 0.952
条件式(5) ν21/ν22 = 2.110
条件式(6) ν11/ν12 = 0.729
(Table 9)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 350.0000 1.400 1.69680 55.52
2 30.6460 9.670
3 -172.9804 4.014 1.81600 46.59
4 -53.7236 1.000 1.51680 63.88
5 48.8553 0.200
6 38.5318 7.582 1.73681 51.06
7 -137.0708 D7 (variable)
8 33.5680 5.506 1.81600 46.59
9 -441.5664 0.850
10 452.4992 3.472 1.59319 67.90
11 -51.2236 1.500 1.67270 32.18
12 34.4298 3.501
13 ∞ D13 (variable) (Aperture S)
14 -17.1577 1.500 1.75520 27.57
15 -196.4053 1.938 1.77250 49.62
16 -107.4521 0.200
17 152.6448 6.188 1.80400 46.60
18 -25.7414 0.200
* 19 -147.6868 0.200 1.55389 38.23
20 -76.9492 2.839 1.77250 49.62
21 -43.4978 Bf
Image plane ∞

[Aspherical data]
19th page
κ = 1.0000
A4 = -1.50665E-05
A6 = -5.88959E-09
A8 = -4.03994E-11
A10 = 0.00000E + 00

[Overall specifications]
f 36.0
FNo 1.86
ω 31.47
Ymax 21.6
Bf 38.55
TL 112.35

[Variable interval data]
Variable interval infinity short distance D0 ∞ 1064.367
D7 13.493 12.440
D13 8.547 8.369

[Lens group data]
Group number Group first surface Group focal length G1 1 -750.002
G2 8 47.000

[Conditional expression]
Conditional expression (1) νn / νp = 1.087
Conditional expression (2) | f1 | /f=20.843
Conditional expression (3) f2 / f = 1.306
Conditional expression (4) n21 / n22 = 0.952
Conditional expression (5) ν21 / ν22 = 2.110
Conditional expression (6) ν11 / ν12 = 0.729
表9から、本実施例に係る光学系WL9は、条件式(1)〜(6)を満たすことが分かる。   From Table 9, it can be seen that the optical system WL9 according to the present example satisfies the conditional expressions (1) to (6).
図18は、第9実施例に係る光学系WL9の諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦状態(撮影倍率β=0.00)、(b)は近距離合焦状態(撮影倍率β=-1/30)を示す。   FIG. 18 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) of the optical system WL9 according to Example 9, and (a) is infinite focus. The state (photographing magnification β = 0.00) and (b) show the close-in-focus state (photographing magnification β = −1 / 30).
図18に示す各収差図から、第9実施例に係る光学系WL9は、諸収差が良好に補正され、良好な光学性能を有することが分かる。   From each aberration diagram shown in FIG. 18, it can be seen that the optical system WL9 according to Example 9 has various aberrations corrected well and has good optical performance.
ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではない。以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   So far, in order to make the present invention easy to understand, the configuration requirements of the embodiment have been described, but the present invention is not limited to this. The contents described below can be appropriately adopted as long as the optical performance is not impaired.
上記実施例では、2群構成を示したが、3群、4群等の他の群構成にも適用可能である。具体的には、本実施形態に係る光学系WLの最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。なお、レンズ群とは、合焦時又は変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the above embodiment, the two-group configuration is shown, but the present invention can be applied to other group configurations such as the third group, the fourth group, and the like. Specifically, a configuration in which a lens or a lens group is added to the most object side of the optical system WL according to the present embodiment, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during focusing or zooming.
本実施形態に係る光学系WLにおいて、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   In the optical system WL according to this embodiment, the lens surface may be formed as a spherical surface or a flat surface, or may be formed as an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
本実施形態に係る光学系WLにおいて、開口絞りSは、第2レンズ群G2内に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。   In the optical system WL according to the present embodiment, it is preferable that the aperture stop S is disposed in the second lens group G2, but instead of providing a member as an aperture stop, the role of the lens stop is substituted. Also good.
本実施形態に係る光学系WLを構成するレンズの各面に、広い波長域で高い透過率を有する反射防止膜を設けてもよい。この構成により、フレアやゴーストを軽減し高コントラストの高い光学性能を達成することができる。   An antireflection film having high transmittance in a wide wavelength range may be provided on each surface of the lens constituting the optical system WL according to the present embodiment. With this configuration, it is possible to reduce flare and ghost and achieve high optical performance with high contrast.
WL(WL1〜WL9) 光学系
G1 第1レンズ群
G2 第2レンズ群
S 開口絞り
I 像面
1 カメラ(光学機器)
WL (WL1 to WL9) Optical system G1 First lens group G2 Second lens group S Aperture stop I Image surface 1 Camera (optical device)

Claims (9)

  1. 物体側から順に並んだ、第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、
    前記第1レンズ群は、負レンズと、正レンズとを有し、
    無限遠物体から近距離物体への合焦の際に、前記第1レンズ群が像面に対して光軸方向に固定され、前記第2レンズ群が移動し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、
    以下の条件式を満足することを特徴とする光学系。
    0.50 < νn/νp < 1.60
    5.00 < |f1|/f < 30.00
    1.15 < f2/f < 1.70
    但し、
    νn:前記第1レンズ群内で最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
    νp:前記第1レンズ群内で最も正の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
    f1:前記第1レンズ群の焦点距離、
    f2:前記第2レンズ群の焦点距離、
    f:無限遠合焦状態における全系の焦点距離。
    A first lens group and a second lens group having a positive refractive power, arranged in order from the object side;
    The first lens group includes a negative lens and a positive lens,
    When focusing from an object at infinity to an object at a short distance, the first lens group is fixed in the optical axis direction with respect to the image plane, the second lens group is moved, and the first lens group and the first lens group are moved. The distance between the two lens groups changes,
    An optical system satisfying the following conditional expression:
    0.50 <νn / νp <1.60
    5.00 <| f1 | / f <30.00
    1.15 <f2 / f <1.70
    However,
    ν n: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the first lens group,
    νp: Abbe number based on the d-line of the glass material of the lens having the strongest positive refractive power in the first lens group,
    f1: the focal length of the first lens group,
    f2: focal length of the second lens group,
    f: The focal length of the entire system in the infinitely focused state.
  2. 前記第1レンズ群は、接合レンズを有することを特徴とする請求項1に記載の光学系。   The optical system according to claim 1, wherein the first lens group includes a cemented lens.
  3. 前記第1レンズ群が有する接合レンズのうち、前記最も正の屈折力が強いレンズの物体側で最も近くに位置する接合レンズは、負レンズと、正レンズとからなり、
    以下の条件式を満足することを特徴とする請求項2に記載の光学系。
    0.20 < ν11/ ν12 < 1.00
    但し、
    ν11:前記第1レンズ群内で最も正の屈折力が強いレンズの、物体側で最も近くに位置する前記接合レンズを構成する前記正レンズの硝材のd線を基準とするアッベ数、
    ν12:前記第1レンズ群内で最も正の屈折力が強いレンズの、物体側で最も近くに位置する前記接合レンズを構成する前記負レンズの硝材のd線を基準とするアッベ数。
    Among the cemented lenses included in the first lens group, the cemented lens located closest to the object side of the lens having the strongest positive refractive power includes a negative lens and a positive lens.
    The optical system according to claim 2, wherein the following conditional expression is satisfied.
    0.20 <ν11 / ν12 <1.00
    However,
    ν11: Abbe number based on the d-line of the glass material of the positive lens constituting the cemented lens closest to the object side of the lens having the strongest positive refractive power in the first lens group,
    ν12: Abbe number based on the d-line of the glass material of the negative lens constituting the cemented lens closest to the object side of the lens having the strongest positive refractive power in the first lens group.
  4. 前記第2レンズ群は、開口絞りと、前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズと、この負レンズの物体側直前に位置する正レンズとを有し、
    以下の条件式を満足することを特徴とする請求項1〜3のいずれか一項に記載の光学系。
    0.60 < n21/n22 < 1.00
    但し、
    n21:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する前記正レンズの硝材のd線に対する屈折率、
    n22:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの硝材のd線に対する屈折率。
    The second lens group includes an aperture stop, a lens having the strongest negative refractive power in the lens group positioned closer to the object side than the aperture stop, and a positive lens positioned immediately before the object side of the negative lens. And
    The optical system according to claim 1, wherein the following conditional expression is satisfied.
    0.60 <n21 / n22 <1.00
    However,
    n21: The refractive index of the lens material having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop in the second lens group with respect to the d-line of the glass material of the positive lens located immediately before the object side ,
    n22: a refractive index with respect to d-line of the glass material of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop in the second lens group.
  5. 前記第2レンズ群は、開口絞りと、前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズと、この負レンズの物体側直前に位置する正レンズとを有し、
    以下の条件式を満足することを特徴とする請求項1〜4のいずれか一項に記載の光学系。
    1.40 < ν21/ν22 < 2.80
    但し、
    ν21:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの、物体側直前に位置する前記正レンズの硝材のd線を基準とするアッベ数、
    ν22:前記第2レンズ群内で前記開口絞りよりも物体側に位置するレンズ群内の最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数。
    The second lens group includes an aperture stop, a lens having the strongest negative refractive power in the lens group positioned closer to the object side than the aperture stop, and a positive lens positioned immediately before the object side of the negative lens. And
    The optical system according to claim 1, wherein the following conditional expression is satisfied.
    1.40 <ν21 / ν22 <2.80
    However,
    ν 21: Based on the d-line of the glass material of the positive lens located immediately before the object side of the lens unit having the strongest negative refractive power in the lens group located on the object side of the aperture stop in the second lens group Abbe number,
    ν22: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the lens group located closer to the object side than the aperture stop in the second lens group.
  6. 前記第2レンズ群は、開口絞りと、前記開口絞りよりも物体側に位置する前群と、前記開口絞りよりも像側に位置する後群とを有し、無限遠物体から近距離物体への合焦の際に、前記前群と前記後群との間隔を一定に保持したまま、又は変化させながら、各群をそれぞれ移動させることを特徴とする請求項1〜5のいずれか一項に記載の光学系。   The second lens group includes an aperture stop, a front group located closer to the object side than the aperture stop, and a rear group located closer to the image side than the aperture stop. Each of the groups is moved while maintaining or changing a distance between the front group and the rear group at the time of focusing. The optical system described in 1.
  7. 前記第2レンズ群は、少なくとも1つの非球面レンズを有することを特徴とする請求項1〜6のいずれか一項に記載の光学系。   The optical system according to claim 1, wherein the second lens group includes at least one aspheric lens.
  8. 請求項1〜7のいずれか一項に記載の光学系を搭載することを特徴とする光学機器。   An optical apparatus comprising the optical system according to any one of claims 1 to 7.
  9. 物体側から順に並んだ、第1レンズ群と、正の屈折力を有する第2レンズ群とを有する光学系の製造方法であって、
    前記第1レンズ群は、負レンズと、正レンズとを有し、
    無限遠物体から近距離物体への合焦の際に、前記第1レンズ群が像面に対して光軸方向に固定され、前記第2レンズ群が移動し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、
    以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とする光学系の製造方法。
    0.50 < νn/νp < 1.60
    5.00 < |f1|/f < 30.00
    1.15 < f2/f < 1.70
    但し、
    νn:前記第1レンズ群内で最も負の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
    νp:前記第1レンズ群内で最も正の屈折力が強いレンズの硝材のd線を基準とするアッベ数、
    f1:前記第1レンズ群の焦点距離、
    f2:前記第2レンズ群の焦点距離、
    f:無限遠合焦状態における全系の焦点距離。
    A method of manufacturing an optical system having a first lens group and a second lens group having a positive refractive power, arranged in order from the object side,
    The first lens group includes a negative lens and a positive lens,
    When focusing from an object at infinity to an object at a short distance, the first lens group is fixed in the optical axis direction with respect to the image plane, the second lens group is moved, and the first lens group and the first lens group are moved. The distance between the two lens groups changes,
    A method of manufacturing an optical system, wherein each lens is arranged in a lens barrel so as to satisfy the following conditional expression:
    0.50 <νn / νp <1.60
    5.00 <| f1 | / f <30.00
    1.15 <f2 / f <1.70
    However,
    ν n: Abbe number based on the d-line of the glass material of the lens having the strongest negative refractive power in the first lens group,
    νp: Abbe number based on the d-line of the glass material of the lens having the strongest positive refractive power in the first lens group,
    f1: the focal length of the first lens group,
    f2: focal length of the second lens group,
    f: The focal length of the entire system in the infinitely focused state.
JP2013260469A 2013-12-17 2013-12-17 Optical system, optical instrument, and method for manufacturing optical system Pending JP2015118186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260469A JP2015118186A (en) 2013-12-17 2013-12-17 Optical system, optical instrument, and method for manufacturing optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260469A JP2015118186A (en) 2013-12-17 2013-12-17 Optical system, optical instrument, and method for manufacturing optical system

Publications (1)

Publication Number Publication Date
JP2015118186A true JP2015118186A (en) 2015-06-25

Family

ID=53530968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260469A Pending JP2015118186A (en) 2013-12-17 2013-12-17 Optical system, optical instrument, and method for manufacturing optical system

Country Status (1)

Country Link
JP (1) JP2015118186A (en)

Similar Documents

Publication Publication Date Title
JP5458830B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, OPTICAL SYSTEM MANUFACTURING METHOD
JP2008015433A (en) Zoom lens and optical apparatus having the same
JP5861472B2 (en) Zoom lens and optical device
JP5391565B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
JP5315755B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
JP2012220827A (en) Zoom lens, imaging apparatus, and method for manufacturing zoom lens
JP5273172B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5396888B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5544845B2 (en) OPTICAL SYSTEM, IMAGING DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP6938845B2 (en) Optical system and optical equipment
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP5292894B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
JP6628240B2 (en) Zoom lens and imaging device having the same
JP6446821B2 (en) Magnification optical system and optical equipment
JP6446820B2 (en) Magnification optical system and optical equipment
JP2017161847A (en) Optical system, optical instrument and method for manufacturing optical system
JP2017161844A (en) Optical system, optical instrument and method for manufacturing optical system
JP2015118187A (en) Optical system, optical instrument, and method for manufacturing optical system
JP2015118186A (en) Optical system, optical instrument, and method for manufacturing optical system
JP6399166B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5305177B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method
JP2018156102A (en) Variable power optical system and optical instrument
JP6179585B2 (en) Zoom lens and optical device
JP6265022B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2013186222A (en) Optical system, optical device, and method of manufacturing optical system