JP2015086491A - Three-dimensional fiber structure and method for producing three-dimensional fiber structure - Google Patents
Three-dimensional fiber structure and method for producing three-dimensional fiber structure Download PDFInfo
- Publication number
- JP2015086491A JP2015086491A JP2013227029A JP2013227029A JP2015086491A JP 2015086491 A JP2015086491 A JP 2015086491A JP 2013227029 A JP2013227029 A JP 2013227029A JP 2013227029 A JP2013227029 A JP 2013227029A JP 2015086491 A JP2015086491 A JP 2015086491A
- Authority
- JP
- Japan
- Prior art keywords
- warp
- rib
- side plate
- fiber structure
- dimensional fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 112
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 95
- 238000009941 weaving Methods 0.000 abstract description 16
- 238000010924 continuous production Methods 0.000 abstract description 8
- 238000003780 insertion Methods 0.000 description 18
- 230000037431 insertion Effects 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000003733 fiber-reinforced composite Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- ICXAPFWGVRTEKV-UHFFFAOYSA-N 2-[4-(1,3-benzoxazol-2-yl)phenyl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(C=C3)C=3OC4=CC=CC=C4N=3)=NC2=C1 ICXAPFWGVRTEKV-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Woven Fabrics (AREA)
- Looms (AREA)
Abstract
Description
本発明は、三次元繊維構造体及び三次元繊維構造体の製造方法に係り、詳しくは断面コ字状(C形)の本体と、前記本体の三つの面と直交する状態で前記本体と一体に形成されたリブとを備える三次元繊維構造体及び三次元繊維構造体の製造方法に関する。 The present invention relates to a three-dimensional fiber structure and a method for manufacturing the three-dimensional fiber structure, and more specifically, a main body having a U-shaped cross section (C shape), and the main body integrated with the three surfaces of the main body. The present invention relates to a three-dimensional fiber structure including a rib formed on the surface and a method for manufacturing the three-dimensional fiber structure.
繊維強化複合材は軽量の構造材料として広く使用されている。複合材用の強化基材として三次元織物(三次元繊維構造体)がある。この三次元織物を強化基材として、樹脂をマトリックスとした複合材は航空機、自動車、船舶あるいは一般産業機器の構造用部材として用いられている。 Fiber reinforced composites are widely used as lightweight structural materials. There is a three-dimensional fabric (three-dimensional fiber structure) as a reinforcing base material for composite materials. A composite material using this three-dimensional woven fabric as a reinforcing base and a resin as a matrix is used as a structural member for aircraft, automobiles, ships, or general industrial equipment.
構造用部材は、強度を高めるため横断面形状が矩形ではなく、例えば、I形、T形、C形(コ字状)のような断面形状に形成される。このうち、断面形状がコ字状の場合、図13に示すように、ビーム構造体60として、断面コ字状のビーム形主構造体61とこのビーム形主構造体61のウエブ部61a及びフランジ部61bに接合される補助部材(リブ)62とから構成されるものが提案されている。(特許文献1参照)。補助部材62は、ビーム形主構造体61と別体に形成された後、ビーム形主構造体61に接合される。補助部材62は、箱型形状の炭素繊維織物材を複数枚積層し、炭素繊維糸を用いて板厚方向にステッチング処理することで互いにずれないように結合して形成された箱型のドライプリフォームを中央部で切断して形成される。 In order to increase the strength, the structural member has a cross-sectional shape that is not rectangular, but is formed in a cross-sectional shape such as an I shape, a T shape, or a C shape (U shape). Among these, when the cross-sectional shape is U-shaped, as shown in FIG. 13, a beam-shaped main structure 61 having a U-shaped cross-section, and a web portion 61a and a flange of the beam-shaped main structure 61 are provided. An auxiliary member (rib) 62 joined to the portion 61b has been proposed. (See Patent Document 1). The auxiliary member 62 is formed separately from the beam-shaped main structure 61 and then joined to the beam-shaped main structure 61. The auxiliary member 62 is a box-type drive formed by laminating a plurality of box-shaped carbon fiber woven materials and stitching them in the thickness direction using carbon fiber yarns so that they do not deviate from each other. It is formed by cutting the reform at the center.
特許文献1の構成では、ビーム構造体は、断面形状がコ字状のビーム形主構造体61と補助部材62とを別々に製造した後、両者を接合して製造される。そのため、製造工程が複雑になる。特に、補助部材62は、箱型形状の炭素繊維織物材を複数枚積層し、炭素繊維糸を用いて板厚方向にステッチング処理することで互いにずれないように結合して形成された箱型のドライプリフォームを中央部で切断して形成されるため、その製造に手間が掛かる。 In the configuration of Patent Document 1, the beam structure is manufactured by separately manufacturing the beam-shaped main structure 61 and the auxiliary member 62 having a U-shaped cross-section, and then joining them together. This complicates the manufacturing process. In particular, the auxiliary member 62 is a box shape formed by laminating a plurality of box-shaped carbon fiber woven materials and joining them so as not to shift each other by stitching in the thickness direction using carbon fiber yarns. Since this dry preform is formed by cutting at the center, it takes time to manufacture.
本発明は、前記の問題に鑑みてなされたものであって、その目的は、製造工程が単純で、三次元繊維構造体が大型であっても連続生産を容易にすることができる三次元繊維構造体及び三次元繊維構造体の製造方法を提供することにある。 The present invention has been made in view of the above problems, and the object thereof is a three-dimensional fiber that has a simple manufacturing process and can facilitate continuous production even if the three-dimensional fiber structure is large. It is providing the manufacturing method of a structure and a three-dimensional fiber structure.
上記課題を解決する三次元繊維構造体は、基板部と前記基板部の両端から前記基板部と直交する方向に平行に延びる2つの側板部とで断面コ字状に形成された本体と、前記基板部及び前記2つの側板部と直交する状態で前記本体と一体に形成されたリブとを備える三次元繊維構造体である。そして、前記本体は、経糸が前記基板部と前記側板部との交線の延びる方向に延びる多層織りで構成され、前記リブは、前記2つの側板部間で真っ直ぐに延びる経糸及び緯糸のいずれか一方と、前記経糸及び緯糸のいずれか一方と直交する状態で真っ直ぐに延びる緯糸又は経糸とで構成されている。 A three-dimensional fiber structure that solves the above problems is a main body formed in a U-shaped cross section with a substrate portion and two side plate portions that extend in parallel in a direction orthogonal to the substrate portion from both ends of the substrate portion, It is a three-dimensional fiber structure provided with a rib formed integrally with the main body in a state orthogonal to the substrate portion and the two side plate portions. The main body is composed of a multi-layered weave in which warps extend in the direction in which the line of intersection of the base plate portion and the side plate portion extends, and the rib is either a warp yarn or a weft yarn that extends straight between the two side plate portions. One of these is composed of a weft or a warp that extends straight in a state orthogonal to either the warp or the weft.
この構成によれば、断面コ字状の本体と直交する状態で一体に形成されたリブを有する三次元繊維構造体が、経糸と緯糸とで構成されているため、断面コ字状の三次元繊維構造体を製造する際に、リブと対応する部分における経糸と緯糸の配列状態を変更することにより製造することが可能となる。したがって、三次元繊維構造体の製造工程が単純で、三次元繊維構造体が大型であっても連続生産を容易にすることができる。 According to this configuration, since the three-dimensional fiber structure having ribs integrally formed in a state orthogonal to the U-shaped main body is composed of warp and weft, the three-dimensional U-shaped three-dimensional When the fiber structure is manufactured, it can be manufactured by changing the arrangement state of the warp and the weft in the portion corresponding to the rib. Therefore, the manufacturing process of the three-dimensional fiber structure is simple, and continuous production can be facilitated even if the three-dimensional fiber structure is large.
また、リブを構成する経糸及び緯糸のいずれが本体の2つの側板部間で真っ直ぐに延びる状態で配列されるのかは、三次元繊維構造体を製造する際、チャネル状(断面コ字状)の本体を構成するための経糸をどのような状態で経糸ビームと経糸支持部材との間に張設するかによって決まる。 Also, which of the warp and weft constituting the ribs is arranged in a state of extending straight between the two side plate portions of the main body is determined when the three-dimensional fiber structure is manufactured. It depends on how the warp for constituting the main body is stretched between the warp beam and the warp support member.
前記リブは、前記本体の両端部に設けられ、前記本体及び前記リブは、前記基板部を底壁とする箱を形成していることが好ましい。この構成の三次元繊維構造体を強化基材として製造された繊維強化樹脂は、例えば、自動車部品の軽量化、衝突安全性能確保を目的に、自動車衝突時の衝突エネルギーを吸収する部材(クラッシュボックス)として用いられる。 It is preferable that the ribs are provided at both ends of the main body, and the main body and the rib form a box having the substrate portion as a bottom wall. The fiber reinforced resin manufactured using the three-dimensional fiber structure having this structure as a reinforced base material is, for example, a member (crash box) that absorbs collision energy at the time of automobile collision for the purpose of reducing the weight of automobile parts and ensuring collision safety performance. ).
前記リブは、前記本体の長手方向の中間部に複数設けられていることが好ましい。この構成の三次元繊維構造体を強化基材として製造された繊維強化樹脂は、例えば、軽量で高強度の構造用部材として用いることができる。 It is preferable that a plurality of the ribs are provided at an intermediate portion in the longitudinal direction of the main body. The fiber reinforced resin manufactured using the three-dimensional fiber structure having this configuration as a reinforcing base material can be used as, for example, a lightweight and high-strength structural member.
上記課題を解決する三次元繊維構造体の製造方法は、基板部と前記基板部の両端から前記基板部と直交する方向に平行に延びる2つの側板部とで断面コ字状に形成された本体と、前記基板部及び前記2つの側板部と直交する状態で前記本体と一体に形成されたリブとを備える三次元繊維構造体の製造方法である。そして、前記基板部及び前記2つの側板部を形成するための経糸を、経糸ビームと経糸支持部材との間に前記本体の断面形状に対応した状態で張設し、前記リブを形成するための経糸を、補助経糸用ビームと前記経糸支持部材との間に張設し、前記リブを形成するための経糸を、前記リブを形成しない箇所と対応する状態では前記基板部及び前記2つの側板部を形成するための経糸と同じ開口量となる状態で開口し、前記リブを形成する箇所と対応する状態では前記リブを形成する経糸が形成すべきリブを構成する緯糸層全層と直交する距離だけ往復移動するように開口して、隣り合う経糸層間に複数の緯糸を挿入する。ここで、「リブを構成する緯糸層全層と直交する距離」とは、両側板部が水平な状態となるように経糸が張設された状態では、両側板部間の距離となり、両側板部が上下方向に延びる状態となるように経糸が張設された状態では、両側板部の高さに対応する距離となる。 A manufacturing method of a three-dimensional fiber structure that solves the above problems is a main body formed in a U-shaped cross section by a substrate portion and two side plate portions that extend in parallel to a direction orthogonal to the substrate portion from both ends of the substrate portion. And a rib formed integrally with the main body in a state orthogonal to the substrate portion and the two side plate portions. Then, a warp for forming the substrate portion and the two side plate portions is stretched in a state corresponding to a cross-sectional shape of the main body between a warp beam and a warp support member, and the rib is formed. A warp is stretched between the auxiliary warp beam and the warp support member, and the warp for forming the rib is in the state corresponding to the portion where the rib is not formed, and the substrate portion and the two side plate portions The distance is perpendicular to the entire weft layer constituting the rib to be formed by the warp forming the rib in the state corresponding to the position where the rib is formed. A plurality of wefts are inserted between adjacent warp layers that are opened so as to reciprocate only. Here, the “distance perpendicular to all the weft layers constituting the rib” is the distance between the side plate portions when the warp yarns are stretched so that the both side plate portions are in a horizontal state. In a state where the warp is stretched so that the portion extends in the vertical direction, the distance corresponds to the height of the both side plate portions.
この構成によれば、製造開始時に、基板部及び2つの側板部を形成するための経糸が、経糸ビームと経糸支持部材との間に本体の断面形状に対応した状態で張設される。また、リブを形成するための経糸が、補助経糸用ビームと経糸支持部材との間に張設される。そして、リブを形成するための経糸は、リブを形成しない箇所と対応する状態では、基板部及び前記2つの側板部を形成するための経糸と同じ開口量となる状態で開口される。また、リブを形成する箇所と対応する状態では、リブを形成する経糸が形成すべきリブを構成する緯糸層全層と直交する距離ずつ往動あるいは復動するように開口される。その結果、断面コ字状の三次元繊維構造体を製造する場合とほぼ同様にして、断面コ字状の本体と、本体の三つの面と直交する状態で本体と一体に形成されたリブとを備える三次元繊維構造体を製造することができる。したがって、三次元繊維構造体の製造工程が単純で、三次元繊維構造体が大型であっても連続生産を容易にすることができる。 According to this configuration, at the start of manufacture, the warp for forming the substrate portion and the two side plate portions is stretched between the warp beam and the warp support member in a state corresponding to the cross-sectional shape of the main body. A warp for forming the rib is stretched between the auxiliary warp beam and the warp support member. And the warp for forming a rib is opened in the state which becomes the same opening amount as the warp for forming a board | substrate part and said two side-plate part in the state corresponding to the location which does not form a rib. In the state corresponding to the location where the rib is formed, the warp forming the rib is opened so as to move forward or backward by a distance orthogonal to the entire weft layer constituting the rib to be formed. As a result, in substantially the same manner as when producing a three-dimensional fiber structure having a U-shaped cross section, a main body having a U-shaped cross section, and a rib formed integrally with the main body in a state orthogonal to the three surfaces of the main body, Can be manufactured. Therefore, the manufacturing process of the three-dimensional fiber structure is simple, and continuous production can be facilitated even if the three-dimensional fiber structure is large.
前記リブを所定間隔で複数設けるように前記リブを形成するための経糸を開口することが好ましい。この構成によれば、断面コ字状でリブを所定間隔で備えた構造材(ビーム)として好適な繊維強化複合材の強化基材となる三次元繊維構造体を効率良く生産することができる。 It is preferable to open warps for forming the ribs so that a plurality of the ribs are provided at predetermined intervals. According to this configuration, it is possible to efficiently produce a three-dimensional fiber structure as a reinforcing base material of a fiber-reinforced composite material suitable as a structural material (beam) having a U-shaped cross section and having ribs at predetermined intervals.
前記リブが接近した状態で2つ形成された箇所が複数箇所、形成すべき箱に対応する間隔をおいて設けられるように前記リブを形成するための経糸を開口して、中間体としての三次元繊維構造体を前記の三次元繊維構造体の製造方法により製造した後、前記中間体を前記リブが接近した状態で2つ形成された箇所において切断して、有底箱状の三次元繊維構造体を製造することが好ましい。この構成によれば、有底箱状の三次元繊維構造体を効率良く生産することができる。 A plurality of locations where two ribs are formed in the state where the ribs are close to each other, a warp for forming the ribs is opened so as to be provided at intervals corresponding to the box to be formed, and a tertiary as an intermediate After the original fiber structure is manufactured by the method for manufacturing a three-dimensional fiber structure, the intermediate body is cut at a place where two of the ribs are close to each other to form a bottomed box-shaped three-dimensional fiber It is preferable to manufacture the structure. According to this structure, a bottomed box-shaped three-dimensional fiber structure can be produced efficiently.
本発明によれば、製造工程が単純で、三次元繊維構造体が大型であっても連続生産を容易にすることができる。 According to the present invention, the production process is simple, and continuous production can be facilitated even if the three-dimensional fiber structure is large.
(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1〜図8にしたがって説明する。
図1(a)に示すように、三次元繊維構造体10は、断面コ字状に形成された本体11と、本体11と一体に形成されたリブ12とを備える。本体11は、基板部11aと、基板部11aの両端から基板部11aと直交する方向に平行に延びる2つの側板部11bとで断面コ字状に形成されている。この実施形態では、側板部11bは基板部11aの上下方向における両端から水平に突出するように形成されている。リブ12は、基板部11a及び2つの側板部11bと直交する状態で本体11と一体に形成されている。リブ12は、所定間隔をおいて複数設けられている。図1(a)では、リブ12が2個存在する三次元繊維構造体10を図示しているが、目的に合わせて、本体11の長さやリブ12の数やリブ12の間隔が設定される。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1A, the three-dimensional fiber structure 10 includes a main body 11 having a U-shaped cross section and a rib 12 formed integrally with the main body 11. The main body 11 is formed in a U-shaped cross section by a substrate portion 11a and two side plate portions 11b extending in parallel to a direction orthogonal to the substrate portion 11a from both ends of the substrate portion 11a. In this embodiment, the side plate part 11b is formed so as to protrude horizontally from both ends in the vertical direction of the substrate part 11a. The rib 12 is formed integrally with the main body 11 in a state of being orthogonal to the substrate portion 11a and the two side plate portions 11b. A plurality of ribs 12 are provided at predetermined intervals. In FIG. 1A, the three-dimensional fiber structure 10 having two ribs 12 is illustrated, but the length of the main body 11, the number of ribs 12, and the interval between the ribs 12 are set according to the purpose. .
図1(b),(c)、図2、図3(a),(b)に示すように、本体11は、経糸x1が基板部11aと側板部11bとの交線の延びる方向、即ち三次元繊維構造体10の長手方向に延び、緯糸yが基板部11aと直交し、側板部11bと平行に延びるように配列された多層織りで構成されている。 As shown in FIGS. 1 (b), (c), FIG. 2, FIG. 3 (a), (b), the main body 11 has a warp x1 extending in the direction in which the line of intersection between the substrate portion 11a and the side plate portion 11b extends. It extends in the longitudinal direction of the three-dimensional fiber structure 10, and is composed of a multi-layered weave arranged so that the wefts y are orthogonal to the substrate portion 11a and extend in parallel with the side plate portion 11b.
詳述すると、図1(c)、図3(b)に示すように、基板部11a及び側板部11bを構成する緯糸yは、側板部11bと平行かつ基板部11aと直交する状態で、複数層に配列されている。また、図1(b)、図2、図3(a)に示すように、基板部11a及び側板部11bを構成する経糸x1は、基板部11a及び側板部11bを構成する上下方向において隣り合う各層の緯糸yと交互に係合する状態で波状に配列されている。 More specifically, as shown in FIGS. 1C and 3B, the wefts y constituting the substrate portion 11a and the side plate portion 11b are parallel to the side plate portion 11b and orthogonal to the substrate portion 11a. Arranged in layers. Further, as shown in FIGS. 1B, 2 and 3A, the warps x1 constituting the substrate portion 11a and the side plate portion 11b are adjacent to each other in the vertical direction constituting the substrate portion 11a and the side plate portion 11b. The layers are arranged in a wavy pattern alternately engaged with the wefts y of each layer.
図1(c)に示すように、リブ12には、三次元繊維構造体10の長手方向に延びる経糸x1は存在せず、図1(b)及び図3(a)に示すように、リブ12は、2つの側板部11b間で真っ直ぐに延びる経糸x2と、経糸x2と直交する状態で真っ直ぐ延びる緯糸yとで構成されている。なお、各経糸x2は、側板部11bを構成する経糸x1と連続している。また、緯糸yは、図1、図2、図3で図示するように、各層毎に独立した状態で挿入された構成であっても、三次元繊維構造体10の幅方向の端部において折り返して隣の層の緯糸yに連続する状態で挿入された構成であってもよい。 As shown in FIG. 1 (c), the rib 12 does not have the warp x1 extending in the longitudinal direction of the three-dimensional fiber structure 10, and as shown in FIGS. 1 (b) and 3 (a), the rib 12 is composed of a warp yarn x2 extending straight between the two side plate portions 11b and a weft yarn y extending straight in a state orthogonal to the warp yarn x2. Each warp x2 is continuous with the warp x1 constituting the side plate portion 11b. Further, as shown in FIGS. 1, 2, and 3, the weft y is folded back at the end in the width direction of the three-dimensional fiber structure 10 even when it is inserted in an independent state for each layer. Alternatively, it may be inserted in a state of being continuous with the weft y of the adjacent layer.
経糸x1,x2及び緯糸yには、例えば、炭素繊維、ガラス繊維、セラミック繊維等の無機繊維、あるいは、アラミド繊維、ポリ−p−フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等の高強度、高弾性率の有機繊維等が使用され、要求性能に応じて適宜選択される。例えば、剛性・強度の要求性能が高い場合は、炭素繊維が好ましい。 For the warps x1, x2 and the weft y, for example, inorganic fibers such as carbon fiber, glass fiber, ceramic fiber, or high strength such as aramid fiber, poly-p-phenylenebenzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber, A high elastic modulus organic fiber or the like is used and is appropriately selected according to the required performance. For example, when the required performance of rigidity and strength is high, carbon fiber is preferable.
次に前記のように構成された三次元繊維構造体10の製造方法を説明する。三次元繊維構造体10の製造に使用する製織装置は、図4に示すように、経糸x1を供給する経糸ビーム20と、経糸ビーム20から供給される経糸x1の一端を固定する経糸支持部材21とを備えており、経糸ビーム20と経糸支持部材21との間には織前枠22が配置されている。 Next, the manufacturing method of the three-dimensional fiber structure 10 comprised as mentioned above is demonstrated. As shown in FIG. 4, the weaving apparatus used for manufacturing the three-dimensional fiber structure 10 includes a warp beam 20 for supplying a warp x1, and a warp support member 21 for fixing one end of the warp x1 supplied from the warp beam 20. A woven front frame 22 is disposed between the warp beam 20 and the warp support member 21.
図4及び図5に示すように、経糸ビーム20と織前枠22との間には、基板部11aを形成するための経糸x1の開口を行う本体用ヘルド枠としての基板部用ヘルド枠23と、側板部11bを形成するための経糸x1の開口を行う本体用ヘルド枠としての側板部用ヘルド枠24とを備えている。なお、図4は側板部用ヘルド枠24の図示が省略されており、側板部用ヘルド枠24は図5にのみ図示されている。基板部用ヘルド枠23及び側板部用ヘルド枠24は、それぞれ独立して駆動可能に構成されている。図5に示すように、各基板部用ヘルド枠23及び各側板部用ヘルド枠24は、それぞれ駆動すべき経糸x1の配列幅に対応した幅に形成されている。 As shown in FIGS. 4 and 5, the substrate portion heald frame 23 as a main body heald frame that opens a warp yarn x <b> 1 for forming the substrate portion 11 a between the warp beam 20 and the woven front frame 22. And a side plate portion heald frame 24 as a main body heald frame for opening a warp x1 for forming the side plate portion 11b. In FIG. 4, the side plate portion heald frame 24 is not shown, and the side plate portion heald frame 24 is illustrated only in FIG. 5. The board frame heald frame 23 and the side plate frame heald frame 24 are configured to be independently driven. As shown in FIG. 5, each board-portion heald frame 23 and each side plate-portion heald frame 24 are each formed in a width corresponding to the arrangement width of the warp yarns x1 to be driven.
基板部用ヘルド枠23は、基板部11aを構成する経糸x1の層数をnとしたとき2(n−1)個設けられており、一層を構成する経糸x1のうち一本おきの一組の経糸x1と、他の一組の経糸x1とがそれぞれ隣り合う基板部用ヘルド枠23で駆動されるようになっている。 The substrate frame heald frame 23 is provided with 2 (n-1) pieces when the number of layers of the warp yarns x1 constituting the substrate portion 11a is n, and every other pair of warp yarns x1 constituting one layer. The warp x1 and the other set of warp x1 are driven by the adjacent substrate frame heald frames 23, respectively.
上側の側板部11bを形成する経糸x1の開口を行う側板部用ヘルド枠24の数は、側板部11bを形成する経糸x1の層数をnとしたとき2(n−1)個設けられており、一層を構成する経糸x1のうち一本おきの一組の経糸x1と、他の一組の経糸x1とがそれぞれ隣り合う側板部用ヘルド枠24で駆動されるようになっている。下側の側板部11bを形成する経糸x1のうち最上層を構成する経糸x1は、補助経糸用ビーム25から供給される経糸x2の一部で構成され、その開口はリブ用ヘルド枠27により行われる。下側の側板部11bを構成する経糸x1のうち最上層より下側の層を構成する経糸x1が経糸ビーム20から供給される。そのため、下側の側板部11bを構成する経糸x1の開口を行う側板部用ヘルド枠24の数は、側板部11bを形成する経糸x1の層数をnとしたとき2(n−2)個設けられている。 The number of side plate portion heald frames 24 for opening the warp yarns x1 forming the upper side plate portion 11b is 2 (n-1), where n is the number of layers of the warp yarns x1 forming the side plate portions 11b. Thus, every other pair of warps x1 of the warps x1 constituting one layer and the other set of warps x1 are driven by the adjacent side plate portion heald frames 24, respectively. Of the warps x1 forming the lower side plate portion 11b, the warp x1 constituting the uppermost layer is constituted by a part of the warp x2 supplied from the auxiliary warp beam 25, and the opening is made by the rib heald frame 27. Is called. Of the warp yarns x1 constituting the lower side plate portion 11b, the warp yarn x1 constituting the lower layer than the uppermost layer is supplied from the warp beam 20. Therefore, the number of the side plate portion heald frames 24 for opening the warp yarns x1 constituting the lower side plate portion 11b is 2 (n-2), where n is the number of the warp yarns x1 forming the side plate portion 11b. Is provided.
なお、図4及び図5においては、図示の都合上、経糸x1の層数は、前述した三次元繊維構造体10の場合の経糸x1の層数より少なく図示しており、基板部用ヘルド枠23及び側板部用ヘルド枠24の数も必要数より少なく図示している。また、図1〜図3に図示した基板部11a及び側板部11bを構成する経糸x1の本数に対応すれば、側板部用ヘルド枠24の数は基板部用ヘルド枠23の数に比べて半分以下になるが、図5では便宜上同じ数で図示している。 4 and 5, for the convenience of illustration, the number of layers of the warp x1 is smaller than the number of layers of the warp x1 in the case of the three-dimensional fiber structure 10 described above, and the substrate frame heald frame 23 and the number of side plate portion heald frames 24 are also smaller than necessary. If the number of warp x1 constituting the substrate portion 11a and the side plate portion 11b shown in FIGS. 1 to 3 is supported, the number of the side plate portion heald frames 24 is half that of the substrate portion heald frames 23. Although shown below, FIG. 5 shows the same number for convenience.
製織装置は、リブ12を形成するための経糸x2を供給する補助経糸用ビーム25を備えている。補助経糸用ビーム25は、基板部用ヘルド枠23及び側板部用ヘルド枠24より上方位置に配設され、補助経糸用ビーム25から供給される経糸x2は、ガイドバー26を経て一端が経糸支持部材21に固定される。側板部用ヘルド枠24と経糸支持部材21との間には、経糸x2の開口を行うリブ用ヘルド枠27が設けられている。リブ用ヘルド枠27は一対設けられ、それぞれ駆動すべき経糸x2の配列幅に対応した幅に形成されている。経糸x2は、リブ12を構成するだけではなく、下側の側板部11bを構成する経糸層の最上層を構成するのに使用される。そのため、リブ用ヘルド枠27は、リブ12以外の箇所が製織される状態では、下側の側板部11bの4層目の緯糸yの緯入れを可能にするように側板部用ヘルド枠24と同期して駆動されるようになっている。 The weaving apparatus includes an auxiliary warp beam 25 that supplies a warp x2 for forming the rib 12. The auxiliary warp beam 25 is disposed at a position above the substrate frame heald frame 23 and the side plate frame 24, and one end of the warp x2 supplied from the auxiliary warp beam 25 is supported by a warp through a guide bar 26. It is fixed to the member 21. Between the side plate portion heald frame 24 and the warp supporting member 21, a rib heald frame 27 for opening the warp x2 is provided. A pair of rib heald frames 27 are provided, each having a width corresponding to the arrangement width of the warp x2 to be driven. The warp x2 is used not only to constitute the rib 12, but also to constitute the uppermost layer of the warp layer constituting the lower side plate portion 11b. Therefore, the rib heald frame 27 and the side plate portion heald frame 24 so as to enable the weft insertion of the fourth layer of the weft y of the lower side plate portion 11b in a state where the portions other than the ribs 12 are woven. They are driven synchronously.
なお、図4及び図5に示すように、織前枠22とリブ用ヘルド枠27との間には筬28が配置されている。また、基板部用ヘルド枠23、側板部用ヘルド枠24、リブ用ヘルド枠27は、例えば、ドビー装置等の開口装置で駆動されるが、ジャガード装置で経糸x1,x2を開口してもよい。 As shown in FIGS. 4 and 5, a collar 28 is disposed between the pre-woven frame 22 and the rib heald frame 27. Further, the board frame heald frame 23, the side plate frame frame 24, and the rib frame frame 27 are driven by an opening device such as a dobby device, for example, but the warp yarns x1 and x2 may be opened by a jacquard device. .
次に前記の製織装置による三次元繊維構造体10の製造方法を説明する。
先ず、基板部11a及び2つの側板部11bを形成するための経糸x1が、図6に示すように、断面コ字状となるように張設される。経糸x1は、経糸支持部材21と経糸ビーム20との間に設けられた基板部用ヘルド枠23及び側板部用ヘルド枠24を介して張設される。また、リブ12及び側板部11bの一部を構成する経糸x2が経糸支持部材21と補助経糸用ビーム25との間に張設される。経糸x2は、リブ12を構成する他に、下側の側板部11bを形成する経糸層の最上層の経糸x1を構成するため、経糸x2は、下側の側板部11bを形成する経糸x1層の上に配置される状態で経糸支持部材21と補助経糸用ビーム25との間に張設される。経糸x1及び経糸x2は、それぞれ対応する基板部用ヘルド枠23、側板部用ヘルド枠24、リブ用ヘルド枠27に支持されたヘルド(図示せず)の目を貫通する状態で張設される。
Next, a method for manufacturing the three-dimensional fiber structure 10 using the weaving apparatus will be described.
First, the warp x1 for forming the substrate portion 11a and the two side plate portions 11b is stretched so as to have a U-shaped cross section as shown in FIG. The warp x1 is stretched through a substrate-side heald frame 23 and a side-plate-side heald frame 24 provided between the warp support member 21 and the warp beam 20. Further, the warp x2 constituting part of the rib 12 and the side plate portion 11b is stretched between the warp support member 21 and the auxiliary warp beam 25. In addition to constituting the rib 12, the warp x2 constitutes the uppermost warp layer x1 of the warp layer forming the lower side plate portion 11b. Therefore, the warp x2 is the warp x1 layer forming the lower side plate portion 11b. The warp support member 21 and the auxiliary warp beam 25 are stretched between the warp support member 21 and the auxiliary warp beam 25. The warp x1 and the warp x2 are stretched in a state of passing through the eyes of a heald (not shown) supported by the corresponding heald frame 23 for the substrate portion, the heald frame 24 for the side plate portion, and the heald frame 27 for the ribs, respectively. .
経糸x1及び経糸x2が製織開始の位置に張設された状態から製織が開始される。
経糸開口への緯糸yの挿入は、図示しない、1つのシャトルを用いて行われる。また、シャトルが同じ高さ位置で往復移動することによりシャトルによる緯入れが行われるように、基板部11a及び側板部11bの各層を構成する経糸x1の開口動作を行う基板部用ヘルド枠23及び側板部用ヘルド枠24は、各層の経糸開口位置が同じとなるように順次駆動される。また、リブ12を構成する経糸x2は、リブ12と対応する以外の箇所では下側の側板部11bの経糸x1として機能するように製織されるため、リブ用ヘルド枠27は、リブ12以外の箇所が製織される状態では、下側の側板部11bの下から4層目の緯糸yの緯入れを可能にするように側板部用ヘルド枠24と同期して駆動される。
Weaving is started from a state in which the warp x1 and the warp x2 are stretched at the weaving start position.
The weft y is inserted into the warp opening using a single shuttle (not shown). Further, the substrate frame heald frame 23 that performs the opening operation of the warp yarns x1 constituting each layer of the substrate portion 11a and the side plate portion 11b so that the shuttle moves back and forth at the same height position so that the weft insertion is performed by the shuttle. The side plate portion heald frame 24 is sequentially driven so that the warp opening positions of the respective layers are the same. Further, the warp x2 constituting the rib 12 is woven so as to function as the warp x1 of the lower side plate portion 11b at a place other than the rib 12, so that the rib heald frame 27 is formed of a material other than the rib 12. In a state in which the place is woven, it is driven in synchronism with the side plate portion heald frame 24 so as to enable the weft insertion of the fourth layer of weft yarn y from below the lower side plate portion 11b.
三次元繊維構造体10の製織は、本体11の上側から下側に向かって緯糸yが順次挿入されるように行われる。
先ず、基板部用ヘルド枠23、側板部用ヘルド枠24が駆動されて、シャトルによる緯入れが可能な位置に経糸x1による経糸開口が形成され、かつ各層を構成する経糸x1が、挿入される緯糸yに対して1本置きに同じ側を通る位置に配置されるように、基板部用ヘルド枠23、側板部用ヘルド枠24が順次移動されて形成された経糸開口内に緯糸yが挿入される。シャトルが経糸開口内を往動すると、基板部用ヘルド枠23、側板部用ヘルド枠24は、次の層の経糸開口がシャトルの復動箇所に形成されるように駆動され、その経糸開口内をシャトルが復動する。以下、順次同様にしてシャトルによる緯糸yの緯入れが行われる。
The weaving of the three-dimensional fiber structure 10 is performed such that the wefts y are sequentially inserted from the upper side to the lower side of the main body 11.
First, the substrate frame heald frame 23 and the side plate frame heddle 24 are driven to form warp openings by warps x1 at positions where weft insertion by the shuttle is possible, and the warps x1 constituting each layer are inserted. The weft y is inserted into the warp opening formed by sequentially moving the heald frame 23 for the substrate portion and the heald frame 24 for the side plate portion so as to be arranged at positions that pass the same side every other weft y. Is done. When the shuttle moves forward in the warp opening, the board-side heald frame 23 and the side plate-side heald frame 24 are driven so that the warp opening of the next layer is formed at the return position of the shuttle. The shuttle will return. Thereafter, the wefts y are inserted by the shuttle in the same manner.
リブ用ヘルド枠27は、上側の側板部11bの最下層より一層上の層及び対応する基板部11aの層まで緯入れが完了するまでは、開口動作を行わずに待機する。そして、次の緯入れが行われるのに先立って、一方のリブ用ヘルド枠27が開口位置に移動される。この開口位置は、基板部11a及び側板部11bを形成するための一層分の緯糸yを挿入可能な位置ではなく、2つの側板部11bの間に挿入される全層分の緯糸yを挿入可能な位置になる。 The rib heald frame 27 stands by without performing the opening operation until the weft insertion is completed to the layer above the lowermost layer of the upper side plate portion 11b and the layer of the corresponding substrate portion 11a. Then, prior to the next weft insertion, one rib heald frame 27 is moved to the opening position. This opening position is not a position where the wefts y for one layer for forming the substrate part 11a and the side plate part 11b can be inserted, but the wefts y for all layers inserted between the two side plate parts 11b can be inserted. It becomes a position.
その状態で基板部用ヘルド枠23が駆動されて、リブ12及びリブ12と対応する箇所の基板部11aを生成する緯糸yの配列が行われる。リブ用ヘルド枠27は、次の緯入れから下側の側板部11bの最上層を形成するための緯入れが行われるまでは、開位置に停止され、基板部用ヘルド枠23のみ順次上層寄りの経糸開口から順に、経糸開口をシャトルの緯入れ可能な状態にするように駆動されて、経糸x1の開口内にシャトルにより緯入れが行われる。 In this state, the substrate portion heald frame 23 is driven, and the wefts y that generate the substrate portions 11a corresponding to the ribs 12 and the ribs 12 are arranged. The rib heald frame 27 is stopped at the open position from the next weft insertion until the weft insertion for forming the uppermost layer of the lower side plate portion 11b is performed, and only the substrate heald frame 23 is gradually moved closer to the upper layer. In order from the warp opening, the warp opening is driven so that the weft insertion of the shuttle is possible, and the weft insertion is performed in the opening of the warp x1 by the shuttle.
基板部11aを形成する経糸開口内に挿入される緯糸yは、リブ12をも形成するため、リブ用ヘルド枠27は、下側のリブ12の最上層を形成するための緯入れが開始されるまでは、側板部用ヘルド枠24と共にその駆動が停止される。そして、リブ12の箇所では、図7及び図8に示すように、リブ12を構成する経糸x2は、側板部11bを構成するx1のように上下方向において隣り合う層を構成する緯糸y間に跨るように波状に配列されるのではなく、上下2つの側板部11b間に配列される緯糸yと直交する状態で真っ直ぐに延びるように配列される。そのため、リブ用ヘルド枠27は、リブ12を形成すべき箇所においては、経糸x2が両側板部11b間に対応する基板部11aを構成する全層分の緯糸yが基板部11aからリブ12に連続して延びる状態で挿入可能となるように、開口状態が非常に大きくなる位置と開口を閉じる位置とに、対応する側板部11bの全層の緯糸yと直交する距離ずつ往動あるいは復動するように移動される。 Since the weft y inserted into the warp opening forming the substrate portion 11a also forms the rib 12, the rib heald frame 27 is started to be inserted to form the uppermost layer of the lower rib 12. Until then, the driving of the side plate portion heald frame 24 is stopped. 7 and 8, at the location of the rib 12, the warp x2 constituting the rib 12 is between the wefts y constituting the layers adjacent in the vertical direction as x1 constituting the side plate portion 11b. Rather than being arranged in a wavy manner so as to straddle, they are arranged so as to extend straight in a state orthogonal to the wefts y arranged between the upper and lower two side plate portions 11b. Therefore, in the rib heald frame 27, at the portion where the rib 12 is to be formed, the wefts y for all layers constituting the substrate portion 11a corresponding to the warp x2 between the both side plate portions 11b are transferred from the substrate portion 11a to the rib 12. Forward or backward movement by a distance orthogonal to the wefts y of all layers of the corresponding side plate portion 11b between the position where the opening state becomes very large and the position where the opening is closed so that the insertion can be performed in a continuously extending state. To be moved.
リブ12及びリブ12と対応する位置における基板部11aを形成する位置への緯糸yの挿入が終了すると、開位置に配置されていたリブ用ヘルド枠27は閉位置に配置される。そして、下側の側板部11bを形成する際は、リブ用ヘルド枠27は、基板部用ヘルド枠23及び側板部用ヘルド枠24が経糸x1の開口動作を行うのと同様に、経糸x2が上下方向において隣り合う層を構成する緯糸y間に跨るように波状に配列される範囲で駆動される。そして、下側の側板部11b及び対応する基板部11aの緯入れが完了して、三次元繊維構造体10の長手方向における1層分の緯入れが完了すると、経糸支持部材21が1ピッチ分移動され、前記と同様の動作が繰り返される。 When the insertion of the weft yarn y into the position where the rib 12 and the substrate portion 11a are formed at the position corresponding to the rib 12 is finished, the rib heald frame 27 arranged at the open position is arranged at the closed position. When the lower side plate portion 11b is formed, the rib heald frame 27 has the warp yarn x2 in the same manner as the substrate portion heald frame 23 and the side plate portion heald frame 24 perform the opening operation of the warp yarn x1. It is driven in a range that is arranged in a wave shape so as to straddle between the wefts y constituting the adjacent layers in the vertical direction. When the weft insertion of the lower side plate portion 11b and the corresponding substrate portion 11a is completed and the weft insertion for one layer in the longitudinal direction of the three-dimensional fiber structure 10 is completed, the warp support member 21 is one pitch. The same operation as described above is repeated.
本体11の製織と、本体11及びリブ12の製織とが所定回数繰り返されて、予め設定された長さの三次元繊維構造体10が製織されると、三次元繊維構造体10に繋がる緯糸y、経糸x1及び経糸x2が切断されて、三次元繊維構造体10が取り出される。そして、三次元繊維構造体10が必要な長さに切断されて、製品としての三次元繊維構造体10が得られる。三次元繊維構造体10は、例えば、繊維強化樹脂の強化基材として使用され、製造された繊維強化樹脂は軽量で高強度の構造用部材として用いられる。 When the weaving of the main body 11 and the weaving of the main body 11 and the ribs 12 are repeated a predetermined number of times, and the three-dimensional fiber structure 10 having a preset length is woven, the weft y connected to the three-dimensional fiber structure 10 The warp x1 and the warp x2 are cut, and the three-dimensional fiber structure 10 is taken out. And the three-dimensional fiber structure 10 is cut | disconnected to required length, and the three-dimensional fiber structure 10 as a product is obtained. The three-dimensional fiber structure 10 is used as, for example, a reinforced base material of fiber reinforced resin, and the manufactured fiber reinforced resin is used as a structural member having a light weight and high strength.
この実施形態によれば、以下に示す効果を得ることができる。
(1)三次元繊維構造体10は、基板部11aと、基板部11aの両端から基板部11aと直交する方向に平行に延びる2つの側板部11bとで断面コ字状に形成された本体11と、基板部11a及び2つの側板部11bと直交する状態で本体11と一体に形成されたリブ12とを備える。そして、本体11は、経糸x1が基板部11aと側板部11bとの交線の延びる方向に延び、緯糸yが経糸x1と直交する多層織りで構成され、リブ12は、2つの側板部11b間で真っ直ぐに延びる経糸x2と、経糸x2と直交する状態で真っ直ぐに延びる緯糸yとで構成されている。この構成によれば、断面コ字状の本体11と直交する状態で一体に形成されたリブ12を有する三次元繊維構造体10が、経糸x1,x2と緯糸yとで構成されているため、断面コ字状の三次元繊維構造体10を製造する際に、リブ12と対応する部分における経糸と緯糸の配列状態を変更することにより製造することが可能となる。したがって、三次元繊維構造体10の製造工程が単純で、三次元繊維構造体10が大型であっても連続生産を容易にすることができる。
According to this embodiment, the following effects can be obtained.
(1) The three-dimensional fiber structure 10 has a main body 11 formed in a U-shaped cross section by a substrate portion 11a and two side plate portions 11b extending in parallel to a direction orthogonal to the substrate portion 11a from both ends of the substrate portion 11a. And ribs 12 formed integrally with the main body 11 in a state orthogonal to the substrate portion 11a and the two side plate portions 11b. The main body 11 is composed of a multi-layer weave in which the warp x1 extends in the direction in which the line of intersection of the base plate portion 11a and the side plate portion 11b extends, and the weft y is formed of a multilayer weave orthogonal to the warp yarn x1, and the rib 12 is between the two side plate portions 11b. The warp x2 extends straight and the weft y extends straight in a state orthogonal to the warp x2. According to this configuration, the three-dimensional fiber structure 10 having the ribs 12 integrally formed in a state orthogonal to the body 11 having a U-shaped cross section is composed of warps x1, x2 and wefts y. When the three-dimensional fiber structure 10 having a U-shaped cross section is manufactured, it can be manufactured by changing the arrangement state of the warp and the weft in the portion corresponding to the rib 12. Therefore, the manufacturing process of the three-dimensional fiber structure 10 is simple, and continuous production can be facilitated even if the three-dimensional fiber structure 10 is large.
(2)リブ12は、本体11の長手方向の中間部に複数設けられている。したがって、この構成の三次元繊維構造体10を強化基材として製造された繊維強化樹脂は、例えば、軽量で高強度の構造用部材として用いることができる。 (2) A plurality of ribs 12 are provided in the middle part of the main body 11 in the longitudinal direction. Therefore, the fiber reinforced resin manufactured using the three-dimensional fiber structure 10 having this configuration as a reinforcing base material can be used as, for example, a lightweight and high-strength structural member.
(3)三次元繊維構造体10の製造方法は、基板部11a及び2つの側板部11bを形成するための経糸x1を、それぞれ独立して駆動可能に構成された本体用ヘルド枠としての基板部用ヘルド枠23及び側板部用ヘルド枠24に挿通した状態で、経糸ビーム20と経糸支持部材21との間に本体11の断面形状に対応した状態で張設する。また、本体11と、基板部11a及び2つの側板部11bと直交する状態で本体11と一体に形成されるリブ12を形成するための経糸x2を、補助経糸用ビーム25と経糸支持部材21との間にリブ用ヘルド枠27に挿通した状態で張設する。そして、リブ用ヘルド枠27を、リブ12を形成しない箇所と対応する状態では本体用ヘルド枠と同じ開口量となる状態で駆動し、リブ12を形成する箇所と対応する状態では、リブ12を形成する経糸x2が形成すべきリブ12を構成する緯糸層全層と直交する距離ずつ往動あるいは復動するように駆動する。その結果、従来技術と異なり、断面コ字状の三次元繊維構造体を製造する場合とほぼ同様にして、断面コ字状の本体11と、本体11の三つの面と直交する状態で本体11と一体に形成されたリブ12とを備える三次元繊維構造体10を製造することができる。したがって、三次元繊維構造体10の製造工程が単純で、三次元繊維構造体10が大型であっても連続生産が容易になる。 (3) The manufacturing method of the three-dimensional fiber structure 10 includes a substrate portion as a main body heald frame configured to be able to independently drive the warp x1 for forming the substrate portion 11a and the two side plate portions 11b. In a state of being inserted through the heald frame 23 for the side plate and the heald frame 24 for the side plate portion, it is stretched between the warp beam 20 and the warp support member 21 in a state corresponding to the cross-sectional shape of the main body 11. Further, the warp x2 for forming the rib 12 formed integrally with the main body 11 in a state of being orthogonal to the main body 11, the substrate portion 11a and the two side plate portions 11b, the auxiliary warp beam 25, the warp support member 21, and the like It is stretched while being inserted through the rib heald frame 27. Then, the rib heald frame 27 is driven in a state corresponding to a position where the rib 12 is not formed, and the rib 12 is driven in a state corresponding to the position where the rib 12 is formed. The warp x2 to be formed is driven so as to move forward or backward by a distance orthogonal to the entire weft layer constituting the rib 12 to be formed. As a result, unlike the prior art, in the same manner as the case of manufacturing a three-dimensional fiber structure having a U-shaped cross section, the main body 11 having a U-shaped cross section and the three surfaces of the main body 11 are orthogonal to each other. And the rib 12 formed integrally with the three-dimensional fiber structure 10 can be manufactured. Therefore, the manufacturing process of the three-dimensional fiber structure 10 is simple, and continuous production becomes easy even if the three-dimensional fiber structure 10 is large.
(第2の実施形態)
次に第2の実施形態を図9及び図10にしたがって説明する。この実施形態は、三次元繊維構造体30が有底箱状に形成されている点が前記実施形態と大きく異なっている。第1の実施形態と同一部分は同一符号を付して詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. This embodiment is greatly different from the above embodiment in that the three-dimensional fiber structure 30 is formed in a bottomed box shape. The same parts as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
図9に示すように、三次元繊維構造体30は有底箱状に形成され、断面コ字状の本体11には、両端部にリブ12が形成されている。詳述すると、本体11は基板部11aと2つの側板部11bとで構成され、基板部11a及び側板部11bの端部と直交する状態でリブ12が形成され、基板部11aが底壁、側板部11b及びリブ12がそれぞれ対向する側壁を形成している。なお、図9においては、三次元繊維構造体30を、一方の側板部11bが下側になり、底壁となる基板部11aが上下方向に延びる状態に配置した状態で図示している。 As shown in FIG. 9, the three-dimensional fiber structure 30 is formed in a bottomed box shape, and ribs 12 are formed on both ends of the body 11 having a U-shaped cross section. More specifically, the main body 11 includes a substrate portion 11a and two side plate portions 11b, and ribs 12 are formed in a state orthogonal to the end portions of the substrate portion 11a and the side plate portions 11b. The substrate portion 11a is a bottom wall and side plates. The part 11b and the rib 12 form opposite side walls. In FIG. 9, the three-dimensional fiber structure 30 is illustrated in a state in which one side plate portion 11 b is on the lower side and the substrate portion 11 a serving as a bottom wall is arranged in a vertically extending state.
この有底箱状の三次元繊維構造体30は、図10に示すように、リブ12が接近した状態で2つ形成された箇所が複数箇所、形成すべき箱に対応する間隔をおいて設けられるように形成された中間体としての長尺状の三次元繊維構造体10を所定位置で切断して形成される。図10においては、分かり易くするため、接近して形成される2つのリブ12の間隔を広く図示しているが、実際は、三次元繊維構造体10を切断する切断刃がリブ12を傷つけずに本体11を切断可能な間隔があればよい。 As shown in FIG. 10, the bottomed box-shaped three-dimensional fiber structure 30 is provided with a plurality of locations where the ribs 12 are close to each other at intervals corresponding to the boxes to be formed. It is formed by cutting a long three-dimensional fiber structure 10 as an intermediate body formed at a predetermined position. In FIG. 10, for easy understanding, the interval between the two ribs 12 formed close to each other is illustrated widely. However, actually, the cutting blade that cuts the three-dimensional fiber structure 10 does not damage the ribs 12. It is sufficient that there is an interval at which the main body 11 can be cut.
図10に示す三次元繊維構造体10の製造は、第1の実施形態と基本的に同様に行われるが、リブ12を一定の所定間隔で形成するのではなく、リブ12が接近した状態で2つ形成された箇所が複数箇所、形成すべき箱に対応する間隔をおいて設けられるように形成する点が異なる。 Manufacturing of the three-dimensional fiber structure 10 shown in FIG. 10 is performed basically in the same manner as in the first embodiment, but the ribs 12 are not close to each other but formed at regular intervals. The difference is that two places are formed so as to be provided at intervals corresponding to the boxes to be formed.
この実施形態によれば、第1の実施形態の(1)に記載の効果に加えて以下の効果を得ることができる。
(4)三次元繊維構造体30は、基板部11aと基板部11aの両端部から基板部11aと直交する方向に平行に延びる2つの側板部11bとで断面コ字状に形成された本体11と、本体11の両端部に設けられたリブ12とを備える。本体11及びリブ12は、基板部11aを底壁とする箱を形成している。この構成の三次元繊維構造体30を強化基材として製造された繊維強化樹脂は、例えば、自動車部品の軽量化、衝突安全性能確保を目的に、自動車衝突時の衝突エネルギーを吸収する部材(クラッシュボックス)として用いることができる。
According to this embodiment, in addition to the effect described in (1) of the first embodiment, the following effect can be obtained.
(4) The three-dimensional fiber structure 30 is a main body 11 formed in a U-shaped cross section by a substrate portion 11a and two side plate portions 11b extending in parallel to a direction orthogonal to the substrate portion 11a from both ends of the substrate portion 11a. And ribs 12 provided at both ends of the main body 11. The main body 11 and the rib 12 form a box whose bottom wall is the substrate portion 11a. The fiber reinforced resin manufactured using the three-dimensional fiber structure 30 having this configuration as a reinforced base material is a member that absorbs collision energy at the time of automobile collision (crash, for example, for the purpose of reducing the weight of automobile parts and ensuring collision safety performance). Box).
(5)三次元繊維構造体30は、箱状部が短い間隔をおいて連続的に形成された長尺状の三次元繊維構造体10を切断して製造することができる。したがって、有底箱状の三次元繊維構造体30を効率良く生産することができる。 (5) The three-dimensional fiber structure 30 can be manufactured by cutting the long three-dimensional fiber structure 10 in which the box-shaped portions are continuously formed at short intervals. Therefore, the bottomed box-shaped three-dimensional fiber structure 30 can be produced efficiently.
(第3の実施形態)
次に、第3の実施形態を図11及び図12にしたがって説明する。この実施形態の三次元繊維構造体10の製造は、本体11を形成するための経糸x1を、経糸ビーム20と経糸支持部材21との間に張設する場合、図11に示すように、経糸群29がチャネル状即ち断面コ字状で、基板部11aとなる箇所が下側に位置し、側板部11bとなる箇所が基板部11aとなる箇所に対して上側に突出する状態に張設する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In the manufacture of the three-dimensional fiber structure 10 of this embodiment, when the warp x1 for forming the main body 11 is stretched between the warp beam 20 and the warp support member 21, as shown in FIG. The group 29 is channel-shaped, that is, U-shaped in cross section, and the portion that becomes the substrate portion 11a is located on the lower side, and the portion that becomes the side plate portion 11b is extended so as to protrude upward with respect to the location that becomes the substrate portion 11a. .
図12(b)に示すように、リブ12を構成する経糸x2は、前記両実施形態と異なり、リブ12の他に側板部11bの一部を構成するのではなく、基板部11aの一部を構成する。具体的には、基板部11aの両側板部11bに挟まれた部分の最上層の経糸x1となる。そして、リブ12を形成する経糸x2は、両側板部11b間において両側板部11bと直交する方向に真っ直ぐに延びる状態で配列されるのではなく、両側板部11bと平行、かつ基板部11aと垂直方向に真っ直ぐに延び、かつリブ12の上端で折り返すように配列される。 As shown in FIG. 12 (b), the warp x2 constituting the rib 12 is not part of the side plate part 11b in addition to the rib 12, but part of the substrate part 11a, unlike the two embodiments. Configure. Specifically, the uppermost layer warp x1 is sandwiched between both side plate portions 11b of the substrate portion 11a. The warps x2 forming the ribs 12 are not arranged in a state of extending straight in the direction orthogonal to the side plate portions 11b between the side plate portions 11b, but parallel to the side plate portions 11b and the substrate portions 11a. They are arranged so as to extend straight in the vertical direction and to be folded back at the upper ends of the ribs 12.
また、緯糸yが、側板部11bと直交する状態で経糸開口内に挿入される点も、両実施形態と異なる。緯糸yがシャトルを用いて緯入れされる場合、シャトルは、各側板部11b毎に往復動して両側板部11bの緯入れを行うのではなく、一方の側板部11bの外側面からその側板部11bを貫通した後、他方の側板部11bをその内側面から貫通した後、折り返して他方の側板部11bを外側から貫通した後、一方の側板部11bをその内側面から貫通する。そして、再び一方の側板部11bの外側面から同様の動作を繰り返す。そのため、製造された三次元繊維構造体10は、リブ12が形成されていない部分の両側板部11b間に不要な緯糸yが多数配列された状態となる。不要な緯糸yは、製織終了後に除去される。 Moreover, the point from which the weft y is inserted in a warp opening in the state orthogonal to the side-plate part 11b differs from both embodiment. When the weft y is inserted using a shuttle, the shuttle does not reciprocate for each side plate portion 11b to insert the both side plate portions 11b, but from the outer surface of one side plate portion 11b to the side plate. After penetrating through the portion 11b, the other side plate portion 11b is penetrated from the inner side surface, then folded back and penetrated through the other side plate portion 11b from the outer side, and then the one side plate portion 11b is penetrated from the inner side surface. And the same operation | movement is repeated again from the outer surface of one side plate part 11b. Therefore, the manufactured three-dimensional fiber structure 10 is in a state in which a large number of unnecessary wefts y are arranged between both side plate portions 11b where the ribs 12 are not formed. Unnecessary wefts y are removed after weaving.
図12(a)に示すように、この実施形態の三次元繊維構造体10は、外観は第1の実施形態の三次元繊維構造体10と基本的に同じであるが、リブ12を構成する経糸x2は、折り返し部を除き、基板部11aに対して垂直方向に延び、側板部11bに対しては平行に延びるように配列される。また、リブ12を構成する緯糸yは、基板部11aに対して平行に延び、側板部11bに対しては垂直方向に延びるように配列される。 As shown in FIG. 12A, the three-dimensional fiber structure 10 of this embodiment is basically the same in appearance as the three-dimensional fiber structure 10 of the first embodiment, but constitutes the rib 12. The warp yarns x2 are arranged so as to extend in the vertical direction with respect to the substrate portion 11a and in parallel with the side plate portion 11b except for the folded portion. The wefts y constituting the ribs 12 are arranged so as to extend in parallel to the substrate part 11a and to extend in the vertical direction with respect to the side plate part 11b.
この実施形態においても、三次元繊維構造体10は、基板部11aと、基板部11aの両端部から基板部11aと直交する方向に平行に延びる2つの側板部11bとで断面コ字状に形成された本体11と、基板部11a及び2つの側板部11bと直交する状態で本体11と一体に形成されたリブ12とを備える。そして、本体11は、経糸x1が基板部11aと側板部11bとの交線の延びる方向に延び、緯糸yが経糸x1と直交する多層織りで構成され、リブ12は、2つの側板部11b間で真っ直ぐに延びる緯糸yと、緯糸yと直交する状態で真っ直ぐ延びる経糸x2とで構成されている。この構成においても、断面コ字状の本体11と直交する状態で一体に形成されたリブ12を有する三次元繊維構造体10が、経糸x1,x2と緯糸yとで構成されているため、断面コ字状の三次元繊維構造体10を製造する際に、リブ12と対応する部分における経糸と緯糸の配列状態を変更することにより製造することが可能となる。したがって、三次元繊維構造体10の製造工程が単純で、三次元繊維構造体10が大型であっても連続生産が容易になる。 Also in this embodiment, the three-dimensional fiber structure 10 is formed in a U-shaped cross section by the substrate portion 11a and the two side plate portions 11b extending in parallel to the direction orthogonal to the substrate portion 11a from both ends of the substrate portion 11a. And a rib 12 formed integrally with the main body 11 so as to be orthogonal to the substrate portion 11a and the two side plate portions 11b. The main body 11 is composed of a multi-layer weave in which the warp x1 extends in the direction in which the line of intersection of the base plate portion 11a and the side plate portion 11b extends, and the weft y is formed of a multi-layer weave orthogonal to the warp yarn x1. And the weft yarn y extending straight and the warp yarn x2 extending straight in a state orthogonal to the weft yarn y. Also in this configuration, the three-dimensional fiber structure 10 having the ribs 12 integrally formed in a state orthogonal to the U-shaped main body 11 is composed of the warps x1 and x2 and the wefts y. When the U-shaped three-dimensional fiber structure 10 is manufactured, it can be manufactured by changing the arrangement state of the warp and the weft in the portion corresponding to the rib 12. Therefore, the manufacturing process of the three-dimensional fiber structure 10 is simple, and continuous production becomes easy even if the three-dimensional fiber structure 10 is large.
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 緯糸yの挿入はシャトルを用いて行う方法に限らず、レピア織機のようにレピアを用いて挿入したり、エアジェット織機やウォータジェット織機のように流体噴射を利用して挿入したりしてもよい。しかし、シャトルを用いて折り返し状に挿入される方が好ましい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
○ Insertion of the weft y is not limited to the method using the shuttle, it can be inserted using a rapier like a rapier loom, or it can be inserted using fluid jet like an air jet loom or a water jet loom. Also good. However, it is preferable to insert in a folded shape using a shuttle.
○ 経糸開口へ挿入される緯糸yの挿入位置を変更せずに、経糸x1が構成する各経糸層の開口量を変更して行う構成に代えて、緯糸yの挿入位置を経糸開口の位置に合わせて変更するようにしてもよい。 ○ Instead of changing the opening amount of each warp layer formed by the warp x1 without changing the insertion position of the weft y inserted into the warp opening, the insertion position of the weft y is changed to the position of the warp opening. You may make it change according to it.
○ 緯糸yの挿入を異なる経糸開口へ順に1本ずつ行うのではなく、複数の経糸開口に並行して緯糸yの挿入を行うようにしてもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
The insertion of the wefts y may be performed in parallel to the plurality of warp openings, instead of inserting the wefts y in order to the different warp openings.
The following technical idea (invention) can be understood from the embodiment.
(1)請求項1〜請求項3のいずれか一項に記載の三次元繊維構造体を強化繊維基材として含む繊維強化複合材料。 (1) A fiber-reinforced composite material comprising the three-dimensional fiber structure according to any one of claims 1 to 3 as a reinforcing fiber substrate.
x1,x2…経糸、y…緯糸、10,30…三次元繊維構造体、11…本体、11a…基板部、11b…側板部、12…リブ、20…経糸ビーム、21…経糸支持部材、23…本体用ヘルド枠としての基板部用ヘルド枠、24…本体用ヘルド枠としての側板部用ヘルド枠、25…補助経糸用ビーム、27…リブ用ヘルド枠。 x1, x2 ... warp, y ... weft, 10, 30 ... three-dimensional fiber structure, 11 ... main body, 11a ... substrate part, 11b ... side plate part, 12 ... rib, 20 ... warp beam, 21 ... warp support member, 23 ... Helder frame for substrate part as a heald frame for main body, 24 ... Held frame for side plate part as a heald frame for main body, 25 ... Beam for auxiliary warp, 27 ... Held frame for ribs.
Claims (6)
前記本体は、経糸が前記基板部と前記側板部との交線の延びる方向に延びる多層織りで構成され、
前記リブは、前記2つの側板部間で真っ直ぐに延びる経糸及び緯糸のいずれか一方と、前記経糸及び緯糸のいずれか一方と直交する状態で真っ直ぐに延びる緯糸又は経糸とで構成されていることを特徴とする三次元繊維構造体。 A main body formed in a U-shaped cross section by a substrate portion and two side plate portions extending in parallel to a direction orthogonal to the substrate portion from both ends of the substrate portion, and a state orthogonal to the substrate portion and the two side plate portions A three-dimensional fiber structure comprising a rib formed integrally with the main body,
The main body is composed of a multi-layer weave in which warps extend in the direction in which the line of intersection between the substrate portion and the side plate portion extends,
The rib is composed of any one of a warp and a weft that extends straight between the two side plate portions, and a weft or a warp that extends straight in a state orthogonal to either the warp or the weft. Characteristic three-dimensional fiber structure.
前記基板部及び前記2つの側板部を形成するための経糸を、経糸ビームと経糸支持部材との間に前記本体の断面形状に対応した状態で張設し、
前記リブを形成するための経糸を、補助経糸用ビームと前記経糸支持部材との間に張設し、
前記リブを形成するための経糸を、前記リブを形成しない箇所と対応する状態では前記基板部及び前記2つの側板部を形成するための経糸と同じ開口量となる状態で開口し、前記リブを形成する箇所と対応する状態では前記リブを形成する経糸が形成すべきリブを構成する緯糸層全層と直交する距離だけ往復移動するように開口して、隣り合う経糸層間に複数の緯糸を挿入することを特徴とする三次元繊維構造体の製造方法。 A main body formed in a U-shaped cross section by a substrate portion and two side plate portions extending in parallel to a direction orthogonal to the substrate portion from both ends of the substrate portion, and orthogonal to the substrate portion and the two side plate portions A manufacturing method of a three-dimensional fiber structure comprising a rib formed integrally with the main body in a state,
A warp for forming the substrate portion and the two side plate portions is stretched in a state corresponding to the cross-sectional shape of the main body between a warp beam and a warp support member,
The warp for forming the rib is stretched between the auxiliary warp beam and the warp support member,
The warp for forming the rib is opened in a state corresponding to the position where the rib is not formed, in the same opening amount as the warp for forming the substrate portion and the two side plate portions, and the rib is In the state corresponding to the place to be formed, the warp forming the rib is opened so as to reciprocate by a distance orthogonal to the entire weft layer constituting the rib to be formed, and a plurality of wefts are inserted between adjacent warp layers. A method for producing a three-dimensional fiber structure.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013227029A JP6136858B2 (en) | 2013-10-31 | 2013-10-31 | Three-dimensional fiber structure and manufacturing method of three-dimensional fiber structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013227029A JP6136858B2 (en) | 2013-10-31 | 2013-10-31 | Three-dimensional fiber structure and manufacturing method of three-dimensional fiber structure |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2015086491A true JP2015086491A (en) | 2015-05-07 |
| JP6136858B2 JP6136858B2 (en) | 2017-05-31 |
Family
ID=53049602
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013227029A Expired - Fee Related JP6136858B2 (en) | 2013-10-31 | 2013-10-31 | Three-dimensional fiber structure and manufacturing method of three-dimensional fiber structure |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP6136858B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200100229A (en) * | 2019-02-15 | 2020-08-26 | 한국기계연구원 | 3D profiled beam preforms in which the thickness direction fibers are continuously reinforced and a method for manufacturing the same |
| WO2023247865A1 (en) * | 2022-06-22 | 2023-12-28 | Safran Landing Systems | Fibrous reinforcement for the manufacture of a composite part intended to be articulated with other parts |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02191742A (en) * | 1989-01-18 | 1990-07-27 | Toyota Autom Loom Works Ltd | Three-dimensional cloth and production thereof |
| JPH02191740A (en) * | 1989-01-14 | 1990-07-27 | Toyota Autom Loom Works Ltd | Production of three-dimensional woven fabric |
| JPH09176932A (en) * | 1995-12-25 | 1997-07-08 | Toyota Autom Loom Works Ltd | Three-dimensional fiber structure |
| JPH09176933A (en) * | 1995-12-25 | 1997-07-08 | Toyota Autom Loom Works Ltd | Three-dimensional fiber structure |
| US5783279A (en) * | 1991-08-19 | 1998-07-21 | Cambridge Consultants Limited | Fibre preforms for structural composite components |
| US6019138A (en) * | 1997-03-21 | 2000-02-01 | Northrop Grumman Corporation | Automated three-dimensional method for making integrally stiffened skin panels |
| JP2016102548A (en) * | 2014-11-28 | 2016-06-02 | 株式会社豊田自動織機 | Impact absorption material and process of manufacture of impact absorption material |
-
2013
- 2013-10-31 JP JP2013227029A patent/JP6136858B2/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02191740A (en) * | 1989-01-14 | 1990-07-27 | Toyota Autom Loom Works Ltd | Production of three-dimensional woven fabric |
| JPH02191742A (en) * | 1989-01-18 | 1990-07-27 | Toyota Autom Loom Works Ltd | Three-dimensional cloth and production thereof |
| US5783279A (en) * | 1991-08-19 | 1998-07-21 | Cambridge Consultants Limited | Fibre preforms for structural composite components |
| JPH09176932A (en) * | 1995-12-25 | 1997-07-08 | Toyota Autom Loom Works Ltd | Three-dimensional fiber structure |
| JPH09176933A (en) * | 1995-12-25 | 1997-07-08 | Toyota Autom Loom Works Ltd | Three-dimensional fiber structure |
| US6019138A (en) * | 1997-03-21 | 2000-02-01 | Northrop Grumman Corporation | Automated three-dimensional method for making integrally stiffened skin panels |
| JP2016102548A (en) * | 2014-11-28 | 2016-06-02 | 株式会社豊田自動織機 | Impact absorption material and process of manufacture of impact absorption material |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200100229A (en) * | 2019-02-15 | 2020-08-26 | 한국기계연구원 | 3D profiled beam preforms in which the thickness direction fibers are continuously reinforced and a method for manufacturing the same |
| KR102197616B1 (en) | 2019-02-15 | 2021-01-05 | 한국재료연구원 | 3D profiled beam preforms in which the thickness direction fibers are continuously reinforced and a method for manufacturing the same |
| WO2023247865A1 (en) * | 2022-06-22 | 2023-12-28 | Safran Landing Systems | Fibrous reinforcement for the manufacture of a composite part intended to be articulated with other parts |
| FR3137014A1 (en) * | 2022-06-22 | 2023-12-29 | Safran Landing Systems | Fibrous reinforcement for the manufacture of a composite part intended to be articulated with other parts |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6136858B2 (en) | 2017-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9598798B2 (en) | Method and apparatus for weaving a three-dimensional fabric | |
| RU2530378C2 (en) | U-shaped preform | |
| Unal | 3D woven fabrics | |
| EP0970270B1 (en) | Woven 3d fabric material | |
| CA2708160C (en) | Method for weaving closed structures with intersecting walls | |
| JP3930913B2 (en) | Network-like three-dimensional fabric | |
| RU2012113098A (en) | Woven blanks, composite materials and methods for their manufacture | |
| CN101529003B (en) | Three-dimensional surface weave | |
| CN111058142B (en) | Three-dimensional sandwich structure fabric and weaving method thereof | |
| US20180216262A1 (en) | Multilayered Woven Fabric as well as Corresponding Production Method | |
| JP2010507733A (en) | System for weaving continuous angles | |
| JP2010507732A5 (en) | ||
| JP6136858B2 (en) | Three-dimensional fiber structure and manufacturing method of three-dimensional fiber structure | |
| CN104204320A (en) | Method for producing a one-piece preform for a composite structure | |
| CN1079123C (en) | Woven 3D fabric material | |
| WO2021006081A1 (en) | Fiber structure and method for manufacturing fiber structure | |
| WO2013035518A1 (en) | Woven fabric base material and fiber-reinforced composite material | |
| JPH02191740A (en) | Production of three-dimensional woven fabric | |
| JPH02191742A (en) | Three-dimensional cloth and production thereof | |
| JP2013100619A (en) | Multi-layered hollow textile material, multi-layered hollow textile composite material and method of producing the same | |
| JPH02234948A (en) | Three-dimensional woven fabric and production thereof | |
| Coupé | Woven reinforcements for composites | |
| KR20240135276A (en) | Manufacturing seamless integral 3D textile preform using 3D weaving technology and using it as a thermal protection system | |
| KR20250139067A (en) | A method for preparation of layer-to-layer fibrous multi-layer preform and 3-Dimensional stiffened plate preform by the same | |
| JPH02191743A (en) | Production of three-dimensional cloth |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160209 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170417 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 6136858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| LAPS | Cancellation because of no payment of annual fees |