JP2015101512A - Outer wall structure for single-family housing and construction method thereof - Google Patents

Outer wall structure for single-family housing and construction method thereof Download PDF

Info

Publication number
JP2015101512A
JP2015101512A JP2013243834A JP2013243834A JP2015101512A JP 2015101512 A JP2015101512 A JP 2015101512A JP 2013243834 A JP2013243834 A JP 2013243834A JP 2013243834 A JP2013243834 A JP 2013243834A JP 2015101512 A JP2015101512 A JP 2015101512A
Authority
JP
Japan
Prior art keywords
mass
parts
cement
wall structure
fine aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013243834A
Other languages
Japanese (ja)
Inventor
佐伯 俊之
Toshiyuki Saeki
俊之 佐伯
佐伯 隆之
Takayuki Saeki
隆之 佐伯
邦雄 丸山
Kunio Maruyama
邦雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2013243834A priority Critical patent/JP2015101512A/en
Publication of JP2015101512A publication Critical patent/JP2015101512A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an outer wall structure for a single-family housing excellent in designability and durability.SOLUTION: There is provided an outer wall structure containing (A) a woody ground, (B) a waterproof paper, (C) metal lath, (D-1) ground mortal containing 20 to 117 pts.mass of a fine aggregate having a ratio of a lightweight fine aggregate to 100 pts.mass of cement of 0.04 to 0.62 and 11 to 40 pts.mass of a polymer in terms of solid, (D-2) alkali resistant fiver mesh textile, (E) a finishing agent containing 230 to 360 pts.mass of the fine aggregate, 2 to 6 pts.mass of an expansive admixture, 3 to 5 pts.mass of metakaolin, 0.07 to 0.70 pts.mass of a silane-based water repellent and 3 to 17 pts.mass of the polymer in terms of solid based on 100 pts,mass of the cement and (F) a high durability finishing coating agent and constructed by (A), (B), (C), (D-1), (E) and (F) in this order with (D-2) included in (D-1).

Description

本発明は、戸建て住宅の外壁構造に関する。   The present invention relates to an outer wall structure of a detached house.

近年、戸建て住宅は、耐震性の向上、使用材料の品質向上、設計技術の向上により耐久性が大幅に向上した。例えば、地盤沈下対策、制震ダンパーを使用した免震構造、柱や壁に対する耐震補強などが耐久性の大幅な向上に有効であることが知られている。一方、戸建て住宅の外壁構造は、大きく変わることなく、メタルラスと軽量セメントモルタルよりなるラスモルタル若しくは押出成形セメント板等が使用されている。外壁構造にラスモルタルを使用する場合、ひび割れ抵抗性を向上するため砂セメント比を調整し、さらに低級アルコール系収縮低減剤を混和した軽量セメントモルタルを用いた施工法が考案されている(特許文献1)。また、外壁構造に押出成形セメント板を使用する場合、押出成形セメント板にポリマーを混和した軽量モルタルを用い、仕上材の下地とする工法が考案されている(特許文献2)。   In recent years, the durability of detached houses has been greatly improved by improving earthquake resistance, improving the quality of materials used, and improving design techniques. For example, it is known that ground subsidence measures, seismic isolation structures using damping dampers, and seismic reinforcement for columns and walls are effective in significantly improving durability. On the other hand, lath mortar made of metal lath and lightweight cement mortar, extruded cement board, or the like is used without changing the outer wall structure of a detached house. When lath mortar is used for the outer wall structure, a construction method using a lightweight cement mortar with a sand alcohol ratio adjusted to improve crack resistance and a lower alcohol-based shrinkage reducing agent is devised (Patent Literature) 1). Moreover, when using an extrusion-molded cement board for an outer wall structure, the construction method which uses the lightweight mortar which mixed the polymer for the extrusion-molded cement board as a foundation | substrate of finishing material is devised (patent document 2).

一方、戸建て住宅の外壁構造に用いるセメント系仕上材は、アクリル系塗料を塗布し、中性化防止対策を講じているが防汚性、防藻性、仕上材のひび割れによる耐久性の低下が課題となっている。
また、有機ガス、カビ、藻による外壁構造の劣化を防ぐため、金属酸化物よりなる光触媒粒子、シリコーンエマルジョン、水溶性の銀化合物からなるコーティング液が考案されている(特許文献3)。
On the other hand, the cement-based finishing material used for the outer wall structure of detached houses is coated with acrylic paint and measures are taken to prevent neutralization. It has become a challenge.
In order to prevent deterioration of the outer wall structure due to organic gas, mold, and algae, a coating liquid made of photocatalyst particles made of metal oxide, a silicone emulsion, and a water-soluble silver compound has been devised (Patent Document 3).

特開2003−119063号公報Japanese Patent Laid-Open No. 2003-119063 特開2003−82834号公報JP 2003-82834 A 特開2011−21396号公報JP 2011-21396 A

しかしながら、特許文献1及び2のような施工法は、窓ガラス、サッシュの影響で発生するひび割れ低減対策として十分な効果が得られなかった。また、近年頻発する地震による変形に対して、軽量モルタルとメタルラスからなるラスモルタルは、曲げ剛性が不足する可能性があり、押出成形セメント板は、接合部の曲げ強度とひび割れ抵抗性が不足する可能性がある。
さらに、特許文献3記載のコーティング液は、基材のひび割れ抵抗性改善に有効ではない。
一方、戸建て住宅用外壁構造の仕上材としては、吹付けリシン、セメントスタッコ、掻き落とし仕上げ等が従来より施工されてきた。雨水の浸透、中性化等を改善するため、アクリル系塗料を施工し、耐久性の向上が図られていたが、乾燥収縮によるひび割れによりメタルラスの錆が発生し、耐久性の低下を招くという問題があった。さらに、これらの課題を解決し、造形性に優れたセメント系仕上材を開発しても防汚性、防藻性の改善には繋がらなかった。セメント系仕上材の汚れの原因は、建設された住宅の地域環境によるところが大きいと考えられる。都市部における住宅外壁の汚れの原因は、有機ガス、カビ、藻と考えられ、沿岸部における住宅外壁の汚れの原因は、砂、土、海水成分と考えられ、内陸部における住宅外壁の汚れの原因は、埃、土と考えられる。このように、地域環境により汚れの原因が異なるので、従来、防汚性、防藻性を向上させるためには、汚れの原因に応じてセメント系仕上材に施工する塗料を選定する必要があった。
従って、本発明の課題は、意匠性と耐久性に優れた戸建て住宅の外壁構造を提供することにある。
However, the construction methods such as Patent Documents 1 and 2 have not been able to obtain a sufficient effect as a countermeasure for reducing cracks generated due to the influence of window glass and sash. In addition, light-weight mortar and metal lath mortar mortar may have insufficient bending rigidity against deformation caused by earthquakes that frequently occur in recent years. Extruded cement board lacks joint bending strength and crack resistance. there is a possibility.
Furthermore, the coating liquid described in Patent Document 3 is not effective in improving the crack resistance of the substrate.
On the other hand, spray lysine, cement stucco, scraping finish, etc. have been conventionally constructed as finishing materials for the outer wall structure for detached houses. In order to improve rainwater penetration, neutralization, etc., acrylic paint was applied and durability was improved, but metal lath rust was generated due to cracking due to drying shrinkage, leading to deterioration of durability. There was a problem. Furthermore, even if these problems were solved and a cement-based finishing material excellent in formability was developed, the antifouling property and the algaeproofing property were not improved. The cause of soiling of cement-based finishing materials is thought to be largely due to the local environment of the constructed housing. The causes of dirt on the outer walls of houses in urban areas are thought to be organic gas, mold, and algae, and the causes of dirt on the outer walls of houses in coastal areas are considered to be sand, earth, and seawater components. The cause is thought to be dust and dirt. In this way, the cause of dirt varies depending on the local environment. Conventionally, in order to improve the antifouling and algal resistance, it is necessary to select a paint to be applied to the cementitious finish according to the cause of the dirt. It was.
Therefore, the subject of this invention is providing the outer wall structure of the detached house excellent in the designability and durability.

そこで本発明者らは、意匠性と耐久性の両者を満足する戸建て住宅の外壁構造を開発すべく種々検討したところ、ひび割れ抵抗性、防水性、中性化防止性に優れた下地モルタルとして、軽量細骨材の比率が特定範囲である細骨材、及びポリマーを含有するモルタルを採用し、耐アルカリ性繊維メッシュ織物を下地モルタルに内包させ(伏せ込み)、造形性と耐久性に優れた仕上材として、細骨材、膨張材、メタカオリン、シラン系撥水剤及びポリマーを含有する仕上材を採用し、セルフクリーニング性能と防汚性及び防藻性に優れた高耐久性仕上塗料を施工すれば、意匠性と耐久性に優れた戸建て住宅の外壁構造が得られることを見出し、本発明を完成した。   Therefore, the present inventors have made various studies in order to develop an outer wall structure of a detached house that satisfies both designability and durability, and as a ground mortar excellent in crack resistance, waterproofness, and neutralization prevention, A fine aggregate with a light-weight fine aggregate ratio and a mortar containing a polymer is used, and an alkali-resistant fiber mesh fabric is encased in the base mortar (sinking down), resulting in excellent formability and durability. Adopt a finishing material containing fine aggregate, expansion material, metakaolin, silane water repellent and polymer as the material, and apply a highly durable finish paint with excellent self-cleaning performance and antifouling and algal resistance. For example, the present inventors have found that an outer wall structure of a detached house excellent in design and durability can be obtained, and completed the present invention.

すなわち、本発明は、以下[1]〜[6]を提供するものである。
[1](A)木質下地、(B)防水紙、(C)メタルラス、(D−1)セメント100質量部に対して軽量細骨材の比率が0.04〜0.62である細骨材を20〜117質量部、及びポリマーを固形分換算で11〜40質量部含有する下地モルタル、(D−2)耐アルカリ性繊維メッシュ織物、(E)セメント100質量部に対し細骨材を230〜360質量部、膨張材を2〜6質量部、メタカオリンを3〜5質量部、シラン系撥水剤を0.07〜0.70質量部及びポリマーを固形分換算で3〜17質量部含有する仕上材、並びに(F)高耐久性仕上塗料を有してなり、(D−2)が(D−1)に内包され、(A)、(B)、(C)、(D−1)、(E)、(F)の順で構成されることを特徴とする戸建て住宅の外壁構造。
[2](F)高耐久性仕上塗料が変性珪酸質系塗料、ウレタン系塗料、シリコン系塗料、フッ素系塗料及びアクリルシリコン系塗料からなる群から選ばれる少なくとも1種である[1]記載の戸建て住宅の外壁構造。
[3](D−1)下地モルタル層において、(D−2)耐アルカリ性繊維メッシュ織物が(D−1)下地モルタルと(E)仕上材との境界から0.5〜3mmの位置に内包される[1]又は[2]記載の戸建て住宅の外壁構造。
[4](E)仕上材のセメントが白色セメントである[1]〜[3]のいずれかに記載の戸建て住宅の外壁構造。
[5](E)仕上材がセメント100質量部に対し、粒径600μm〜2500μmが35〜50質量%、粒径300μm〜600μmが30〜45質量%、粒径300μm未満が25質量%以下の粒度で構成される、細骨材を230〜360質量部含有する[1]〜[4]のいずれかに記載の戸建て住宅の外壁構造。
[6](A)木質下地に、(B)防水紙、(C)メタルラス、(D−1)セメント100質量部に対して軽量細骨材の比率が0.04〜0.62である細骨材を20〜117質量部、及びポリマーを固形分換算で11〜40質量部含有する下地モルタル、(D−2)耐アルカリ性繊維メッシュ織物、(E)セメント100質量部に対し細骨材を230〜360質量部、膨張材を2〜6質量部、メタカオリンを3〜5質量部、シラン系撥水剤を0.07〜0.70質量部及びポリマーを固形分換算で3〜17質量部含有する仕上材、並びに(F)高耐久性仕上塗料を施工する戸建て住宅の外壁構造の施工方法であって、(D−2)を(D−1)に内包させるように施工することを特徴とする戸建て住宅の外壁構造の施工方法。
That is, the present invention provides the following [1] to [6].
[1] (A) Woody base, (B) Waterproof paper, (C) Metal lath, (D-1) Fine bone whose ratio of lightweight fine aggregate is 0.04 to 0.62 with respect to 100 parts by mass of cement A base mortar containing 20 to 117 parts by mass of a material and 11 to 40 parts by mass of a polymer in terms of solid content, (D-2) an alkali resistant fiber mesh fabric, (E) 230 fine aggregates with respect to 100 parts by mass of cement. 360 parts by mass, 2-6 parts by mass of an expansion material, 3-5 parts by mass of metakaolin, 0.07-0.70 parts by mass of a silane-based water repellent and 3-17 parts by mass of polymer in terms of solid content And (F) a highly durable finish paint, (D-2) is included in (D-1), (A), (B), (C), (D-1 ), (E), and (F).
[2] (F) The highly durable finish paint is at least one selected from the group consisting of modified siliceous paints, urethane paints, silicon paints, fluorine paints and acrylic silicon paints. The outer wall structure of a detached house.
[3] (D-1) In the base mortar layer, (D-2) the alkali-resistant fiber mesh fabric is included at a position of 0.5 to 3 mm from the boundary between (D-1) the base mortar and (E) the finishing material. The outer wall structure of a detached house according to [1] or [2].
[4] The outer wall structure of a detached house according to any one of [1] to [3], wherein the finishing material cement is white cement.
[5] (E) With respect to 100 parts by mass of cement, the finishing material has a particle size of 600 to 2500 μm of 35 to 50% by mass, a particle size of 300 to 600 μm of 30 to 45% by mass, and a particle size of less than 300 μm of 25% by mass or less. The outer wall structure of a detached house according to any one of [1] to [4], comprising 230 to 360 parts by mass of fine aggregate, which is configured with a particle size.
[6] (A) Wood base, (B) waterproof paper, (C) metal lath, (D-1) fine lightweight aggregate with a ratio of 0.04 to 0.62 for 100 parts by mass of cement A base mortar containing 20 to 117 parts by mass of an aggregate and 11 to 40 parts by mass of a polymer in terms of solid content, (D-2) an alkali-resistant fiber mesh fabric, and (E) a fine aggregate for 100 parts by mass of cement. 230 to 360 parts by mass, 2 to 6 parts by mass of an expanding material, 3 to 5 parts by mass of metakaolin, 0.07 to 0.70 parts by mass of a silane-based water repellent, and 3 to 17 parts by mass of a polymer in terms of solid content A finishing material to be contained, and (F) a method for constructing an outer wall structure of a detached house on which a highly durable finish paint is applied, wherein (D-2) is included in (D-1). The construction method of the outer wall structure of a detached house.

本発明の戸建て住宅の外壁構造は、住宅建設地域によらず、長期間、意匠性と耐久性に優れる。   The outer wall structure of the detached house of the present invention is excellent in design and durability for a long period of time regardless of the housing construction area.

本発明の戸建て住宅の外壁構造の一例を示す取付図である。It is an attachment figure which shows an example of the outer wall structure of the detached house of this invention. 本発明の戸建て住宅の外壁構造の一例を示す側面図である。It is a side view which shows an example of the outer wall structure of the detached house of this invention. 曲げ試験の概要を示す図である。It is a figure which shows the outline | summary of a bending test. 曲げ強さ試験結果(実施例)を示す図である。It is a figure which shows a bending strength test result (Example). 曲げ強さ試験結果(比較例)を示す図である。It is a figure which shows a bending strength test result (comparative example).

本発明の戸建て住宅の外壁構造は、(A)木質下地、(B)防水紙、(C)メタルラス、(D−1)セメント100質量部に対して軽量細骨材の比率が0.04〜0.62である細骨材を20〜117質量部、及びポリマーを固形分換算で11〜40質量部含有する下地モルタル、(D−2)耐アルカリ性繊維メッシュ織物、(E)セメント100質量部に対し細骨材を230〜360質量部、膨張材を2〜6質量部、メタカオリンを3〜5質量部、シラン系撥水剤を0.07〜0.70質量部及びポリマーを固形分換算で3〜17質量部含有する仕上材、並びに(F)高耐久性仕上塗料を有してなり、(D−2)が(D−1)に内包され、(A)、(B)、(C)、(D−1)、(E)、(F)の順で構成される。   In the outer wall structure of the detached house of the present invention, the ratio of the lightweight fine aggregate to 0.04 to 100 parts by mass of (A) wood base, (B) waterproof paper, (C) metal lath, and (D-1) cement. A ground mortar containing 20 to 117 parts by mass of fine aggregate of 0.62 and 11 to 40 parts by mass of polymer in terms of solid content, (D-2) an alkali-resistant fiber mesh fabric, (E) 100 parts by mass of cement 230 to 360 parts by mass of fine aggregate, 2 to 6 parts by mass of expansive material, 3 to 5 parts by mass of metakaolin, 0.07 to 0.70 parts by mass of silane water repellent and polymer as solid content And (F) a highly durable finish paint, (D-2) is included in (D-1), (A), (B), ( C), (D-1), (E), and (F).

本発明の戸建て住宅の外壁構造の(A)木質下地としては、柱、間柱、構造用合板からなる木造の下地が使用可能である。   As the (A) wood base of the outer wall structure of the detached house of the present invention, a wooden base made of pillars, studs, and structural plywood can be used.

本発明の外壁構造の(B)防水紙は、JISA6005(アスファルトルーフィングフェルト)に適合する「アスファルトフェルト430」、「改質アスファルトフェルト」又はこれらと同等以上の防水性能を有するものであれば使用可能である。   The waterproof paper (B) of the outer wall structure of the present invention can be used as long as it has “asphalt felt 430”, “modified asphalt felt” conforming to JIS A6005 (asphal roofing felt), or those having waterproof performance equivalent to or better than these. It is.

本発明の外壁構造の(C)メタルラスは、JASS15M−101「ラス系下地用鋼製金網の品質基準」に適合し、質量700g/m2以上であれば使用可能である。例えば、メタルラス波形1号、力骨付きWラス等が使用可能である。 The (C) metal lath of the outer wall structure of the present invention conforms to JASS15M-101 “Quality standard for lath-based steel metal mesh” and can be used if it has a mass of 700 g / m 2 or more. For example, a metal lath corrugation No. 1 or a W lath with a hard bone can be used.

本発明の外壁構造の(D−1)下地モルタルは、前記組成を有する軽量モルタルである。当該軽量モルタルは、細骨材、及びポリマーを含有する。下地モルタルに使用されるセメントとしては、市販のポルトランドセメント、特殊セメントなどが挙げられる。   The (D-1) base mortar of the outer wall structure of the present invention is a lightweight mortar having the above composition. The lightweight mortar contains a fine aggregate and a polymer. Examples of the cement used for the base mortar include commercially available Portland cement and special cement.

本発明の外壁構造の(D−1)下地モルタルに使用される細骨材は、普通骨材と軽量骨材を併用することが好ましい。普通骨材は、モルタルやコンクリートに使用できるものなら何れのものでもよく、市販の珪砂、寒水石、石灰石砂その他、川砂、海砂、山砂、砕砂等を挙げることができる。例えば、前田建材工業株式会社製商品名「山形珪砂5号」、高野商事株式会社製商品名「鹿島珪砂6号」、「鹿島珪砂7号」、前田建材工業株式会社製商品名「山形珪砂8号」、旭鉱末株式会社製「白竜1厘」などが挙げられる。また、軽量骨材は、例えば、EVA発泡骨材やスチレン発泡骨材等の有機材質の軽量骨材や天然又は人工の無機材質の軽量骨材の何れでも使用できる。   The fine aggregate used in the (D-1) base mortar of the outer wall structure of the present invention is preferably a combination of a normal aggregate and a lightweight aggregate. The ordinary aggregate may be any material that can be used for mortar and concrete, and examples thereof include commercially available quartz sand, cryolite, limestone sand, river sand, sea sand, mountain sand, crushed sand, and the like. For example, trade names “Yamagata Silica No. 5” manufactured by Maeda Construction Materials Industries Co., Ltd., trade names “Kashima Silica Sand No. 6” and “Kashima Silica No. 7” manufactured by Takano Shoji Co., Ltd. No. "," Hakuryu 1 "manufactured by Asahi Minesue Co., Ltd., and the like. Further, as the lightweight aggregate, for example, an organic lightweight aggregate such as EVA foam aggregate or styrene foam aggregate or a natural or artificial inorganic lightweight aggregate can be used.

細骨材は、厚塗り性、コテ作業性の点から、セメント100質量部に対して20〜117質量部含有する。好ましい細骨材量は、セメント100質量部に対して20〜115質量部である。20質量部未満では、下地モルタルとして適正厚さを確保することが困難になるとともに収縮量が大きくなり、ひび割れの発生する恐れがある。また、117質量部を超えると強度低下が大きくなるとともにコテ作業性が低下するので適当ではない。細骨材における軽量細骨材の比率は、0.04〜0.62である。軽量細骨材の比率が0.04未満であると、厚塗り性が低下するとともに収縮量が大きくなり、ひび割れが発生する恐れがある。さらに、粘性が上がりコテ作業性も低下する。また、軽量細骨材の比率が0.62を超えると強度低下が大きくなるとともに練混ぜ水量が増加し、硬化後収縮量が増加するため、ひび割れが発生する恐れがある。軽量細骨材の嵩比重は、0.025〜0.23であるのが好ましく、軽量細骨材の粒子径は、0.15〜3.0mmであるのが好ましい。軽量細骨材として、具体的には、エチレン酢酸ビニル発泡体、パーライト、発泡スチロール粒などが使用可能である。例えば、三福工業株式会社製商品名「EVA発泡体3mm」、太平洋マテリアル株式会社製「太平洋パーライト4号B」などが挙げられる。   The fine aggregate is contained in an amount of 20 to 117 parts by mass with respect to 100 parts by mass of cement from the viewpoints of thick coatability and iron workability. A preferable amount of fine aggregate is 20 to 115 parts by mass with respect to 100 parts by mass of cement. If it is less than 20 parts by mass, it will be difficult to ensure an appropriate thickness as the base mortar, and the shrinkage amount will be large, which may cause cracks. On the other hand, if it exceeds 117 parts by mass, the strength reduction is increased and the workability of the iron is reduced. The ratio of the lightweight fine aggregate in the fine aggregate is 0.04 to 0.62. If the ratio of the lightweight fine aggregate is less than 0.04, the thick coatability is lowered and the shrinkage amount is increased, so that there is a risk of cracking. Furthermore, the viscosity increases and the workability of the iron also decreases. On the other hand, when the ratio of the lightweight fine aggregate exceeds 0.62, the strength decreases greatly, the amount of kneaded water increases, and the amount of shrinkage after hardening increases, which may cause cracks. The bulk specific gravity of the lightweight fine aggregate is preferably 0.025 to 0.23, and the particle diameter of the lightweight fine aggregate is preferably 0.15 to 3.0 mm. Specifically, ethylene vinyl acetate foam, pearlite, polystyrene foam, etc. can be used as the lightweight fine aggregate. For example, trade name “EVA foam 3 mm” manufactured by Mifuku Kogyo Co., Ltd., “Pacific Perlite No. 4 B” manufactured by Taiheiyo Material Co., Ltd. and the like can be mentioned.

ポリマーは、ポリマーディスパージョンと再乳化形粉末樹脂が使用可能である。ポリマーディスパージョンとしては、JIS A6203に規定されたものが使用可能であり、また、再乳化形粉末樹脂としては、同じくJIS A6203に規定されたものが使用可能である。すなわち、ポリマーディスパージョンとしては、ポリアクリル酸エステル、スチレンブタジエン、又はエチレン酢酸ビニルなどを主成分とする樹脂を使用することができる。また、再乳化形粉末樹脂としては、ポリアクリル酸エステル、エチレン酢酸ビニル、酢酸ビニル/バーサチック酸ビニルエステル、酢酸ビニル/バーサチック酸ビニル/アクリル酸エステルなどを主成分とする粉末状の樹脂を使用することができる。また、再乳化形粉末樹脂の製造方法は、限定されることなく、粉末化方法やブロッキング防止法などのいずれの製法によって製造してもよい。ポリマーの含有量は、セメント100質量部に対し、固形分換算で11〜40質量部が好ましく、より好ましくは12〜35質量部であり、さらに好ましくは12〜25質量部である。11質量部未満では配合効果が殆ど得られない。また40質量部を超えると強度が低下せず、粘性も増大し、施工性が低下するので適当ではない。   As the polymer, a polymer dispersion and a re-emulsified powder resin can be used. As the polymer dispersion, those specified in JIS A6203 can be used, and as the re-emulsifying powder resin, those specified in JIS A6203 can also be used. That is, as the polymer dispersion, a resin mainly composed of polyacrylic acid ester, styrene butadiene, ethylene vinyl acetate, or the like can be used. Further, as the re-emulsifying powder resin, a powdery resin mainly composed of polyacrylic acid ester, ethylene vinyl acetate, vinyl acetate / vinyl versatate, vinyl acetate / vinyl versatate / acrylic acid ester, etc. is used. be able to. Moreover, the manufacturing method of re-emulsification type powder resin is not limited, You may manufacture by any manufacturing methods, such as the powdering method and the blocking prevention method. The content of the polymer is preferably 11 to 40 parts by mass, more preferably 12 to 35 parts by mass, and further preferably 12 to 25 parts by mass in terms of solid content with respect to 100 parts by mass of cement. If it is less than 11 parts by mass, almost no blending effect can be obtained. On the other hand, if it exceeds 40 parts by mass, the strength is not lowered, the viscosity is increased, and the workability is lowered.

本発明で使用する(D−1)下地モルタルには、耐アルカリ性繊維を混和することが可能である。耐アルカリ性繊維は、耐アルカリ性であれば特に限定されず、有機繊維、無機繊維のいずれでもよい。市販の耐アルカリ性繊維には、短繊維と収束型があるがいずれも使用可能である。有機繊維としては、アクリル繊維、ビニロン繊維、ナイロン繊維、ポリエステル繊維、ポリプロピレン繊維、アラミド繊維、カーボン繊維等が挙げられる。無機繊維としては、ガラス繊維、鉱物繊維等が挙げられる。このうち、無機繊維としては、特に耐アルカリ性ガラス繊維がセメントモルタルに混和してもコテ作業性を低下させないため好ましい。耐アルカリ性繊維の好ましい繊維長は、曲げ強度の向上効果、コテ作業性の点から、3〜20mmであり、より好ましい繊維長は、5〜15mmである。有機繊維の市販品としては、例えば、株式会社クラレ製ビニロン繊維商品名「RMS」、東レ株式会社製ナイロン繊維商品名「タフバインダー」などが使用可能である。無機繊維の市販品としては、例えば、日本電気硝子株式会社製商品名「ARGファイバ13mm」、太平洋マテリアル株式会社製商品名「アンチクラックHD」などが使用可能である。耐アルカリ性繊維の含有量は、曲げ強度の向上効果、コテ作業性の点から、セメント100質量部に対し、0.05〜0.30質量部であるのが好ましく、0.10〜0.25質量部であるのがより好ましく、0.10〜0.19質量部であるのがさらに好ましい。   Alkali-resistant fibers can be mixed in the (D-1) base mortar used in the present invention. The alkali resistant fiber is not particularly limited as long as it is alkali resistant, and may be either an organic fiber or an inorganic fiber. Commercially available alkali-resistant fibers include short fibers and convergent fibers, but both can be used. Examples of the organic fiber include acrylic fiber, vinylon fiber, nylon fiber, polyester fiber, polypropylene fiber, aramid fiber, and carbon fiber. Examples of the inorganic fiber include glass fiber and mineral fiber. Of these, inorganic fibers are particularly preferred because alkali-resistant glass fibers are not mixed with cement mortar and do not deteriorate the iron workability. The preferable fiber length of the alkali-resistant fiber is 3 to 20 mm from the viewpoint of an improvement effect of bending strength and the trowel workability, and a more preferable fiber length is 5 to 15 mm. Examples of commercially available organic fibers include Kuraray Co., Ltd. vinylon fiber brand name “RMS” and Toray Industries, Inc. nylon fiber brand name “Tough Binder”. As a commercial item of inorganic fiber, for example, trade name “ARG fiber 13 mm” manufactured by Nippon Electric Glass Co., Ltd., trade name “Anti-Crack HD” manufactured by Taiheiyo Material Co., Ltd. can be used. The content of the alkali-resistant fiber is preferably 0.05 to 0.30 parts by mass with respect to 100 parts by mass of cement from the viewpoint of improving bending strength and trowel workability, and preferably 0.10 to 0.25. It is more preferable that it is a mass part, and it is still more preferable that it is 0.10-0.19 mass part.

本発明の外壁構造の(D−1)下地モルタルには、保水剤が配合されてもよい。保水剤として、水に溶解するセルロース誘導体が使用可能であり、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、セルロース硫酸エステル等の水溶性セルロース誘導体が挙げられる。これらのうち、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース等が好ましい。市販品としては、例えば、SKWイーストアジア株式会社製商品名「チローゼMH6002P2」、松本油脂製薬株式会社製商品名「マーポローズ90MP−4T」等が挙げられる。保水剤の使用量は、保水効果、硬化性、コテ作業性等の点から、セメント100質量部に対し0.10〜0.20質量部が好ましく、0.12〜0.20質量部がより好ましい。   A water retention agent may be blended in the (D-1) base mortar of the outer wall structure of the present invention. As the water retention agent, a cellulose derivative that dissolves in water can be used, and examples thereof include water-soluble cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, hydroxypropylcellulose, and cellulose sulfate. . Of these, methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose and the like are preferable. Examples of commercially available products include SKW East Asia Co., Ltd. trade name “Chirose MH6002P2”, Matsumoto Yushi Seiyaku Co., Ltd. trade name “Marporose 90MP-4T”, and the like. The amount of water retention agent used is preferably 0.10 to 0.20 parts by mass, more preferably 0.12 to 0.20 parts by mass with respect to 100 parts by mass of cement from the viewpoint of water retention effect, curability, iron workability, and the like. preferable.

本発明の外壁構造の(D−2)耐アルカリ性繊維メッシュ織物は、曲げタフネスを向上させる上で重要であり、有機繊維メッシュ織物としては、アクリル繊維メッシュ織物、ビニロン繊維メッシュ織物、ポリエステル繊維メッシュ織物等が使用可能であるが、モルタルとの付着性を考慮すると無機繊維メッシュ織物として耐アルカリ性ガラス繊維メッシュ織物が好ましい。例えば、日本電気硝子株式会社製商品名「TD5×5」等が挙げられる。耐アルカリ性繊維メッシュ織物の目開きは、モルタルへの施工性、曲げタフネス向上効果、ひび割れ防止効果の点から、5〜10mmが好ましく、6〜10mmがより好ましい。ここで、目開きは下地モルタルと耐アルカリ性繊維メッシュ織物との付着性に影響を与えるため、細骨材が通過しやすい寸法が好ましい。目の開きが5mm未満では、メッシュ織物の伏せ込みに時間を要し、10mmを超えると曲げタフネス向上効果、ひび割れ防止効果が低下する恐れがある。
また、耐アルカリ性繊維メッシュ織物の厚みは、特に限定されないが、0.20〜0.40mmが好ましい。
The (D-2) alkali-resistant fiber mesh fabric of the outer wall structure of the present invention is important for improving the bending toughness. As the organic fiber mesh fabric, acrylic fiber mesh fabric, vinylon fiber mesh fabric, polyester fiber mesh fabric are used. However, in view of adhesion to mortar, an alkali-resistant glass fiber mesh fabric is preferable as the inorganic fiber mesh fabric. For example, a product name “TD5 × 5” manufactured by Nippon Electric Glass Co., Ltd. may be mentioned. The opening of the alkali-resistant fiber mesh fabric is preferably 5 to 10 mm, more preferably 6 to 10 mm, from the viewpoint of workability to mortar, bending toughness improvement effect, and crack prevention effect. Here, since the mesh size affects the adhesion between the base mortar and the alkali-resistant fiber mesh fabric, a size that allows fine aggregates to pass through is preferable. If the opening of the mesh is less than 5 mm, it takes time for the mesh fabric to sink, and if it exceeds 10 mm, the bending toughness improving effect and the crack preventing effect may be reduced.
Moreover, although the thickness of an alkali-resistant fiber mesh fabric is not specifically limited, 0.20-0.40 mm is preferable.

本発明の戸建て住宅用外壁構造においては、(D−2)耐アルカリ性繊維メッシュ織物の設置位置が、優れた曲げタフネスを得る上で重要であり、(D−2)が(D−1)に内包していることが必要である。かかる構造を得るため、(D−1)下地モルタル層において、(D−1)下地モルタルと(E)仕上材との境界から0.5〜3mmの位置に(D−2)耐アルカリ性繊維メッシュ織物を埋設するのが好ましい。(D−2)耐アルカリ性繊維メッシュ織物を、前記境界から3mmよりも深い位置に埋設すると曲げタフネスの向上効果が失われる恐れがある。   In the outer wall structure for a detached house of the present invention, (D-2) the installation position of the alkali-resistant fiber mesh fabric is important for obtaining excellent bending toughness, and (D-2) is changed to (D-1). It is necessary to enclose. In order to obtain such a structure, in the (D-1) foundation mortar layer, (D-2) an alkali resistant fiber mesh at a position of 0.5 to 3 mm from the boundary between (D-1) the foundation mortar and (E) the finishing material. It is preferable to embed a woven fabric. (D-2) If an alkali-resistant fiber mesh fabric is embedded at a position deeper than 3 mm from the boundary, the bending toughness improving effect may be lost.

本発明の外壁構造の(E)仕上材は、細骨材、膨張材、メタカオリン、シラン系撥水剤及びポリマーを含有する。   The (E) finishing material of the outer wall structure of the present invention contains a fine aggregate, an expansion material, metakaolin, a silane water repellent and a polymer.

(E)仕上材に使用する細骨材の密度は2.0g/cm3以上であるのが好ましい。また、細骨材は、粒径600μm〜2500μmが35〜50質量%、粒径300μm〜600μmが30〜45質量%、粒径300μm未満が25質量%以下の粒度で構成されるのが好ましい。 (E) It is preferable that the density of the fine aggregate used for a finishing material is 2.0 g / cm < 3 > or more. The fine aggregate is preferably composed of particles having a particle size of 600 to 2500 μm of 35 to 50% by mass, a particle size of 300 to 600 μm of 30 to 45% by mass, and a particle size of less than 300 μm of 25% by mass or less.

(E)仕上材に使用する細骨材は、マンセルカラーシステムで彩度0.5以下且つ明度9以上になるように色調を調整されるのが好ましく、寒水石と白色度の高い珪砂で粒度調整されるのが好ましい。例えば、日立寒水石株式会社製商品名「日立寒水石4号」、「日立寒水石1号」、前田建材工業株式会社製商品名「山形珪砂5号」、「山形珪砂6号」、「山形珪砂7号」などが挙げられる。   (E) The fine aggregate used for the finishing material is preferably adjusted in color by a Munsell color system so that the saturation is 0.5 or less and the brightness is 9 or more. It is preferably adjusted. For example, “Hitachi Seisui No. 4” and “Hitachi Seisui No. 1” manufactured by Hitachi Kansui Stone Co., Ltd. "Silica sand 7".

(E)仕上材に使用する細骨材の含有量は、セメント100質量部に対し、230〜360質量部である。好ましい含有量は、260〜360質量部であり、より好ましい含有量は、260〜300質量部である。細骨材中の寒水石の好ましい割合は、仕上材の仕上がり色を考慮すると50質量%以上である。細骨材の含有量が230質量部未満では、セメント量の割合が大きすぎ粘性が増し施工性が低下する。そのため、良好な仕上がりパターンが出せずさらに適正な施工厚さも得られない。また、水セメント比が増加し、乾燥収縮も大きくなりひび割れが発生する恐れがある。細骨材の含有量が360質量部を超えるとコテ作業性が低下するとともにローラー施工が困難になる。また、セメントの配合量が減少するため仕上がりパターンの輪郭が不明瞭になって、意匠性も低下する。   (E) Content of the fine aggregate used for a finishing material is 230-360 mass parts with respect to 100 mass parts of cement. A preferable content is 260 to 360 parts by mass, and a more preferable content is 260 to 300 parts by mass. A desirable ratio of cryogenic stone in the fine aggregate is 50% by mass or more in consideration of the finished color of the finishing material. If the content of the fine aggregate is less than 230 parts by mass, the proportion of the cement amount is too large and the viscosity increases and the workability decreases. For this reason, a good finished pattern cannot be obtained, and an appropriate construction thickness cannot be obtained. In addition, the water-cement ratio increases, drying shrinkage increases, and cracks may occur. When the content of the fine aggregate exceeds 360 parts by mass, the iron workability is lowered and roller construction becomes difficult. Moreover, since the blending amount of cement is reduced, the contour of the finished pattern becomes unclear and the design properties are also lowered.

(E)仕上材に使用するセメントは、市販のポルトランドセメント、特殊セメントが使用可能であるが、セメント系仕上げ材であることを考えると意匠性に優れた市販の白色セメントを使用するのが好ましい。例えば、山陽白色セメント株式会社製商品名「ホワイトセメント」、阿爾博安慶白水泥有限公司製商品名「ホワイトセメント」などが使用可能である。   (E) As for the cement used for the finishing material, commercially available Portland cement and special cement can be used, but it is preferable to use a commercially available white cement with excellent design properties considering that it is a cement-based finish. . For example, the product name “White Cement” manufactured by Sanyo White Cement Co., Ltd., the product name “White Cement” manufactured by Aki Hiro Ankei White Water Mud Co., Ltd., etc. can be used.

(E)仕上材に使用する膨張材は、市販の膨張材が使用可能であり、石灰系膨張材、エトリンガイト系膨張材などが使用可能である。例えば、太平洋マテリアル株式会社製商品名「太平洋エクスパン(構造用)」、「太平洋ジプカル」などが挙げられる。   (E) As the expansion material used for the finishing material, a commercially available expansion material can be used, and a lime-based expansion material, an ettringite-based expansion material, and the like can be used. For example, trade name “Pacific Expan (for structure)”, “Pacific Gypcal” manufactured by Taiheiyo Material Co., Ltd. can be used.

(E)仕上材に使用する膨張材の含有量は、セメント100質量部に対し、2〜6質量部である。好ましい含有量は、3.3〜5.5質量部であり、より好ましい含有量は、4.0〜4.8質量部である。2質量部未満では混和した効果がなく、ひび割れ低減効果が得られない。6質量部を超えると施工後異常膨張を起こし、剥離、剥落が発生する恐れがある。さらに、寒冷期に施工後、遅れ膨張を起こし剥離、剥落が発生する恐れがある。   (E) Content of the expansion | swelling material used for a finishing material is 2-6 mass parts with respect to 100 mass parts of cement. A preferable content is 3.3 to 5.5 parts by mass, and a more preferable content is 4.0 to 4.8 parts by mass. If it is less than 2 parts by mass, there is no mixing effect and no crack reduction effect is obtained. If it exceeds 6 parts by mass, abnormal expansion will occur after construction, and peeling or peeling may occur. In addition, after construction in the cold season, there is a risk of delayed expansion and peeling or peeling.

(E)仕上材に使用するメタカオリンは、水密性の向上とコテ作業性の改善効果を得るため、比表面積10000cm2/g以上の微粉末が好ましい。さらに、仕上材に混和して美観に影響を与えないことを考慮するとマンセルカラーシステムで彩度0.5以下且つ明度9以上を呈するものを用いるのが好ましい。そのようなメタカオリンとして、例えば、BASFポゾリス株式会社製商品名「Meta−Max HRM」等が挙げられる。 (E) The metakaolin used for the finishing material is preferably a fine powder having a specific surface area of 10000 cm 2 / g or more in order to obtain an effect of improving water tightness and iron workability. Furthermore, in consideration of the fact that it does not affect the appearance when mixed with a finishing material, it is preferable to use a Munsell color system that exhibits a saturation of 0.5 or less and a brightness of 9 or more. Examples of such metakaolin include a trade name “Meta-Max HRM” manufactured by BASF Pozzolith Co., Ltd.

(E)仕上材に使用するメタカオリンは、セメント100質量部に対し、3〜5質量部含有する。その好ましい含有量は、3.3〜4.5質量部であり、より好ましい含有量は3.3〜4.0質量部である。3質量部未満では、水密性とコテ作業性の改善効果が得られず混和した効果が認められない。5質量部を超えると水セメント比が増し、水密性が低下する。   (E) The metakaolin used for the finishing material contains 3 to 5 parts by mass with respect to 100 parts by mass of cement. The preferable content is 3.3 to 4.5 parts by mass, and the more preferable content is 3.3 to 4.0 parts by mass. If it is less than 3 parts by mass, the effect of improving water tightness and iron workability cannot be obtained, and the effect of mixing is not recognized. If it exceeds 5 parts by mass, the water cement ratio increases and the water tightness decreases.

(E)仕上材に使用するシラン系撥水剤は、セメントモルタルに混和し、高アルカリ条件下で反応性シラノールとなるシラン化合物であるのが好ましい。かかるシラン化合物として、例えば、有機シラン、ポリシラン等が挙げられる。具体例としては、アクゾノーベル株式会社製商品名「シール80」等が挙げられる。反応性シラノールは、シラノール基間の架橋や無機化合物との反応により表面が疎水性に変性される。そのため、シラン系撥水剤は練混ぜ性状が良く、仕上材は、硬化後優れた撥水性を発揮する。   (E) The silane water repellent used for the finishing material is preferably a silane compound that is mixed with cement mortar and becomes reactive silanol under high alkaline conditions. Examples of such silane compounds include organic silanes and polysilanes. Specific examples include trade name “Seal 80” manufactured by Akzo Nobel Co., Ltd. The surface of reactive silanol is modified to be hydrophobic by crosslinking between silanol groups or reaction with an inorganic compound. Therefore, the silane water repellent has good kneading properties, and the finishing material exhibits excellent water repellency after curing.

本発明の(E)仕上材に使用するシラン系撥水剤は、セメント100質量部に対し、0.07〜0.70質量部含有する。好ましい含有量は、0.16〜0.68質量部であり、より好ましい含有量は、0.16〜0.60質量部である。0.07質量部未満では、適正な撥水性が得られず、混和した効果がない。0.70質量部を超えても撥水効果の改善は小さく不経済である。   The silane water repellent used for the finishing material (E) of the present invention contains 0.07 to 0.70 parts by mass with respect to 100 parts by mass of cement. Preferable content is 0.16-0.68 mass part, and more preferable content is 0.16-0.60 mass part. If it is less than 0.07 parts by mass, proper water repellency cannot be obtained, and there is no effect of mixing. Even if it exceeds 0.70 parts by mass, the improvement of the water repellent effect is small and uneconomical.

(E)仕上材に使用するポリマーは、(D−1)下地モルタルで使用するポリマーと同じものが使用可能である。   (E) As the polymer used for the finishing material, (D-1) the same polymer as that used for the base mortar can be used.

(E)仕上材に使用するポリマーの含有量は、セメント100質量部に対して、固形分換算で3〜17質量部である。好ましい含有量は、4〜15質量部であり、より好ましい含有量は、6〜15質量部である。3質量部未満では、吸水性の低減効果がなく、17質量部を超えると粘性が上がり施工性が低下する。   (E) Content of the polymer used for a finishing material is 3-17 mass parts in conversion of solid content with respect to 100 mass parts of cement. A preferable content is 4 to 15 parts by mass, and a more preferable content is 6 to 15 parts by mass. If the amount is less than 3 parts by mass, there is no effect of reducing water absorption. If the amount exceeds 17 parts by mass, the viscosity increases and the workability decreases.

本発明の(F)高耐久性仕上塗料は、セルフクリーニング性能、防汚性、防かび性、防藻性に優れた、耐久性のある塗料であるのが好ましい。弾性アクリル樹脂エマルジョンを結合材とする弾性アクリル樹脂塗料などは、塗膜が劣化しやすく耐久性に劣るので(F)高耐久性仕上塗料に含まれない。このような高耐久性仕上塗料としては、疎水性塗料、親水性塗料とも使用可能である。疎水性塗料は、塗膜表面の撥水効果により汚染物質、水、氷雪等が付着しにくく、付着しても除去しやすいという特徴がある。また、撥水性を維持するため、耐候性、耐摩耗性が付与されている。このような疎水性塗料としては、例えば、変性珪酸質系塗料、シリコン系塗料などが挙げられる。変性珪酸質系塗料としては、塗布後、変性無機高分子複合体により高密度で水蒸気透過性の塗膜が形成され、雨水等を完全に遮断しながらも、適度な湿気の吸排出が行われ、経時的にセメントと一体化する特性を有するものが好ましい。そのような変性珪酸質系塗料の市販品としては、例えば、大日技研工業株式会社製商品名「ランデックスコートWS疎水剤」などが挙げられる。   The (F) highly durable finish paint of the present invention is preferably a durable paint excellent in self-cleaning performance, antifouling property, antifungal property, and antialgal property. An elastic acrylic resin paint or the like using an elastic acrylic resin emulsion as a binder is not included in the (F) high durability finish paint because the coating film is liable to deteriorate and has poor durability. As such a highly durable finish paint, both a hydrophobic paint and a hydrophilic paint can be used. Hydrophobic paints are characterized in that contaminants, water, ice and snow, etc. are less likely to adhere due to the water-repellent effect on the surface of the coating film, and are easy to remove even if they adhere. Moreover, in order to maintain water repellency, weather resistance and abrasion resistance are imparted. Examples of such hydrophobic paints include modified siliceous paints and silicon paints. As a modified siliceous paint, after application, a high-density, water-vapor-permeable coating film is formed by the modified inorganic polymer composite, and appropriate moisture is absorbed and discharged while completely blocking rainwater etc. Those having the property of integrating with cement over time are preferable. As a commercial item of such a modified siliceous paint, for example, trade name “Landex Coat WS Hydrophobic Agent” manufactured by Dainichi Giken Kogyo Co., Ltd. may be mentioned.

シリコン系塗料としては、塗布後、強固なシロキサン結合によって架橋されるため、光沢変化や変色を防止する高耐候性を有し、また、塗膜表面に水になじむような性質(親水性)が付与され、油性の汚染物質が付着しにくくなって、降雨時の雨水により汚染物質を流してしまうセルフクリーニング性能を有し、さらに、透湿性に優れ、戸建ての結露を防止することが可能となるものが好ましい。そのような、シリコン系塗料としては、アクリルシリコン樹脂塗料等が挙げられる。シリコン系塗料の市販品としては、例えば、日本ペイント株式会社製「ニッペファインシリコンフレッシュ」(登録商標)、「ニッペ高弾性ファインシリコンフレッシュ」(登録商標)、「ニッペファインシリコンフレッシュクリヤー」(登録商標)などが挙げられる。   Silicone paint is crosslinked by a strong siloxane bond after application, so it has high weather resistance to prevent gloss change and discoloration, and also has a property (hydrophilicity) that is compatible with water on the coating surface. It has a self-cleaning performance that makes it difficult for oily pollutants to adhere to it and causes the pollutants to flow due to rain water during rain, and it has excellent moisture permeability and can prevent dew condensation on a detached house. Those are preferred. Examples of such silicon-based paints include acrylic silicon resin paints. Examples of commercially available silicone paints include “Nippe Fine Silicon Fresh” (registered trademark), “Nippe High Elasticity Fine Silicon Fresh” (registered trademark), and “Nippe Fine Silicon Fresh Clear” (registered trademark) manufactured by Nippon Paint Co., Ltd. ) And the like.

親水性塗料は、塗膜表面を水濡れ性の高い状態にして排気煤煙などの親油性物質が塗膜に付着されにくくし、汚れが付着しても雨水とともに流れ落とす作用を有する。このように親水性塗料は、雨垂れ汚染を防ぐセルフクリーニング効果を有する。親水性塗料として、例えば、フッ素系塗料、アクリルシリコン系塗料、ウレタン系塗料等が挙げられる。これらの塗料には、外装塗料であることから、かび、藻などの微生物汚染を防ぐ対策が一般に取られている。フッ素系塗料として、フッ素樹脂塗料が挙げられ、溶剤系フッ素樹脂塗料や水性フッ素樹脂塗料などが挙げられる。フッ素樹脂塗料の市販品としては、例えば、関西ペイント株式会社製商品名「アレスアクアフッソII」などが挙げられる。アクリルシリコン系塗料としては、水性反応硬化樹脂と水性アクリル−シリコン樹脂が配合された水性反応硬化形エマルション系塗料などが好ましい。アクリルシリコン系塗料としては、例えば、関西ペイント株式会社製商品名「アレスアクアビルド」などが挙げられる。ウレタン系塗料として、例えば、日本ペイント株式会社製商品名「ファインウレタンU100」、「弾性ファインウレタンU100」、「低汚染形ファインウレタンU100」などが挙げられる。   The hydrophilic coating has a function of making the surface of the coating film highly wettable and making it difficult for lipophilic substances such as exhaust smoke to adhere to the coating film, and to flow down with rainwater even if dirt is attached. Thus, the hydrophilic paint has a self-cleaning effect that prevents dripping contamination. Examples of hydrophilic paints include fluorine paints, acrylic silicon paints, urethane paints, and the like. Since these paints are exterior paints, measures are generally taken to prevent microbial contamination such as mold and algae. Examples of the fluorine-based paint include fluororesin paints, and solvent-based fluororesin paints and aqueous fluororesin paints. Examples of commercially available fluororesin paints include trade name “Ares Aqua Fluoro II” manufactured by Kansai Paint Co., Ltd. As the acrylic silicon-based paint, an aqueous reaction-curable emulsion-based paint in which an aqueous reaction-curable resin and an aqueous acrylic-silicon resin are blended is preferable. Examples of the acrylic silicon-based paint include “Ares Aqua Build” manufactured by Kansai Paint Co., Ltd. Examples of urethane-based paints include trade names “Fine Urethane U100”, “Elastic Fine Urethane U100”, and “Low Contamination Fine Urethane U100” manufactured by Nippon Paint Co., Ltd.

高耐久性仕上塗料は、前記(E)仕上材を施工後、ウールローラー、はけ、エアレススプレー、エアスプレー等を用いて塗布される。   The highly durable finish paint is applied using a wool roller, brush, airless spray, air spray, or the like after the finish (E) is applied.

本発明の戸建て住宅の外壁構造は、(A)、(B)、(C)、(D−1)、(E)、(F)の順で構成され、(F)仕上塗料が意匠性と耐久性に優れていることは重要であるが、(D−1)下地モルタル、(E)仕上材について、ひび割れ、剥離等の劣化が発生しないことが重要である。すなわち、(D−1)下地モルタル、(E)仕上材にひび割れ、剥離等の劣化が発生すると、それに応じて(F)高耐久性仕上塗料にひび割れ、剥離等が発生する恐れがあるからである。   The outer wall structure of the detached house of the present invention is composed of (A), (B), (C), (D-1), (E), and (F) in this order, and (F) the finish paint has a design property. Although it is important that it is excellent in durability, it is important that (D-1) base mortar and (E) finishing material do not cause deterioration such as cracking and peeling. That is, (D-1) If the base mortar and (E) finishing material are cracked, peeled off, etc., the (F) high durability finish paint may be cracked, peeled off, etc. accordingly. is there.

本発明の戸建て住宅の外壁構造の施工方法は、(A)木質下地に、(B)防水紙、(C)メタルラス、(D−1)セメント100質量部に対して軽量細骨材の比率が0.04〜0.62である細骨材を20〜117質量部、及びポリマーを固形分換算で11〜40質量部含有する下地モルタル、(D−2)耐アルカリ性繊維メッシュ織物、(E)セメント100質量部に対し細骨材を230〜360質量部、膨張材を2〜6質量部、メタカオリンを3〜5質量部、シラン系撥水剤を0.07〜0.70質量部及びポリマーを固形分換算で3〜17質量部含有する仕上材及び(F)高耐久性仕上塗料を施工する戸建て住宅の外壁構造の施工方法であって、(D−2)を(D−1)に内包させるように施工する。   The construction method of the outer wall structure of the detached house of the present invention is (A) a wooden base, (B) waterproof paper, (C) metal lath, and (D-1) a ratio of lightweight fine aggregate to 100 parts by mass of cement. 20 to 117 parts by mass of fine aggregates of 0.04 to 0.62, and a base mortar containing 11 to 40 parts by mass of polymer in terms of solid content, (D-2) alkali-resistant fiber mesh fabric, (E) 230 to 360 parts by mass of fine aggregate, 2 to 6 parts by mass of expansion material, 3 to 5 parts by mass of metakaolin, 0.07 to 0.70 parts by mass of silane-based water repellent and polymer with respect to 100 parts by mass of cement Is a finishing material containing 3 to 17 parts by mass in terms of solid content, and (F) a construction method of an outer wall structure of a detached house on which a highly durable finish paint is applied, and (D-2) is changed to (D-1) Work to include.

下地モルタルの塗布は、例えば図1に示すように、木質下地に防水紙、メタルラスを施した表面に行うことができる。下地モルタルの厚さは、通常8〜16mmとするのが好ましい。下地モルタルの塗布後に前記耐アルカリ性繊維メッシュ織物を配敷し、例えば図2のように下地モルタルと仕上材の境界から0.5〜3mmの位置になるように下地モルタルに埋設することも好ましく行われる。   For example, as shown in FIG. 1, the base mortar can be applied to the surface of a wooden base with waterproof paper or metal lath. The thickness of the base mortar is usually preferably 8 to 16 mm. It is also preferable to lay the alkali-resistant fiber mesh fabric after application of the base mortar, and embed it in the base mortar, for example, at a position of 0.5 to 3 mm from the boundary between the base mortar and the finishing material as shown in FIG. Is called.

次に実施例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further, this invention is not limited to these Examples.

実施例1〜3及び比較例1〜3
表1に示す材料を用い、表2の組成で下地モルタルを製造した。また、得られた下地モルタルを用いてJASS 15M−102により、図3の試験体を作製した。
得られた下地モルタル及び試験体について、フロー試験、単位容積質量、吸水試験、曲げ強さ試験、コテ作業性の確認を行った。その結果を表9に示す。
Examples 1-3 and Comparative Examples 1-3
Using the materials shown in Table 1, base mortar was produced with the composition shown in Table 2. Moreover, the test body of FIG. 3 was produced by JASS 15M-102 using the obtained base mortar.
About the obtained foundation | substrate mortar and a test body, the flow test, the unit volume mass, the water absorption test, the bending strength test, and the confirmation of the iron workability were performed. The results are shown in Table 9.

<フレッシュ性状の確認>
1−1.フロー試験
20℃の試験室でJISR5201により測定した。
1−2.単位容積質量の測定
20℃の試験室で500mLステンレス製容器を用い、JISA1171により測定した。
<Confirmation of fresh properties>
1-1. Flow test Measured according to JIS R5201 in a 20 ° C test room.
1-2. Measurement of unit volume mass It measured by JISA1171 in a 20 degreeC test room using a 500 mL stainless steel container.

<硬化性状の確認>
2−1.吸水試験
JISA1171に従って、20℃の試験室で24時間の吸水量を測定した。評価基準は表3の通りである。
<Confirmation of curing properties>
2-1. Water absorption test According to JISA 1171, the amount of water absorption for 24 hours was measured in a test chamber at 20 ° C. The evaluation criteria are as shown in Table 3.

2−2.曲げ強さ試験
JASS 15M−102により作製した4×4×16cmの試験体を用い、材齢7日で曲げ強さを測定した。メッシュ織物は、試験体作製時に図3に示す位置に埋設した。試験は、たわみ量0.5mm/min一定で実施した。
2-2. Bending Strength Test Using a 4 × 4 × 16 cm specimen prepared according to JASS 15M-102, the bending strength was measured at a material age of 7 days. The mesh fabric was embedded at the position shown in FIG. The test was conducted at a constant deflection of 0.5 mm / min.

曲げ強さ試験における実施例(メッシュ織物あり)及び比較例(メッシュ織物なし)の曲げ応力の変化を図4及び図5に示す。比較例の下地モルタルは、図5のように曲げ応力の変化が一次曲げ強さのみである。これに対し、図4のように実施例の下地モルタルは、一次曲げ強さが発生し、ついで二次曲げ強さが発生する。また、二次曲げ強さまでの変位量を二次変位量とした。これらの二次曲げ強さ及び二次変位量を剛性及び曲げ強さの評価基準とした。二次曲げ強さ1.3N/mm2以上を評価〇、二次変位量1.0mm以上を評価〇とした(表4(曲げ強さ試験の評価項目)及び表5(曲げ強さ試験の評価基準))。 FIG. 4 and FIG. 5 show changes in bending stress in the examples (with mesh fabric) and comparative examples (without mesh fabric) in the bending strength test. In the base mortar of the comparative example, the change in bending stress is only the primary bending strength as shown in FIG. On the other hand, as shown in FIG. 4, the base mortar of the embodiment generates a primary bending strength and then a secondary bending strength. The amount of displacement up to the secondary bending strength was taken as the amount of secondary displacement. These secondary bending strengths and secondary displacements were used as evaluation criteria for rigidity and bending strength. Secondary bending strength of 1.3 N / mm 2 or more was evaluated as ◯, and secondary displacement of 1.0 mm or more was evaluated as ◯ (Table 4 (evaluation items for bending strength test) and Table 5 (for bending strength test). Evaluation criteria)).

<コテ作業性の確認>
コテ作業性の評価試験
900×900×12mm塗装合板の塗装面に850×850mmのWラスをステープルで設置し、20℃の試験室で10mm厚さに金ゴテで各試料を850×850mm塗り付けた。24時間後、各試料を5mm厚さで塗り付け、コテ作業性と耐アルカリ性ガラス繊維メッシュ織物の施工性の評価を行った。
<Confirmation of iron workability>
Evaluation test of iron workability 900 mm x 900 mm x 12 mm painted plywood is coated with 850 x 850 mm W laths with staples, and each sample is coated with gold trowel to a thickness of 10 mm in a test chamber at 20 ° C. It was. After 24 hours, each sample was applied with a thickness of 5 mm, and the operability of the iron workability and the alkali-resistant glass fiber mesh fabric was evaluated.

<総合評価>
物性試験結果とコテ作業性の評価結果を考慮した総合評価の基準を表8に示す。
<Comprehensive evaluation>
Table 8 shows the criteria for comprehensive evaluation in consideration of the physical property test results and the evaluation results of the iron workability.

表9から明らかなように、本発明に使用する下地モルタルは、フロー試験などのフレッシュ性状が良好で、硬化後の吸水試験結果も良好であるとともに、コテ作業性が良好で、かつ剛性及び曲げ強さに優れていることから、静的載荷及び動的載荷に対する耐久性が優れていることがわかる。一方、比較例1、2、3は、軽量細骨材の比率が本発明の上限値0.62を超えているため、本発明の(D−1)の条件を満たさない例である。   As is clear from Table 9, the ground mortar used in the present invention has a good fresh property such as a flow test, a good water absorption test result after curing, good workability, and rigidity and bending. Since it is excellent in strength, it turns out that the durability with respect to static loading and dynamic loading is excellent. On the other hand, Comparative Examples 1, 2, and 3 are examples that do not satisfy the condition (D-1) of the present invention because the ratio of the lightweight fine aggregate exceeds the upper limit of 0.62 of the present invention.

実施例4〜5及び比較例4〜5
表10に示す材料を用い、表11の組成で仕上材を製造した。
得られた仕上材について、フロー試験、単位容積質量、造形性の確認を行った。その結果を表18に示す(実施例4)。また、長さ変化率、防汚性、仕上がり色、吸水量、凍結融解抵抗性、曲げ強度、圧縮強度の確認を行った。その結果を表19に示す(実施例5)。
Examples 4-5 and Comparative Examples 4-5
Using the materials shown in Table 10, finishing materials were produced with the compositions shown in Table 11.
About the obtained finishing material, the flow test, the unit volume mass, and the modeling property were confirmed. The results are shown in Table 18 (Example 4). In addition, the length change rate, antifouling property, finished color, water absorption, freeze / thaw resistance, bending strength, and compressive strength were confirmed. The results are shown in Table 19 (Example 5).

<フレッシュ性状の確認>
3−1.フロー試験
20℃の試験室でJISR5201により測定した。
3−2.単位容積質量の測定
20℃の試験室で500mLステンレス製容器を用い、JISA1171により測定した。
<Confirmation of fresh properties>
3-1. Flow test Measured according to JIS R5201 in a 20 ° C test room.
3-2. Measurement of unit volume mass It measured by JISA1171 in a 20 degreeC test room using a 500 mL stainless steel container.

<性能評価方法>
4−1.造形性の評価試験
20℃の試験室で吹付け施工、ローラー施工、金ゴテ施工、掻き落とし仕上げ、漆喰仕上げが可能であるか450×600×60mmコンクリート板に5mm厚さで施工し確認した。尚、吹付け施工はリシンガンを使用し、ローラー施工は、7mm幅の櫛目パターンが得られる210mm幅のローラーを作製して施工性を確認した。金ゴテ仕上げは、7mmの櫛目ゴテを使用した。評価基準は表12の通りである。
<Performance evaluation method>
4-1. Formability evaluation test In a test room at 20 ° C., whether spraying, roller construction, gold trowel construction, scraping finish, or plaster finish is possible was confirmed by constructing a 450 × 600 × 60 mm concrete plate with a thickness of 5 mm. In addition, the spray construction used a ricin gun, and the roller construction produced the 210 mm width roller from which the 7 mm width comb pattern was obtained, and confirmed workability. For the gold trowel finish, a 7 mm comb trowel was used. The evaluation criteria are as shown in Table 12.

表13に本発明のデザイン性(造形性)の総合評価基準を示す。   Table 13 shows the comprehensive evaluation criteria for the design (formability) of the present invention.

4−2.長さ変化試験
JISA1171に従って、28日の長さ変化率を測定した。評価項目は表14の通りである。
4-2. Length change test According to JISA 1171, the length change rate of 28 days was measured. Evaluation items are as shown in Table 14.

4−3.防汚性試験及び仕上がり色の評価
20℃の試験室で150×300×5mmのフレキ板2枚に金ゴテで5mm厚さに平滑に塗り付けた。3週間養生した後、そのうちの1枚について色調をマンセル値で確認した。
彩度が0.5以下且つ明度9以上を呈するものを評価「○」とした。
彩度が0.5を超え且つ明度9未満を呈するものを評価「×」とした。
その後、1枚を5面エポキシ樹脂でシールし、4週間目で南面を向け垂直に立てて暴露試験を開始した。暴露期間は3ヶ月とし、暴露を行わなかった試験体との色差ΔE*abを
色差計で測定した。評価項目は表15の通りである。
4-3. Antifouling test and evaluation of finished color In a 20 ° C. test room, two 150 × 300 × 5 mm flexible boards were smoothly applied to a thickness of 5 mm with a gold trowel. After curing for 3 weeks, the color tone of one of them was confirmed by Munsell value.
A sample having a saturation of 0.5 or less and a lightness of 9 or more was evaluated as “◯”.
A case where the saturation exceeds 0.5 and the brightness is less than 9 was evaluated as “x”.
Thereafter, one sheet was sealed with a five-sided epoxy resin, and in the fourth week, the exposure test was started with the south side facing upright. The exposure period was 3 months, and the color difference ΔE * ab from the test specimen that was not exposed was measured with a color difference meter. Evaluation items are as shown in Table 15.

4−4.吸水試験
JISA1171に従って、20℃の試験室で24時間の吸水量を測定した。評価基準は表16の通りである。
4-4. Water absorption test According to JISA 1171, the amount of water absorption for 24 hours was measured in a test chamber at 20 ° C. Evaluation criteria are as shown in Table 16.

4−5.凍結融解試験
100×100×400mmの型枠を用い、20℃の試験室でJISA1171により4週間養生した後、24時間20℃の水中浸漬を行い試験を開始した。凍結融解試験は、JISA1148により300サイクル行った。試験体は、試験期間と試験水準を考慮してn=1とした。凍結融解抵抗性は相対動弾性係数と表17により評価した。
4-5. Freeze-thaw test A 100 x 100 x 400 mm mold was used and cured in a test room at 20 ° C for 4 weeks according to JISA 1171, and then immersed in water at 20 ° C for 24 hours to start the test. The freeze-thaw test was performed 300 cycles according to JISA1148. The test body was set to n = 1 in consideration of the test period and the test level. Freeze-thaw resistance was evaluated according to the relative kinematic modulus and Table 17.

4−6.曲げ・圧縮試験
JISA1171に従い、20℃の試験室で実施した。供試体の寸法は40×40×160mmとし、材齢は28日とした。圧縮強度試験は、曲げ強度試験の終了した供試体を用いn=6で実施した。
4-6. Bending / compression test In accordance with JISA 1171, the test was performed in a 20 ° C. test room. The size of the specimen was 40 × 40 × 160 mm and the age was 28 days. The compressive strength test was carried out with n = 6 using the specimen for which the bending strength test was completed.

使用材料を表10に示す。表10中のマンセル値は、マンセルカラーシステムによる色調であり、Nは明度であり、Rは赤、Yは黄色を示す。またスラッシュの後の数値は彩度を示す。   Table 10 shows the materials used. The Munsell values in Table 10 are color tones according to the Munsell color system, N is lightness, R is red, and Y is yellow. The number after the slash indicates saturation.

表18〜表19から明らかなように、本発明に使用する仕上材は、仕上がりの色が良好で、造形性、施工性に優れ、防汚性、凍結融解抵抗性、耐水性が良好であった。これに対し、本発明の(E)の構成成分のいずれかを含有しない仕上材は、これらのいずれかの評価において劣るものであった。なお、比較例4、5において、配合16は、膨張材を含有しないため、配合17は、シラン系撥水剤を含有しないため、配合18は、本発明の仕上材とは異なる樹脂スタッコを使用するため、いずれも本発明の(E)の条件を満たさない例である。   As is apparent from Tables 18 to 19, the finishing material used in the present invention has a good finished color, excellent formability and workability, antifouling properties, freeze-thaw resistance, and water resistance. It was. On the other hand, the finishing material that does not contain any of the components (E) of the present invention was inferior in any of these evaluations. In Comparative Examples 4 and 5, since Formulation 16 does not contain an expansion material, Formulation 17 does not contain a silane water repellent, so Formulation 18 uses a resin stucco that is different from the finishing material of the present invention. Therefore, both are examples that do not satisfy the condition (E) of the present invention.

実施例6〜9及び比較例6〜10
表20に示す仕上塗料を用いて、耐久性試験(熱冷繰返し試験)を行った。その結果を表22〜30に示す。
Examples 6-9 and Comparative Examples 6-10
Using the finish paint shown in Table 20, a durability test (hot cooling repeated test) was performed. The results are shown in Tables 22-30.

5−1.仕上塗料の耐久性試験(熱冷繰返し試験)
日本建築仕上学会規格M−101セメントモルタル塗り用吸水調整材の試験方法に準じ、300×300mmの木質下地に(A)、(B)、(C)、(D−1)、(E)、(F)の順で施工した試験体を用いて1500サイクル繰り返した。試験体の試験前養生は、(F)施工後20℃、60%RHの試験室で28日間養生を行った。試験体数は、各水準2体とした。
5-1. Finishing paint durability test (hot and cold repeated test)
(A), (B), (C), (D-1), (E), on a wooden substrate of 300 × 300 mm, according to the Japanese Architectural Finishing Society Standard M-101 water absorption adjusting material for cement mortar coating 1500 cycles were repeated using the specimens constructed in the order of (F). The pre-test curing of the test body was performed for 28 days in a test room at 20 ° C. and 60% RH after (F) construction. The number of test specimens was two at each level.

5−2.付着試験
建研式接着力試験器で付着強さを測定した。試験体への切り込みは、40×40MMの寸法で(D)に達するまでカットした。
5-2. Adhesion test The adhesion strength was measured with a Kenken-type adhesive strength tester. The cut into the test specimen was cut to a size of 40 × 40 MM until reaching (D).

5−3.透水試験
JISA6909に準じて行った。
5-3. Water permeability test It was performed according to JIS A6909.

付着強さと透水量の評価基準を表21に示す。   Table 21 shows the evaluation criteria for adhesion strength and water permeability.

表22〜表30から明らかなように、本発明に使用する高耐久性仕上塗料は、優れた付着強さを有し、透水量の小さいものであった。なお、比較例6は、下地モルタルが(D−1)の条件を満たさないものであり、(E)仕上材を含有せず、さらに仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例7は、下地モルタルと仕上材が本発明の条件を満たさないものであると共に、(F)高耐久性仕上塗料を含有しない例であり、比較例8と比較例10は、下地モルタルと仕上材が本発明の条件を満たさないものであり、(F)高耐久性仕上塗料を含有しない例であり、比較例9は、下地モルタルと仕上材が本発明の条件を満たさないものであり、さらに仕上塗料が(F)高耐久性仕上塗料ではない例である。   As apparent from Tables 22 to 30, the highly durable finish paint used in the present invention had excellent adhesion strength and a small water permeability. Comparative Example 6 is an example in which the base mortar does not satisfy the condition (D-1), (E) does not contain a finish material, and the finish paint is not (F) a highly durable finish paint. Yes, Comparative Example 7 is an example in which the base mortar and the finishing material do not satisfy the conditions of the present invention, and (F) does not contain a highly durable finish paint. Comparative Example 8 and Comparative Example 10 The mortar and the finishing material do not satisfy the conditions of the present invention, and (F) is an example that does not contain a highly durable finishing paint, and Comparative Example 9 is that in which the base mortar and the finishing material do not satisfy the conditions of the present invention Furthermore, the finish paint is not an example of (F) a highly durable finish paint.

実施例10〜14及び比較例11〜15
周辺に高さ3m程度の植栽のある環境で外壁について、防汚試験を行った。その結果を表33に示す。
Examples 10-14 and Comparative Examples 11-15
An antifouling test was performed on the outer wall in an environment with planting around 3m in height. The results are shown in Table 33.

外壁の防汚試験
<実験棟による外壁の防汚試験>
周囲に約3mの植栽のある外壁60m2、敷地4×8mの平屋を実験棟とし木質下地、防水紙、メタルラス(Wラス)を施工後、下地モルタル、耐アルカリ性繊維メッシュ織物、仕上材及び仕上塗料を表31に示す仕様で養生期間を含めて1ヶ月で施工した。その後1年間汚れを3ヵ月ごとに目視観察した。施工箇所は、南面を横に3等分とし北面、東面、西面は左右に2等分に仕切って施工した。その結果を表33に示す。
Antifouling test on outer wall <Antifouling test on outer wall by experimental building>
The outer wall 60 m 2 with a planting of approximately 3m to ambient, and one-story experimental building premises 4 × 8m woody base, waterproof paper, after construction of the metal lath (W class), base mortar, alkali-resistant fiber mesh fabric, finish and The finish paint was applied in one month including the curing period according to the specifications shown in Table 31. Thereafter, the soil was visually observed every 3 months for 1 year. The construction site was divided into three equal parts on the south side, and the north, east and west sides were divided into two equal parts on the left and right. The results are shown in Table 33.

<評価方法及び評価基準>
5−1.評価方法
3ヶ月ごとに外壁の変状を1年間目視観察した。
<Evaluation method and evaluation criteria>
5-1. Evaluation method Deformation of the outer wall was visually observed for one year every three months.

5−2.評価基準
表32に外壁の防汚試験の評価基準を示す。
5-2. Evaluation Criteria Table 32 shows the evaluation criteria of the outer wall antifouling test.

表33から明らかなように、本発明の外壁は、1年後でも、ひび割れが発生せず、土埃の付着も見られない優れた意匠性と耐久性を有するものであった。これに対し、本発明の(D−1)、(D2)、(E)、(F)のいずれかを含有しない外壁は、これらのいずれかの評価において劣るものであった。なお、比較例11は、仕上材が本発明成分(E)の条件を満たさないものであるとともに、仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例12は、(D−2)を含有せず、仕上材が本発明成分(E)の条件を満たさないものであり、さらに仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例13は、仕上材を含有せず、さらに仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例14は、メッシュ織物を含有せず、仕上材が本発明成分(E)の条件を満たさないものであり、さらに、仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例15は、仕上材が本発明成分(E)の条件を満たさないものであり、仕上塗料が塗布されていない例である。   As can be seen from Table 33, the outer wall of the present invention has excellent design and durability with no cracking and no dust adhesion even after one year. On the other hand, the outer wall not containing any of (D-1), (D2), (E), and (F) of the present invention was inferior in any of these evaluations. In addition, Comparative Example 11 is an example in which the finishing material does not satisfy the condition of the component (E) of the present invention, and the finishing coating is not (F) a highly durable finishing coating, and Comparative Example 12 is (D -2) is not contained, the finishing material does not satisfy the conditions of the component (E) of the present invention, and the finishing paint is (F) an example that is not a highly durable finishing paint. In addition, the finish paint is not an (F) high durability finish paint, and Comparative Example 14 does not contain a mesh fabric, and the finish material does not satisfy the condition of the component (E) of the present invention. Furthermore, the finish paint is an example where the finish paint is not (F) a highly durable finish paint, and Comparative Example 15 is a finish material that does not satisfy the condition of the component (E) of the present invention, and the finish paint is applied. This is not an example.

実施例15〜19及び比較例16〜20
周辺に構造物や植栽がなく、直接、土埃を受ける環境で、外壁について、防汚試験を行った。その結果を表35に示す。
Examples 15-19 and Comparative Examples 16-20
An antifouling test was conducted on the outer wall in an environment where there was no structure or planting in the surroundings and the soil was directly exposed to dust. The results are shown in Table 35.

<試験体による外壁の防汚試験>
900×900×12mm構造用合板を木質下地とし、防水紙、メタルラス(Wラス)を施工後、下地モルタル、メッシュ織物、仕上材及び仕上塗料を表34に示す仕様で試験体を作製した。試験体は、養生期間を含めて1ヶ月で作製した。その後1年間汚れを3ヵ月ごとに目視観察した。試験体は、南向きに設置した。なお、評価方法及び評価基準は、前記5−1、5−2と同様である。
<Anti-fouling test on the outer wall using a specimen>
A 900 × 900 × 12 mm structural plywood was used as a wooden base, and after applying waterproof paper and metal lath (W lath), test specimens were prepared with the specifications shown in Table 34 for the base mortar, mesh fabric, finishing material, and finishing paint. The test specimen was prepared in one month including the curing period. Thereafter, the soil was visually observed every 3 months for 1 year. The test body was installed facing south. In addition, the evaluation method and the evaluation criteria are the same as those in the above 5-1, 5-2.

表35から明らかなように、本発明の外壁は、周囲に構造物や植栽のない土埃を直接受ける環境下において、1年後でも、ひび割れが発生せず、土埃の付着も見られない優れた意匠性と耐久性を有するものであった。これに対し、本発明の(D−1)、(D2)、(E)、(F)のいずれかを含有しない外壁は、これらのいずれかの評価において劣るものであった。なお、比較例16は、下地モルタルが本発明成分(D−1)の条件を満たさないものであり、仕上材が本発明成分(E)の条件を満たさないものであり、さらに仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例17は、下地モルタルが本発明成分(D−1)の条件を満たさないものであり、メッシュ織物を含有せず、仕上材が本発明成分(E)の条件を満たさないものであり、さらに仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例18は、下地モルタルが本発明成分(D−1)の条件を満たさないものであり、仕上材が本発明成分(E)の条件を満たさないものであり、さらに仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例19は、下地モルタルが本発明成分(D−1)の条件を満たさないものであり、仕上材を含有せず、さらに仕上塗料が(F)高耐久性仕上塗料ではない例であり、比較例20は、下地モルタルが本発明成分(D−1)の条件を満たさないものであり、仕上材が本発明成分(E)の条件を満たさないものであり、さらに仕上塗料が塗布されていない例である。   As is apparent from Table 35, the outer wall of the present invention is excellent in that no cracks occur and no dust adheres even after one year in an environment where it is directly subjected to dust without structures or planting around it. It had excellent design and durability. On the other hand, the outer wall not containing any of (D-1), (D2), (E), and (F) of the present invention was inferior in any of these evaluations. In Comparative Example 16, the base mortar does not satisfy the condition of the component (D-1) of the present invention, the finishing material does not satisfy the condition of the component (E) of the present invention, and the finish paint ( F) It is an example that is not a highly durable finish paint, and Comparative Example 17 is one in which the base mortar does not satisfy the condition of the component (D-1) of the present invention, does not contain a mesh fabric, and the finish is the present invention. Component (E) does not satisfy the conditions, and the finish paint is not (F) a highly durable finish paint. In Comparative Example 18, the base mortar satisfies the conditions of the component (D-1) of the present invention. In this example, the finishing material does not satisfy the conditions of the component (E) of the present invention, and the finishing paint is not (F) a highly durable finishing paint. It does not meet the conditions of the present component (D-1) In this example, the finish mortar does not satisfy the condition of the component (D-1) of the present invention. Yes, this is an example in which the finishing material does not satisfy the conditions of the component (E) of the present invention, and the finishing paint is not applied.

1:柱
2:間柱
3:木質下地
4:防水紙
5:メタルラス
6−1:下地モルタル
6−2:耐アルカリ性繊維メッシュ織物
7:仕上材
8:高耐久性無塗料
1: Pillar 2: Interstitial column 3: Woody base 4: Waterproof paper 5: Metal lath 6-1: Base mortar 6-2: Alkali-resistant fiber mesh fabric 7: Finishing material 8: High durability no paint

Claims (6)

(A)木質下地、(B)防水紙、(C)メタルラス、(D−1)セメント100質量部に対して軽量細骨材の比率が0.04〜0.62である細骨材を20〜117質量部、及びポリマーを固形分換算で11〜40質量部含有する下地モルタル、(D−2)耐アルカリ性繊維メッシュ織物、(E)セメント100質量部に対し細骨材を230〜360質量部、膨張材を2〜6質量部、メタカオリンを3〜5質量部、シラン系撥水剤を0.07〜0.70質量部及びポリマーを固形分換算で3〜17質量部含有する仕上材、並びに(F)高耐久性仕上塗料を有してなり、(D−2)が(D−1)に内包され、(A)、(B)、(C)、(D−1)、(E)、(F)の順で構成されることを特徴とする戸建て住宅の外壁構造。   20 (A) woody base, (B) waterproof paper, (C) metal lath, (D-1) 20 fine aggregates having a lightweight fine aggregate ratio of 0.04 to 0.62 per 100 parts by mass of cement ~ 117 parts by mass and base mortar containing 11 to 40 parts by mass of polymer in terms of solid content, (D-2) alkali-resistant fiber mesh fabric, (E) 230 to 360 parts by mass of fine aggregate with respect to 100 parts by mass of cement Finishing material containing 2 to 6 parts by mass of expansion material, 3 to 5 parts by mass of metakaolin, 0.07 to 0.70 parts by mass of silane-based water repellent and 3 to 17 parts by mass of polymer in terms of solid content And (F) a highly durable finish paint, (D-2) is included in (D-1), and (A), (B), (C), (D-1), ( E) An outer wall structure of a detached house characterized by being constructed in the order of (F). (F)高耐久性仕上塗料が変性珪酸質系塗料、ウレタン系塗料、シリコン系塗料、フッ素系塗料及びアクリルシリコン系塗料からなる群から選ばれる少なくとも1種である請求項1記載の戸建て住宅の外壁構造。   (F) The highly durable finish paint is at least one selected from the group consisting of modified siliceous paints, urethane paints, silicon paints, fluorine paints and acrylic silicon paints. Exterior wall structure. (D−1)下地モルタル層において、(D−2)耐アルカリ性繊維メッシュ織物が(D−1)下地モルタルと(E)仕上材との境界から0.5〜3mmの位置に内包される請求項1又は2記載の戸建て住宅の外壁構造。   (D-1) In the base mortar layer, (D-2) The alkali-resistant fiber mesh fabric is included at a position of 0.5 to 3 mm from the boundary between (D-1) the base mortar and (E) the finishing material. Item 3. The outer wall structure of a detached house according to item 1 or 2. (E)仕上材のセメントが白色セメントである請求項1〜3のいずれかに記載の戸建て住宅の外壁構造。   (E) The outer wall structure of a detached house according to any one of claims 1 to 3, wherein the finishing material cement is white cement. (E)仕上材がセメント100質量部に対し、粒径600μm〜2500μmが35〜50質量%、粒径300μm〜600μmが30〜45質量%、粒径300μm未満が25質量%以下の粒度で構成される、細骨材を230〜360質量部含有する請求項1〜4のいずれかに記載の戸建て住宅の外壁構造。   (E) The finishing material is composed of particles having a particle diameter of 600 to 2500 μm with a particle size of 35 to 50 mass%, a particle diameter of 300 to 600 μm with 30 to 45 mass%, and a particle diameter of less than 300 μm with a particle size of 25 mass% or less with respect to 100 mass parts of cement The outer wall structure of a detached house according to any one of claims 1 to 4, further comprising 230 to 360 parts by mass of fine aggregate. (A)木質下地に、(B)防水紙、(C)メタルラス、(D−1)セメント100質量部に対して軽量細骨材の比率が0.04〜0.62である細骨材を20〜117質量部、及びポリマーを固形分換算で11〜40質量部含有する下地モルタル、(D−2)耐アルカリ性繊維メッシュ織物、(E)セメント100質量部に対し細骨材を230〜360質量部、膨張材を2〜6質量部、メタカオリンを3〜5質量部、シラン系撥水剤を0.07〜0.70質量部及びポリマーを固形分換算で3〜17質量部含有する仕上材、並びに(F)高耐久性仕上塗料を施工する戸建て住宅の外壁構造の施工方法であって、(D−2)を(D−1)に内包させるように施工することを特徴とする戸建て住宅の外壁構造の施工方法。   (A) A fine aggregate in which the ratio of lightweight fine aggregate is 0.04 to 0.62 with respect to 100 parts by mass of (B) waterproof paper, (C) metal lath, and (D-1) cement on a wooden base. 20 to 117 parts by mass, and base mortar containing 11 to 40 parts by mass of polymer in terms of solid content, (D-2) alkali-resistant fiber mesh fabric, and (E) fine aggregates 230 to 360 with respect to 100 parts by mass of cement. Finishing containing 2 to 6 parts by mass of an expanding material, 3 to 5 parts by mass of metakaolin, 0.07 to 0.70 parts by mass of a silane water repellent and 3 to 17 parts by mass of a polymer in terms of solid content The construction method of the outer wall structure of a detached house where the material and (F) high durability finish paint are applied, wherein (D-2) is constructed so as to be included in (D-1) Construction method of the outer wall structure of a house.
JP2013243834A 2013-11-26 2013-11-26 Outer wall structure for single-family housing and construction method thereof Pending JP2015101512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243834A JP2015101512A (en) 2013-11-26 2013-11-26 Outer wall structure for single-family housing and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243834A JP2015101512A (en) 2013-11-26 2013-11-26 Outer wall structure for single-family housing and construction method thereof

Publications (1)

Publication Number Publication Date
JP2015101512A true JP2015101512A (en) 2015-06-04

Family

ID=53377525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243834A Pending JP2015101512A (en) 2013-11-26 2013-11-26 Outer wall structure for single-family housing and construction method thereof

Country Status (1)

Country Link
JP (1) JP2015101512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114735A (en) * 2015-12-25 2017-06-29 太平洋マテリアル株式会社 Mortar for finishing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179938A (en) * 1985-02-05 1986-08-12 鐘淵化学工業株式会社 Wall heat insulating construction method
JPH07136584A (en) * 1993-11-24 1995-05-30 Kansai Paint Co Ltd Formation of architectural soiling preventive exterior finish coating film
JPH11228863A (en) * 1998-02-16 1999-08-24 Kansai Paint Co Ltd Heat insulating coating material
JP2003026487A (en) * 2001-07-16 2003-01-29 Asahi Glass Co Ltd Inorganic exterior material coating structure
JP2009155192A (en) * 2007-12-28 2009-07-16 Taiheiyo Materials Corp Lightweight mortar
JP2013076250A (en) * 2011-09-30 2013-04-25 Panahome Corp Junction structure of mortar external wall and joint method for mortar external wall
JP2013095615A (en) * 2011-10-28 2013-05-20 Taiheiyo Materials Corp Highly-durable finishing material
JP2013245156A (en) * 2012-05-29 2013-12-09 Taiheiyo Materials Corp Base structure for detached house and method for constructing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179938A (en) * 1985-02-05 1986-08-12 鐘淵化学工業株式会社 Wall heat insulating construction method
JPH07136584A (en) * 1993-11-24 1995-05-30 Kansai Paint Co Ltd Formation of architectural soiling preventive exterior finish coating film
JPH11228863A (en) * 1998-02-16 1999-08-24 Kansai Paint Co Ltd Heat insulating coating material
JP2003026487A (en) * 2001-07-16 2003-01-29 Asahi Glass Co Ltd Inorganic exterior material coating structure
JP2009155192A (en) * 2007-12-28 2009-07-16 Taiheiyo Materials Corp Lightweight mortar
JP2013076250A (en) * 2011-09-30 2013-04-25 Panahome Corp Junction structure of mortar external wall and joint method for mortar external wall
JP2013095615A (en) * 2011-10-28 2013-05-20 Taiheiyo Materials Corp Highly-durable finishing material
JP2013245156A (en) * 2012-05-29 2013-12-09 Taiheiyo Materials Corp Base structure for detached house and method for constructing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114735A (en) * 2015-12-25 2017-06-29 太平洋マテリアル株式会社 Mortar for finishing

Similar Documents

Publication Publication Date Title
Nogueira et al. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses
US8007584B2 (en) Compositions for use in construction and methods of applying the same
JP2013095615A (en) Highly-durable finishing material
KR101891567B1 (en) Cement mortar composition for repairing concrete structure with improved strength and durability and repairing· reinforcement method of concrete structure therewith
KR100994380B1 (en) Flexible polymer cementitious repair mortar and repairing and reinforcing method of concrete structure by using flexible flexible polymer cementitious repair mortar
US20130137793A1 (en) Construction Coating Compositions And Methods Of Applying The Same
JP6641083B2 (en) Tile construction method and exterior wall tiled structure
KR101046970B1 (en) Finishing composition using ladle slag crystal growth reaction as surface protection material of concrete structure
JP5792056B2 (en) Mortar
CN105199547A (en) Durable epoxy resin waterproof coating
JP2015101512A (en) Outer wall structure for single-family housing and construction method thereof
JP6144896B2 (en) Crack prevention structure for concrete structures
JP2007146605A (en) External heat insulating construction method of building, heat insulating cement composition, heat insulating polymer cement mortar, and external heat insulating laminated structure
KR101858477B1 (en) Eco-friendly block composition for building material and method for manufacturing block therewith
JP2013245156A (en) Base structure for detached house and method for constructing the same
JP3023836B2 (en) Construction method of building outer wall
JP5923399B2 (en) Elastic adhesive
KR100553190B1 (en) The inner waterproofing method of wet underground structures with the performance as an elevation of adhesive strength and coping with crack and movement and waterproofing structure thereof
RU2807641C1 (en) Composition for seamless rigid waterproofing
JP6462476B2 (en) Elastic tile base material
CN208267191U (en) Acoustical insulation floor
Muhammad Integral Mixing Using Nano Silicon for Concrete Waterproofing
KR100551722B1 (en) Two layers waterproofing method of concrete structure using polymer cement waterproofing mortar and penetrative acryle emulsion
ES2735527T3 (en) Monolayer facade cladding and manufacturing
KR101699284B1 (en) Tile construction methods with waterproofing and antifouling properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180417