JP2015110686A - Epoxy resin composition for sealing semiconductor, its cured body and semiconductor device - Google Patents

Epoxy resin composition for sealing semiconductor, its cured body and semiconductor device Download PDF

Info

Publication number
JP2015110686A
JP2015110686A JP2012079092A JP2012079092A JP2015110686A JP 2015110686 A JP2015110686 A JP 2015110686A JP 2012079092 A JP2012079092 A JP 2012079092A JP 2012079092 A JP2012079092 A JP 2012079092A JP 2015110686 A JP2015110686 A JP 2015110686A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
wire
metal wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012079092A
Other languages
Japanese (ja)
Inventor
慎吾 伊藤
Shingo Ito
慎吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2012079092A priority Critical patent/JP2015110686A/en
Priority to PCT/JP2013/001699 priority patent/WO2013145609A1/en
Priority to TW102109330A priority patent/TW201341422A/en
Publication of JP2015110686A publication Critical patent/JP2015110686A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05026Disposition the internal layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05666Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48666Titanium (Ti) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48863Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48866Titanium (Ti) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique which can improve connection reliability at high-temperature and high-humidity environments.SOLUTION: The invention is an epoxy resin composition for sealing a semiconductor used for sealing a metal wire and a semiconductor element having the metal wire connected thereto. The epoxy resin composition comprises the following components: (A) epoxy resin, (B) curing agent and (C) carbonate type laminar double hydroxide particle represented by specific structural formula.

Description

本発明は、半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置に関する。   The present invention relates to an epoxy resin composition for semiconductor encapsulation, a cured product thereof, and a semiconductor device.

近年、耐熱性及び耐湿特性を向上させた半導体封止用エポキシ樹脂組成物が知られている。特許文献1では、ヒンダードアミン系酸化防止剤を含有するエポキシ樹脂組成物が、高温で放置した場合にエポキシ樹脂から発生するハロゲンイオンや無機酸イオンにより金ワイヤボンディング部のアルミ合金を劣化させる酸化反応を抑制する効果があり、導通不良の無い高温放置特性に優れることが記載されている。また、特許文献1では、更にハイドロタルサイト類化合物を併用することによって、ヒンダードアミン系酸化防止剤を用いた際に弊害として低下する耐湿信頼性を向上させることが記載されている。   In recent years, epoxy resin compositions for semiconductor encapsulation with improved heat resistance and moisture resistance characteristics are known. In Patent Document 1, an epoxy resin composition containing a hindered amine-based antioxidant undergoes an oxidation reaction that degrades the aluminum alloy in the gold wire bonding portion by halogen ions or inorganic acid ions generated from the epoxy resin when left at high temperatures. It is described that it has a suppressing effect and is excellent in high-temperature storage characteristics with no conduction failure. Further, Patent Document 1 describes that by further using a hydrotalcite-type compound, the moisture resistance reliability, which deteriorates as a harmful effect when a hindered amine-based antioxidant is used, is improved.

また、金ワイヤに代わる安価なボンディングワイヤとして、銅ワイヤが提案されている。特許文献2には、銅を主成分とする芯材と、該芯材の上に芯材と成分又は組成の一方又は両方の異なる導電性金属と銅を含有する外皮層を有するボンディングワイヤが記載されている。このボンディングワイヤにおいて、外皮層の厚さを0.001〜0.02μmとすることで、材料費が安価で、ボール接合性、ワイヤ接合性等に優れ、ループ形成性も良好である、狭ピッチ用細線化、パワー系IC用途の太径化にも適応する銅系ボンディングワイヤを提供することが可能となると記載されている。   Further, a copper wire has been proposed as an inexpensive bonding wire that replaces a gold wire. Patent Document 2 describes a bonding wire having a core material containing copper as a main component and an outer skin layer containing copper and a conductive metal different in one or both of the core material and component or composition on the core material. Has been. In this bonding wire, by making the thickness of the outer skin layer 0.001 to 0.02 μm, the material cost is low, the ball bonding property, the wire bonding property, etc. are excellent, and the loop forming property is also good. It is described that it becomes possible to provide a copper-based bonding wire that can be adapted for thinning a wire and increasing the diameter of a power IC.

特開2009−108301号公報JP 2009-108301 A 特開2007−12776号公報JP 2007-12776 A

しかしながら、特許文献2に記載された銅ワイヤが接続された半導体素子を、特許文献1に記載のような従来のエポキシ樹脂で封止すると、高温耐湿性の低下がみられることが明らかとなった。本発明者の考察によれば、銅は金よりも拡散速度が速いため、金ワイヤの使用時に比べて、銅ワイヤと金属パッドとのボンディング部は合金成長しやすく、腐食反応に対する耐性が低いと推察された。したがって、特許文献1の技術では、ボンディング部の腐食反応による断線を十分に抑制するという観点で未だ改善の余地があると考えられた。   However, when the semiconductor element to which the copper wire described in Patent Document 2 is connected is sealed with a conventional epoxy resin as described in Patent Document 1, it has been clarified that high temperature and humidity resistance is reduced. . According to the inventor's consideration, the diffusion rate of copper is faster than that of gold. Therefore, the bonding portion between the copper wire and the metal pad is likely to grow an alloy and has a low resistance to a corrosion reaction compared to the case of using the gold wire. Inferred. Therefore, in the technique of Patent Document 1, it is considered that there is still room for improvement from the viewpoint of sufficiently suppressing the disconnection due to the corrosion reaction of the bonding portion.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、ボンディング部の腐食反応による断線を確実に抑制して、高温高湿環境下における接続信頼性を向上できる技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology capable of improving the connection reliability in a high-temperature and high-humidity environment by reliably suppressing the disconnection due to the corrosion reaction of the bonding portion. There is to do.

本発明は、金属ワイヤ及び前記金属ワイヤが接続された半導体素子を封止するために用いられる半導体封止用エポキシ樹脂組成物を提供するものである。この半導体封止用エポキシ樹脂組成物は、成分(A)エポキシ樹脂、(B)硬化剤及び(C)下記式(1)で表される炭酸型層状複水酸化物粒子を含むものである。
(OH)(CO3d・nH2O (1)
This invention provides the epoxy resin composition for semiconductor sealing used in order to seal the semiconductor element to which the metal wire and the said metal wire were connected. This epoxy resin composition for semiconductor encapsulation contains component (A) epoxy resin, (B) curing agent, and (C) carbonated layered double hydroxide particles represented by the following formula (1).
M 1 a M 2 b (OH) c (CO 3 ) d · nH 2 O (1)

上記式(1)中、Mは、Ni2+、Ba2+、Ca2+、Fe2+、Mn2+、Sr2+、Zn2+、Mg2+及びCu2+から選択される二価金属イオンであり、MはCo3+、Fe3+、Cr3+、Mn3+及びAl3+から選択される三価金属イオンであり、a、b、c、dは、それぞれ1≦a≦8、1≦b≦14、1≦c≦20、1≦d≦12を満たす整数であり、nは1≦n≦10を満たす整数である。ただし、MがMg2+のとき、MがAl3+である場合を除く。 In the above formula (1), M 1 is a divalent metal ion selected from Ni 2+ , Ba 2+ , Ca 2+ , Fe 2+ , Mn 2+ , Sr 2+ , Zn 2+ , Mg 2+ and Cu 2+ , and M 2. Is a trivalent metal ion selected from Co 3+ , Fe 3+ , Cr 3+ , Mn 3+ and Al 3+ , and a, b, c and d are 1 ≦ a ≦ 8, 1 ≦ b ≦ 14, 1 ≦, respectively. c ≦ 20 and 1 ≦ d ≦ 12, and n is an integer satisfying 1 ≦ n ≦ 10. However, when M 1 is Mg 2+, unless M 2 is Al 3+.

また、本発明は、上記の半導体封止用エポキシ樹脂組成物の硬化体を提供するものである。   Moreover, this invention provides the hardening body of said epoxy resin composition for semiconductor sealing.

また、本発明は、
基板に搭載された半導体素子と、
前記半導体素子に設けられた電極パッドと、
前記基板に設けられた接続端子と前記電極パッドとを接続する金属ワイヤと、
上記の半導体封止用エポキシ樹脂組成物の硬化体と、
を備える、半導体装置を提供するものである。
The present invention also provides:
A semiconductor element mounted on a substrate;
An electrode pad provided in the semiconductor element;
A metal wire connecting the connection terminal provided on the substrate and the electrode pad;
Cured body of the above epoxy resin composition for semiconductor encapsulation,
A semiconductor device is provided.

本発明によれば、高温高湿環境下における接続信頼性を向上することができる。   According to the present invention, connection reliability in a high-temperature and high-humidity environment can be improved.

実施の形態に係る半導体装置を模式的に示した断面図である。1 is a cross-sectional view schematically showing a semiconductor device according to an embodiment.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(A)エポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
なお、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂は結晶性を有するものが好ましい。
(A) The epoxy resin is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, bisphenol A type epoxy resin, Bisphenol type epoxy resin such as bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin; Polyfunctional epoxy resins such as methane type epoxy resins and alkyl-modified triphenol methane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton, phenol aralkyl types having a biphenylene skeleton Aralkyl-type epoxy resins such as poxy resins; Dihydroxynaphthalene-type epoxy resins, naphthol-type epoxy resins such as epoxy resins obtained by glycidyl etherification of dihydroxynaphthalene dimers; Triglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, etc. Triazine nucleus-containing epoxy resins; bridged cyclic hydrocarbon compound-modified phenolic epoxy resins such as dicyclopentadiene-modified phenolic epoxy resins, and the like. These may be used alone or in combination of two or more. .
The bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin, biphenyl type epoxy resin, and stilbene type epoxy resin preferably have crystallinity.

好ましくは、エポキシ樹脂(A)として、下記式(2)で表されるエポキシ樹脂、下記式(3)で表されるエポキシ樹脂、及び、下記式(4)で表されるエポキシ樹脂からなる群から選択される少なくとも1種を含有するものを用いることができる。   Preferably, the epoxy resin (A) is composed of an epoxy resin represented by the following formula (2), an epoxy resin represented by the following formula (3), and an epoxy resin represented by the following formula (4). What contains at least 1 sort (s) selected from can be used.

Figure 2015110686
Figure 2015110686

式(2)中、Arはフェニレン基又はナフチレン基を表し、Arがナフチレン基の場合、グリシジルエーテル基はα位、β位のいずれに結合していてもよく、Arはフェニレン基、ビフェニレン基及びナフチレン基のうちのいずれか1つの基を表し、R及びRはそれぞれ独立に炭素数1〜10の炭化水素基を表し、gは0〜5の整数であり、hは0〜8の整数であり、nは重合度を表し、その平均値は1〜3の整数である。 In Formula (2), Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the α-position or the β-position, Ar 2 represents a phenylene group, It represents any one of a biphenylene group and a naphthylene group, R 5 and R 6 each independently represent a hydrocarbon group having 1 to 10 carbon atoms, g is an integer of 0 to 5, and h is 0 8 is an integer, n 3 represents a polymerization degree, the average value is an integer of 1 to 3.

Figure 2015110686
Figure 2015110686

式(3)中、複数存在するRはそれぞれ独立に水素原子又は炭素数1〜4の炭化水素基を表し、nは重合度を表し、その平均値は0〜4の整数である。 In Formula (3), a plurality of R 9s each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n 5 represents a degree of polymerization, and an average value thereof is an integer of 0 to 4.

Figure 2015110686
Figure 2015110686

式(4)中、複数存在するR10及びR11はそれぞれ独立に水素原子又は炭素数1〜4の炭化水素基を表し、nは重合度を表し、その平均値は0〜4の整数である。 In the formula (4), a plurality of R 10 and R 11 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n 6 represents a degree of polymerization, and an average value thereof is an integer of 0 to 4 It is.

(A)エポキシ樹脂の含有量は、エポキシ樹脂組成物全体に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましい。こうすることで、粘度上昇によるワイヤ切れを引き起こす恐れを少なくすることができる。また、エポキシ樹脂(A)の含有量は、エポキシ樹脂組成物全体に対して、18質量%以下であることが好ましく、13質量%以下であることがより好ましく、11質量%以下がさらに好ましい。こうすることで、吸水率増加による耐湿信頼性の低下等を引き起こす恐れを少なくすることができる。   (A) The content of the epoxy resin is preferably 3% by mass or more, and more preferably 5% by mass or more with respect to the entire epoxy resin composition. By doing so, the possibility of causing wire breakage due to an increase in viscosity can be reduced. Moreover, it is preferable that it is 18 mass% or less with respect to the whole epoxy resin composition, as for content of an epoxy resin (A), it is more preferable that it is 13 mass% or less, and 11 mass% or less is further more preferable. By doing so, it is possible to reduce the possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.

(B)硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤の3タイプに大別することができる。   (B) As a hardening | curing agent, it can divide roughly into three types, for example, a polyaddition type hardening | curing agent, a catalyst type hardening | curing agent, and a condensation type hardening | curing agent.

重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノールなどのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。   Examples of polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA). In addition to aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydrazide, and the like; alicyclics such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), aromatic anhydrides such as benzophenone tetracarboxylic acid (BTDA); novolac-type phenolic resin, polyvinyl Phenolic resin curing agent such as phenol; polysulfide, thioester, polymercaptan compounds such as thioethers; isocyanate prepolymer, isocyanate compounds such as blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins.

触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)などの3級アミン化合物;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)などのイミダゾール化合物;BF錯体などのルイス酸などが挙げられる。 Examples of the catalyst-type curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF 3 complexes.

縮合型の硬化剤としては、例えば、レゾール型フェノール樹脂;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。   Examples of the condensation type curing agent include a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.

これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   Among these, a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like. The phenol resin-based curing agent is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol novolak Resin, novolak type resin such as bisphenol novolac; polyfunctional phenol resin such as triphenolmethane type phenol resin; modified phenol resin such as terpene modified phenol resin and dicyclopentadiene modified phenol resin; phenylene skeleton and / or biphenylene skeleton Aralkyl type resins such as phenol aralkyl resins, naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, etc. Type may be used in combination of two or more be used alone.

好ましくは、(B)硬化剤として、下記式(5)で表される化合物からなる群から選択される少なくとも1種の硬化剤を用いることができる。   Preferably, as the (B) curing agent, at least one curing agent selected from the group consisting of compounds represented by the following formula (5) can be used.

Figure 2015110686
Figure 2015110686

式(5)中、Arはフェニレン基又はナフチレン基を表し、Arがナフチレン基の場合、水酸基はα位、β位のいずれに結合していてもよく、Arはフェニレン基、ビフェニレン基及びナフチレン基のうちのいずれか1つの基を表し、R及びRはそれぞれ独立に炭素数1〜10の炭化水素基を表し、iは0〜5の整数であり、jは0〜8の整数であり、nは重合度を表し、その平均値は1〜3の整数である。 In Formula (5), Ar 3 represents a phenylene group or a naphthylene group. When Ar 3 is a naphthylene group, the hydroxyl group may be bonded to either the α-position or the β-position, and Ar 4 represents a phenylene group or a biphenylene group. And any one of naphthylene groups, R 7 and R 8 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, i is an integer of 0 to 5, and j is 0 to 8 N 4 represents the degree of polymerization, and the average value is an integer of 1 to 3.

(B)硬化剤の含有量は、エポキシ樹脂組成物中に、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることがさらに好ましい。こうすることで、充分な流動性を得ることができる。また、(B)硬化剤の含有量は、エポキシ樹脂組成物中に、15質量%以下であることが好ましく、11質量%以下であることがより好ましく、8質量%以下であることがさらに好ましい。こうすることで、吸水率増加による耐湿信頼性の低下等を引き起こす恐れを少なくすることができる。   (B) Content of a hardening | curing agent is 2 mass% or more in an epoxy resin composition, It is more preferable that it is 3 mass% or more, It is further more preferable that it is 4 mass% or more. By doing so, sufficient fluidity can be obtained. In addition, the content of the (B) curing agent in the epoxy resin composition is preferably 15% by mass or less, more preferably 11% by mass or less, and further preferably 8% by mass or less. . By doing so, it is possible to reduce the possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.

また、(B)硬化剤としてフェノール樹脂系硬化剤を用いる場合におけるエポキシ樹脂とフェノール樹脂系硬化剤との配合比率としては、全エポキシ樹脂のエポキシ基数(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8〜1.3であることが好ましい。当量比がこの範囲であると、エポキシ樹脂組成物の硬化性の低下、又は樹脂硬化物の物性の低下等を引き起こす恐れが少ない。   In addition, when (B) a phenol resin curing agent is used as the curing agent, the blending ratio of the epoxy resin and the phenol resin curing agent is the number of epoxy groups (EP) of all epoxy resins and the phenol of all phenol resin curing agents. It is preferable that equivalence ratio (EP) / (OH) with the number of functional hydroxyl groups (OH) is 0.8 to 1.3. When the equivalent ratio is within this range, there is little possibility of causing a decrease in the curability of the epoxy resin composition or a decrease in the physical properties of the resin cured product.

(C)炭酸型層状複水酸化物粒子(以下、「炭酸型LDH粒子」ともいう。)は、下記式(1)で表される化合物である。
(OH)(CO3d・nH2O (1)
〔式(1)中、Mは、Ni2+、Ba2+、Ca2+、Fe2+、Mn2+、Sr2+、Zn2+、Mg2+及びCu2+から選択される二価金属イオンであり、MはCo3+、Fe3+、Cr3+、Mn3+及びAl3+から選択される三価金属イオンであり、a、b、c、dは、それぞれ1≦a≦8、1≦b≦14、1≦c≦20、1≦d≦12、を満たす整数であり、nは1≦n≦10を満たす整数である。ただし、MがMg2+のとき、MがAl3+である場合を除く。〕
(C) Carbonated layered double hydroxide particles (hereinafter also referred to as “carbonated LDH particles”) are compounds represented by the following formula (1).
M 1 a M 2 b (OH) c (CO 3 ) d · nH 2 O (1)
[In Formula (1), M 1 is a divalent metal ion selected from Ni 2+ , Ba 2+ , Ca 2+ , Fe 2+ , Mn 2+ , Sr 2+ , Zn 2+ , Mg 2+ and Cu 2+ , and M 2 Is a trivalent metal ion selected from Co 3+ , Fe 3+ , Cr 3+ , Mn 3+ and Al 3+ , and a, b, c and d are 1 ≦ a ≦ 8, 1 ≦ b ≦ 14, 1 ≦, respectively. c ≦ 20, 1 ≦ d ≦ 12, and n is an integer satisfying 1 ≦ n ≦ 10. However, when M 1 is Mg 2+, unless M 2 is Al 3+. ]

前記式(1)の化合物の中でも、体積頻度粒度分布におけるモード径(最頻値)が0.01μm以上1.0μm以下の範囲にあるものが好ましく、0.05μm以上0.5μm以下の範囲にあるものがより好ましい。モード径がこの範囲にある炭酸型LDH粒子を用いることで、エポキシ樹脂組成物における炭酸型LDH粒子の分布が均一となるため、エポキシ樹脂から発生する酸性イオンや酸化物イオンを炭酸型LDH粒子により確実にトラップして中和することができる。
なお、(C)炭酸型LDH粒子のモード径は、体積頻度粒度分布で表した際の、その頻度値が最大となっている粒径(最頻値径)であり、例えば、レーザー回折散乱式粒度分布測定装置等を用いて測定することができる。
Among the compounds of formula (1), those having a mode diameter (mode) in the volume frequency particle size distribution in the range of 0.01 μm to 1.0 μm are preferable, and in the range of 0.05 μm to 0.5 μm. Some are more preferred. By using carbonated LDH particles having a mode diameter in this range, the distribution of carbonated LDH particles in the epoxy resin composition becomes uniform, so that acidic ions and oxide ions generated from the epoxy resin are caused by the carbonated LDH particles. It can be reliably trapped and neutralized.
Note that (C) the mode diameter of the carbonate-type LDH particles is a particle diameter (mode diameter) at which the frequency value is maximum when expressed by a volume frequency particle size distribution. It can be measured using a particle size distribution measuring device or the like.

(C)炭酸型LDH粒子は、上記式(1)中、Mが、Ni2+、Ba2+、及びCa2+から選択される二価金属イオンであることが好ましく、Mが、Co3+、Fe3+及びAl3+から選択される三価金属イオンであることがより好ましく、
が、Co3+及びFe3+から選択される三価金属イオンであるか、またはMが、Ni2+であることがさらに好ましく、Mが、Ni2+であり、かつMが、Co3+及びFe3+から選択される三価金属イオンである場合が最も好ましい。
(C) In the carbonate type LDH particles, in the above formula (1), M 1 is preferably a divalent metal ion selected from Ni 2+ , Ba 2+ , and Ca 2+ , and M 2 is Co 3+ , More preferably a trivalent metal ion selected from Fe 3+ and Al 3+
More preferably, M 2 is a trivalent metal ion selected from Co 3+ and Fe 3+ or M 1 is Ni 2+ , M 1 is Ni 2+ and M 2 is Co 2 Most preferred is a trivalent metal ion selected from 3+ and Fe 3+ .

本発明において(C)炭酸型LDH粒子は、天然物であっても合成物であってもよく、結晶水を脱水したものであってもよい。天然物の具体例としては、Comblainite(NiCo(OH)16(CO)・nHO)、Reevesite(NiFe(OH)16(CO)・nHO)、Takovite(NiAl(OH)16(CO)・nHO)、Dresserite(BaAl(OH)(CO・nHO)、Almohydrocalcite(CaAl(OH)(CO・nHO)、Pyroaurite(MgFe(OH)16(CO)・nHO)、Stichtite(MgCr(OH)16(CO)・nHO)、Desautelsite(MgMn(OH)16CO・nHO)等が挙げられる。前記nは1以上10以下であればよいが、1以上8以下が好ましく、2以上8以下がより好ましい。
炭酸型LDH粒子は次のようにして合成される。金属の塩、例えば硝酸塩の水溶液を水酸化ナトリウム、炭酸ナトリウムの水溶液に攪拌しながら室温で添加する。生成した沈殿物を60〜200℃で数時間加熱して結晶化させる。洗浄及び乾燥により層状複水酸化物の炭酸塩を含む無機化合物が得られる。
In the present invention, the (C) carbonated LDH particles may be natural or synthetic, and may be obtained by dehydrating crystal water. Specific examples of natural products include Comblainite (Ni 6 Co 2 (OH) 16 (CO 3 ) · nH 2 O), Reevesite (Ni 6 Fe 2 (OH) 16 (CO 3 ) · nH 2 O), Takovite ( Ni 6 Al 2 (OH) 16 (CO 3 ) · nH 2 O), Dresserite (BaAl 2 (OH) 4 (CO 3 ) 2 · nH 2 O), Almohydrocalcite (CaAl 2 (OH) 4 (CO 3 ) 2 NH 2 O), Pyroaurite (Mg 6 Fe 2 (OH) 16 (CO 3 ) · nH 2 O), Stichtite (Mg 6 Cr 2 (OH) 16 (CO 3 ) · nH 2 O), Desaturite (Mg 6 Mn 2 (OH) 16 CO 3 .nH 2 O) and the like. The n may be 1 or more and 10 or less, preferably 1 or more and 8 or less, and more preferably 2 or more and 8 or less.
Carbonated LDH particles are synthesized as follows. An aqueous solution of a metal salt such as nitrate is added to an aqueous solution of sodium hydroxide or sodium carbonate at room temperature with stirring. The formed precipitate is crystallized by heating at 60 to 200 ° C. for several hours. By washing and drying, an inorganic compound containing a carbonate of a layered double hydroxide is obtained.

(C)炭酸型LDH粒子の含有量としては、エポキシ樹脂組成物全体に対して0.01〜10質量%が好ましく、0.05〜2質量%であることがより好ましい。(C)炭酸型LDH粒子の含有量を、好ましくは0.01質量%以上、より好ましくは0.05質量%以上とすることで、pH調整剤の効果を十分に発揮させることができ、金属ワイヤと電極パッドとのボンディング部の腐食(酸化劣化)をより確実に防止することができる。また、(C)炭酸型LDH粒子の含有量を、好ましくは10質量%以下、より好ましくは2質量%以下とすることで、吸湿率を低下させることができる。したがって、(C)炭酸型LDH粒子の含有量を上記範囲とすることで、ボンディング部の断線をよりいっそう確実に抑制することができる。   (C) As content of carbonate type LDH particle, 0.01-10 mass% is preferable with respect to the whole epoxy resin composition, and it is more preferable that it is 0.05-2 mass%. (C) By setting the content of the carbonate-type LDH particles to preferably 0.01% by mass or more, more preferably 0.05% by mass or more, the effect of the pH adjusting agent can be sufficiently exhibited, and the metal Corrosion (oxidation deterioration) of the bonding portion between the wire and the electrode pad can be prevented more reliably. Moreover, moisture content can be reduced by making content of (C) carbonate type LDH particle | grains into 10 mass% or less preferably, more preferably 2 mass% or less. Therefore, by setting the content of (C) carbonate-type LDH particles in the above range, disconnection of the bonding portion can be more reliably suppressed.

また、本発明のエポキシ樹脂組成物は、(D)充填材、及び必要に応じて(E)硬化促進剤を含んでいてもよい。   Moreover, the epoxy resin composition of this invention may contain the (D) filler and the (E) hardening accelerator as needed.

(D)充填材としては、一般の半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等の無機充填材、オルガノシリコーンパウダー、ポリエチレンパウダー等の有機充填材が挙げられ、中でも、溶融球状シリカが特に好ましい。これらの充填材は、1種を単独で用いても2種以上を併用しても差し支えない。また、(D)充填材の形状としては、エポキシ樹脂組成物の溶融粘度の上昇を抑え、更に充填材の含有量を高めるためには、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。また、充填材がカップリング剤により表面処理されていてもかまわない。さらに、必要に応じて充填材をエポキシ樹脂又はフェノール樹脂等で予め処理して用いてもよく、処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接充填材に添加し、混合機を用いて混合処理する方法等がある。   (D) As a filler, what is used for the general epoxy resin composition for semiconductor sealing can be used. Examples thereof include inorganic fillers such as fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, and silicon nitride, and organic fillers such as organosilicone powder and polyethylene powder. preferable. These fillers may be used alone or in combination of two or more. The shape of the filler (D) is as spherical as possible and the particle size distribution is broad in order to suppress an increase in the melt viscosity of the epoxy resin composition and further increase the filler content. Is preferred. The filler may be surface-treated with a coupling agent. Furthermore, if necessary, the filler may be pre-treated with an epoxy resin or a phenol resin, and the treatment method includes a method of removing the solvent after mixing with a solvent, or a direct addition to the filler. In addition, there is a method of mixing using a mixer.

(D)充填材の含有量は、エポキシ樹脂組成物の充填性、半導体装置の信頼性の観点から、エポキシ樹脂組成物全体に対して、65質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上がさらに好ましい。こうすることで、低吸湿性、低熱膨張性が得られるため耐湿信頼性が不十分となる恐れを少なくすることができる。また、(D)充填材の含有量は、成形性を考慮すると、エポキシ樹脂組成物全体に対して、93質量%以下であることが好ましく、91質量%以下であることがより好ましく、90質量%以下がさらに好ましい。こうすることで、流動性が低下し成形時に充填不良等が生じたり、高粘度化による半導体装置内のワイヤ流れ等の不都合が生じたりする恐れを少なくすることができる。   (D) The content of the filler is preferably 65% by mass or more, and 75% by mass or more with respect to the entire epoxy resin composition, from the viewpoint of the filling property of the epoxy resin composition and the reliability of the semiconductor device. More preferably, it is more preferably 80% by mass or more. By doing so, low moisture absorption and low thermal expansion can be obtained, so that the risk of insufficient moisture resistance reliability can be reduced. In addition, the content of the (D) filler is preferably 93% by mass or less, more preferably 91% by mass or less, and more preferably 90% by mass with respect to the entire epoxy resin composition in consideration of moldability. % Or less is more preferable. By doing so, it is possible to reduce the possibility that fluidity is lowered and poor filling or the like occurs during molding, or inconvenience such as wire flow in the semiconductor device due to high viscosity.

(E)硬化促進剤は、エポキシ樹脂のエポキシ基と硬化剤(たとえば、フェノール樹脂系硬化剤のフェノール性水酸基)との架橋反応を促進させるものであればよく、一般の半導体封止用エポキシ樹脂組成物に使用するものを用いることができる。例えば、1、8−ジアザビシクロ(5、4、0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;2−メチルイミダゾール等のイミダゾール化合物;テトラフェニルホスホニウム・テトラフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ホスフィン化合物とキノン化合物との付加物等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。   (E) The curing accelerator is not limited as long as it promotes the crosslinking reaction between the epoxy group of the epoxy resin and the curing agent (for example, the phenolic hydroxyl group of the phenol resin-based curing agent). What is used for a composition can be used. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; organic phosphines such as triphenylphosphine and methyldiphenylphosphine; imidazole compounds such as 2-methylimidazole; tetra Examples include tetra-substituted phosphonium and tetra-substituted borates such as phenylphosphonium and tetraphenylborate; adducts of phosphine compounds and quinone compounds, and these may be used alone or in combination of two or more. .

(E)硬化促進剤の含有量は、エポキシ樹脂組成物全体に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。こうすることで、硬化性の低下を引き起こす恐れを少なくすることができる。また、(E)硬化促進剤の含有量は、エポキシ樹脂組成物全体に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。こうすることで、流動性の低下を引き起こす恐れを少なくすることができる。   (E) It is preferable that content of a hardening accelerator is 0.05 mass% or more with respect to the whole epoxy resin composition, and it is more preferable that it is 0.1 mass% or more. By doing so, the possibility of causing a decrease in curability can be reduced. Moreover, it is preferable that it is 1 mass% or less with respect to the whole epoxy resin composition, and, as for content of (E) hardening accelerator, it is more preferable that it is 0.5 mass% or less. By doing so, the possibility of causing a decrease in fluidity can be reduced.

エポキシ樹脂組成物には、さらに必要に応じて、炭酸カルシウム、硼酸カルシウム、メタケイ酸カルシウム、水酸化アルミニウム、ベーマイト等の中和剤、水酸化ジルコニウム等のアルミニウム腐食防止剤;酸化ビスマス水和物等の無機イオン交換体;エポキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン等のカップリング剤;カーボンブラック、ベンガラ等の着色剤;シリコーンゴム等の低応力成分;カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤;水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン等の難燃剤、酸化防止剤等の各種添加剤を適宜配合してもよい。   If necessary, the epoxy resin composition further includes a neutralizing agent such as calcium carbonate, calcium borate, calcium metasilicate, aluminum hydroxide, boehmite, aluminum corrosion inhibitor such as zirconium hydroxide; bismuth oxide hydrate, etc. Inorganic ion exchangers; coupling agents such as epoxy silane, γ-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane; colorants such as carbon black and bengara; silicone Low stress components such as rubber; natural waxes such as carnauba wax; synthetic waxes; higher fatty acids such as zinc stearate and release agents such as metal salts thereof or paraffin; aluminum hydroxide, magnesium hydroxide, zinc borate, molybdic acid Flame retardants such as zinc and phosphazene , Various additives such as an antioxidant may be appropriately blended.

エポキシ樹脂組成物は、前述の各成分を、例えば、ミキサー等を用いて15℃〜28℃で混合したもの、さらにその後、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。   The epoxy resin composition is obtained by mixing the above-mentioned components at 15 ° C. to 28 ° C. using, for example, a mixer, and then melt-kneading with a kneader such as a roll, a kneader, or an extruder, and grinding after cooling. Those having an appropriate degree of dispersion and fluidity can be used as necessary.

本発明の半導体封止用エポキシ樹脂組成物の硬化体は、上記のエポキシ樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で成形硬化して得ることができる。トランスファーモールドなどの成形方法で成形硬化されたエポキシ樹脂組成物の硬化体は、必要に応じて80℃〜200℃程度の温度で、10分〜24時間程度の時間をかけて完全硬化させることで得ることもできる。   The cured body of the epoxy resin composition for semiconductor encapsulation of the present invention can be obtained by molding and curing the above epoxy resin composition by a conventional molding method such as transfer molding, compression molding, injection molding or the like. The cured product of the epoxy resin composition molded and cured by a molding method such as transfer mold is completely cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 24 hours as necessary. It can also be obtained.

つづいて、本発明の半導体装置について図1を用いつつ説明する。本発明の半導体装置10は、基板として、ダイパッド部3aと、インナーリード部3bを有するリードフレーム3を備え、ダイパッド部3aに搭載された半導体素子1と、リードフレーム3と半導体素子1とを電気的に接続している金属ワイヤ4と、上記のエポキシ樹脂組成物の硬化体からなり、半導体素子1と金属ワイヤ4とを封止している、封止樹脂5と、を有する。   Next, the semiconductor device of the present invention will be described with reference to FIG. The semiconductor device 10 of the present invention includes a lead frame 3 having a die pad portion 3a and an inner lead portion 3b as a substrate, and electrically connects the semiconductor element 1 mounted on the die pad portion 3a, the lead frame 3 and the semiconductor element 1 to each other. The metal wire 4 that is electrically connected, and the sealing resin 5 that is made of a cured body of the above epoxy resin composition and seals the semiconductor element 1 and the metal wire 4.

半導体素子1としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、固体撮像素子等が挙げられる。   The semiconductor element 1 is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, and a solid-state imaging element.

リードフレーム3としては特に制限はなく、リードフレーム3に代えて回路基板を用いてもよい。具体的には、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリア(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、クワッド・フラット・ノンリーデッド・パッケージ(QFN)、スモールアウトライン・ノンリーデッド・パッケージ(SON)、リードフレーム・BGA(LF−BGA)、モールド・アレイ・パッケージタイプのBGA(MAP−BGA)などの従来公知の半導体装置に用いられるリードフレーム又は回路基板を用いることができる。   The lead frame 3 is not particularly limited, and a circuit board may be used instead of the lead frame 3. Specifically, Dual Inline Package (DIP), Plastic Leaded Chip Carrier (PLCC), Quad Flat Package (QFP), Low Profile Quad Flat Package (LQFP), Small Outline・ J lead package (SOJ), thin small outline package (TSOP), thin quad flat package (TQFP), tape carrier package (TCP), ball grid array (BGA), chip size・ Package (CSP), Quad Flat Non-Leaded Package (QFN), Small Outline Non-Leaded Package (SON), Leadframe BGA (LF-BGA), Mold Array Package It can be used a lead frame or a circuit board used in the conventional semiconductor device, such as a BGA (MAP-BGA) of Jitaipu.

半導体素子1は、複数の半導体素子が積層されたものであってもよい。この場合、1段目の半導体素子はフィルム接着剤、熱硬化性接着剤等のダイボンド材硬化体2を介してダイパッド部3aに接着される。2段目以降の半導体素子は絶縁性のフィルム接着剤により順次積層させることができる。そして、各層の適切な場所に、予め前工程で電極パッド6が形成されている。   The semiconductor element 1 may be a stack of a plurality of semiconductor elements. In this case, the first-stage semiconductor element is bonded to the die pad portion 3a via a die bond material cured body 2 such as a film adhesive or a thermosetting adhesive. The semiconductor elements in the second and subsequent stages can be sequentially laminated with an insulating film adhesive. And the electrode pad 6 is previously formed in the pre-process in the appropriate place of each layer.

電極パッド6は、アルミニウム(Al)を主成分とするものからなることが好ましい。電極パッド6中のAlの含有量は、電極パッド6全体に対して98質量%以上が好ましい。電極パッド6中に含まれるAl以外の成分としては、銅(Cu)、シリコン(Si)等が挙げられる。電極パッド6は、下層の銅回路端子の表面に一般的なチタン系バリア層を形成し、さらにAlを蒸着、スパッタリング、無電解メッキなど、一般的な半導体素子の電極パッドの形成方法を適用することにより作製することができる。   The electrode pad 6 is preferably made of a material mainly composed of aluminum (Al). The content of Al in the electrode pad 6 is preferably 98% by mass or more with respect to the entire electrode pad 6. Examples of components other than Al contained in the electrode pad 6 include copper (Cu) and silicon (Si). For the electrode pad 6, a general titanium-based barrier layer is formed on the surface of the underlying copper circuit terminal, and a general method for forming an electrode pad of a semiconductor element, such as vapor deposition, sputtering, or electroless plating, is applied. Can be produced.

金属ワイヤ4は、リードフレーム3と、リードフレーム3のダイパッド部3aに搭載された半導体素子1とを電気的に接続するために使用される。金属ワイヤ4の表面には、自然に又はプロセス上不可避的に酸化膜が形成されていてもよい。本発明において、金属ワイヤ4とは、このようにワイヤ表面に形成された酸化膜を具備するものも含まれる。   The metal wire 4 is used to electrically connect the lead frame 3 and the semiconductor element 1 mounted on the die pad portion 3 a of the lead frame 3. An oxide film may be formed on the surface of the metal wire 4 naturally or unavoidably in the process. In the present invention, the metal wire 4 includes those having an oxide film formed on the surface of the wire in this way.

金属ワイヤ4のワイヤ径は、30μm以下、さらに好ましくは25μm以下でありかつ15μm以上であることが好ましい。この範囲であれば金属ワイヤ先端のボール形状が安定し、ボンディング部の接続信頼性を向上させることができる。また、金属ワイヤ自身の硬さによりワイヤ流れを低減することが可能となる。   The wire diameter of the metal wire 4 is 30 μm or less, more preferably 25 μm or less, and preferably 15 μm or more. Within this range, the ball shape at the tip of the metal wire is stable, and the connection reliability of the bonding portion can be improved. Moreover, it becomes possible to reduce a wire flow with the hardness of metal wire itself.

金属ワイヤ4は、限定されず、金ワイヤ、銅ワイヤのいずれであってもよいが、銅ワイヤであることが好ましく、金属ワイヤ4中の銅の含有量は、金属ワイヤ4全体に対して、99.9〜100質量%であることが好ましく、99.99〜99.999質量%であることがより好ましい。銅の含有量が金属ワイヤ全体に対して99.99質量%以上の金属ワイヤ4であれば、ボール部分が充分な柔軟性を有しているため、ボンディング時にパッド側にダメージを与えるおそれがなく、特に好ましい。尚、本発明の半導体装置で用いることができる金属ワイヤ4は、芯線である銅にBa、Ca、Sr、Be、Al又は希土類金属を0.001〜0.1質量%ドープすることでさらにボール形状と接合強度を改善させることができる。   The metal wire 4 is not limited and may be either a gold wire or a copper wire, but is preferably a copper wire, and the content of copper in the metal wire 4 is based on the entire metal wire 4. It is preferable that it is 99.9-100 mass%, and it is more preferable that it is 99.99-99.999 mass%. If the metal wire 4 has a copper content of 99.99% by mass or more with respect to the entire metal wire, the ball portion has sufficient flexibility, so there is no risk of damaging the pad side during bonding. Is particularly preferred. In addition, the metal wire 4 that can be used in the semiconductor device of the present invention is a ball by doping 0.001 to 0.1% by mass of Ba, Ca, Sr, Be, Al, or rare earth metal into copper as a core wire. The shape and bonding strength can be improved.

銅ワイヤ4と電極パッド6との接合部において、銅ワイヤ4の先端には、ボール4aが形成されている。   A ball 4 a is formed at the tip of the copper wire 4 at the joint between the copper wire 4 and the electrode pad 6.

また、金属ワイヤ4が銅ワイヤである場合は、その表面にパラジウムを含む金属材料で構成された被覆層を有していてもよい。これにより、銅ワイヤ先端のボール形状が安定し、ボンディング部の接続信頼性を向上させることができる。また、芯線である銅の酸化劣化を防止する効果も得られ、ボンディング部の高温耐湿性を向上させることができる。   Moreover, when the metal wire 4 is a copper wire, you may have the coating layer comprised with the metal material containing palladium on the surface. Thereby, the ball shape at the tip of the copper wire is stabilized, and the connection reliability of the bonding portion can be improved. Moreover, the effect which prevents the oxidation deterioration of copper which is a core wire is also acquired, and the high temperature moisture resistance of a bonding part can be improved.

銅ワイヤにおけるパラジウムを含む金属材料から構成された被覆層の厚みとしては、0.001〜0.02μmであることが好ましく、0.005〜0.015μmであることがより好ましい。上記上限値以下であると、ワイヤボンド時に芯線である銅と被覆材のパラジウムを含む金属材料とが十分に溶けて安定なボール形状を形成させることができ、ボンディング部の高温耐湿性をよりいっそう向上させることができる。また、上記下限値以上であると、芯線の銅の酸化劣化を防止でき、同様にボンディング部の高温耐湿性を更に向上させることができる。   As thickness of the coating layer comprised from the metal material containing palladium in a copper wire, it is preferable that it is 0.001-0.02 micrometer, and it is more preferable that it is 0.005-0.015 micrometer. If it is below the above upper limit value, the copper core wire and the metal material containing palladium of the coating material can be sufficiently melted at the time of wire bonding to form a stable ball shape, and the high temperature and humidity resistance of the bonding part is further increased. Can be improved. Moreover, the oxidation deterioration of the copper of a core wire can be prevented as it is more than the said lower limit, and the high temperature moisture resistance of a bonding part can be improved further similarly.

銅ワイヤは、銅合金を溶解炉で鋳造し、その鋳塊をロール圧延し、さらにダイスを用いて伸線加工を行い、連続的にワイヤを掃引しながら加熱する後熱処理を施して得ることができる。また、半導体装置10で用いることができる銅ワイヤにおけるパラジウムを含む金属材料から構成された被覆層は、予め狙いのワイヤ径の線を準備し、これを、パラジウムを含む電解溶液又は無電解溶液に浸漬し、連続的に掃引してメッキすることで被覆層を形成することができる。この場合、被覆の厚さは掃引速度で調整することができる。また、狙いよりも太い線を準備して、これを電解溶液又は無電解溶液に浸漬し連続的に掃引して被覆層を形成し、さらに所定の径になるまで伸線する手法も取れる。   A copper wire can be obtained by casting a copper alloy in a melting furnace, rolling and rolling the ingot, further drawing with a die, and heating after continuously sweeping the wire. it can. Moreover, the coating layer comprised from the metal material containing palladium in the copper wire which can be used with the semiconductor device 10 prepares the wire | line of the target wire diameter previously, and this is made into the electrolytic solution or electroless solution containing palladium. The coating layer can be formed by dipping, continuously sweeping and plating. In this case, the thickness of the coating can be adjusted by the sweep rate. Further, a method of preparing a wire thicker than intended, immersing it in an electrolytic solution or an electroless solution, continuously sweeping it to form a coating layer, and drawing the wire to a predetermined diameter can be taken.

つづいて、半導体装置10の製造方法の一例について説明する。
まず、公知の半導体製造プロセスによって半導体素子1の最上層の保護膜8の一部を開口して電極パッド6を形成する。保護膜8はSiN等の絶縁膜から形成される。次いで、更に公知の後工程プロセスにより電極パッド6を備えた半導体素子1をリードフレーム3上のダイパッド部3aに設置し、金属ワイヤ4により電極パッド6とインナーリード部3bとをワイヤボンディングする。
Next, an example of a method for manufacturing the semiconductor device 10 will be described.
First, an electrode pad 6 is formed by opening a part of the uppermost protective film 8 of the semiconductor element 1 by a known semiconductor manufacturing process. The protective film 8 is formed from an insulating film such as SiN. Next, the semiconductor element 1 provided with the electrode pad 6 is installed on the die pad portion 3a on the lead frame 3 by a further known post-process, and the electrode pad 6 and the inner lead portion 3b are wire-bonded by the metal wire 4.

ボンディングは、たとえば以下の手順で行う。まず、金属ワイヤ4の先端に所定の径のボール4aを形成する。ついで、ボール4aを電極パッド6上面に対して実質的に垂直に降下させ、ボール4aと電極パッド6とを接触させながら、超音波振動を与える。これにより、ボール4aの底部が電極パッド6に接触して接合面が形成される。   Bonding is performed by the following procedure, for example. First, a ball 4 a having a predetermined diameter is formed at the tip of the metal wire 4. Next, the ball 4 a is lowered substantially perpendicularly to the upper surface of the electrode pad 6, and ultrasonic vibration is applied while the ball 4 a and the electrode pad 6 are in contact with each other. As a result, the bottom of the ball 4a contacts the electrode pad 6 to form a bonding surface.

なお、リードフレーム3のリード部3bと半導体素子1とは、ワイヤのリバースボンドで接合されていてもよい。リバースボンドでは、まず半導体素子1の電極パッド6に銅ワイヤ4の先端に形成されたボールを接合し、銅ワイヤ4を切断してステッチ接合用のバンプを形成する。次にリードフレーム3の金属メッキされたリード部3bに対してワイヤの先端に形成されたボールを接合し、半導体素子のバンプにステッチ接合する。リバースボンドでは正ボンディングより半導体素子1上のワイヤ高さを低くすることができるため、半導体素子1の接合高さを低くすることができる。   In addition, the lead part 3b of the lead frame 3 and the semiconductor element 1 may be joined by a reverse bond of a wire. In reverse bonding, a ball formed at the tip of the copper wire 4 is first bonded to the electrode pad 6 of the semiconductor element 1, and the copper wire 4 is cut to form a stitch bonding bump. Next, a ball formed at the tip of the wire is bonded to the metal-plated lead portion 3b of the lead frame 3, and stitch bonded to the bumps of the semiconductor element. In reverse bonding, the height of the wire on the semiconductor element 1 can be made lower than that in the positive bonding, so that the bonding height of the semiconductor element 1 can be reduced.

次いで、本発明の半導体封止用エポキシ樹脂組成物を用いて、半導体素子1等の電子部品を封止し、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形して得られる。トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは80℃〜200℃程度の温度で、10分〜24時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。   Next, using the epoxy resin composition for semiconductor encapsulation of the present invention, an electronic component such as the semiconductor element 1 is encapsulated and cured by a conventional molding method such as transfer molding, compression molding, injection molding or the like. It is done. A semiconductor device sealed by a molding method such as a transfer mold is mounted as it is or after being completely cured at a temperature of about 80 ° C. to 200 ° C. over a period of about 10 minutes to 24 hours. Is done.

このように製造された半導体装置10では、製造プロセスや使用時にボンディング部に熱がかかると、金属ワイヤ4から金属が電極パッド6に拡散してワイヤとパッドとの接合部に合金層が形成されるが、エポキシ樹脂から発生する酸性成分や酸化物成分は、合金層に到達する前に、炭酸型層状複水酸化物粒子にトラップされて中和することができるため、ボンディング部の腐食(酸化)による断線を防止することができる。したがって、本発明によれば、ボンディング後に高温高湿プロセスを採用する場合や、使用環境が高温高湿下である場合(例えば、自動車などのエンジン周辺に設置される場合)においても、高い接続信頼性を維持することが可能である。   In the semiconductor device 10 manufactured in this way, when heat is applied to the bonding part during the manufacturing process or use, the metal diffuses from the metal wire 4 to the electrode pad 6 and an alloy layer is formed at the joint between the wire and the pad. However, the acidic component and oxide component generated from the epoxy resin can be trapped and neutralized by the carbonate-type layered double hydroxide particles before reaching the alloy layer. ) Can be prevented. Therefore, according to the present invention, even when a high-temperature and high-humidity process is employed after bonding, or when the usage environment is high-temperature and high-humidity (for example, when installed in the vicinity of an engine such as an automobile), high connection reliability is achieved. It is possible to maintain sex.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

実施例1〜5、比較例1〜3
ミキサーを用いて表1に示す各成分を15〜28℃で混合し、次いで70℃〜100℃でロール混練した。冷却後、粉砕してエポキシ樹脂組成物を得た。なお、表1中、各成分の詳細は下記のとおりである。また、表1中の単位は、質量%である。
Examples 1-5, Comparative Examples 1-3
Each component shown in Table 1 was mixed at 15 to 28 ° C. using a mixer, and then roll-kneaded at 70 to 100 ° C. After cooling, it was pulverized to obtain an epoxy resin composition. In Table 1, the details of each component are as follows. Moreover, the unit in Table 1 is mass%.

<(A)エポキシ樹脂>
エポキシ−OCN:EOCN−1020−55、日本化薬(株)製、エポキシ当量200
エポキシ−Biphenyl:YX4000K、三菱化学(株)製、エポキシ当量185
エポキシ−BA:NC3000P、日本化薬(株)製、エポキシ当量276
<(A) Epoxy resin>
Epoxy-OCN: EOCN-1020-55, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 200
Epoxy-Biphenyl: YX4000K, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 185
Epoxy-BA: NC3000P, Nippon Kayaku Co., Ltd., epoxy equivalent 276

<(B)硬化剤>
硬化剤−PN:PR−HF−3、住友ベークライト(株)製、水酸基当量105
硬化剤−XL:XLC−4L、三井化学(株)製、水酸基当量168
硬化剤−BA:MEH−7851SS、明和化成(株)製、水酸基当量203
<(B) Curing agent>
Curing agent-PN: PR-HF-3, manufactured by Sumitomo Bakelite Co., Ltd., hydroxyl equivalent 105
Curing agent-XL: XLC-4L, manufactured by Mitsui Chemicals, hydroxyl equivalent 168
Curing agent-BA: MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd., hydroxyl equivalent 203

<(C)炭酸型LDH粒子>
表1中成分(C)は下記の方法で製造した。なお、化学分析は、金属元素については、得られた結晶を硝酸水溶液に溶かしイオンクロマトグラフィーで定量することにより行い、その他の元素についてはTGDTA(熱重量測定-示差熱分析)で定量することによって行った。モード径は、(株)島津製作所製レーザー回折散乱式粒度分布計SALD−7000を使用して測定した。
<(C) Carbonated LDH particles>
The component (C) in Table 1 was produced by the following method. Chemical analysis is performed by dissolving the obtained crystals in nitric acid aqueous solution for metal elements and quantifying by ion chromatography, and quantifying other elements by TGDTA (thermogravimetry-differential thermal analysis). went. The mode diameter was measured using a laser diffraction scattering type particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation.

CI−1:Comblainite(NiCo(OH)16(CO)・4HO)の合成
Ni(NO・6HO、40gとCo(NO・6HO、15gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液200mlに無水炭酸ナトリウム10gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを90℃12時間で加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、200℃8時間で乾燥させた。化学分析で求めた化学式はNiCo(OH)16(CO)・4HOであり、収量は16.5g、モード径は0.12μmであった。
CI-1: Synthesis of Comblainite (Ni 6 Co 2 (OH) 16 (CO 3 ) · 4H 2 O) Ni (NO 3 ) 2 · 6H 2 O, 40 g and Co (NO 3 ) 2 · 6H 2 O, 15 g Was dissolved in 200 ml of ion-exchanged water. This was slowly added at room temperature with good stirring to an aqueous solution in which 10 g of anhydrous sodium carbonate was dissolved in 200 ml of 4N aqueous sodium hydroxide solution. This was heat-treated at 90 ° C. for 12 hours, allowed to cool to room temperature, and the precipitate was filtered. The obtained crystal was washed with ion exchange water and dried at 200 ° C. for 8 hours. The chemical formula determined by chemical analysis was Ni 6 Co 2 (OH) 16 (CO 3 ) · 4H 2 O, the yield was 16.5 g, and the mode diameter was 0.12 μm.

CI−2:Reevesite(NiFe(OH)16(CO)・4HO)の合成
Ni(NO・6HO、60gとFe(NO・9HO、20gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液200mlに無水炭酸ナトリウム10gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを90℃12時間で加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、200℃8時間で乾燥させた。化学分析で求めた化学式はNiFe(OH)16(CO)・4HOであり、収量は13.7g、モード径は0.15μmであった。
CI-2: Synthesis of Reevesite (Ni 6 Fe 2 (OH) 16 (CO 3 ) · 4H 2 O) Ni (NO 3 ) 2 · 6H 2 O, 60 g and Fe (NO 3 ) 2 · 9H 2 O, 20 g Was dissolved in 200 ml of ion-exchanged water. This was slowly added at room temperature with good stirring to an aqueous solution in which 10 g of anhydrous sodium carbonate was dissolved in 200 ml of 4N aqueous sodium hydroxide solution. This was heat-treated at 90 ° C. for 12 hours, allowed to cool to room temperature, and the precipitate was filtered. The obtained crystal was washed with ion exchange water and dried at 200 ° C. for 8 hours. The chemical formula determined by chemical analysis was Ni 6 Fe 2 (OH) 16 (CO 3 ) · 4H 2 O, the yield was 13.7 g, and the mode diameter was 0.15 μm.

CI−3:Takovite(NiAl(OH)16(CO)・4HO)の合成
Ni(NO・6HO、60gとAl(NO・9HO、20gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液200mlに無水炭酸ナトリウム10gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを90℃12時間で加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、200℃8時間で乾燥させた。化学分析で求めた化学式はNiAl(OH)16(CO)・4HOであり、収量は14.1g、モード径は0.09μmであった。
CI-3: Takovite (Ni 6 Al 2 (OH) 16 (CO 3) · 4H 2 O) Synthesis Ni (NO 3) the 2 · 6H 2 O, 60g and Al (NO 3) 3 · 9H 2 O, 20g Was dissolved in 200 ml of ion-exchanged water. This was slowly added at room temperature with good stirring to an aqueous solution in which 10 g of anhydrous sodium carbonate was dissolved in 200 ml of 4N aqueous sodium hydroxide solution. This was heat-treated at 90 ° C. for 12 hours, allowed to cool to room temperature, and the precipitate was filtered. The obtained crystal was washed with ion exchange water and dried at 200 ° C. for 8 hours. The chemical formula determined by chemical analysis was Ni 6 Al 2 (OH) 16 (CO 3 ) · 4H 2 O, the yield was 14.1 g, and the mode diameter was 0.09 μm.

CI−4:Dresserite(BaAl(OH)(CO・HO)の合成
Ba(NO、13gとAl(NO・9HO、40gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液200mlに無水炭酸ナトリウム10gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを90℃12時間で加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、200℃8時間で乾燥させた。化学分析で求めた化学式はBaAl(OH)(CO・HOであり、収量は15.3g、モード径は0.18μmであった。
CI-4: Dresserite (BaAl 2 (OH) 4 (CO 3) 2 · H 2 O) Synthesis Ba (NO 3) of 2, 13 g and Al (NO 3) Ion exchange 3 · 9H 2 O, a 40 g 200 ml Dissolved in water. This was slowly added at room temperature with good stirring to an aqueous solution in which 10 g of anhydrous sodium carbonate was dissolved in 200 ml of 4N aqueous sodium hydroxide solution. This was heat-treated at 90 ° C. for 12 hours, allowed to cool to room temperature, and the precipitate was filtered. The obtained crystal was washed with ion exchange water and dried at 200 ° C. for 8 hours. The chemical formula determined by chemical analysis was BaAl 2 (OH) 4 (CO 3 ) 2 .H 2 O, the yield was 15.3 g, and the mode diameter was 0.18 μm.

CI−5:Almohydrocalcite(CaAl(OH)(CO・2HO)の合成
Ca(NO・4HO、12gとAl(NO・9HO、40gを200mlのイオン交換水に溶解した。これを4Nの水酸化ナトリウム水溶液200mlに無水炭酸ナトリウム10gを溶解した水溶液によく攪拌しながら室温でゆっくりと加えた。これを90℃12時間で加熱処理した後、室温まで放冷し、沈殿物をろ過した。得られた結晶をイオン交換水で洗浄し、200℃8時間で乾燥させた。化学分析で求めた化学式はCaAl(OH)(CO・2HOであり、収量は14.2g、モード径は0.23μmであった。
CI-5: Synthesis of Almohydrocalcite (CaAl 2 (OH) 4 (CO 3 ) 2 · 2H 2 O) Ca (NO 3 ) 2 · 4H 2 O, 12 g and Al (NO 3 ) 3 · 9H 2 O, 40 g Dissolved in 200 ml of ion exchange water. This was slowly added at room temperature with good stirring to an aqueous solution in which 10 g of anhydrous sodium carbonate was dissolved in 200 ml of 4N aqueous sodium hydroxide solution. This was heat-treated at 90 ° C. for 12 hours, allowed to cool to room temperature, and the precipitate was filtered. The obtained crystal was washed with ion exchange water and dried at 200 ° C. for 8 hours. The chemical formula determined by chemical analysis was CaAl 2 (OH) 4 (CO 3 ) 2 .2H 2 O, the yield was 14.2 g, and the mode diameter was 0.23 μm.

CI−6:協和化学工業(株)DHT−4C(Mg7.2Al3.3(OH)26.3(CO)mHO)。モード径は0.21μmである。 CI-6: Kyowa Chemical Industry Co., Ltd. DHT-4C (Mg 7.2 Al 3.3 (OH) 26.3 (CO 3 ) mH 2 O). The mode diameter is 0.21 μm.

<(D)充填材>
シリカ:FB−820、電気化学工業(株)社製、溶融球状シリカ、平均粒径26.5μm、105μm以上の粒子1%以下
<(D) Filler>
Silica: FB-820, manufactured by Denki Kagaku Kogyo Co., Ltd., fused spherical silica, average particle diameter of 26.5 μm, particles of 105 μm or more 1% or less

<(E)硬化促進剤>
トリフェニルホスフィン(TPP)、北興化学工業(株)製
<(E) Curing accelerator>
Triphenylphosphine (TPP), manufactured by Hokuko Chemical Co., Ltd.

<その他の成分>
カップリング剤:エポキシシラン
着色剤:カーボンブラック
離型剤:カルナバワックス
<Other ingredients>
Coupling agent: Epoxysilane Colorant: Carbon black Release agent: Carnauba wax

実施例1〜5、比較例1〜3のエポキシ樹脂組成物の物性を以下の方法により測定した。その結果を表1に示す。   The physical properties of the epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 to 3 were measured by the following methods. The results are shown in Table 1.

<スパイラルフロー(SF)>
低圧トランスファー成形機(コータキ精機(株)製「KTS−15」)を用いて、EMMI−1−66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、実施例1〜5、比較例1〜3のエポキシ樹脂組成物をそれぞれ注入し、流動長(単位:cm)を測定した。
<Spiral flow (SF)>
Using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66, a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, Under the conditions of a curing time of 120 seconds, the epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 to 3 were respectively injected, and the flow length (unit: cm) was measured.

<ゲルタイム(GT)>
175℃に加熱した熱板上で実施例1〜5、比較例1〜3のエポキシ樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(単位:秒)を測定した。
<Geltime (GT)>
After the epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 to 3 were melted on a hot plate heated to 175 ° C., the time (unit: seconds) until they were cured while being kneaded with a spatula was measured.

<耐湿性(HAST)>
アルミニウム製電極パッド(アルミニウム純度99.9質量%、厚み1μm)を備えるTEG(TEST ELEMENT GROUP)チップ(3.5mm×3.5mm)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30mm×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップの電極パッドと基板の電極パッドとをデイジーチェーン接続となるように、銅ワイヤ(銅純度99.99質量%、径25μm)を用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製「Yシリーズ」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件で、実施例1〜5、比較例1〜3のエポキシ樹脂組成物を用いて封止成形して、352ピンBGAパッケージを作製した。このパッケージを175℃、4時間の条件で後硬化した後、半導体装置を得た。得られた半導体装置について半導体装置のHAST(耐湿性試験)を行った。具体的には、IEC68−2−66に準拠して実施した。試験条件は、温度を130℃、および140℃とし、85%RH、印加電圧20Vで処理し、不良が発生する時間を調べた。なお、不良の判定は、作製したパッケージ10個を用いて評価し、初期抵抗に対する処理後の抵抗値が1.2倍を超えたパッケージが発生した時間を不良時間とした。その結果を表1に示す。表1中単位は、時間(hour)である。
<Moisture resistance (HAST)>
A TEG (TEST ELEMENT GROUP) chip (3.5 mm × 3.5 mm) with an aluminum electrode pad (aluminum purity 99.9 mass%, thickness 1 μm) is a 352-pin BGA (substrate thickness 0.56 mm, bismaleimide A copper wire (triazine resin / glass cloth substrate, package size 30 mm x 30 mm, thickness 1.17 mm) is bonded to the die pad portion, and the TEG chip electrode pad and the substrate electrode pad are daisy chain connected. Wire bonding was performed at a wire pitch of 80 μm using a copper purity of 99.99 mass% and a diameter of 25 μm. Examples 1 to 5 and Comparative Examples 1 to 3 were prepared using a low-pressure transfer molding machine (“Y series” manufactured by TOWA) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. A 352-pin BGA package was produced by sealing using the epoxy resin composition. After the package was post-cured at 175 ° C. for 4 hours, a semiconductor device was obtained. The obtained semiconductor device was subjected to HAST (moisture resistance test) of the semiconductor device. Specifically, it was carried out in accordance with IEC68-2-66. The test conditions were such that the temperature was 130 ° C. and 140 ° C., the treatment was performed at 85% RH and an applied voltage of 20 V, and the time during which defects occurred was examined. In addition, the determination of the defect was evaluated using 10 manufactured packages, and the time when the package in which the resistance value after the treatment with respect to the initial resistance exceeded 1.2 times was defined as the defect time. The results are shown in Table 1. The unit in Table 1 is time.

Figure 2015110686
Figure 2015110686

1 半導体素子
2 ダイボンド材硬化体
3 リードフレーム
3a ダイパッド
3b インナーリード部
4 金属ワイヤ
4a ボール
5 封止樹脂
6 電極パッド
8 保護膜
10 半導体装置
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Lead frame 3a Die pad 3b Inner lead part 4 Metal wire 4a Ball 5 Sealing resin 6 Electrode pad 8 Protective film 10 Semiconductor device

Claims (10)

金属ワイヤ及び前記金属ワイヤが接続された半導体素子を封止するために用いられる半導体封止用エポキシ樹脂組成物であって、
下記成分
(A)エポキシ樹脂
(B)硬化剤
(C)下記式(1)で表される炭酸型層状複水酸化物粒子
を含む、半導体封止用エポキシ樹脂組成物。
(OH)(CO3d・nH2O (1)
〔式(1)中、Mは、Ni2+、Ba2+、Ca2+、Fe2+、Mn2+、Sr2+、Zn2+、Mg2+及びCu2+から選択される二価金属イオンであり、MはCo3+、Fe3+、Cr3+、Mn3+及びAl3+から選択される三価金属イオンであり、a、b、c、dは、それぞれ1≦a≦8、1≦b≦14、1≦c≦20、1≦d≦12、を満たす整数であり、nは1≦n≦10を満たす整数である。ただし、MがMg2+のとき、MがAl3+である場合を除く。〕
An epoxy resin composition for semiconductor sealing used for sealing a metal wire and a semiconductor element to which the metal wire is connected,
The following component (A) Epoxy resin (B) Curing agent (C) The epoxy resin composition for semiconductor sealing containing the carbonate type layered double hydroxide particle represented by following formula (1).
M 1 a M 2 b (OH) c (CO 3 ) d · nH 2 O (1)
[In Formula (1), M 1 is a divalent metal ion selected from Ni 2+ , Ba 2+ , Ca 2+ , Fe 2+ , Mn 2+ , Sr 2+ , Zn 2+ , Mg 2+ and Cu 2+ , and M 2 Is a trivalent metal ion selected from Co 3+ , Fe 3+ , Cr 3+ , Mn 3+ and Al 3+ , and a, b, c and d are 1 ≦ a ≦ 8, 1 ≦ b ≦ 14, 1 ≦, respectively. c ≦ 20, 1 ≦ d ≦ 12, and n is an integer satisfying 1 ≦ n ≦ 10. However, when M 1 is Mg 2+, unless M 2 is Al 3+. ]
前記成分(C)の体積頻度粒度分布におけるモード径が0.01μm以上1.0μm以下の範囲である、請求項1に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the mode diameter in the volume frequency particle size distribution of the component (C) is in the range of 0.01 μm to 1.0 μm. 前記式(1)中、Mが、Ni2+、Ba2+、及びCa2+から選択される二価金属イオンである、請求項1又は2に記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein M 1 in the formula (1) is a divalent metal ion selected from Ni 2+ , Ba 2+ , and Ca 2+ . 前記式(1)中、Mが、Co3+、Fe3+及びAl3+から選択される三価金属イオンである、請求項1乃至3いずれか一項に記載の半導体封止用エポキシ樹脂組成物。 4. The epoxy resin composition for encapsulating a semiconductor according to claim 1, wherein in the formula (1), M 2 is a trivalent metal ion selected from Co 3+ , Fe 3+ and Al 3+ . . 前記金属ワイヤが、銅の含有量が該金属ワイヤ全体に対して99.99質量%以上の銅ワイヤである、請求項1乃至4いずれか一項に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to any one of claims 1 to 4, wherein the metal wire is a copper wire having a copper content of 99.99% by mass or more based on the entire metal wire. 請求項1乃至5いずれか一項に記載の半導体封止用エポキシ樹脂組成物の硬化体。   The hardened | cured material of the epoxy resin composition for semiconductor sealing as described in any one of Claims 1 thru | or 5. 基板に搭載された半導体素子と、
前記半導体素子に設けられた電極パッドと、
前記基板に設けられた接続端子と前記電極パッドとを接続する金属ワイヤと、
請求項6に記載された半導体封止用エポキシ樹脂組成物の硬化体と、
を備える、半導体装置。
A semiconductor element mounted on a substrate;
An electrode pad provided in the semiconductor element;
A metal wire connecting the connection terminal provided on the substrate and the electrode pad;
A cured body of the epoxy resin composition for semiconductor encapsulation according to claim 6;
A semiconductor device comprising:
前記金属ワイヤが銅ワイヤである、請求項7に記載の半導体装置。   The semiconductor device according to claim 7, wherein the metal wire is a copper wire. 前記電極パッドがアルミニウムを主成分とする、請求項7又は8に記載の半導体装置。   The semiconductor device according to claim 7, wherein the electrode pad is mainly composed of aluminum. 前記基板が、リードフレーム又は回路基板である、請求項7乃至9いずれか一項に記載の半導体装置。   The semiconductor device according to claim 7, wherein the substrate is a lead frame or a circuit substrate.
JP2012079092A 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor, its cured body and semiconductor device Pending JP2015110686A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012079092A JP2015110686A (en) 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor, its cured body and semiconductor device
PCT/JP2013/001699 WO2013145609A1 (en) 2012-03-30 2013-03-14 Epoxy resin composition for semiconductor sealing, cured body thereof, and semiconductor device
TW102109330A TW201341422A (en) 2012-03-30 2013-03-15 Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079092A JP2015110686A (en) 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor, its cured body and semiconductor device

Publications (1)

Publication Number Publication Date
JP2015110686A true JP2015110686A (en) 2015-06-18

Family

ID=49258924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079092A Pending JP2015110686A (en) 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor, its cured body and semiconductor device

Country Status (3)

Country Link
JP (1) JP2015110686A (en)
TW (1) TW201341422A (en)
WO (1) WO2013145609A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337411B2 (en) * 2003-06-09 2009-09-30 東亞合成株式会社 Inorganic anion exchanger and epoxy resin composition for sealing electronic parts using the same
JP5470806B2 (en) * 2007-11-29 2014-04-16 住友ベークライト株式会社 Semiconductor device, sealing epoxy resin composition and manufacturing method thereof
JP5125673B2 (en) * 2008-03-26 2013-01-23 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Also Published As

Publication number Publication date
WO2013145609A1 (en) 2013-10-03
TW201341422A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2011070739A1 (en) Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device using epoxy resin composition
JP5532258B2 (en) Semiconductor device
JP5393207B2 (en) Semiconductor device
WO2012070529A1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
KR101678256B1 (en) Semiconductor device
JP2015137344A (en) Epoxy resin composition for encapsulation and semiconductor device
WO2011093038A1 (en) Semiconductor device
JP6330658B2 (en) Semiconductor device
JP2013209450A (en) Epoxy resin composition for sealing semiconductor
JP6094573B2 (en) Semiconductor device
JP2015017165A (en) Epoxy resin composition for sealing, and semiconductor device
JP6341203B2 (en) Semiconductor device
WO2013145609A1 (en) Epoxy resin composition for semiconductor sealing, cured body thereof, and semiconductor device
WO2011030516A1 (en) Semiconductor device
JP5125673B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device