JP2015098780A - Existing building earthquake strengthening method and earthquake strengthening frame - Google Patents

Existing building earthquake strengthening method and earthquake strengthening frame Download PDF

Info

Publication number
JP2015098780A
JP2015098780A JP2015016277A JP2015016277A JP2015098780A JP 2015098780 A JP2015098780 A JP 2015098780A JP 2015016277 A JP2015016277 A JP 2015016277A JP 2015016277 A JP2015016277 A JP 2015016277A JP 2015098780 A JP2015098780 A JP 2015098780A
Authority
JP
Japan
Prior art keywords
floor
existing
column
reinforcing
nth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015016277A
Other languages
Japanese (ja)
Other versions
JP5873194B2 (en
Inventor
平野 勝識
Katsunori Hirano
勝識 平野
ウペンド ラヴィンドラ シング
Singh Upend Ravindra
ウペンド ラヴィンドラ シング
幸博 佐藤
Yukihiro Sato
幸博 佐藤
仁 佐々木
Hitoshi Sasaki
仁 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2015016277A priority Critical patent/JP5873194B2/en
Publication of JP2015098780A publication Critical patent/JP2015098780A/en
Application granted granted Critical
Publication of JP5873194B2 publication Critical patent/JP5873194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake strengthening method and earthquake strengthening frame capable of suppressing bending deformation to the outside of a reinforcement column facing an existing column, and maintaining a reinforcement effect, when shear fracture occurs and a displacement in the axial direction is generated in the existing column in a disaster caused by an earthquake.SOLUTION: When an earthquake strengthening frame 20 is constructed to be adjacent to a structure plane of an existing building 10, a height of a reinforcement column 22A is set to be greater than a height of a beam-column connection 28 that is an upper part of an existing column 12 of the first floor. A place of the reinforcement column 22A facing the beam-column connection 28 of the existing column 12 of the first floor is coupled to the beam-column connection 28, and an upper end of the reinforcement column 22A is bonded to a place of the existing column 12 positioned at an upper side from the beam-column connection 28 with mortar M to be immovable in a direction approaching to the place, so that bending deformation to the outside of the reinforcement column 22A is suppressed when shear fracture of the existing column 12 of the first floor occurs and a displacement in the axial direction is generated.

Description

本発明は、鉄筋コンクリート造(RC造)もしくは鉄骨鉄筋コンクリート造(SRC造)ラーメン構造の既存建物の耐震補強工法および耐震補強フレームに関する。   The present invention relates to a seismic strengthening method and a seismic strengthening frame for an existing building having a reinforced concrete structure (RC structure) or a steel frame reinforced concrete structure (SRC structure) ramen structure.

従来の耐震補強工法は既存躯体を補強することが一般的である。最も一般的な手法は耐震壁、もしくは補強ブレースの構築である。
この手法の場合、開放的な空間が閉鎖的になることから嫌われることが多い。
他に、柱の靱性を確保するために、鋼板、炭素繊維シートなどを巻きつけたりする工法や、柱の耐力を確保するために柱断面そのものを大きくすることがある。梁に関しても同様である。
このような従来技術による耐震補強の場合、建物内部での施工が主となり、建物を使いながらの施工が困難である。これは建物の使用者に多大な負担をかけることとなり、耐震補強が普及する妨げとなっている。
Conventional seismic reinforcement methods generally reinforce existing structures. The most common method is the construction of shear walls or reinforced braces.
This method is often disliked because the open space becomes closed.
In addition, in order to ensure the toughness of the column, a method of winding a steel plate, a carbon fiber sheet, or the like, or the column cross section itself may be increased in order to ensure the strength of the column. The same applies to beams.
In the case of such seismic reinforcement by the prior art, construction is mainly performed inside the building, and construction while using the building is difficult. This puts a great burden on the user of the building and hinders the spread of seismic reinforcement.

また、外側からの施工であっても、耐震壁、ブレースによる補強であれば、居ながら施工は可能となるものの、耐震補強後の採光性、外観、内部からの景色が問題となる。
そこで、本出願人は、耐震補強後の採光性、外観性に優れ、また、内部からの景色にも問題の生じない耐震補強構造、工法を提供している。
Moreover, even if it is construction from the outside, if it is reinforced with a seismic wall and braces, construction can be performed while it is in the room, but lighting, appearance, and scenery from the inside after seismic reinforcement are problems.
Therefore, the present applicant provides a seismic reinforcement structure and method that are excellent in daylighting and appearance after seismic reinforcement, and that do not cause problems in the scenery from the inside.

より詳細に説明すると、例えば図1に示すように、既存建物10が鉄筋コンクリート造(RC造)ラーメン構造の4階建ての校舎とすると、既存建物10は、複数の既存柱12と、各階に設けられた既存梁14とを含んで構成され、図1において符号16Aは垂壁、16Bは腰壁、16Cは窓(散在点で示す)であり、図9、図10において符号16Dは既存梁である。
図8に示すように、耐震補強フレーム80は、既存建物10の構面に隣接して構築されている。
耐震補強フレーム80は、1階フレーム部分80Aと、2階フレーム部分80Bとを含んでいる。
2階フレーム部分80Bは、既存建物10の全ての2階に対応させておらず、2階のうちの補強すべき箇所のみに設けられている。
各フレーム部分80A、80Bは、補強柱82と補強梁84とを含んで構成され、各階の補強柱82の上部は、両端の補強梁84が結合された柱梁接合部88となっている。また、各階の既存柱12の上部も、両端の既存梁14とこの既存柱12とが結合された柱梁接合部18となっている。
More specifically, for example, as shown in FIG. 1, if the existing building 10 is a four-story school building having a reinforced concrete (RC) ramen structure, the existing building 10 is provided with a plurality of existing columns 12 and each floor. In FIG. 1, reference numeral 16A is a vertical wall, 16B is a waist wall, 16C is a window (indicated by scattered points), and in FIGS. 9 and 10, reference numeral 16D is an existing beam. is there.
As shown in FIG. 8, the seismic reinforcement frame 80 is constructed adjacent to the construction surface of the existing building 10.
The seismic reinforcement frame 80 includes a first floor frame portion 80A and a second floor frame portion 80B.
The second-floor frame portion 80B does not correspond to all the second floors of the existing building 10, and is provided only at the locations to be reinforced in the second floor.
Each frame part 80A, 80B is comprised including the reinforcement pillar 82 and the reinforcement beam 84, and the upper part of the reinforcement pillar 82 of each floor is the column beam junction part 88 with which the reinforcement beam 84 of both ends was couple | bonded. Moreover, the upper part of the existing pillar 12 on each floor is also a column beam joint 18 in which the existing beams 14 at both ends and the existing pillars 12 are coupled.

図8、図9に示すように、1階フレーム部分80Aは、1階の既存柱12の高さに相当する高さの第1補強柱82Aと、第1補強柱82Aの上部間を連結し既存梁14に対向する第1補強梁84Aとからなる。
第1補強柱82Aの上部の柱梁接合部88は、既存建物10の1階の既存柱12の上部の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。
図8、図10に示すように、2階フレーム部分80Bは、2階の既存柱12の高さに相当する高さの第2補強柱82Bと、第2補強柱82Bの上部間を連結し既存梁14に対向する第2補強梁84Bとからなる。
第2補強柱82Bは第1補強柱82Aの上部の柱梁接合部88から立設され、第2補強柱82Bの上部の柱梁接合部88は、既存建物10の2階の既存柱12の上部の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。
As shown in FIGS. 8 and 9, the first floor frame portion 80A connects the first reinforcing pillar 82A having a height corresponding to the height of the existing pillar 12 on the first floor and the upper part of the first reinforcing pillar 82A. The first reinforcing beam 84 </ b> A faces the existing beam 14.
The column beam joint 88 at the upper part of the first reinforcing column 82A is connected to the column beam joint 18 at the upper part of the existing column 12 on the first floor of the existing building 10 with a stud diver 90A, a post-installed anchor 90B, and a mortar (or concrete) 90C. It is connected through such as.
As shown in FIGS. 8 and 10, the second floor frame portion 80B connects the second reinforcement pillar 82B having a height corresponding to the height of the existing pillar 12 on the second floor and the upper part of the second reinforcement pillar 82B. The second reinforcing beam 84B faces the existing beam 14.
The second reinforcing column 82B is erected from the column beam joint 88 at the upper part of the first reinforcement column 82A, and the column beam junction 88 at the upper part of the second reinforcement column 82B is connected to the existing column 12 on the second floor of the existing building 10. It is connected to the upper column beam joint 18 via a stud diver 90A, a post-construction anchor 90B, a mortar (or concrete) 90C, and the like.

特開2008−248592JP 2008-244852 A 特開2009−249851JP2009-249851

ところで、図11に示すように、既存建物10の1階の既存柱12に対向して第1補強柱82Aが設けられている場合、地震による被災で1階の既存柱12がせん断破壊を起こし崩壊して軸方向に変位を生じると、第1補強柱82Aは既存建物10の重量である偏心軸力を受けて外側に曲げ変形を起こし、第1補強柱82Aの上部と既存柱12の上部との間に目開きが生じ、耐震補強フレーム80による補強効果が低減する。
また、図12に示すように、既存建物10の1階の既存柱12に対向して第1補強柱80Aが、2階の既存柱12に対向して第2補強柱80Bが設けられている場合、地震による被災で2階の既存柱12がせん断破壊を起こし崩壊して軸方向に変位を生じると、2階の第2補強柱80Bは偏心軸力を受けて外側に曲げ変形を起こし、第2補強柱80Bの上部と2階の既存柱12の上部との間、および第2補強柱80Bと第1補強柱80Aとの接合部に目開きが生じ、耐震補強フレーム80による補強効果が低減する。
本発明はかかる事情に鑑み成されたものであり、本発明の目的は、地震による被災で、既存の柱がせん断破壊を起こし軸方向に変位を生じた場合、この柱に対向する補強柱の外側への曲げ変形を抑制し、補強効果を維持できる耐震補強工法および耐震補強フレームを提供することにある。
By the way, as shown in FIG. 11, when the 1st reinforcement pillar 82A is provided facing the existing pillar 12 of the 1st floor of the existing building 10, the existing pillar 12 of the 1st floor raise | generates a shear failure by the earthquake damage. When collapsed and axially displaced, the first reinforcing column 82A is subjected to an eccentric axial force that is the weight of the existing building 10 and bends outward, and the upper portion of the first reinforcing column 82A and the upper portion of the existing column 12 A mesh opening is generated between them, and the reinforcing effect of the seismic reinforcing frame 80 is reduced.
Further, as shown in FIG. 12, a first reinforcing column 80A is provided facing the existing column 12 on the first floor of the existing building 10, and a second reinforcing column 80B is provided facing the existing column 12 on the second floor. In this case, when the existing pillar 12 on the second floor causes a shear failure and collapses due to the earthquake damage, the second reinforcing pillar 80B on the second floor receives an eccentric axial force and causes an outward bending deformation. Openings occur between the upper part of the second reinforcing column 80B and the upper part of the existing column 12 on the second floor, and at the joint between the second reinforcing column 80B and the first reinforcing column 80A, and the reinforcing effect by the seismic reinforcing frame 80 is obtained. Reduce.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a reinforcing column opposite to this column when an existing column undergoes shear fracture and is displaced in the axial direction due to earthquake damage. An object of the present invention is to provide a seismic strengthening method and a seismic strengthening frame capable of suppressing bending deformation to the outside and maintaining a reinforcing effect.

上記目的を達成するため、本発明の耐震補強工法は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向しその上部が既存柱に連結された第1補強柱を含む1階フレーム部分を構築し、1階フレーム部分を構築したならば、第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された第2補強柱を含む2階フレーム部分を構築し、このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さを、N階の既存柱の高さよりも大きい寸法に設定し、N階の既存柱の上部に対向する第N補強柱の箇所を、N階の既存柱の上部に連結するとともに、第N補強柱の上端をN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合することを特徴とする。
また、本発明の耐震補強工法は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで、既存建物に連結された1階フレーム部分を構築し、1階フレーム部分を構築したならば、既存建物の2階の既存柱に対向する第2補強柱を第1補強柱の上部に立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで、既存建物に連結された2階フレーム部分を構築し、このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さを、N階の既存柱の高さよりも大きい寸法に設定し、N階の既存柱の上部に対向する第N補強柱の箇所を、N階の既存柱の上部に連結するとともに、第N補強柱の上端をN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合することを特徴とする。
また、本発明は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向しその上部が既存柱に連結された第1補強柱を含んで構築された1階フレーム部分と、第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された第2補強柱を含んで構築された2階フレーム部分と、このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さは、N階の既存柱の高さよりも大きい寸法に設定され、N階の既存柱の上部に対向する第N補強柱の箇所が、N階の既存柱の上部に連結されるとともに、第N補強柱の上端がN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合されていることを特徴とする。
また、本発明は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで構築された1階フレーム部分と、既存建物の2階の既存柱に対向する第2補強柱を前記第1補強柱の上部に立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで構築された2階フレーム部分と、このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さは、N階の既存柱の高さよりも大きい寸法に設定され、N階の既存柱の上部に対向する第N補強柱の箇所が、N階の既存柱の上部に連結されるとともに、第N補強柱の上端がN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合されていることを特徴とする。
In order to achieve the above object, the seismic strengthening method of the present invention includes a first reinforcing column facing an existing column on the first floor of an existing building of a reinforced concrete structure or a steel reinforced concrete frame structure and having an upper portion connected to the existing column. If the first-floor frame part is constructed, and the first-floor frame part is constructed, the second floor is erected on the upper part of the first reinforcing pillar and faces the existing pillar on the second floor of the existing building, and the upper part is connected to the existing pillar. Build the second-floor frame part including the reinforcement pillars, and build the earthquake-proof reinforcement frame by connecting the frame part of the first floor to the existing building sequentially from the lower floor to the upper floor in this way, adjacent to the construction surface of the existing building When the reinforcement pillars are provided up to the Nth floor, where N is an integer, the height of the Nth reinforcement pillar provided on the Nth floor is set to a dimension larger than the height of the existing pillars on the Nth floor. Nth supplement facing the top of the existing pillar The column part is connected to the upper part of the existing column on the Nth floor, and the upper end of the Nth reinforcing column is made immovable in the direction of the existing column located above the existing column on the Nth floor in the direction approaching the part. And it joins so that a movement in the direction away from this location is possible.
In addition, the seismic reinforcement method of the present invention is provided with a plurality of first reinforcement columns facing the existing columns on the first floor of an existing building of a reinforced concrete structure or a steel-framed reinforced concrete frame structure, and upper portions of the adjacent first reinforcement columns. Connect the first reinforcement beam facing the existing beam on the first floor of the existing building, and connect the first reinforcement column and the upper part of the existing column to construct the first floor frame part connected to the existing building Once the first-floor frame part is constructed, the second reinforcing column facing the existing column on the second floor of the existing building is erected on the upper part of the first reinforcing column and between the upper parts of the adjacent second reinforcing columns. Are connected by the second reinforcement beam facing the existing beam on the second floor, and the second reinforcement column and the upper part of the existing column on the second floor are connected to construct the second-floor frame part connected to the existing building. In this way, the frame for one floor from the lower floor to the upper floor When building a seismic retrofit frame by connecting the minutes to the existing building and adjoining the existing building structure, if N is an integer and the reinforcement pillars are provided up to the Nth floor, the Nth reinforcement pillar provided on the Nth floor Is set to a dimension larger than the height of the existing pillars on the Nth floor, and the location of the Nth reinforcing pillar facing the upper part of the existing pillars on the Nth floor is connected to the upper part of the existing pillars on the Nth floor, The upper end of the N-th reinforcing column is joined to the existing column located above the existing column on the N floor so as not to move in the direction approaching the location and to move away from the location. .
In addition, the present invention includes a first-floor frame portion constructed to include a first reinforcing column that is opposed to an existing column on the first floor of an existing building of a reinforced concrete structure or a steel reinforced concrete frame structure, and whose upper portion is connected to the existing column. A second-floor frame part constructed to include a second reinforcing pillar standing on the upper part of the first reinforcing pillar and facing the existing pillar on the second floor of the existing building, the upper part being connected to the existing pillar; and A seismic reinforcement frame constructed by connecting the frame part of the first floor from the lower floor to the upper floor to the existing building in order, adjacent to the construction surface of the existing building, where N is an integer and the reinforcing columns are connected to the N floor In the case of providing, the height of the Nth reinforcing column provided on the Nth floor is set to a dimension larger than the height of the existing column on the Nth floor, and the location of the Nth reinforcing column facing the upper part of the existing column on the Nth floor is It is connected to the upper part of the existing pillar on the Nth floor and The upper end of the reinforcing column is joined to an existing column located above the existing column on the N floor so as not to move in a direction approaching the location and to move in a direction away from the location. .
In addition, the present invention sets up a plurality of first reinforcing columns facing the existing columns on the first floor of an existing building having a reinforced concrete structure or a steel-framed reinforced concrete frame structure, and between the adjacent upper portions of the first reinforcing columns. Connected with the first reinforcing beam facing the existing beam on the first floor of the building, and connected the first reinforcing column and the upper part of the existing column, the first floor frame part, and the existing column on the second floor of the existing building A second reinforcing column opposite to the first reinforcing column, and an upper portion of the adjacent second reinforcing columns connected by a second reinforcing beam facing an existing beam on the second floor, The second floor frame part constructed by connecting the two reinforcing pillars and the upper part of the existing pillars on the second floor, and the frame part for the first floor from the lower floor to the upper floor in this way are sequentially connected to the existing building. Seismic reinforcement frame built adjacent to the construction surface of an existing building In the case where N is an integer and reinforcing columns are provided up to the Nth floor, the height of the Nth reinforcing column provided on the Nth floor is set to be larger than the height of the existing pillars on the Nth floor, The location of the Nth reinforcing column facing the upper part of the column is connected to the upper part of the existing column on the Nth floor, and the upper end of the Nth reinforcing column is positioned on the existing column located above the existing column on the Nth floor Further, it is characterized in that it is joined so as not to move in a direction approaching the part and to be movable in a direction away from the part.

本発明によれば、地震による被災で既存建物のN階の既存柱がせん断破壊を起こして軸方向に変位し、第N補強柱が偏心軸力を受けて外側に曲げ変形しようとすると、第N補強柱の上端が、N階の既存柱よりも上方に位置する既存柱の箇所にあたり、第N補強柱の外側への曲げ変形が抑制される。
したがって、第N補強柱と第(N−1)補強柱との接合部における目開きや、第N補強柱と既存柱との接合部の目開きを抑制でき、耐震補強フレームによる補強効果を維持する上で有利となる。
また、第N補強柱の外側への曲げ変形が抑制されるので、第N補強柱の上部とN階の既存柱の上部とを連結するための部材への負担を軽減できる。したがって、それら部材の数量を減少でき、コストダウンを図る上でも有利となる。
According to the present invention, when an N-th existing column of an existing building is sheared and displaced in the axial direction due to an earthquake damage, the N-th reinforcing column receives an eccentric axial force and is bent outward. The upper end of the N reinforcing column hits the existing column located above the existing column on the N floor, and the bending deformation to the outside of the Nth reinforcing column is suppressed.
Therefore, the opening at the joint between the Nth reinforcement column and the (N-1) th reinforcement column and the opening at the junction between the Nth reinforcement column and the existing column can be suppressed, and the reinforcement effect by the seismic reinforcement frame is maintained. This is advantageous.
Moreover, since the bending deformation to the outside of the Nth reinforcing column is suppressed, it is possible to reduce the burden on the member for connecting the upper part of the Nth reinforcing column and the upper part of the existing column on the Nth floor. Therefore, the number of these members can be reduced, which is advantageous for cost reduction.

耐震補強の対象となる既存建物の正面図である。It is a front view of the existing building used as the object of seismic reinforcement. 第1の実施の形態の耐震補強フレームを構築した状態の耐震補強フレームと既存建物の正面図である。It is a front view of an earthquake-proof reinforcement frame and the existing building of the state which constructed the earthquake-proof reinforcement frame of a 1st embodiment. 第1補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st reinforcement pillar and the existing building. 第1、第2補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st, 2nd reinforcement pillar and an existing building. 第2の実施の形態の耐震補強フレームを構築した状態の耐震補強フレームと既存建物の正面図である。It is a front view of an earthquake-proof reinforcement frame and the existing building of the state which constructed the earthquake-proof reinforcement frame of a 2nd embodiment. 第1補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st reinforcement pillar and the existing building. 第1、第2補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st, 2nd reinforcement pillar and an existing building. 従来の耐震補強フレームを構築した状態の耐震補強フレームと既存建物の正面図である。It is a front view of a seismic reinforcement frame in the state where the conventional seismic reinforcement frame was constructed, and an existing building. 従来の第1補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of the conventional 1st reinforcement pillar and the existing building. 従来の第1、第2補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of the conventional 1st, 2nd reinforcement pillar, and the existing building. 1階の既存柱がせん断破壊した際の従来の第1補強柱の説明図である。It is explanatory drawing of the conventional 1st reinforcement pillar when the existing pillar of the 1st floor carries out a shear failure. 2階の既存柱がせん断破壊した際の従来の第1補強柱の説明図である。It is explanatory drawing of the conventional 1st reinforcement pillar when the existing pillar of the 2nd floor carries out a shear failure.

以下に本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
図1は本発明の耐震補強工法の対象となる建物の具体例を示した正面図を示し、既存建物10の構成は前記と同様であり、既存柱12、既存梁14、垂壁16A、腰壁16B、窓(斜線で示す)16Cなどを含んで構成されている。
図2は、構築された第1の実施の形態の耐震補強フレーム20の正面図を示している。
図3、図4に示すように、耐震補強フレーム20は、既存建物10の構面に隣接して(近接して)構築されている。
耐震補強フレーム20は既存建物10の構面と平行する面上に位置しており、1階フレーム部分20Aと、2階フレーム部分20Bとを含んでいる。
各フレーム部分20A、20Bは、補強柱22と補強梁24とを含んで構成され、補強柱22と補強梁24は、鉄骨鉄筋コンクリート製、あるいは鉄筋コンクリート製、あるいは鉄骨製である。
各階の補強柱22の上部は、両端の補強梁24とこの補強柱22とが結合された柱梁接合部28となっている。また、各階の既存柱12の上部も、両端の既存梁14とこの既存柱12とが結合された柱梁接合部18となっている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a front view showing a specific example of a building to be subjected to the seismic reinforcement method of the present invention. The configuration of the existing building 10 is the same as described above, and the existing column 12, the existing beam 14, the hanging wall 16A, the waist It includes a wall 16B, a window (shown by diagonal lines) 16C, and the like.
FIG. 2 shows a front view of the constructed seismic reinforcement frame 20 of the first embodiment.
As shown in FIGS. 3 and 4, the seismic reinforcement frame 20 is constructed adjacent to (close to) the construction surface of the existing building 10.
The seismic reinforcement frame 20 is located on a plane parallel to the construction surface of the existing building 10 and includes a first floor frame portion 20A and a second floor frame portion 20B.
Each of the frame portions 20A and 20B includes a reinforcing column 22 and a reinforcing beam 24, and the reinforcing column 22 and the reinforcing beam 24 are made of steel reinforced concrete, reinforced concrete, or steel frame.
The upper part of the reinforcing column 22 on each floor is a column beam joint 28 in which the reinforcing beam 24 at both ends and the reinforcing column 22 are coupled. Moreover, the upper part of the existing pillar 12 on each floor is also a column beam joint 18 in which the existing beams 14 at both ends and the existing pillars 12 are coupled.

図2に示すように、1階フレーム部分20Aは、1階の既存柱12に対向する第1補強柱22Aと、第1補強柱22Aの上部間を連結し1階の既存梁14に対向する第1補強梁24Aとを含んでいる。
なお、図3、図4に示すように、既存柱12の既存基礎19に接合させて補強用基礎29が設けられ、第1補強柱22Aはそれら基礎19,29の上から立設され、複数本の柱脚アンカー29Aの一部が第1補強柱22Aの下部から既存基礎19に打ち込まれ、残りの柱脚アンカー29Aが第1補強柱22Aの下部から補強用基礎29に打ち込まれ、それら基礎19、29に連結されている。
第1補強柱22Aが並べられた方向において両端の2本の第1補強柱22Aを除いた残りの第1補強柱22Aは、その高さが、1階の既存柱12と同じ寸法で設定されている。
また、両端に位置する2本の第1補強柱22Aは、その高さが、1階の既存柱12のよりも大きい寸法に設定されている。
As shown in FIG. 2, the first floor frame portion 20 </ b> A connects the first reinforcement pillar 22 </ b> A facing the existing pillar 12 on the first floor and the upper part of the first reinforcement pillar 22 </ b> A to face the existing beam 14 on the first floor. The first reinforcing beam 24A is included.
As shown in FIGS. 3 and 4, a reinforcing foundation 29 is provided by being joined to the existing foundation 19 of the existing pillar 12, and the first reinforcing pillar 22 </ b> A is erected from above the foundations 19, 29. A part of the column base anchor 29A is driven into the existing foundation 19 from the lower portion of the first reinforcing column 22A, and the remaining column base anchor 29A is driven into the reinforcing foundation 29 from the lower portion of the first reinforcing column 22A. 19 and 29.
The remaining first reinforcing columns 22A excluding the two first reinforcing columns 22A at both ends in the direction in which the first reinforcing columns 22A are arranged have the same dimensions as the existing columns 12 on the first floor. ing.
Moreover, the height of the two first reinforcing columns 22A located at both ends is set to be larger than that of the existing columns 12 on the first floor.

図3に示すように、両端の2本の第1補強柱22Aの上部をなす柱梁接合部28は、1階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28の両側に位置する第1補強梁24Aの箇所も1階の既存梁14に連結されている。
また、柱梁接合部28から突出する第1補強柱22Aの上端2202はモルタルMを介して1階の既存柱12の上方の既存柱12の箇所に、すなわち、2階の既存柱12の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能にモルタルMにより接合されている。
また、両端の2本の第1補強柱22Aを除いた残りの第1補強柱22Aの上端の柱梁接合部28は、1階の既存柱12の上端の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28に近接する第1補強梁24Aの箇所も1階の既存梁14に連結されている。
As shown in FIG. 3, the column beam joint 28 that forms the upper part of the two first reinforcing columns 22A at both ends is connected to the column beam joint 18 that forms the upper part of the existing column 12 on the first floor. It is connected via an anchor 90B, mortar (or concrete) 90C and the like. In the present embodiment, the locations of the first reinforcing beams 24A located on both sides of the column beam joint 28 are also connected to the existing beams 14 on the first floor.
Further, the upper end 2202 of the first reinforcing column 22A protruding from the column beam joint portion 28 is located at the location of the existing column 12 above the existing column 12 on the first floor via the mortar M, that is, the location of the existing column 12 on the second floor. In addition, the mortar M is joined so as not to move in a direction approaching the location and to move away from the location.
The column beam joint 28 at the upper end of the remaining first reinforcement column 22A excluding the two first reinforcement columns 22A at both ends is connected to the column beam junction 18 at the upper end of the existing column 12 on the first floor. 90A, post-construction anchor 90B, mortar (or concrete) 90C, and the like. In the present embodiment, the location of the first reinforcing beam 24A adjacent to the column beam joint 28 is also connected to the existing beam 14 on the first floor.

2階フレーム部分10Bは1階フレーム部分が構築された後に構築されており、2階フレーム部分は、既存建物10の全ての2階に対応させておらず、2階のうちの補強すべき箇所のみに設けられている。
図2に示すように、2階フレーム部分は、2階の既存柱12に対向する第2補強柱22Bと、第2補強柱22Bの上部間を連結し2階の既存梁14に対向する第2補強梁24Bとを含んでいる。
The second-floor frame portion 10B is constructed after the first-floor frame portion is constructed, and the second-floor frame portion does not correspond to all the second floors of the existing building 10, and is a portion to be reinforced in the second floor. Only provided.
As shown in FIG. 2, the second floor frame portion connects the second reinforcement pillar 22B facing the existing pillar 12 on the second floor and the upper part of the second reinforcement pillar 22B and faces the existing beam 14 on the second floor. 2 reinforcing beams 24B.

第2補強柱22Bは第1補強柱22Aの上部をなす柱梁接合部28から立設されている。
図4に示すように、第2補強柱22Bは、その高さが、2階の既存柱12のよりも大きい寸法に設定されている。
各第2補強柱22Bの上部をなす柱梁接合部28は、2階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結している。本実施の形態では、柱梁接合部28に近接する第2補強梁24Bの箇所も2階の既存梁14に連結されている。
また、柱梁接合部28から突出する第2補強柱22Bの上端2204は、モルタルMを介して2階の既存柱12の上方の既存の既存柱12の箇所に、すなわち、3階の既存柱12の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能にモルタルMにより接合されている。
The second reinforcing column 22B is erected from a column beam joint 28 that forms the upper part of the first reinforcing column 22A.
As shown in FIG. 4, the height of the second reinforcing pillar 22B is set to be larger than that of the existing pillar 12 on the second floor.
The column beam joint 28 forming the upper part of each second reinforcing column 22B includes a stud beam 90A, a post-installed anchor 90B, a mortar (or concrete) 90C, etc. on the column beam joint 18 forming the upper part of the existing column 12 on the second floor. Are connected through. In the present embodiment, the location of the second reinforcing beam 24B adjacent to the column beam joint 28 is also connected to the existing beam 14 on the second floor.
Further, the upper end 2204 of the second reinforcing column 22B protruding from the column beam joint portion 28 is located at the location of the existing column 12 above the existing column 12 on the second floor via the mortar M, that is, the existing column on the third floor. The mortar M is joined to the twelve locations so as not to move in a direction approaching the location and to move away from the location.

本実施の形態によれば次の効果が奏される。
まず、1階の両端に位置する2本の第1補強柱22Aについて説明する。
例えば、地震による被災で、図3に示す既存建物10の1階の既存柱12が、図11に示すように崩壊しせん断破壊を起こすことで軸方向に変位し、第1補強柱22Aが既存建物10の重量である偏心軸力を受け外側に曲げ変形しようとすると、第1補強柱22Aの上端2202がモルタルMを介して2階の既存柱12にあたり、第1補強柱22Aの外側への曲げ変形が抑制される。したがって、柱梁接合部18、28間の目開きを抑制でき、耐震補強フレーム20による補強効果を維持する上で有利となる。
また、第1補強柱22Aの外側への曲げ変形が抑制されるので、第1補強柱22Aの上部と1階の既存柱12の上部とを連結するための部材90A、90Bへの負担を軽減できる。したがって、第1補強柱22Aの上部と1階の既存柱12の上部とを連結するために用いる、本実施の形態では、第1補強柱22Aに近接する第1補強梁24A箇所と既存梁14とを連結するためにも用いる打設作業が困難な後施工アンカー90Bの数量を減少でき、コストダウンを図る上でも有利となる。
According to the present embodiment, the following effects are achieved.
First, the two first reinforcing pillars 22A located at both ends of the first floor will be described.
For example, due to an earthquake, the existing pillar 12 on the first floor of the existing building 10 shown in FIG. 3 is displaced in the axial direction by collapsing and causing shear failure as shown in FIG. When an eccentric axial force that is the weight of the building 10 is applied to bend and deform outward, the upper end 2202 of the first reinforcing column 22A hits the existing column 12 on the second floor via the mortar M, and the outer side of the first reinforcing column 22A Bending deformation is suppressed. Therefore, the opening between the column beam joints 18 and 28 can be suppressed, which is advantageous in maintaining the reinforcing effect of the seismic reinforcement frame 20.
In addition, since bending deformation to the outside of the first reinforcing column 22A is suppressed, the burden on the members 90A and 90B for connecting the upper portion of the first reinforcing column 22A and the upper portion of the existing column 12 on the first floor is reduced. it can. Therefore, in the present embodiment, which is used to connect the upper portion of the first reinforcing column 22A and the upper portion of the existing first column 12 on the first floor, the first reinforcing beam 24A near the first reinforcing column 22A and the existing beam 14 are used. The number of post-construction anchors 90B, which are difficult to place, also used for connecting the two, can be reduced, which is advantageous for cost reduction.

次に、第2補強柱22Bについて説明する。
例えば、地震による被災で、図4に示す既存建物10の2階の既存柱12が、図12に示すようにせん断破壊を起こして軸方向に変位し、第2補強柱22Bが偏心軸力受け外側に曲げ変形しようとすると、第2補強柱22Bの上端2204がモルタルMを介して3階の既存柱12にあたり、第2補強柱22Bの外側への曲げ変形が抑制される。したがって、2階における柱梁接合部18、28間の目開き、および第2補強柱22Bと第1補強柱22Aとの接合部における目開きを抑制でき、耐震補強フレーム20による補強効果を維持する上で有利となる。
また、前記と同様に、第2補強柱22Aの上部と2階の既存柱12の上部とを連結するために用いる、本実施の形態では、第2補強柱22Aに近接する第1補強梁24A箇所と既存梁とを連結するためにも用いる打設作業が困難な後施工アンカー90Bの数量を減少でき、コストダウンを図る上でも有利となる。
Next, the 2nd reinforcement pillar 22B is demonstrated.
For example, due to an earthquake, the existing pillar 12 on the second floor of the existing building 10 shown in FIG. 4 undergoes shear failure as shown in FIG. 12 and is displaced in the axial direction, and the second reinforcing pillar 22B receives the eccentric axial force. When bending outward is attempted, the upper end 2204 of the second reinforcing column 22B hits the existing column 12 on the third floor via the mortar M, and bending deformation to the outside of the second reinforcing column 22B is suppressed. Therefore, the opening between the column beam joints 18 and 28 on the second floor and the opening at the joint between the second reinforcing column 22B and the first reinforcing column 22A can be suppressed, and the reinforcing effect by the seismic reinforcement frame 20 is maintained. This is advantageous.
Similarly to the above, in the present embodiment, the first reinforcing beam 24A adjacent to the second reinforcing column 22A is used to connect the upper portion of the second reinforcing column 22A and the upper portion of the existing column 12 on the second floor. The number of post-construction anchors 90B, which are difficult to place, which is also used to connect the spot and the existing beam, can be reduced, which is advantageous in reducing costs.

次に、第2の実施の形態について説明する。
図5は、構築された第2の実施の形態の耐震補強フレーム30の正面図を示している。
図6、図7に示すように、耐震補強フレーム30は、既存建物10の構面に近接して構築されている。
第1の実施の形態と同様な箇所、部材に同一の符号を付し、その説明を省略すると、耐震補強フレーム30は既存建物10の構面と平行する面上に位置しており、1階フレーム部分30Aと、2階フレーム部分30Bとを含んでいる。
Next, a second embodiment will be described.
FIG. 5 shows a front view of the seismic reinforcement frame 30 of the second embodiment constructed.
As shown in FIGS. 6 and 7, the seismic reinforcement frame 30 is constructed close to the construction surface of the existing building 10.
If the same reference numerals are given to the same parts and members as in the first embodiment and the description thereof is omitted, the seismic reinforcement frame 30 is located on a plane parallel to the construction surface of the existing building 10, and the first floor It includes a frame portion 30A and a second floor frame portion 30B.

図5に示すように、1階フレーム部分30Aは、1階の既存柱12に対向する第1補強柱22Cと、第1補強柱22Cの上部間を連結し1階の既存梁14に対向する第1補強梁24Cとを含んでおり、第1補強柱22Cが並べられた方向において両端の2本の第1補強柱22Cを除いた残りの第1補強柱22Cは、その高さが、1階の既存柱12と同じ寸法で設定されている。
また、両端に位置する2本の第1補強柱22Cは、その高さが、1階の既存柱12のよりも大きい寸法に設定されている。本実施の形態では、2本の第1補強柱22Cの高さは、1階の既存柱12の高さに2階の既存柱12の高さを加えた寸法で形成されている。
As shown in FIG. 5, the first-floor frame portion 30 </ b> A connects the first reinforcement pillar 22 </ b> C facing the existing pillar 12 on the first floor and the upper part of the first reinforcement pillar 22 </ b> C to face the existing beam 14 on the first floor. The remaining first reinforcing pillars 22C excluding the two first reinforcing pillars 22C at both ends in the direction in which the first reinforcing pillars 22C are arranged have a height of 1 It is set with the same dimensions as the existing pillar 12 on the floor.
Moreover, the height of the two first reinforcing columns 22C located at both ends is set to be larger than that of the existing columns 12 on the first floor. In the present embodiment, the height of the two first reinforcing pillars 22C is formed to have a dimension obtained by adding the height of the existing pillar 12 on the first floor to the height of the existing pillar 12 on the first floor.

図6に示すように、両端の2本の第1補強柱22Cの上下中間部をなす柱梁接合部28は、1階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28に近接する第1補強梁24Cの箇所も1階の既存梁14に連結されている。
また、柱梁接合部28から突出する第1補強柱22Cの上端2206はモルタルMを介して1階の既存柱12の上方の既存柱12の箇所に、すなわち、2階の既存柱12の上部をなす柱梁接合部18に、該柱梁接合部18へ近づく方向へ移動不能にかつ該柱梁接合部18から離れる方向へ移動可能にモルタルMにより接合されている。
また、両端の2本の第1補強柱22Cを除いた残りの第1補強柱22Cの上部の柱梁接合部28は、1階の既存柱12の上端の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28に近接する第1補強梁24Cの箇所も1階の既存梁14に連結されている。
As shown in FIG. 6, the column beam joint 28 that forms the upper and lower middle portions of the two first reinforcing columns 22C at both ends is connected to the column beam joint 18 that forms the upper portion of the existing column 12 on the first floor, The post-construction anchor 90B and the mortar (or concrete) 90C are connected. In the present embodiment, the location of the first reinforcing beam 24C adjacent to the column beam joint 28 is also connected to the existing beam 14 on the first floor.
Further, the upper end 2206 of the first reinforcing column 22C protruding from the beam-column joint portion 28 is located at the location of the existing column 12 above the existing column 12 on the first floor via the mortar M, that is, the upper portion of the existing column 12 on the second floor. Are joined by a mortar M so as not to move in a direction approaching the column beam joint 18 and to move away from the column beam joint 18.
In addition, the column beam joint 28 on the upper part of the remaining first reinforcement column 22C excluding the two first reinforcement columns 22C on both ends is connected to the column beam junction 18 on the upper end of the existing column 12 on the first floor. 90A, post-construction anchor 90B, mortar (or concrete) 90C, and the like. In the present embodiment, the location of the first reinforcing beam 24C adjacent to the column beam joint 28 is also connected to the existing beam 14 on the first floor.

2階フレーム部分30Bは1階フレーム部分30Aが構築された後に構築されており、2階フレーム部分30Bは、既存建物10の全ての2階に対応させておらず、2階のうちの補強すべき箇所のみに設けられている。
図5、図7に示すように、2階フレーム部分30Bは、2階の既存柱12に対向する第2補強柱22Dと、第2補強柱22Dの上部間を連結し2階の既存梁14に対向する第2補強梁24Dとを含んでいる。
The second-floor frame portion 30B is constructed after the first-floor frame portion 30A is constructed, and the second-floor frame portion 30B does not correspond to all the second floors of the existing building 10 and reinforces the second-floor frame portion 30B. It is provided only at the power points.
As shown in FIGS. 5 and 7, the second floor frame portion 30 </ b> B connects the second reinforcement pillar 22 </ b> D facing the existing pillar 12 on the second floor and the upper part of the second reinforcement pillar 22 </ b> D to connect the existing beam 14 on the second floor. And a second reinforcing beam 24D facing each other.

第2補強柱22Dは第1補強柱22Cの上部をなす柱梁接合部28から立設されている。
図7に示すように、第2補強柱22Dは、その高さが、2階の既存柱12のよりも大きい寸法に設定されている。本実施の形態では、第2補強柱22Dの高さは、2階の既存柱12の高さに3階の既存柱12の高さを加えた寸法で形成されている。
2階の既存柱12の上部をなす柱梁接合部18に対向する各第2補強柱22Dの上下中間部の柱梁接合部28は、2階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結している。本実施の形態では、柱梁接合部28に近接する第2補強梁24Dの箇所も2階の既存梁14に連結されている。
また、柱梁接合部28から突出する第2補強柱22Dの上端2208は、モルタルMを介して3階の既存柱12の上部をなす柱梁接合部18に、該柱梁接合部18へ近づく方向へ移動不能にかつ該柱梁接合部18から離れる方向へ移動可能にモルタルMにより接合されている。
The second reinforcing column 22D is erected from a column beam joint 28 that forms the upper part of the first reinforcing column 22C.
As shown in FIG. 7, the height of the second reinforcing pillar 22D is set to be larger than that of the existing pillar 12 on the second floor. In the present embodiment, the height of the second reinforcing pillar 22D is formed by a dimension obtained by adding the height of the existing pillar 12 on the third floor to the height of the existing pillar 12 on the second floor.
The column beam joints 28 at the upper and lower intermediate portions of the second reinforcing columns 22D facing the column beam joints 18 forming the upper part of the existing pillars 12 on the second floor are the column beam joints forming the upper parts of the existing columns 12 on the second floor. 18 is connected via a stud diver 90A, a post-construction anchor 90B, a mortar (or concrete) 90C, and the like. In the present embodiment, the location of the second reinforcing beam 24D adjacent to the column beam joint 28 is also connected to the existing beam 14 on the second floor.
Further, the upper end 2208 of the second reinforcing column 22D protruding from the beam-column joint portion 28 approaches the beam-column joint portion 18 via the mortar M to the beam-column joint portion 18 forming the upper part of the existing column 12 on the third floor. It is joined by the mortar M so that it cannot move in the direction and can move in the direction away from the beam-to-column joint 18.

本実施の形態によれば次の効果が奏される。
まず、1階の両端に位置する2本の第1補強柱22Cについて説明する。
例えば、地震による被災で、図6に示す既存建物10の1階の既存柱12が、図11に示すように崩壊し断破壊を起こして軸方向に変位し、偏心軸力を受けて第1補強柱22Cが外側に曲げ変形しようとすると、第1補強柱22Cの上端2206がモルタルMを介して2階の既存柱12の上端にあたり、第1補強柱22Cの外側への曲げ変形が抑制される。したがって、1階における柱梁接合部18、28間の目開きを抑制でき、耐震補強フレーム30による補強効果を維持する上で有利となる。
また、第1補強柱22Cの外側への曲げ変形が抑制されるので、第1補強柱22Cの上部と1階の既存柱12の上部とを連結するための部材50A、50Bへの負担を軽減できる。したがって、第1補強柱22Cの上部と1階の既存柱12の上部とを連結するために用いる、本実施の形態では、第1補強柱22Cに近接する第1補強梁24C箇所と既存梁14とを連結するためにも用いる打設作業が困難な後施工アンカー50Bの数量を減少でき、コストダウンを図る上でも有利となる。
According to the present embodiment, the following effects are achieved.
First, the two first reinforcing columns 22C located at both ends of the first floor will be described.
For example, due to earthquake damage, the existing pillar 12 on the first floor of the existing building 10 shown in FIG. 6 collapses and breaks and breaks in the axial direction as shown in FIG. When the reinforcing column 22C is bent outward, the upper end 2206 of the first reinforcing column 22C hits the upper end of the existing column 12 on the second floor via the mortar M, and the bending deformation to the outside of the first reinforcing column 22C is suppressed. The Therefore, the opening between the column beam joints 18 and 28 on the first floor can be suppressed, which is advantageous in maintaining the reinforcing effect by the seismic reinforcement frame 30.
In addition, since bending deformation to the outside of the first reinforcing column 22C is suppressed, the burden on the members 50A and 50B for connecting the upper portion of the first reinforcing column 22C and the upper portion of the existing column 12 on the first floor is reduced. it can. Therefore, in the present embodiment, which is used to connect the upper part of the first reinforcing column 22C and the upper part of the existing column 12 on the first floor, the first reinforcing beam 24C and the existing beam 14 adjacent to the first reinforcing column 22C are used. The number of post-installed anchors 50B, which are difficult to place, can also be reduced, which is advantageous for cost reduction.

次に、第2補強柱22Dについて説明する。
例えば、地震による被災で、図7に示す既存建物10の2階の既存柱12が、図12に示すようにせん断破壊を起こして軸方向に変位し、第2補強柱22Dが外側に曲げ変形しようとすると、第2補強柱22Dの上端2208がモルタルMを介して3階の既存柱12の上端にあたり、第2補強柱22Dの外側への曲げ変形が抑制される。したがって、2階における柱梁接合部18、28間の目開き、第2補強柱22Dと第1補強柱22Cとの接合部における目開きを抑制でき、耐震補強フレーム30による補強効果を維持する上で有利となる。
また、前記と同様に、第2補強柱22Dの上部と2階の既存柱12の上部とを連結するために用いる、本実施の形態では、第2補強柱22Dに近接する第2補強梁24D箇所と既存梁14とを連結するためにも用いる打設作業が困難な後施工アンカー50Bの数量を減少でき、コストダウンを図る上でも有利となる。
Next, the second reinforcing pillar 22D will be described.
For example, due to an earthquake, the existing pillar 12 on the second floor of the existing building 10 shown in FIG. 7 is sheared and displaced in the axial direction as shown in FIG. 12, and the second reinforcing pillar 22D is bent outwardly. If it tries, the upper end 2208 of 2nd reinforcement pillar 22D will hit the upper end of the existing pillar 12 of the 3rd floor through the mortar M, and the bending deformation to the outer side of 2nd reinforcement pillar 22D will be suppressed. Accordingly, the opening between the beam-column joints 18 and 28 on the second floor and the opening at the joint between the second reinforcement column 22D and the first reinforcement column 22C can be suppressed, and the reinforcing effect of the seismic reinforcement frame 30 can be maintained. Is advantageous.
Similarly to the above, in the present embodiment, the second reinforcing beam 24D adjacent to the second reinforcing column 22D is used to connect the upper portion of the second reinforcing column 22D and the upper portion of the existing column 12 on the second floor. The number of post-construction anchors 50B, which are difficult to place, also used to connect the spot and the existing beam 14, can be reduced, which is advantageous in reducing costs.

10……既存建物10、12……既存柱、14……既存梁、20、30……耐震補強フレーム、22A、22C……第1補強柱、22B、22D……第2補強柱、24A、24C……第1補強梁、24B、24D……第2補強梁。 10: Existing building 10, 12: Existing column, 14: Existing beam, 20, 30 ... Seismic reinforcement frame, 22A, 22C ... First reinforcement column, 22B, 22D ... Second reinforcement column, 24A, 24C: first reinforcing beam, 24B, 24D: second reinforcing beam.

上記目的を達成するため、本発明の耐震補強工法は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の複数階を有する既存建物の1階の隣り合う複数本の既存柱に対向しその上部が既存柱に連結された複数本の補強柱を含む耐震補強フレームを既存建物の構面に隣接させて構築するに際して、強柱の高さを、1階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定し、1階の既存柱の柱梁接合部に対向する強柱の箇所を、前記柱梁接合部に連結するとともに、強柱の上端を前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合し、1階の既存柱がせん断破壊を起こして軸方向に変位した際の補強柱の外側への曲げ変形を抑制することを特徴とする。
また、本発明の耐震補強工法は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の複数階を有する既存建物の1階の隣り合う複数本の既存柱に対向する強柱を複数立設すると共に、それら隣り合う強柱の上部間を、既存建物の1階の既存梁に対向する強梁で連結し、強柱と既存柱の上部とを連結することで、既存建物に連結された耐震補強フレームを既存建物の構面に隣接させて構築するに際して、強柱の高さを、階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定し、階の既存柱の柱梁接合部に対向する強柱の箇所を、前記柱梁接合部に連結するとともに、強柱の上端を前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合し、1階の既存柱がせん断破壊を起こして軸方向に変位した際の補強柱の外側への曲げ変形を抑制することを特徴とする。
また、本発明は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の複数階を有する既存建物の1階の隣り合う複数本の既存柱に対向しその上部が既存柱に連結された複数本の補強柱を含み既存建物の構面に隣接させて構築された耐震補強フレームであって、強柱の高さは、階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定され、階の既存柱の柱梁接合部に対向する強柱の箇所が、前記柱梁接合部に連結されるとともに、強柱の上端が前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合され、1階の既存柱がせん断破壊を起こして軸方向に変位した際の補強柱の外側への曲げ変形が抑制されることを特徴とする。
また、本発明は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の複数階を有する既存建物の1階の隣り合う複数本の既存柱に対向する強柱を複数立設すると共に、それら隣り合う強柱の上部間を、既存建物の1階の既存梁に対向する補強梁で連結し、さらに、補強柱と既存柱の上部とを連結し、既存建物の構面に隣接させて構築された耐震補強フレームであって、強柱の高さは、階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定され、階の既存柱の柱梁接合部に対向する強柱の箇所が、前記柱梁接合部に連結されるとともに、強柱の上端が前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合され、1階の既存柱がせん断破壊を起こして軸方向に変位した際の補強柱の外側への曲げ変形が抑制されることを特徴とする。
In order to achieve the above-mentioned object, the seismic reinforcement method of the present invention is such that an existing building having a plurality of floors of a reinforced concrete structure or a steel-framed reinforced concrete frame structure is opposed to a plurality of adjacent existing columns on the first floor, and the upper part thereof is an existing column. in the seismic reinforcing frame comprising a linked plurality of reinforcing posts were adjacent to the Plane of existing buildings constructed, the height of the reinforcement columns, the first floor of the pillar beam forming the top of the existing column set dimension greater than the height, the first floor of a portion of the reinforcement post which faces the beam-column joints of existing posts, as well as connected to the beam-column joints, the beam-column joints the upper end of the reinforcement post Bending deformation to the outside of the reinforcing column when the existing column on the first floor is displaced in the axial direction due to shear failure and joining to the location of the existing column located above the location so that it cannot move in the direction approaching the location It is characterized by suppressing .
Also, seismic strengthening method of the present invention, together with a plurality erected a reinforcement pillars facing the plurality of existing Columns 1 floor adjacent existing buildings with a multi-storey reinforced concrete or steel reinforced concrete rigid frame structure, which between top of reinforcement columns adjacent connected by reinforcement beam facing the first floor of the existing beams existing buildings, by connecting the top of the existing columns and reinforcement pillar, seismic linked to existing buildings in the reinforcing frame adjacent to the Plane of existing buildings constructed, the height of the reinforcement columns, set larger than the height of the column joints forming the upper part of the first floor existing column, first floor a portion of the reinforcement post which faces the beam-column joints of existing posts, as well as connected to the beam-column joints, the upper end of the reinforcement columns in place of the existing column which is located above the said beam-column joints, immovably joined to a direction approaching to the relevant section, the first floor of an existing column The bending deformation to the outer reinforcing pillars when axially displaced causes a shear fracture, wherein the suppressing.
In addition, the present invention provides a plurality of reinforcing columns which are opposed to a plurality of adjacent existing columns on the first floor of an existing building having a plurality of floors of a reinforced concrete structure or a steel reinforced concrete frame structure and whose upper portions are connected to the existing columns. a seismic reinforcement frame that is built adjacent to the Plane of unrealized existing buildings, the height of the reinforcement pillars, the larger dimension than the height of the column joints forming the upper part of the first floor existing column is set, part of the reinforcement post which faces the beam-column joints of the first floor of an existing column, along with being connected to the beam-column joints, positioned above the upper end of the reinforcement pillars the beam-column joints It is joined to the location of the existing column so that it cannot move in the direction approaching the location, and the bending deformation to the outside of the reinforcing column when the existing column on the first floor is sheared and displaced in the axial direction is suppressed. It is characterized by.
Further, the present invention is to more upright the reinforcement pillars facing the plurality of existing Columns 1 floor adjacent existing buildings with a multi-storey reinforced concrete or steel reinforced concrete rigid frame structure, reinforcement of their adjacent between top of the column, coupled with reinforcing beam facing the first floor of the existing beams existing buildings, further connects the reinforcement pillars and top of the existing columns are built adjacent to the Plane of existing buildings and a seismic reinforcing frame, the height of the reinforcement columns is set to a larger dimension than the height of the column joints forming the upper part of the first floor existing columns, the beam-column joints of the first floor of an existing column position opposing reinforcement pillars move, while being connected to the beam-column joints, the location of the existing pillar the upper end of the reinforcement column is located above the said beam-column joints, the direction approaching to the relevant section are non bonded, axial first floor existing pillars undergo shear fracture Bending deformation toward the outside of the reinforcing pillars upon displacement, characterized in that it is suppressed.

本発明によれば、地震による被災で既存建物の階の既存柱がせん断破壊を起こして軸方向に変位し、強柱が偏心軸力を受けて外側に曲げ変形しようとすると、強柱の上端が、階の既存柱よりも上方に位置する既存柱の箇所にあたり、強柱の外側への曲げ変形が抑制される。
したがって、強柱と既存柱との接合部の目開きを抑制でき、耐震補強フレームによる補強効果を維持する上で有利となる。
また、強柱の外側への曲げ変形が抑制されるので、強柱の上部と階の既存柱の上部とを連結するための部材への負担を軽減できる。したがって、それら部材の数量を減少でき、コストダウンを図る上でも有利となる。
According to the present invention, when the first floor of the existing columns in existing buildings affected by earthquake undergo shear failure axially displaced, reinforcement pillars to deform bent outward receiving an eccentric axial force, reinforcement the upper end of the pillar, when part of the existing column located above the first floor of the existing columns, the bending deformation of the outer reinforcement column is suppressed.
Therefore, it is possible to suppress the mesh of the joint between the reinforcement pillars with existing columns, which is advantageous in maintaining the reinforcing effect of the earthquake-proof reinforcement frame.
Further, since bending deformation of the outer reinforcement pillar is suppressed, thereby reducing the burden on the member for connecting the upper portion of the upper and first floor existing pillars of reinforcement pillar. Therefore, the number of these members can be reduced, which is advantageous for cost reduction.

Claims (7)

鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向しその上部が既存柱に連結された第1補強柱を含む1階フレーム部分を構築し、
1階フレーム部分を構築したならば、第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された第2補強柱を含む2階フレーム部分を構築し、
このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、
Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さを、N階の既存柱の高さよりも大きい寸法に設定し、
N階の既存柱の上部に対向する第N補強柱の箇所を、N階の既存柱の上部に連結するとともに、第N補強柱の上端をN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合する、
ことを特徴とする耐震補強工法。
Construct the first-floor frame part including the first reinforcing column that is opposite the existing column on the first floor of the existing building of reinforced concrete structure or steel-framed reinforced concrete ramen structure, and the upper part is connected to the existing column,
If the first-floor frame part is constructed, the second-floor frame part that includes the second reinforcing column that stands on the upper part of the first reinforcing column and faces the existing column on the second floor of the existing building, and the upper part of which is connected to the existing column. Build
In this way, when building a seismic reinforcement frame adjacent to the construction surface of the existing building while sequentially connecting the frame part of the first floor from the lower floor to the upper floor,
When N is an integer and the reinforcement pillars are provided up to the Nth floor, the height of the Nth reinforcement pillar provided on the Nth floor is set to a dimension larger than the height of the existing pillars on the Nth floor,
An existing column in which the location of the Nth reinforcing column facing the upper part of the existing column on the Nth floor is connected to the upper part of the existing column on the Nth floor, and the upper end of the Nth reinforcing column is located above the existing column on the Nth floor To the point of the above, so as not to move in the direction approaching the point, and to be movable in the direction away from the point,
Seismic reinforcement construction method characterized by that.
鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで、既存建物に連結された1階フレーム部分を構築し、
1階フレーム部分を構築したならば、既存建物の2階の既存柱に対向する第2補強柱を第1補強柱の上部に立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで、既存建物に連結された2階フレーム部分を構築し、
このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、
Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さを、N階の既存柱の高さよりも大きい寸法に設定し、
N階の既存柱の上部に対向する第N補強柱の箇所を、N階の既存柱の上部に連結するとともに、第N補強柱の上端をN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合する、
ことを特徴とする耐震補強工法。
Establish multiple 1st reinforcement columns facing existing columns on the 1st floor of an existing building of reinforced concrete or steel-framed reinforced concrete ramen structure, and the existing 1st floor of the existing building between the upper parts of the adjacent 1st reinforcement columns. By connecting with the first reinforcing beam facing the beam and connecting the first reinforcing column and the upper part of the existing column, the first floor frame part connected to the existing building is constructed,
If the first-floor frame part is constructed, the second reinforcing column facing the existing column on the second floor of the existing building is erected on the upper part of the first reinforcing column, and between the upper parts of the adjacent second reinforcing columns, By connecting with the second reinforcing beam facing the existing beam on the second floor, and connecting the second reinforcing column and the upper part of the existing column on the second floor, the second floor frame part connected to the existing building is constructed,
In this way, when building a seismic reinforcement frame adjacent to the construction surface of the existing building while sequentially connecting the frame part of the first floor from the lower floor to the upper floor,
When N is an integer and the reinforcement pillars are provided up to the Nth floor, the height of the Nth reinforcement pillar provided on the Nth floor is set to a dimension larger than the height of the existing pillars on the Nth floor,
An existing column in which the location of the Nth reinforcing column facing the upper part of the existing column on the Nth floor is connected to the upper part of the existing column on the Nth floor, and the upper end of the Nth reinforcing column is located above the existing column on the Nth floor To the point of the above, so as not to move in the direction approaching the point, and to be movable in the direction away from the point,
Seismic reinforcement construction method characterized by that.
第N補強柱の上端の、N階の既存柱よりも上方に位置する既存柱の箇所への接合は、モルタルを介してなされる、
ことを特徴とする請求項1または2記載の耐震補強工法。
Joining the upper end of the Nth reinforcing pillar to the existing pillar located above the existing pillar on the Nth floor is made through mortar.
The seismic reinforcement method according to claim 1 or 2.
第N補強柱の高さは、N階の既存柱の高さに、(N+1)階の既存柱の高さを加えた寸法であり、
第N補強柱の上端が接合されるN階の既存柱よりも上方に位置する既存柱の箇所は、(N+1)階の既存柱の上端である、
ことを特徴とする請求項1乃至3に何れか1項記載の耐震補強工法。
The height of the Nth reinforcing pillar is the dimension of the height of the existing pillar on the Nth floor plus the height of the existing pillar on the (N + 1) th floor,
The location of the existing column located above the existing column on the Nth floor to which the upper end of the Nth reinforcing column is joined is the upper end of the existing column on the (N + 1) th floor,
The seismic reinforcement method according to any one of claims 1 to 3, characterized in that.
既存柱を支える既存基礎に接合する補強基礎がさらに設けられ、
第1補強柱は、前記補強基礎および既存基礎から立設され、第1補強柱の下部は複数のアンカーを介してそれら基礎に連結されている、
ことを特徴とする請求項1乃至4に何れか1項記載の耐震補強工法。
Reinforcement foundations that are joined to existing foundations that support existing pillars are further provided,
The first reinforcement pillar is erected from the reinforcement foundation and the existing foundation, and the lower part of the first reinforcement pillar is connected to the foundation via a plurality of anchors.
The seismic reinforcement method according to any one of claims 1 to 4, wherein the seismic reinforcement method is provided.
鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向しその上部が既存柱に連結された第1補強柱を含んで構築された1階フレーム部分と、
第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された第2補強柱を含んで構築された2階フレーム部分と、
このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、
Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さは、N階の既存柱の高さよりも大きい寸法に設定され、
N階の既存柱の上部に対向する第N補強柱の箇所が、N階の既存柱の上部に連結されるとともに、第N補強柱の上端がN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合されている、
ことを特徴とする耐震補強フレーム。
A first-floor frame portion constructed to include a first reinforcing column that is opposed to an existing column on the first floor of an existing building of a reinforced concrete structure or a steel reinforced concrete ramen structure, and whose upper part is connected to the existing column;
A second-floor frame part constructed to include a second reinforcing column that is erected on the upper part of the first reinforcing column and that faces the existing column on the second floor of the existing building and whose upper part is connected to the existing column;
In this way, the seismic reinforcement frame constructed by connecting the frame part of the first floor from the lower floor to the upper floor to the existing building while being connected to the existing building,
When N is an integer and reinforcing columns are provided up to the Nth floor, the height of the Nth reinforcing column provided on the Nth floor is set to a size larger than the height of the existing columns on the Nth floor,
The location of the Nth reinforcing column facing the upper part of the existing column on the Nth floor is connected to the upper part of the existing column on the Nth floor, and the upper end of the Nth reinforcing column is located above the existing column on the Nth floor It is joined to the location of the pillar so that it cannot move in the direction approaching the location and is movable in the direction away from the location,
Seismic reinforcement frame characterized by that.
鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで構築された1階フレーム部分と、
既存建物の2階の既存柱に対向する第2補強柱を前記第1補強柱の上部に立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで構築された2階フレーム部分と、
このように下層階から上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、
Nを整数として補強柱をN階まで設ける場合に、N階に設ける第N補強柱の高さは、N階の既存柱の高さよりも大きい寸法に設定され、
N階の既存柱の上部に対向する第N補強柱の箇所が、N階の既存柱の上部に連結されるとともに、第N補強柱の上端がN階の既存柱よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能にかつ該箇所から離れる方向へ移動可能に接合されている、
ことを特徴とする耐震補強フレーム。
Establish multiple 1st reinforcement columns facing existing columns on the 1st floor of an existing building of reinforced concrete or steel-framed reinforced concrete ramen structure, and the existing 1st floor of the existing building between the upper parts of the adjacent 1st reinforcement columns. First floor frame part constructed by connecting the first reinforcing column and the upper part of the existing column, connected by the first reinforcing beam facing the beam,
A second reinforcing column facing the existing column on the second floor of the existing building is erected on the upper part of the first reinforcing column, and the second beam between the adjacent second reinforcing columns is opposed to the existing beam on the second floor. 2nd floor frame part constructed by connecting with 2 reinforcing beams and connecting the 2nd reinforcing pillar and the upper part of the existing pillar on the 2nd floor,
In this way, the seismic reinforcement frame constructed by connecting the frame part of the first floor from the lower floor to the upper floor to the existing building while being connected to the existing building,
When N is an integer and reinforcing columns are provided up to the Nth floor, the height of the Nth reinforcing column provided on the Nth floor is set to a size larger than the height of the existing columns on the Nth floor,
The location of the Nth reinforcing column facing the upper part of the existing column on the Nth floor is connected to the upper part of the existing column on the Nth floor, and the upper end of the Nth reinforcing column is located above the existing column on the Nth floor It is joined to the location of the pillar so that it cannot move in the direction approaching the location and is movable in the direction away from the location,
Seismic reinforcement frame characterized by that.
JP2015016277A 2015-01-30 2015-01-30 Seismic strengthening method and seismic strengthening frame for existing buildings Active JP5873194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016277A JP5873194B2 (en) 2015-01-30 2015-01-30 Seismic strengthening method and seismic strengthening frame for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016277A JP5873194B2 (en) 2015-01-30 2015-01-30 Seismic strengthening method and seismic strengthening frame for existing buildings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010082064A Division JP5711897B2 (en) 2010-03-31 2010-03-31 Seismic strengthening method and seismic strengthening frame for existing buildings

Publications (2)

Publication Number Publication Date
JP2015098780A true JP2015098780A (en) 2015-05-28
JP5873194B2 JP5873194B2 (en) 2016-03-01

Family

ID=53375557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016277A Active JP5873194B2 (en) 2015-01-30 2015-01-30 Seismic strengthening method and seismic strengthening frame for existing buildings

Country Status (1)

Country Link
JP (1) JP5873194B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020332A (en) * 2015-07-14 2017-01-26 宇部興産株式会社 Reinforcing structure
JP2018096123A (en) * 2016-12-14 2018-06-21 株式会社竹中工務店 Perimeter column reinforcing structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350859A (en) * 2004-06-08 2005-12-22 Nippon Steel Corp Seismic strengthening structure of existing building
JP2007138472A (en) * 2005-11-16 2007-06-07 Fujita Corp Earthquake resistant reinforcing method of existing building of reinforced concrete construction frame structure
JP2010047926A (en) * 2008-08-20 2010-03-04 Kurosawa Construction Co Ltd Reinforcement structure of existing building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350859A (en) * 2004-06-08 2005-12-22 Nippon Steel Corp Seismic strengthening structure of existing building
JP2007138472A (en) * 2005-11-16 2007-06-07 Fujita Corp Earthquake resistant reinforcing method of existing building of reinforced concrete construction frame structure
JP2010047926A (en) * 2008-08-20 2010-03-04 Kurosawa Construction Co Ltd Reinforcement structure of existing building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020332A (en) * 2015-07-14 2017-01-26 宇部興産株式会社 Reinforcing structure
JP2018096123A (en) * 2016-12-14 2018-06-21 株式会社竹中工務店 Perimeter column reinforcing structure

Also Published As

Publication number Publication date
JP5873194B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP4247496B2 (en) Seismic reinforcement structure
JP5711897B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JPH09264049A (en) Aseismic structure of building
JP2007162354A (en) Reinforcing method for existing building, and building reinforced by the method
JP5873194B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JP5827804B2 (en) Structure
JP6122740B2 (en) Seismic reinforcement structure
JP5827805B2 (en) Structure
JP3104679U (en) Braceless reinforced concrete construction
JP6261964B2 (en) Seismic reinforcement structure
JP4406270B2 (en) Seismic reinforcement extension method of existing building and earthquake resistance reinforcement extension building
JP5946165B2 (en) Seismic reinforcement structure
CN105275113A (en) Rhombus steel grid shear wall structure
JP3273357B2 (en) Seismic building structure
JP2006241892A (en) Aseismatic structure of house and its construction method
JP7281165B2 (en) Column-beam frame and frame
JP6951851B2 (en) High-rise earthquake-resistant building
JP2013227775A (en) Seismic strengthening structure and method for existing building
JP2012144864A (en) Structure
Taqiuddin¹ et al. NUMERICAL STUDY ON BEHAVIOUR OF NON-TOWER BUILDING ATTACHED WITH TOWER
JP5541520B2 (en) Underground construction
WO2014033938A1 (en) Building structure, construction method for same, and beam-and-column joints for building structures
JP6422802B2 (en) Building frame structure
JP2006037530A (en) Building structure skeleton and building structure making use thereof
JP2020097854A (en) Earthquake resistant facility for building using wire and the like

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160114

R150 Certificate of patent or registration of utility model

Ref document number: 5873194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250