JP2015089905A - Method for producing regenerated thermoplastic resin composition - Google Patents

Method for producing regenerated thermoplastic resin composition Download PDF

Info

Publication number
JP2015089905A
JP2015089905A JP2013229705A JP2013229705A JP2015089905A JP 2015089905 A JP2015089905 A JP 2015089905A JP 2013229705 A JP2013229705 A JP 2013229705A JP 2013229705 A JP2013229705 A JP 2013229705A JP 2015089905 A JP2015089905 A JP 2015089905A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
talc
product
pulverized product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013229705A
Other languages
Japanese (ja)
Other versions
JP5692667B1 (en
Inventor
康夫 喜多
Yasuo Kita
康夫 喜多
運 北代
Un Kitashiro
運 北代
宣夫 西川
Nobuo Nishikawa
宣夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013229705A priority Critical patent/JP5692667B1/en
Application granted granted Critical
Publication of JP5692667B1 publication Critical patent/JP5692667B1/en
Publication of JP2015089905A publication Critical patent/JP2015089905A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a regenerated thermoplastic resin composition, which composition is used for producing a thermoplastic resin composition molding having excellent physical properties, from a crushed product of waste material of the thermoplastic resin composition molding containing talc-based inorganic fillers.SOLUTION: The method for producing the regenerated thermoplastic resin composition, which composition is used for producing the thermoplastic resin composition molding, from the crushed product of waste material of the thermoplastic resin composition molding containing talc-based inorganic fillers comprises the steps of: preparing the crushed product of waste material of the thermoplastic resin composition molding containing talc-based inorganic fillers; adding talc having 1-10 μm average particle diameter to the crushed product or a molten product thereof to obtain a mixture; and heat/melting the obtained mixture to obtain another molten product of the thermoplastic resin composition.

Description

本発明は、タルクを主成分とする無機材料フィラーを含有する熱可塑性樹脂組成物成形体の廃棄品の粉砕物を原料として熱可塑性樹脂組成物成形体製造用の再生熱可塑性樹脂組成物を製造する方法に関する。さらに詳しくは、本発明は、タルクを主成分とする無機材料フィラーを含有する熱可塑性樹脂組成物成形体の廃棄品の粉砕物から優れた物性値を示す熱可塑性樹脂組成物成形体の製造に用いることのできる再生熱可塑性樹脂組成物を製造する方法に関する。   The present invention produces a recycled thermoplastic resin composition for producing a thermoplastic resin composition molded article from a pulverized product of a thermoplastic resin composition molded article containing an inorganic material filler containing talc as a main component. On how to do. More specifically, the present invention relates to the production of a thermoplastic resin composition molded article having excellent physical properties from a pulverized product of a thermoplastic resin composition molded article containing an inorganic material filler mainly composed of talc. The present invention relates to a method for producing a recycled thermoplastic resin composition that can be used.

各種樹脂成形体の製造のために用いる樹脂組成物の多くは、ポリプロピレンを代表例とするポリオレフィン、塩化ビニル樹脂、ABS樹脂、アクリル樹脂などの熱可塑性樹脂(熱可塑性合成樹脂)に、必要に応じてエラストマー、無機材料フィラー(例、タルク、あるいはシリカ、マイカ、クレー、炭酸カルシウム)、有機材料フィラー(例、パルプ粉、合成樹脂粉)、顔料及び/又は各種の添加剤(例、酸化防止剤、帯電防止剤、難燃剤、滑剤)などの各種の配合材料を添加して調製した熱可塑性樹脂組成物である。そして、そのようにして調製された熱可塑性樹脂組成物は、加熱溶融されたのち所望の形状の成形体とされ、自動車内装部品、自動車外装部品、包装容器、家庭用電気製品の筐体、事務用品、家庭用日用品などの各種の用途に用いられる。   Many of the resin compositions used for the production of various resin molded products are used for thermoplastic resins (thermoplastic synthetic resins) such as polyolefin, vinyl chloride resin, ABS resin, acrylic resin, etc. Elastomers, inorganic material fillers (eg, talc or silica, mica, clay, calcium carbonate), organic material fillers (eg, pulp powder, synthetic resin powder), pigments and / or various additives (eg, antioxidants) , A thermoplastic resin composition prepared by adding various compounding materials such as antistatic agents, flame retardants, and lubricants). The thermoplastic resin composition thus prepared is heated and melted to form a molded body having a desired shape, and is used as an automobile interior part, an automobile exterior part, a packaging container, a housing for household electrical appliances, office work. Used for various purposes such as daily necessities and household goods.

近年、各種樹脂材料の再利用の要求が高まり、熱可塑性樹脂組成物成形体の廃棄品(廃材)についても、その再利用(すなわち、熱可塑性樹脂組成物成形体廃材の再資源化)の研究が進んでいる。しかしながら、前述のように、熱可塑性樹脂組成物は、その成形体への変換の際に加熱溶融工程を経るため、再資源化された熱可塑性樹脂組成物は、未使用の熱可塑性樹脂(いわゆるバージン材)に各種配合材料を配合して調製した熱可塑性樹脂組成物に比べて各種の物性の低下が起こりやすい。従って、熱可塑性樹脂組成物成形体の廃棄品の再資源化により得られた再生樹脂組成物をそのまま成形体としても、熱可塑性樹脂としてバージン材を用いて調製した熱可塑性樹脂組成物(バージン熱可塑性樹脂組成物)の使用を前提として定められた各種物性の規格を満たす成形体とすることが難しい。このため、再生樹脂組成物に、熱可塑性樹脂のバージン材、エラストマー、フィラー、及び/又は各種の添加剤を追加して、再生熱可塑性樹脂組成物の成分調整を行うことにより、再生樹脂組成物を主原料としながらも、熱可塑性樹脂としてバージン熱可塑性樹脂の使用を前提として定められた各種物性の規格を満たす成形体の製造を可能とする再生熱可塑性樹脂組成物を製造する試みがなされている。   In recent years, the demand for reuse of various resin materials has increased, and the recycling of thermoplastic resin composition molded products (waste materials) has also been researched (that is, recycling of thermoplastic resin composition molded product waste materials). Is progressing. However, as described above, since the thermoplastic resin composition undergoes a heating and melting step when converted into a molded body, the recycled thermoplastic resin composition is an unused thermoplastic resin (so-called “so-called thermoplastic resin”). Various physical properties are likely to be deteriorated as compared with a thermoplastic resin composition prepared by blending various blended materials with virgin material. Therefore, a thermoplastic resin composition (virgin heat) prepared by using a virgin material as a thermoplastic resin, even if the recycled resin composition obtained by recycling the waste product of the molded thermoplastic resin composition is used as it is. It is difficult to obtain a molded product that satisfies various physical property standards determined on the premise of using a plastic resin composition). For this reason, the recycled resin composition is prepared by adding the virgin material, elastomer, filler, and / or various additives of the thermoplastic resin to the recycled resin composition and adjusting the components of the recycled thermoplastic resin composition. Attempts have been made to produce recycled thermoplastic resin compositions that enable the production of molded products that meet the various physical property standards established on the premise of the use of virgin thermoplastic resins as thermoplastic resins. Yes.

例えば、特許文献1には、市場より回収された熱可塑性樹脂を含む回収材料を、粉砕し、次いで押し出し機を用いてペレット化を行う再生プラスチック材料の製造において、未使用の熱可塑性樹脂を80質量%以内の量にて添加することの記載がある。   For example, in Patent Document 1, 80% of unused thermoplastic resin is used in the production of recycled plastic material in which a recovered material containing a thermoplastic resin recovered from the market is pulverized and then pelletized using an extruder. There is a description of addition in an amount within mass%.

特許文献2には、熱可塑性樹脂を含む写真感光材料のリサイクルに際して、リサイクル工程で発生する熱可塑性樹脂の熱劣化あるいは変質を防ぐために、酸化防止剤とカーボンブラックを添加することの記載がある。   Patent Document 2 describes that when a photographic photosensitive material containing a thermoplastic resin is recycled, an antioxidant and carbon black are added to prevent thermal deterioration or alteration of the thermoplastic resin generated in the recycling process.

特許文献3には、黒色顔料あるいは有彩色顔料を含有する熱可塑性樹脂組成物製品の再利用に際して、光遮蔽効果を持つ白色顔料と色調を整える有彩色顔料とを、再利用対象の熱可塑性樹脂組成物製品の粉砕物100質量部に対して、それぞれ0.01〜20質量部となる量にて添加して再生樹脂組成物とすることにより、実用的に問題のない色に着色された樹脂成形体の製造を可能とする再生熱可塑性樹脂組成物を得ることができる旨の記載がある。この文献にはさらに、再生熱可塑性樹脂組成物の製造に際して、さらに、黒色顔料、無機材料フィラー、熱可塑性樹脂、あるいはエラストマーを添加することができることの記載がある。ここで、熱可塑性樹脂の添加量の範囲としては、0〜99質量%、エラストマーの添加量の範囲としては、0〜40質量%、そしてフィラーの添加量の範囲としては、0〜50質量%の記載がある。   In Patent Document 3, when a thermoplastic resin composition product containing a black pigment or a chromatic pigment is reused, a white pigment having a light shielding effect and a chromatic pigment for adjusting the color tone are used as a thermoplastic resin to be reused. Resin colored in a practically no problem color by adding 0.01 to 20 parts by mass with respect to 100 parts by mass of the pulverized product of the composition product to obtain a regenerated resin composition There is a description that a regenerated thermoplastic resin composition that enables the production of a molded product can be obtained. This document further describes that a black pigment, an inorganic material filler, a thermoplastic resin, or an elastomer can be further added in the production of the recycled thermoplastic resin composition. Here, the range of the addition amount of the thermoplastic resin is 0 to 99% by mass, the range of the addition amount of the elastomer is 0 to 40% by mass, and the range of the addition amount of the filler is 0 to 50% by mass. Is described.

特開2001−254024号公報JP 2001-254024 A 特開2002−139819号公報JP 2002-139819 A WO2003/095531公報WO2003 / 095531

上述のように、熱可塑性樹脂組成物成形体(成形体製品)の廃棄品の再利用に際しては、再生対象となる成形体製品を粉砕し、これに熱可塑性樹脂、エラストマー、フィラー、顔料などを添加して再生熱可塑性樹脂組成物とすることにより、再生熱可塑性樹脂組成物から製造される成形体の物性を高め、バージン材を熱可塑性樹脂として用いて製造した成形体の物性に遜色のない物性の成形体が得られるようにする技術が、これまでに提案されている。すなわち、熱可塑性樹脂組成物成形体製品の廃材中の熱可塑性樹脂組成物は、熱可塑性樹脂の成形工程において加熱されるため熱劣化が発生しており、さらに実際に様々な環境下で少なくない期間使用された成形体製品に含まれる熱可塑性樹脂やエラストマーは一般に、種々の物性に関して劣化が発生している。さらに、再利用の対象となる熱可塑性樹脂組成物成形体製品を再生処理するに際して、その原料となる成形体製品は、種類、劣化の程度などが互いに異なる種々の成形体製品の混合物となることが一般的である。   As described above, when reusing a discarded product of a molded product (molded product) of a thermoplastic resin composition, the molded product to be recycled is crushed, and a thermoplastic resin, an elastomer, a filler, a pigment, etc. By adding a recycled thermoplastic resin composition, the physical properties of the molded product produced from the recycled thermoplastic resin composition are improved, and the physical properties of the molded product produced using the virgin material as a thermoplastic resin are comparable. Techniques for obtaining molded articles having physical properties have been proposed so far. That is, the thermoplastic resin composition in the waste material of the molded product of the thermoplastic resin composition is heated in the molding process of the thermoplastic resin, and thus is thermally deteriorated. In general, the thermoplastic resin and elastomer contained in the molded product used for a period of time have deteriorated with respect to various physical properties. Furthermore, when the thermoplastic resin composition molded product to be reused is recycled, the molded product used as the raw material should be a mixture of various molded products having different types and degrees of deterioration. Is common.

しかしながら、これまでに知られている熱可塑性樹脂組成物成形体製品の廃棄品の再生技術は、そのような種類、劣化の程度などが互いに異なる種々の熱可塑性樹脂組成物成形体製品の混合物を再生原料として用いることを想定していることは少なく、従って、再生技術としてこれまでに知られている方法は、単に、再利用対象の熱可塑性樹脂組成物成形体製品の粉砕物に熱可塑性樹脂などの追加成分を一定量加えることによって、当該粉砕物の成分組成を調整し、そしてこのように成分組成が調整された再生熱可塑性樹脂組成物を用いて加熱成形して得られた成形体の改良された物性を明らかにするものであった。   However, the known recycling technology for waste products of thermoplastic resin composition molded products is a mixture of various thermoplastic resin composition molded products having different types and different degrees of deterioration. It is rarely assumed to be used as a recycle raw material. Therefore, the method known so far as a recycle technique is simply a thermoplastic resin applied to a pulverized product of a molded product of a thermoplastic resin composition to be reused. Of the molded product obtained by adjusting the component composition of the pulverized product by heat-molding using the recycled thermoplastic resin composition having the component composition adjusted as described above. The improved physical properties were clarified.

以上に述べた理由から、熱可塑性樹脂組成物成形体製品の廃棄品の再利用に際しては、添加すべき成分の添加量については、従来技術により明らかにされている極めて広い添加量範囲を参考にして、試行錯誤的な実験を行うことによって、所望の物性値を示す成形体を製造することのできる再生熱可塑性樹脂組成物とするための添加量を決定するという、効率において劣る方法しか知られていなかった。特に、熱可塑性樹脂組成物の成分組成が不明の成形体製品、特にそのような成形体製品の混合物から、所望の物性を示す成形体製品の製造を可能とする再生熱可塑性樹脂組成物を得るための添加成分の選択と好適な添加量の決定には、効率の悪い試行錯誤的な繰り返しが必要であった。   For the reasons described above, when reusing a waste product of a molded product of a thermoplastic resin composition, the additive amount of the component to be added should be referred to the extremely wide additive amount range clarified by the prior art. In addition, by performing trial and error experiments, only an inferior efficiency method is known in which the addition amount for making a recycled thermoplastic resin composition capable of producing a molded article having a desired physical property value is determined. It wasn't. In particular, a molded thermoplastic product whose component composition of the thermoplastic resin composition is unknown, particularly a recycled thermoplastic resin composition capable of producing a molded molded product exhibiting desired physical properties is obtained from a mixture of such molded product. In order to select an additive component and to determine a suitable addition amount, it was necessary to repeat trial and error with low efficiency.

なお、所望の物性を示す成形体製品の製造を可能とする再生熱可塑性樹脂組成物を得るために、再生熱可塑性樹脂組成物に、熱可塑性樹脂としてバージン材を用いた熱可塑性樹脂組成物の組成を参考にして成分調整して得たバージン材含有熱可塑性樹脂組成物を配合することによる方法を利用することも可能であるが、この方法は、熱可塑性樹脂組成物成形体製品の廃棄品の再利用との目的を考慮すると、充分満足できる方法ということはできない。   In order to obtain a recycled thermoplastic resin composition that enables production of a molded product exhibiting desired physical properties, a thermoplastic resin composition using a virgin material as the thermoplastic resin is used for the recycled thermoplastic resin composition. Although it is possible to use a method by blending a virgin material-containing thermoplastic resin composition obtained by adjusting the components with reference to the composition, this method is a waste product of a molded product of a thermoplastic resin composition. Considering the purpose of reuse, it is not a satisfactory method.

本発明の発明者は、上記課題の解決を目的として研究を行った結果、大部分の熱可塑性樹脂組成物成形体製品には、フィラーとして、タルクあるいはタルクを主成分とする無機材料フィラーが、5〜30質量%、特には5〜25質量%含まれていること、再生熱可塑性樹脂組成物の加熱成形によって得られる成形体の諸物性の多くは、再生熱可塑性樹脂組成物に含まれるタルクの平均粒子径の選択、そしてさらにタルクを主成分とする無機材料フィラーの総量(無機材料フィラー全体の質量)の調整により調節することができること、そして再生熱可塑性樹脂組成物に含まれる無機材料フィラーの総量の調整には、再利用対象の熱可塑性樹脂組成物成形体製品に含まれる無機材料フィラーの量を予め測定(あるいは確認)した上で、別に入手あるいは作製した「再生熱可塑性樹脂組成物のタルク含量と、当該再生熱可塑性樹脂組成物の加熱成形により得られる成形体の物性値との相関関係を示すデータ」を参考にして、再利用対象の熱可塑性樹脂組成物成形体製品の粉砕物に追加すべきタルク量を決定する方法を利用することによって、所望の物性値を示す成形体の製造に用いることが可能となる再生熱可塑性樹脂組成物が効率よく製造できることを見いだし、本発明に到達した。   The inventor of the present invention, as a result of research for the purpose of solving the above problems, as a filler in most thermoplastic resin composition molded products, talc or an inorganic material filler containing talc as a main component, 5-30% by mass, in particular 5-25% by mass, and many of the physical properties of the molded product obtained by thermoforming the recycled thermoplastic resin composition are talc contained in the recycled thermoplastic resin composition. Can be adjusted by selection of the average particle size of the resin and adjustment of the total amount of inorganic material filler mainly composed of talc (the mass of the entire inorganic material filler), and the inorganic material filler contained in the recycled thermoplastic resin composition In order to adjust the total amount, the amount of the inorganic material filler contained in the thermoplastic resin composition molded product to be reused is measured (or confirmed) in advance and obtained separately. Or refer to the data that shows the correlation between the talc content of the recycled thermoplastic resin composition and the physical properties of the molded product obtained by thermoforming the recycled thermoplastic resin composition. Recycled thermoplastic resin composition that can be used for the production of a molded product exhibiting desired physical properties by utilizing a method for determining the amount of talc to be added to the pulverized product of the molded product of The inventors have found that a product can be produced efficiently and have reached the present invention.

従って、本発明は、タルク量が90質量%以上の無機材料フィラーを含有する熱可塑性樹脂組成物の成形体廃棄品の粉砕物から熱可塑性樹脂組成物成形体製造用の再生熱可塑性樹脂組成物を製造する方法であって、下記の工程を含む方法にある:
タルク量が90質量%以上の無機材料フィラーを含有する熱可塑性樹脂組成物の成形体廃棄品の粉砕物を用意する工程;
上記粉砕物もしくはその溶融物に平均粒子径が1〜10μmのタルクを添加して、該粉砕物もしくはその溶融物と添加したタルクとの混合物を調製する工程;そして、
上記混合物を加熱溶融して、熱可塑性樹脂組成物の溶融物を得る工程。
Therefore, the present invention provides a recycled thermoplastic resin composition for producing a molded product of a thermoplastic resin composition from a pulverized product of a molded product waste product of a thermoplastic resin composition containing an inorganic material filler having a talc amount of 90% by mass or more. In a method comprising the following steps:
A step of preparing a pulverized product of a molded product waste product of a thermoplastic resin composition containing an inorganic material filler having a talc amount of 90% by mass or more;
Adding talc having an average particle size of 1 to 10 μm to the pulverized product or melt thereof to prepare a mixture of the pulverized product or melt thereof and the added talc; and
A step of heating and melting the mixture to obtain a melt of the thermoplastic resin composition.

本発明の再生熱可塑性樹脂組成物を製造する方法の好ましい態様を以下に記載する。
(1) 上記粉砕物もしくはその溶融物に添加するタルクの平均粒子径が2〜7μmの範囲にある。
(2)溶融物として得た熱可塑性樹脂組成物を粒状物とする工程をさらに含む。
(3)上記粉砕物が、タルク量が95質量%以上の無機材料フィラーを含有する熱可塑性樹脂組成物の成形体廃棄品の粉砕物である。
(4)上記粉砕物もしくはその溶融物にタルクを添加する工程の実施に先立って、上記粉砕物に含まれる無機材料フィラーの量を測定し、上記粉砕物もしくはその溶融物に添加するタルクの量と、製造目的の再生熱可塑性樹脂組成物に含有させるべき無機材料フィラーの量との差分とする。
(5)上記粉砕物に含まれる無機材料フィラーの量を測定する工程を、粉砕物の燃焼により生成する灰分の秤量を介する方法により行う。
(6)上記粉砕物に含まれる無機材料フィラーの量を測定する工程を、粉砕物の比重を測定する操作を介する方法により行う。
(7)上記混合物に含有させる無機材料フィラーの量を、別に作製した、再生熱可塑性樹脂組成物から製造する熱可塑性樹脂組成物成形体について想定された物性値と混合物中のタルク量との相関関係を示すデータを参照して決定した量とする。
Preferred embodiments of the method for producing the recycled thermoplastic resin composition of the present invention are described below.
(1) The average particle diameter of talc added to the pulverized product or its melt is in the range of 2 to 7 μm.
(2) It further includes a step of making the thermoplastic resin composition obtained as a melt into a granular material.
(3) The pulverized product is a pulverized product of a molded product waste product of a thermoplastic resin composition containing an inorganic material filler having a talc amount of 95% by mass or more.
(4) Prior to performing the step of adding talc to the pulverized product or its melt, the amount of inorganic material filler contained in the pulverized product is measured, and the amount of talc added to the pulverized product or its melt And the amount of the inorganic material filler to be contained in the recycled thermoplastic resin composition for manufacturing purposes.
(5) The step of measuring the amount of the inorganic material filler contained in the pulverized product is performed by a method through weighing of ash generated by the combustion of the pulverized product.
(6) The step of measuring the amount of the inorganic material filler contained in the pulverized product is performed by a method through an operation of measuring the specific gravity of the pulverized product.
(7) Correlation between the physical property value assumed for the thermoplastic resin composition molded body produced from the recycled thermoplastic resin composition produced separately, and the amount of talc in the mixture, with respect to the amount of inorganic material filler to be contained in the mixture The amount is determined by referring to the data indicating the relationship.

本発明はさらに、本発明の製造方法で製造された再生熱可塑性樹脂組成物の加熱溶融を介して熱可塑性樹脂組成物成形体を製造する方法も提供する。   The present invention further provides a method for producing a thermoplastic resin composition molded body through heating and melting of the regenerated thermoplastic resin composition produced by the production method of the present invention.

本発明の製造方法により、熱可塑性樹脂組成物成形体製品の廃棄品から、所望の物性値を示す熱可塑性樹脂組成物成形体の製造に有効な再生熱可塑性樹脂組成物を製造することが可能となる。   By the production method of the present invention, it is possible to produce a regenerated thermoplastic resin composition effective for producing a thermoplastic resin composition molded article exhibiting a desired physical property value from a discarded product of the thermoplastic resin composition molded article. It becomes.

実施例1、2そして比較例1、2のそれぞれで製造された再生熱可塑性樹脂組成物から成形された成形体試料の引張弾性率の相違をグラフとして示す図である。It is a figure which shows the difference of the tensile elasticity modulus of the molded object sample shape | molded from the reproduction | regeneration thermoplastic resin composition manufactured in each of Example 1, 2 and Comparative Example 1,2. 実施例1、2そして比較例1、2のそれぞれで製造された再生熱可塑性樹脂組成物から成形された成形体試料のシャルピー衝撃強さの相違をグラフとして示す図である。It is a figure which shows the difference of the Charpy impact strength of the molded object sample shape | molded from the reproduction | regeneration thermoplastic resin composition manufactured in each of Example 1, 2 and Comparative Example 1, 2 as a graph.

本発明の再生熱可塑性樹脂組成物の製造方法は、熱可塑性樹脂組成物成形体製品の廃棄品(廃材)を原料として用いる。原料として用いる熱可塑性樹脂組成物成形体製品の廃棄品に特に制限はないが、例えば、各種電気製品の合成樹脂部材、自動車の合成樹脂製の内装部材や外装部材、オフィスで使用する各種合成樹脂部材(但し、合成樹脂部材は、熱可塑性樹脂組成物の成形により製造したもの)の廃棄品をあげることができる。また、熱可塑性樹脂組成物成形体の製造に際して欠陥品(あるいは不良品)として発生した成形体(いわゆる工程端材)も再利用の対象とすることができる。ここで熱可塑性樹脂組成物は、熱可塑性樹脂に、タルクを主成分とする無機材料フィラーが配合された組成物であって、任意に、エラストマー、有機材料フィラー、顔料などの成分が添加されていてもよい。なお、本発明の再生熱可塑性樹脂組成物の原料として用いる熱可塑性樹脂組成物成形体製品の廃材は、タルク含量が90質量%以上(好ましくは95質量%以上)の無機材料フィラーを含むものである。   The method for producing a recycled thermoplastic resin composition of the present invention uses a discarded product (waste material) of a molded product of a thermoplastic resin composition as a raw material. The thermoplastic resin composition molded product used as a raw material is not particularly limited in waste products. For example, synthetic resin members for various electrical products, interior and exterior members made of synthetic resins for automobiles, and various synthetic resins used in offices. Examples of the waste of the member (provided that the synthetic resin member is produced by molding a thermoplastic resin composition) can be given. In addition, a molded body (so-called process end material) generated as a defective product (or defective product) during the production of the thermoplastic resin composition molded product can also be reused. Here, the thermoplastic resin composition is a composition in which an inorganic material filler mainly composed of talc is blended with a thermoplastic resin, and optionally, components such as an elastomer, an organic material filler, and a pigment are added. May be. The waste material of the molded product of the thermoplastic resin composition used as a raw material for the recycled thermoplastic resin composition of the present invention contains an inorganic material filler having a talc content of 90% by mass or more (preferably 95% by mass or more).

熱可塑性樹脂についても特に限定はないが、代表的な熱可塑性樹脂としては、ポリプロピレン(少量の低分子オレフィンが含まれていることが多い)、ポリエチレン、エチレン−プロピレン共重合体などのポリオレフィンをあげることができるが、ポリスチレン、ABS樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フッ素樹脂、ポリアミド、アセタール樹脂、ポリカーボネートであってもよい。   There are no particular limitations on the thermoplastic resin, but typical thermoplastic resins include polyolefins such as polypropylene (often contains a small amount of low-molecular olefin), polyethylene, and ethylene-propylene copolymer. However, polystyrene, ABS resin, vinyl chloride resin, vinyl acetate resin, fluororesin, polyamide, acetal resin, and polycarbonate may be used.

本発明の再生熱可塑性樹脂組成物の製造方法の実施に際しては、まず、タルク量が90質量%以上の無機材料フィラーを含有する熱可塑性樹脂組成物の成形体廃棄品の粉砕物を用意する。この成形体廃棄品の粉砕物は、自ら成形体廃棄品を回収し、これを粉砕して製造しても良く、あるいは成形体廃棄品粉砕物として入手してもよい。なお、粉砕物とされる成形体廃棄品は、同一の熱可塑性樹脂組成物の成形体の集合体であることが好ましいが、大部分が同一の熱可塑性樹脂を用いた成形体(熱可塑性樹脂に配合されている無機材料フィラーの量や組成については、無機材料フィラーの90質量%以上がタルクであれば、特に制限はない)の集合体(回収物)であれば、特に問題はない。   In carrying out the method for producing a recycled thermoplastic resin composition of the present invention, first, a pulverized product of a molded product waste product of a thermoplastic resin composition containing an inorganic material filler having a talc amount of 90% by mass or more is prepared. The pulverized product of the molded product waste may be produced by collecting the molded product waste and pulverizing it, or may be obtained as a pulverized product of the molded product waste. The molded product waste to be pulverized is preferably an aggregate of molded products of the same thermoplastic resin composition, but most of them are molded products using the same thermoplastic resin (thermoplastic resin). The amount and composition of the inorganic material filler blended in is not particularly limited as long as it is an aggregate (recovered material) as long as 90% by mass or more of the inorganic material filler is talc).

熱可塑性樹脂組成物成形体の廃棄品の粉砕物のサイズについても特に制限はなく、従来の熱可塑性樹脂組成物成形体の廃棄品の再利用の際に用いられるサイズに準じたサイズが利用される。   There is no particular limitation on the size of the pulverized product of the thermoplastic resin composition molded product, and a size corresponding to the size used when reusing the waste product of the conventional thermoplastic resin composition molded product is used. The

次に、好ましくは、熱可塑性樹脂組成物粉砕物に含まれる無機材料フィラーの量を測定する。この無機材料フィラーの量の測定方法についても特に限定はないが、通常は、粉砕物の一部を採取して粉砕物試料を得た上で、この粉砕物試料の質量を測定し、粉砕物試料を加熱燃焼させることにより、熱可塑性樹脂成分やエラストマー成分などの可燃性成分を除去させて不燃成分(燃焼残渣、灰分)を得て、その質量を測定し、これらの作業により得られた粉砕物試料の質量と燃焼残渣の質量(無機材料フィラーの質量として近似することができる)とから、熱可塑性樹脂組成物粉砕物中の無機材料フィラーの量を確認することができる。   Next, preferably, the amount of the inorganic material filler contained in the pulverized thermoplastic resin composition is measured. The method for measuring the amount of the inorganic material filler is not particularly limited, but usually, a part of the pulverized material is collected to obtain a pulverized material sample, and then the mass of the pulverized material sample is measured. By burning the sample with heat, combustible components such as thermoplastic resin components and elastomer components are removed to obtain incombustible components (combustion residue, ash), the mass is measured, and the pulverization obtained by these operations The amount of the inorganic material filler in the pulverized thermoplastic resin composition can be confirmed from the mass of the physical sample and the mass of the combustion residue (can be approximated as the mass of the inorganic material filler).

熱可塑性樹脂組成物粉砕物に含まれる無機材料フィラーの量はまた、熱可塑性樹脂組成物粉砕物の比重(粉砕物を溶融して一定の体積の固形物とした後、この固形物の体積と質量から得られる比重、真比重)の測定値、熱可塑性樹脂の比重、そして無機材料フィラーの比重(主成分のタルクの比重として近似できる)から下記の計算式を利用して算出することもできる。
1/粉砕物の真比重=(熱可塑性樹脂量/熱可塑性樹脂比重)+(タルク量/タルク比重)。ただし、熱可塑性樹脂量+タルク量=1とする。
The amount of the inorganic material filler contained in the pulverized thermoplastic resin composition is also determined by the specific gravity of the pulverized thermoplastic resin composition (after melting the pulverized product into a solid of a certain volume, It can also be calculated from the measured value of specific gravity (true specific gravity obtained from mass), the specific gravity of the thermoplastic resin, and the specific gravity of the inorganic material filler (can be approximated as the specific gravity of the main component talc) using the following formula: .
1 / true specific gravity of pulverized product = (thermoplastic resin amount / thermoplastic resin specific gravity) + (talc amount / talc specific gravity). However, the amount of thermoplastic resin + the amount of talc = 1.

次に、上記粉砕物もしくはその溶融物にタルクを添加して、無機材料フィラーを含有する粉砕物もしくはその溶融物とタルクとの混合物を調製する。本発明の再生熱可塑性樹脂組成物の製造方法では、タルクとして平均粒子径が1〜10μm(好ましくは2〜7μm、さらに好ましくは、3〜6μm)のタルクを用いる。ここで平均粒子径とは、個数平均粒子径を意味する。このような平均粒子径を持つタルクは市販されている。従って、本発明の再生熱可塑性樹脂組成物の製造法において用いるタルクは、市販されている様々なサイズ(平均粒子径)を持つタルクから選択して使用してもよく、あるいは自ら、そのようなサイズのタルクを製造して使用してもよい。   Next, talc is added to the pulverized product or a melt thereof to prepare a pulverized product containing an inorganic material filler or a mixture of the melt and talc. In the method for producing a recycled thermoplastic resin composition of the present invention, talc having an average particle diameter of 1 to 10 μm (preferably 2 to 7 μm, more preferably 3 to 6 μm) is used as talc. Here, the average particle diameter means the number average particle diameter. Talc having such an average particle size is commercially available. Therefore, the talc used in the method for producing the recycled thermoplastic resin composition of the present invention may be selected from commercially available talc having various sizes (average particle diameter), or such talc itself. Size talc may be manufactured and used.

なお、上記の粉砕物もしくはその溶融物にタルクを添加して、無機材料フィラーを含有する粉砕物もしくはその溶融物とタルクとの混合物を調製する工程にて添加されるタルクの量は、混合物中におけるタルクを含む無機材料フィラーの合計量が別に定めた量となるような量とすることが好ましい。ここで、「別に定めた量」とは、例えば、同一もしくは類似の熱可塑性樹脂(バージン材、あるいは再生熱可塑性樹脂)とタルクを主成分とする無機材料フィラーとを主材料とする熱可塑性樹脂組成物に含まれるタルク量と当該熱可塑性樹脂組成物に加熱成形により得られた成形体の物性値との間の相関関係、そして再生熱可塑性樹脂組成物を用いて製造される成形体(製造目的の成形体)について望まれる各種物性値を参照して定められるタルク量であり、通常は、5〜50質量%の範囲にある。このような方法を利用することにより、望まれた各種物性値を示す成形体の製造を可能にする再生熱可塑性樹脂組成物を、容易にあるいは少ない試行錯誤を介することにより製造することが可能となる。   In addition, the amount of talc added in the step of preparing the pulverized product containing the inorganic material filler or the mixture of the melt and talc by adding talc to the pulverized product or the melt thereof is as follows. It is preferable that the total amount of the inorganic material filler containing talc is an amount determined separately. Here, the “amount determined separately” means, for example, a thermoplastic resin mainly composed of the same or similar thermoplastic resin (virgin material or recycled thermoplastic resin) and an inorganic material filler mainly composed of talc. Correlation between the amount of talc contained in the composition and the physical property value of the molded article obtained by thermoforming the thermoplastic resin composition, and a molded article produced using the regenerated thermoplastic resin composition (manufacturing The amount of talc determined with reference to various physical property values desired for the objective molded body), and is usually in the range of 5 to 50% by mass. By utilizing such a method, it is possible to produce a recycled thermoplastic resin composition that enables the production of a molded product exhibiting various desired physical property values easily or through a small amount of trial and error. Become.

なお、タルクは、上記粉砕物に添加してもよく、あるいは上記粉砕物の加熱溶融の過程で添加してもよいことは勿論である。また、タルクの添加は分割して実施してもよい。   Of course, talc may be added to the pulverized product, or may be added in the course of heating and melting the pulverized product. Further, talc may be added separately.

上記粉砕物には、タルク以外にも、追加の熱可塑性樹脂、エラストマー、顔料や他の添加剤を加えることもできる。   In addition to talc, additional thermoplastic resins, elastomers, pigments and other additives can be added to the pulverized product.

本発明の製造方法により製造された再生熱可塑性樹脂組成物は、溶融状態のまま成形体の製造に利用することができるが、溶融物をペレット等の粒状物に変換した後に成形体の製造に利用することもできる。   The regenerated thermoplastic resin composition produced by the production method of the present invention can be used in the production of a molded product in the molten state, but after the melt is converted into a granular material such as a pellet, the molded product is produced. It can also be used.

本発明の製造方法により製造された再生熱可塑性樹脂組成物は、その溶融状態から、あるいは一旦粒状物に変換した後、射出成形、押出成形、カレンダ成形、積層成形などの公知の成形加工方法を利用して成形物とすることができる。   The regenerated thermoplastic resin composition produced by the production method of the present invention is subjected to a known molding method such as injection molding, extrusion molding, calendar molding, and lamination molding after the molten state or once converted into a granular material. It can be used as a molded product.

[実施例1]
再利用対象の熱可塑性樹脂組成物成形体製品廃棄品として、自動車内装部材回収品(熱可塑性樹脂としてポリプロピレンが使われ、含有されている無機材料フィラーが実質的にタルクのみである廃棄品試料)を選び、この廃棄品試料を粉砕した粉砕物を用いた。この粉砕物について、その無機材料フィラー(タルク)含有量を以下に記載の方法により測定したところ、17質量%であることが確認された。
[Example 1]
Recycled thermoplastic resin composition molded product waste as an automobile interior material recovery product (waste sample in which polypropylene is used as the thermoplastic resin and the contained inorganic material filler is substantially only talc) And a pulverized product obtained by pulverizing this waste sample was used. About this ground material, when the content of the inorganic material filler (talc) was measured by the method described below, it was confirmed to be 17% by mass.

次に、上記の粉砕物85.0質量部に対して、平均粒子径が4.0μmのタルク(市販品)を15.0質量部、添加剤(酸化防止剤、滑剤など)を0.1質量部添加して混合物を調製し、この混合物を加熱溶融することにより溶融物を得て、最後にこの溶融物を粒状化して、再生熱可塑性樹脂組成物の粒状物を得た。この再生熱可塑性樹脂組成物のタルク含有量(無機材料フィラー含有量)は30質量%である。この再生熱可塑性樹脂組成物のタルク含有量(無機材料フィラー含有量)の30質量%は、予め同種の再生ポリプロピレン樹脂にタルクを添加量を変えて製造して成形体の各種物性とタルクの含有量との関係から作製した相関データ、そして本実施例で製造する成形体の各種物性の目標値を参照して決定した値である。   Next, 15.0 parts by mass of talc (commercial product) having an average particle size of 4.0 μm and 0.1% of additives (antioxidants, lubricants, etc.) are added to 85.0 parts by mass of the pulverized product. A mixture was prepared by adding parts by mass, and the mixture was heated and melted to obtain a melt. Finally, the melt was granulated to obtain a granule of a regenerated thermoplastic resin composition. The recycled thermoplastic resin composition has a talc content (inorganic material filler content) of 30% by mass. 30% by mass of the talc content (inorganic material filler content) of this recycled thermoplastic resin composition is produced by changing the amount of talc added to the same type of recycled polypropylene resin in advance, and various physical properties of the molded body and the content of talc. This is a value determined by referring to correlation data produced from the relationship with the quantity and target values of various physical properties of the molded article produced in this example.

なお、廃棄品試料粉砕物中の無機材料フィラー量の測定は以下に記載の方法により行った。
るつぼを予め秤量し、ついで試料粉砕物約10gを収容し、試料粉砕物が収容されたるつぼを秤量して、その差から、るつぼに収容した試料粉砕物の質量を決定する。その後、このるつぼを電熱ヒータにて加熱して、試料粉砕物を予備燃焼させ、次いで、るつぼを電気炉に入れ、600℃にて90分間加熱して、内容物を灰化する。次に、るつぼを電気炉から取り出し、デシケータに入れて室温で1時間保存したのち、るつぼを秤量し、灰化物の質量を算出する。これらの作業により得られた灰化対象とした試料粉砕物の質量と灰化物の質量とから試料粉砕物中の無機材料フィラー(タルク)の含有量を決定する。
In addition, the measurement of the amount of inorganic material fillers in a waste sample ground material was performed by the method described below.
The crucible is weighed in advance, then about 10 g of the crushed sample is accommodated, the crucible containing the crushed sample is weighed, and the mass of the crushed sample contained in the crucible is determined from the difference. Thereafter, the crucible is heated with an electric heater to pre-burn the crushed sample, and then the crucible is placed in an electric furnace and heated at 600 ° C. for 90 minutes to incinerate the contents. Next, the crucible is taken out from the electric furnace, placed in a desiccator and stored at room temperature for 1 hour, and then the crucible is weighed to calculate the mass of the ash. The content of the inorganic material filler (talc) in the ground sample is determined from the mass of the ground sample and the mass of the incinerated product obtained by these operations.

次に、この再生熱可塑性樹脂組成物の粒状物を射出成形して成形体試料を製造し、その成形体試料の各種物性値をJISに規定された方法により測定した。また、再生熱可塑性樹脂組成物のメルトフローレート(MFR)も測定した。各測定値を、第1表に示す。   Next, a molded product sample was produced by injection molding the granular material of the recycled thermoplastic resin composition, and various physical property values of the molded product sample were measured by the methods defined in JIS. Moreover, the melt flow rate (MFR) of the recycled thermoplastic resin composition was also measured. The measured values are shown in Table 1.

[実施例2]
実施例1で調製した粉砕物に添加するタルクを、平均粒子径が5.5μmのタルク(市販品)に替えた以外は、実施例1に記載の方法により、再生熱可塑性樹脂組成物の粒状物を得た。
次に、この再生熱可塑性樹脂組成物の粒状物を射出成形して成形体試料を製造し、その成形体試料の各種物性値を測定した。また、再生熱可塑性樹脂組成物のメルトフローレート(MFR)も測定した。各測定値を、第1表に示す。
[Example 2]
Granularity of the regenerated thermoplastic resin composition by the method described in Example 1 except that the talc added to the pulverized product prepared in Example 1 was replaced with talc (commercial product) having an average particle size of 5.5 μm. I got a thing.
Next, a molded product sample was manufactured by injection molding the granular material of the recycled thermoplastic resin composition, and various physical property values of the molded product sample were measured. Moreover, the melt flow rate (MFR) of the recycled thermoplastic resin composition was also measured. The measured values are shown in Table 1.

[比較例1]
実施例1で調製した粉砕物に添加するタルクを、平均粒子径が12.0μmのタルク(市販品)に替えた以外は、実施例1に記載の方法により、再生熱可塑性樹脂組成物の粒状物を得た。
次に、この再生熱可塑性樹脂組成物の粒状物を射出成形して成形体試料を製造し、その成形体試料の各種物性値を測定した。また、再生熱可塑性樹脂組成物のメルトフローレート(MFR)も測定した。各測定値を、第1表に示す。
[Comparative Example 1]
Granularity of the regenerated thermoplastic resin composition by the method described in Example 1 except that the talc added to the pulverized product prepared in Example 1 was replaced with talc (commercial product) having an average particle size of 12.0 μm. I got a thing.
Next, a molded product sample was manufactured by injection molding the granular material of the recycled thermoplastic resin composition, and various physical property values of the molded product sample were measured. Moreover, the melt flow rate (MFR) of the recycled thermoplastic resin composition was also measured. The measured values are shown in Table 1.

[比較例2]
実施例1で調製した粉砕物に添加するタルクを、平均粒子径が13.5μmのタルク(市販品)に替えた以外は、実施例1に記載の方法により、再生熱可塑性樹脂組成物の粒状物を得た。
次に、この再生熱可塑性樹脂組成物の粒状物を射出成形して成形体試料を製造し、その成形体試料の各種物性値を測定した。また、再生熱可塑性樹脂組成物のメルトフローレート(MFR)も測定した。各測定値を、第1表に示す。
[Comparative Example 2]
Granularity of the regenerated thermoplastic resin composition by the method described in Example 1 except that the talc added to the pulverized product prepared in Example 1 was replaced with talc (commercial product) having an average particle size of 13.5 μm. I got a thing.
Next, a molded product sample was manufactured by injection molding the granular material of the recycled thermoplastic resin composition, and various physical property values of the molded product sample were measured. Moreover, the melt flow rate (MFR) of the recycled thermoplastic resin composition was also measured. The measured values are shown in Table 1.

第1表
────────────────────────────────────
実施例1 実施例2 比較例1 比較例2

────────────────────────────────────
タルク平均粒子径(μm) 4.0 5.5 12.0 13.5
────────────────────────────────────
MFR 17.8 16.3 17.1 17.0
引張降伏強さ 28.3 28.2 27.4 27.1
引張破壊呼び歪み 24 25 26 25
引張弾性率 2310 2270 2140 2130
曲げ強さ 44.3 44.5 43.5 43.1
曲げ弾性率 2470 2420 2310 2250
シャルピー衝撃強さ
(23℃) 5.9 6.1 5.4 5.1
(−30℃) 2.8 3.2 2.3 2.6
ロックウェル硬さ 89.6 90.1 89.1 88.7
荷重たわみ温度 115.9 115.5 113.1 113.5
───────────────────────────────────
Table 1 ────────────────────────────────────
Example 1 Example 2 Comparative Example 1 Comparative Example 2

────────────────────────────────────
Talc average particle size (μm) 4.0 5.5 12.0 13.5
────────────────────────────────────
MFR 17.8 16.3 17.1 17.0
Tensile yield strength 28.3 28.2 27.4 27.1
Tensile fracture nominal strain 24 25 26 25
Tensile modulus 2310 2270 2140 2130
Flexural strength 44.3 44.5 43.5 43.1
Flexural modulus 2470 2420 2310 2250
Charpy impact strength (23 ° C.) 5.9 6.1 5.4 5.1
(−30 ° C.) 2.8 3.2 2.3 2.6
Rockwell hardness 89.6 90.1 89.1 88.7
Deflection temperature under load 115.9 115.5 113.1 113.5
───────────────────────────────────

第1表に示した物性値の単位、そして測定方法と条件を以下に示す。
MFR:g/10分、K7210
引張降伏強さ:MPa、K7161、K7162
引張破壊呼び歪み:%、K7161、K7162
引張弾性率:MPa、K7161、K7162
曲げ強さ:MPa、K7171
曲げ弾性率:MPa、K7171
シャルピー衝撃強さ:kJ/m2、ノッチ付き、23℃(K7111、−30℃(K7111)
ロックウェル硬さ:R−スケール、K7202
荷重たわみ温度:℃、0.45MPa、K7191-1、-2
The unit of physical property values shown in Table 1, the measurement method and conditions are shown below.
MFR: g / 10 minutes, K7210
Tensile yield strength: MPa, K7161, K7162
Tensile fracture nominal strain:%, K7161, K7162
Tensile modulus: MPa, K7161, K7162
Bending strength: MPa, K7171
Flexural modulus: MPa, K7171
Charpy impact strength: kJ / m 2 , notched, 23 ° C (K7111, -30 ° C (K7111)
Rockwell hardness: R-scale, K7202
Deflection temperature under load: ° C, 0.45 MPa, K7191-1, -2

第1表に記載したデータから、実施例1及び実施例2のそれぞれで得た成形体の各種物性値は、比較例1及び比較例2のそれぞれで得た成形体の各種物性値と比較すると多くの物性にて優れていることが分かる。なお、タルクの平均粒子径の選択により特に優れた物性値が得られる引張弾性率とシャルピー衝撃強さについての比較データを添付の図1と図2に示す。   From the data described in Table 1, the various physical property values of the molded bodies obtained in Example 1 and Example 2 are compared with the various physical property values of the molded bodies obtained in Comparative Example 1 and Comparative Example 2, respectively. It turns out that it is excellent in many physical properties. The comparative data on the tensile modulus and the Charpy impact strength at which particularly excellent physical property values can be obtained by selecting the average particle diameter of talc are shown in FIG. 1 and FIG.

[実施例3]
予め同種の再生ポリプロピレン樹脂にタルクを添加量を変えて製造して成形体の各種物性とタルクの含有量との関係から作製した相関データ、そして本実施例で製造する成形体の各種物性の目標値を参照して、実施例1で調製した廃棄品試料粉砕物にタルク(平均粒子径:5.5μm)を16質量%添加して、タルク含有量が30質量%の混合物を得た。
この混合物について、比較例1と同様にして、メルトフローレート(MFR)を測定し、次いで、この混合物を射出成形して成形体試料を得た。このメルトフローレート、そして成形体試料の各種物性値を第2表に示す。また、この実施例3で製造された混合物の射出成形により得られる成形体試料の目標物性値も併せて記載した。
[Example 3]
Correlation data prepared from the relationship between various physical properties of the molded body and the content of talc produced by changing the amount of talc added to the same type of recycled polypropylene resin in advance, and targets for various physical properties of the molded body manufactured in this example Referring to the values, 16% by mass of talc (average particle size: 5.5 μm) was added to the crushed waste sample prepared in Example 1 to obtain a mixture having a talc content of 30% by mass.
For this mixture, the melt flow rate (MFR) was measured in the same manner as in Comparative Example 1, and then this mixture was injection molded to obtain a molded product sample. Table 2 shows the melt flow rate and various physical property values of the molded body sample. Moreover, the target physical property value of the molded object sample obtained by injection molding of the mixture manufactured in this Example 3 was also described.

第2表
───────────────────────────────────
目標値 原料粉砕物 実施例3
───────────────────────────────────
無機材料フィラー量
(タルク量、質量%) − 17 30
───────────────────────────────────
MFR(g/10分、K7210) >15 20 18
引張降伏強さ(MPa、K7161) >20 24 24
引張破壊呼び歪み(%、K7161) − 15 4
曲げ強さ(MPa、K7171) >35 39 39
曲げ弾性率(MPa、K7171) >3500 2490 3580
シャルピー衝撃強さ(kJ/m2
(23℃、ノッチ付き、K7111) − 6 3
荷重たわみ温度(℃、K7191)
(0.45MPa) >120 118 124
────────────────────────────────────
Table 2 ───────────────────────────────────
Target value Raw material pulverized product Example 3
───────────────────────────────────
Inorganic material filler amount (talc amount, mass%) -17 30
───────────────────────────────────
MFR (g / 10 min, K7210)> 15 20 18
Tensile yield strength (MPa, K7161)> 20 24 24
Tensile fracture nominal strain (%, K7161) -15 4
Bending strength (MPa, K7171)> 35 39 39
Flexural modulus (MPa, K7171)> 3500 2490 3580
Charpy impact strength (kJ / m 2 )
(23 ° C, notched, K7111) -6 3
Deflection temperature under load (℃, K7191)
(0.45 MPa)> 120 118 124
────────────────────────────────────

第2表に記載したデータから、実施例3で得た成形体の各種物性値が目標値に到達していることが確認された。   From the data described in Table 2, it was confirmed that various physical property values of the molded body obtained in Example 3 reached the target value.

[実施例4]
再利用対象の熱可塑性樹脂組成物成形体製品廃棄品として、自動車バンパー回収品(熱可塑性樹脂としてポリプロピレンが使われ、含有されている無機材料フィラーが実質的にタルクのみである廃棄品試料)を選び、この廃棄品試料を粉砕した粉砕物について、その無機材料フィラー含有量を測定した。また、この廃棄品試料粉砕物の射出成形により成形体試料を製造し、その成形体試料の各種物性値を測定した。また、廃棄品試料粉砕物のメルトフローレートも測定した。
[Example 4]
Recycled thermoplastic resin composition molded product waste products to be recycled as automobile bumper collection products (waste material samples in which polypropylene is used as the thermoplastic resin and the contained inorganic material filler is essentially only talc) The inorganic material filler content of the pulverized product obtained by pulverizing this waste product sample was measured. Further, a molded body sample was produced by injection molding of the waste sample pulverized product, and various physical property values of the molded body sample were measured. In addition, the melt flow rate of the waste sample pulverized product was also measured.

なお、廃棄品試料粉砕物中の無機材料フィラー量(タルク量)の測定は前記の方法により行った。   The amount of inorganic material filler (talc amount) in the waste sample pulverized product was measured by the method described above.

廃棄品試料粉砕物中の無機材料フィラーの量、そして廃棄品試料粉砕物のメルトフローレート(MFR)、そして廃棄品試料粉砕物の射出成形により得られた成形体試料の各種物性値を第2表に示す。   The amount of inorganic material filler in the waste sample pulverized product, the melt flow rate (MFR) of the waste sample pulverized product, and various physical property values of the molded product sample obtained by injection molding of the waste sample pulverized product are shown in the second column. Shown in the table.

実施例3で利用した相関データ、そして本実施例で製造する成形体の各種物性の目標値を参照して、実施例3で調製した廃棄品試料粉砕物にタルク(平均粒子径:5.5μm)を4.5質量%添加して、タルク含有量が14質量%の混合物を得た。
この混合物について、メルトフローレートを測定し、次いで、この混合物を射出成形して成形体試料を得た。このメルトフローレート、そして成形体試料の各種物性値を第3表に示す。また、この実施例4で製造された混合物の射出成形により得られる成形体試料の目標物性値も併せて記載した。
With reference to the correlation data used in Example 3 and the target values of various physical properties of the molded article produced in this example, talc (average particle size: 5.5 μm) was obtained from the pulverized waste sample prepared in Example 3. ) Was added in an amount of 4.5% by mass to obtain a mixture having a talc content of 14% by mass.
The melt flow rate of this mixture was measured, and then this mixture was injection molded to obtain a molded body sample. Table 3 shows the melt flow rate and various physical property values of the molded body sample. Moreover, the target physical property value of the molded object sample obtained by injection molding of the mixture manufactured in this Example 4 was also described.

第3表
───────────────────────────────────
目標値 原料粉砕物 実施例4
───────────────────────────────────
無機材料フィラー量
(タルク量、質量%) − 10 14
───────────────────────────────────
MFR(g/10分、K7210) >10 16 16
引張降伏強さ(MPa、K7161) >15 18 19
引張破壊呼び歪み(%、K7161) − 52 58
曲げ強さ(MPa、K7171) >25 26 27
曲げ弾性率(MPa、K7171) >1600 1420 1620
シャルピー衝撃強さ(kJ/m2
23℃、ノッチ付き、K7111) >25 29 29
荷重たわみ温度(℃、K7191)
(0.45MPa) >95 89 96
──────────────────────────────────
Table 3 ───────────────────────────────────
Target value Raw material pulverized product Example 4
───────────────────────────────────
Amount of inorganic material filler (talc amount, mass%) −10 14
───────────────────────────────────
MFR (g / 10 min, K7210)> 10 16 16
Tensile yield strength (MPa, K7161)> 15 18 19
Tensile fracture nominal strain (%, K7161)-52 58
Flexural strength (MPa, K7171)> 25 26 27
Flexural modulus (MPa, K7171)> 1600 1420 1620
Charpy impact strength (kJ / m 2 )
23 ° C, notched, K7111)> 25 29 29
Deflection temperature under load (℃, K7191)
(0.45 MPa)> 95 89 96
──────────────────────────────────

第3表に記載したデータから、実施例4で得た成形体の各種物性値が目標値に到達していることが確認された。   From the data described in Table 3, it was confirmed that various physical property values of the molded body obtained in Example 4 reached the target value.

Claims (9)

タルク量が90質量%以上の無機材料フィラーを含有する熱可塑性樹脂組成物の成形体廃棄品の粉砕物から熱可塑性樹脂組成物成形体製造用の再生熱可塑性樹脂組成物を製造する方法であって、下記の工程を含む方法:
タルク量が90質量%以上の無機材料フィラーを含有する熱可塑性樹脂組成物の成形体廃棄品の粉砕物を用意する工程;
上記粉砕物もしくはその溶融物に平均粒子径が1〜10μmのタルクを添加して、該粉砕物もしくはその溶融物と添加したタルクとの混合物を調製する工程;そして、
上記混合物を加熱溶融して、熱可塑性樹脂組成物の溶融物を得る工程。
This is a method for producing a recycled thermoplastic resin composition for producing a molded product of a thermoplastic resin composition from a pulverized product of a molded article waste product of a thermoplastic resin composition containing an inorganic material filler having an talc amount of 90% by mass or more. A method comprising the following steps:
A step of preparing a pulverized product of a molded product waste product of a thermoplastic resin composition containing an inorganic material filler having a talc amount of 90% by mass or more;
Adding talc having an average particle size of 1 to 10 μm to the pulverized product or melt thereof to prepare a mixture of the pulverized product or melt thereof and the added talc; and
A step of heating and melting the mixture to obtain a melt of the thermoplastic resin composition.
上記粉砕物もしくはその溶融物に添加するタルクの平均粒子径が2〜7μmの範囲にある請求項1に記載の再生熱可塑性樹脂組成物の製造方法。   The method for producing a recycled thermoplastic resin composition according to claim 1, wherein an average particle diameter of talc added to the pulverized product or a melt thereof is in the range of 2 to 7 µm. 溶融物として得た熱可塑性樹脂組成物を粒状物とする工程をさらに含む請求項1に記載の再生熱可塑性樹脂組成物の製造方法。   The manufacturing method of the reproduction | regeneration thermoplastic resin composition of Claim 1 which further includes the process which makes the thermoplastic resin composition obtained as a melt the granular material. 上記粉砕物が、タルク量が95質量%以上の無機材料フィラーを含有する熱可塑性樹脂組成物の成形体廃棄品の粉砕物である請求項1に記載の再生熱可塑性樹脂組成物の製造方法。   The method for producing a recycled thermoplastic resin composition according to claim 1, wherein the pulverized product is a pulverized product of a molded product waste product of a thermoplastic resin composition containing an inorganic material filler having a talc amount of 95% by mass or more. 上記粉砕物もしくはその溶融物にタルクを添加する工程の実施に先立って、上記粉砕物に含まれる無機材料フィラーの量を測定し、上記粉砕物もしくはその溶融物に添加するタルクの量と、製造目的の再生熱可塑性樹脂組成物に含有させるべき無機材料フィラーの量との差分とする請求項1に記載の再生熱可塑性樹脂組成物の製造方法。   Prior to performing the step of adding talc to the pulverized product or its melt, the amount of inorganic material filler contained in the pulverized product is measured, and the amount of talc added to the pulverized product or its melt The manufacturing method of the reproduction | regeneration thermoplastic resin composition of Claim 1 made into the difference with the quantity of the inorganic material filler which should be contained in the target reproduction | regeneration thermoplastic resin composition. 上記粉砕物に含まれる無機材料フィラーの量を測定する工程を、粉砕物の燃焼により生成する灰分の秤量を介する方法により行う請求項5に記載の再生熱可塑性樹脂組成物の製造方法。   The method for producing a regenerated thermoplastic resin composition according to claim 5, wherein the step of measuring the amount of the inorganic material filler contained in the pulverized product is performed by a method through weighing of ash generated by combustion of the pulverized product. 上記粉砕物に含まれる無機材料フィラーの量を測定する工程を、粉砕物の比重を測定する操作を介する方法により行う請求項5に記載の再生熱可塑性樹脂組成物の製造方法。   The method for producing a recycled thermoplastic resin composition according to claim 5, wherein the step of measuring the amount of the inorganic material filler contained in the pulverized product is performed by a method through an operation of measuring the specific gravity of the pulverized product. 上記混合物に含有させる無機材料フィラーの量を、別に作製した、再生熱可塑性樹脂組成物から製造する熱可塑性樹脂組成物成形体について想定された物性値と混合物中のタルク量との相関関係を示すデータを参照して決定した量とする請求項5に記載の再生熱可塑性樹脂組成物の製造方法。   The amount of the inorganic material filler to be contained in the above mixture shows a correlation between the physical property value assumed for the thermoplastic resin composition molded body produced from the regenerated thermoplastic resin composition and the amount of talc in the mixture. The manufacturing method of the reproduction | regeneration thermoplastic resin composition of Claim 5 made into the quantity determined with reference to data. 請求項1乃至8の内のいずれかの項に記載の製造方法で製造された再生熱可塑性樹脂組成物の加熱溶融を介して熱可塑性樹脂組成物成形体を製造する方法。   The method to manufacture a thermoplastic resin composition molded object through the heat melting of the reproduction | regeneration thermoplastic resin composition manufactured by the manufacturing method in any one of Claims 1 thru | or 8.
JP2013229705A 2013-11-05 2013-11-05 Method for producing recycled thermoplastic resin composition Expired - Fee Related JP5692667B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229705A JP5692667B1 (en) 2013-11-05 2013-11-05 Method for producing recycled thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229705A JP5692667B1 (en) 2013-11-05 2013-11-05 Method for producing recycled thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP5692667B1 JP5692667B1 (en) 2015-04-01
JP2015089905A true JP2015089905A (en) 2015-05-11

Family

ID=52830796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229705A Expired - Fee Related JP5692667B1 (en) 2013-11-05 2013-11-05 Method for producing recycled thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP5692667B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031248A (en) * 2015-07-29 2017-02-09 宇部興産株式会社 Method for recycling polypropylene resin molding waste
US10894860B2 (en) 2016-03-30 2021-01-19 Mitsubishi Gas Chemical Company, Inc. High molecular weight aromatic polycarbonate resin manufacturing method
JP7441562B1 (en) 2023-03-22 2024-03-01 岐阜プラスチック工業株式会社 Manufacturing method of recycled plastic material and recycled plastic material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532767B2 (en) * 1998-06-19 2004-05-31 三井化学株式会社 Instrument panel manufacturing method
JP5468317B2 (en) * 2009-06-29 2014-04-09 日産自動車株式会社 Method for producing additive-containing thermoplastic resin component molding material from thermoplastic resin-containing recovered material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031248A (en) * 2015-07-29 2017-02-09 宇部興産株式会社 Method for recycling polypropylene resin molding waste
US10894860B2 (en) 2016-03-30 2021-01-19 Mitsubishi Gas Chemical Company, Inc. High molecular weight aromatic polycarbonate resin manufacturing method
JP7441562B1 (en) 2023-03-22 2024-03-01 岐阜プラスチック工業株式会社 Manufacturing method of recycled plastic material and recycled plastic material
JP7454891B1 (en) 2023-03-22 2024-03-25 岐阜プラスチック工業株式会社 Manufacturing method of recycled plastic material and recycled plastic material

Also Published As

Publication number Publication date
JP5692667B1 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
ES2326267T3 (en) COMPOSITIONS OF MATERIALS CONTAINING RECYCLED PLASTICS.
KR102357765B1 (en) Polyamide compositions
JP5294093B2 (en) Reuse method of pulverized synthetic resin products
JP5224197B2 (en) Recycling method for pulverized synthetic resin products containing cured resin
JP5692667B1 (en) Method for producing recycled thermoplastic resin composition
JP4614866B2 (en) Method for recycling plastic waste material and method for producing plastic molded body using the same
JP2010234812A (en) Recycling method for plastic waste material, manufacturing method for plastic molding using the same, and plastic molding
CN112739773A (en) Thermoplastic compositions having improved toughness, articles made therefrom, and methods thereof
JP4895207B2 (en) Reuse method of pulverized synthetic resin products
JP5692666B1 (en) Method for producing recycled thermoplastic resin composition
JP5468317B2 (en) Method for producing additive-containing thermoplastic resin component molding material from thermoplastic resin-containing recovered material
JP2012011611A (en) Method of recycling plastic scrap, recycled plastic molded body and method of manufacturing the same
KR102268990B1 (en) High-touch Polymer Composition having Improved Mechanical Property and Formability for 3D printers and Filaments for 3D printers prepared Therefrom
KR102255612B1 (en) Development of impact resistant and high-forming PLA/PBAT blends for 3D printers and Filaments for 3D printers prepared Therefrom
JP2013064043A (en) Resin composition, molded article and molding method
JP4492636B2 (en) Recycling method for pulverized synthetic resin products containing cured resin
JP6408945B2 (en) Recycling method and material for thermoplastic resin waste with coating film
JP2009013387A (en) Container and packaging recycling resin composition mixed with resin to be added supplementarily
Krasnou et al. Physical–mechanical properties and morphology of filled low‐density polypropylene: Comparative study on calcium carbonate with oil shale and coal ashes
CN108219448B (en) Thermoplastic resin composition
Parkar Recyclability and processing of plastics obtained from e-waste
Delaval et al. Thermal and fire degradation of recycled and polluted polypropylene‐based materials
CN105504508B (en) A kind of HI high impact, lacklustre modification regeneration PP materials and preparation method thereof
WO2023086361A1 (en) Ethylene polymer blend composition for additive-manufacture feedstock
JP2016204572A (en) Resin composition and manufacturing method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

R150 Certificate of patent or registration of utility model

Ref document number: 5692667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees