JP2015085241A - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP2015085241A
JP2015085241A JP2013224365A JP2013224365A JP2015085241A JP 2015085241 A JP2015085241 A JP 2015085241A JP 2013224365 A JP2013224365 A JP 2013224365A JP 2013224365 A JP2013224365 A JP 2013224365A JP 2015085241 A JP2015085241 A JP 2015085241A
Authority
JP
Japan
Prior art keywords
ceria
catalyst
exhaust gas
composite oxide
zirconia composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013224365A
Other languages
Japanese (ja)
Other versions
JP6208540B2 (en
Inventor
鈴木 宏昌
Hiromasa Suzuki
宏昌 鈴木
悠生 青木
Hisao Aoki
悠生 青木
久保 修一
Shuichi Kubo
修一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Toyota Motor Corp
Original Assignee
Ibiden Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd, Toyota Motor Corp filed Critical Ibiden Co Ltd
Priority to JP2013224365A priority Critical patent/JP6208540B2/en
Publication of JP2015085241A publication Critical patent/JP2015085241A/en
Application granted granted Critical
Publication of JP6208540B2 publication Critical patent/JP6208540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purification catalyst improved in warming performance while maintaining a pressure loss low.SOLUTION: There can be produced an exhaust gas purification catalyst which contains ceria-zirconia composite oxide particles and θ phase alumina particles and uses 25 wt.% or more of a monolith substrate relative to the total weight of the content of the ceria-zirconia composite oxide particles and in which noble metal particles are supported on the monolith substrate, wherein the amount used of the noble metal particles is reduced while maintaining the performance at the same level as or higher than that of the conventional ones and the ceria-zirconia composite oxide particles contain 30 wt.% or more of ceria and 60 wt.% or less of zirconia.

Description

本発明は、高い暖機性能と低い圧力損失の両方を実現した排ガス浄化触媒に関する。   The present invention relates to an exhaust gas purification catalyst that realizes both high warm-up performance and low pressure loss.

自動車などの内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、未燃の炭化水素(HC)などの有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化触媒は三元触媒とも称され、コージェライトなどからなるハニカム状のモノリス基材に触媒活性を有する貴金属粒子を含むスラリーをウォッシュコートして触媒層を設けたものが一般的である。そのような触媒の性能を向上させるための試みはこれまで種々行われてきた。   Exhaust gas discharged from internal combustion engines such as automobiles contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbons (HC). An exhaust gas purification catalyst that decomposes such harmful gases is also called a three-way catalyst, and a catalyst layer is provided by washing a slurry containing noble metal particles having catalytic activity on a honeycomb monolith substrate made of cordierite or the like. Things are common. Various attempts have been made to improve the performance of such catalysts.

例えば特許文献1には、マグネシウムとホウ素を含有させることにより、より大きな細孔径を有するコージェライト製モノリス基材を製造することが提案されている。特許文献2には、貴金属粒子が担持された第1化合物と、第1化合物同士を互いに隔離する第2化合物とを含む構造とし、触媒を長期間使用した後においても貴金属同士が凝集せず大きい表面積を保持するようにすることが提案されている。   For example, Patent Document 1 proposes manufacturing a cordierite monolith substrate having a larger pore diameter by containing magnesium and boron. Patent Document 2 has a structure including a first compound on which noble metal particles are supported and a second compound that isolates the first compounds from each other, and the noble metals do not aggregate even after a long period of use of the catalyst. It has been proposed to maintain the surface area.

特開2006−188404号公報JP 2006-188404 A 特開2007−313498号公報JP 2007-31498 A

排ガス浄化触媒中の貴金属使用量の低減は、資源確保およびコスト低減などの観点から重要な命題といえる。しかし、基本的に触媒浄化性能は触媒活性点である貴金属の量に比例するため、貴金属使用量を低減すると触媒の浄化能が低下してしまう。   Reducing the amount of precious metal used in the exhaust gas purification catalyst is an important proposition from the viewpoint of securing resources and reducing costs. However, since the catalyst purification performance is basically proportional to the amount of the noble metal that is the catalyst active point, reducing the amount of noble metal used decreases the catalyst purification performance.

特に、排ガス浄化触媒は、一般的に300℃程度である触媒活性化温度に達しないと十分な浄化性能を発揮しないため、エンジン始動直後に排出されるHC量(いわゆるCold−HC)をいかに低減させるかが重要な課題の一つとされている。貴金属使用量の低減のためには、まずCold−HCを低減させる手段を見出すことが必要となる。排ガス浄化触媒の性能向上の常套手段としてはモノリス基材の高セル化が挙げられるが、高セル化は排気管内の圧力損失を大きくし、エンジン出力の低下、燃費の低下などの弊害をもたらすため、あまり好ましくない。   In particular, exhaust gas purification catalysts generally do not exhibit sufficient purification performance unless they reach a catalyst activation temperature of about 300 ° C., so how to reduce the amount of HC discharged immediately after engine startup (so-called Cold-HC) One of the important issues is how to do this. In order to reduce the amount of noble metal used, it is first necessary to find a means for reducing Cold-HC. Conventional means for improving the performance of exhaust gas purification catalysts include increasing the cell of the monolith substrate, but increasing the cell increases the pressure loss in the exhaust pipe, causing adverse effects such as decreased engine output and reduced fuel consumption. , Not very preferable.

以上の観点から、本発明は、圧力損失を低く維持したまま暖機性能を高めた排ガス浄化触媒を提供することを課題とする。   In view of the above, it is an object of the present invention to provide an exhaust gas purification catalyst having improved warm-up performance while maintaining a low pressure loss.

本発明者らは上述したような問題を検討した結果、モノリス基材の材料としてセリア−ジルコニア複合酸化物とθ相のアルミナ粒子とを用いることにより、上記課題を解決した触媒が提供可能であることを見出した。本発明の要旨は以下のとおりである。
(1)セリア−ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、セリア−ジルコニア複合酸化物粒子の含有量が全体重量に対して25重量%以上であるモノリス基材に貴金属粒子が担持された排ガス浄化触媒。
(2)セリア−ジルコニア複合酸化物粒子がセリアを30重量%以上の量で含む、(1)に記載の排ガス浄化触媒。
(3)セリア−ジルコニア複合酸化物粒子がジルコニアを60重量%以下の量で含む、(1)または(2)に記載の排ガス浄化触媒。
As a result of studying the above-described problems, the present inventors can provide a catalyst that solves the above-described problems by using ceria-zirconia composite oxide and θ-phase alumina particles as the material of the monolith substrate. I found out. The gist of the present invention is as follows.
(1) Precious metal particles are supported on a monolith substrate containing ceria-zirconia composite oxide particles and θ-phase alumina particles, and the content of ceria-zirconia composite oxide particles is 25% by weight or more based on the total weight. Exhaust gas purification catalyst.
(2) The exhaust gas purification catalyst according to (1), wherein the ceria-zirconia composite oxide particles contain ceria in an amount of 30% by weight or more.
(3) The exhaust gas purification catalyst according to (1) or (2), wherein the ceria-zirconia composite oxide particles contain zirconia in an amount of 60% by weight or less.

本発明によれば、モノリス基材の材料を変更したことにより、圧力損失を高めることなく、暖機性能を高めた排ガス浄化触媒を提供することができる。本発明によれば、従来品と同等以上の性能を維持しつつ貴金属使用量を低減した排ガス浄化触媒を提供することが可能となる。   According to the present invention, by changing the material of the monolith substrate, it is possible to provide an exhaust gas purification catalyst with improved warm-up performance without increasing pressure loss. According to the present invention, it is possible to provide an exhaust gas purification catalyst that reduces the amount of noble metal used while maintaining performance equal to or higher than that of a conventional product.

比較例1および2ならびに実施例1の触媒の暖機性能評価結果をまとめたグラフである。4 is a graph summarizing the results of evaluating the warm-up performance of the catalysts of Comparative Examples 1 and 2 and Example 1. 比較例1および2ならびに実施例1の触媒の圧力損失の測定結果をまとめたグラフである。2 is a graph summarizing the measurement results of pressure loss of the catalysts of Comparative Examples 1 and 2 and Example 1. FIG. 比較例1および2ならびに実施例1の触媒における特定流量時の圧力損失と触媒暖機性能値をプロットして、従来触媒に対する本発明の触媒の位置づけをマップ化した図である。It is the figure which plotted the position of the catalyst of this invention with respect to the conventional catalyst by plotting the pressure loss and catalyst warm-up performance value at the specific flow rate in the catalysts of Comparative Examples 1 and 2 and Example 1. CeO−ZrO(CZ)含有量と基材強度との関係を評価した結果をまとめたグラフである。CeO 2 -ZrO 2 (CZ) is a graph summarizing the results of evaluating the relationship between the content and the substrate strength. 実施例1の触媒のモノリス基材に用いたθ相のAl粒子のX線回折像である。 2 is an X-ray diffraction image of θ-phase Al 2 O 3 particles used for the monolith substrate of the catalyst of Example 1. FIG.

本発明の排ガス浄化触媒は、モノリス基材がセリア−ジルコニア複合酸化物粒子とθ相のアルミナ粒子(θアルミナ粒子)とを含むことを特徴とする。モノリス基材におけるセリア−ジルコニア複合酸化物粒子の含有量は、基材の全体重量に対して25重量%以上、好ましくは35重量%以上、特に好ましくは45重量%以上、とりわけ好ましくは50重量%以上である。そのような量でセリア−ジルコニア複合酸化物粒子を用いることにより、モノリス基材に十分な強度を与えることができる。   The exhaust gas purifying catalyst of the present invention is characterized in that the monolith substrate includes ceria-zirconia composite oxide particles and θ-phase alumina particles (θ alumina particles). The content of the ceria-zirconia composite oxide particles in the monolith substrate is 25% by weight or more, preferably 35% by weight or more, particularly preferably 45% by weight or more, particularly preferably 50% by weight, based on the total weight of the substrate. That's it. By using the ceria-zirconia composite oxide particles in such an amount, sufficient strength can be given to the monolith substrate.

セリア−ジルコニア複合酸化物は、従来排ガス浄化触媒において助触媒(酸素貯蔵材)として用いられている材料であり、その詳細は当業者には公知である。本発明におけるセリア−ジルコニア複合酸化物は、好ましくはセリアとジルコニアが固溶体を形成している。セリア−ジルコニア複合酸化物は、例えばセリウム塩(硝酸セリウムなど)とジルコニウム塩(オキシ硝酸ジルコニウムなど)を溶解させた水溶液に、アンモニア水を加えて共沈殿を生成させ、得られた沈殿物を乾燥させた後に400〜500℃で5時間程度焼成することにより調製することができる。   Ceria-zirconia composite oxide is a material conventionally used as a cocatalyst (oxygen storage material) in an exhaust gas purification catalyst, and its details are known to those skilled in the art. In the ceria-zirconia composite oxide in the present invention, preferably ceria and zirconia form a solid solution. Ceria-zirconia composite oxide is prepared by adding ammonia water to an aqueous solution in which, for example, cerium salt (cerium nitrate, etc.) and zirconium salt (zirconium oxynitrate, etc.) are dissolved, and drying the resulting precipitate. It can be prepared by baking at 400 to 500 ° C. for about 5 hours.

セリア−ジルコニア複合酸化物は、セリウム以外の希土類元素から選択される元素をさらに含んでいてもよい。希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテチウム(Lu)などが挙げられる。   The ceria-zirconia composite oxide may further contain an element selected from rare earth elements other than cerium. As rare earth elements, scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Examples thereof include ytterbium (Yb) and lutetium (Lu).

本発明で用いるセリア−ジルコニア複合酸化物は、セリアを30重量%以上、特に40重量%以上の量で含むことが好ましく、さらに90重量%以下、特に80重量%以下の量で含むことが好ましい。また、セリア−ジルコニア複合酸化物は、ジルコニアを60重量%以下、特に50重量%以下の量で含むことが好ましい。そのようなセリア−ジルコニア複合酸化物は熱容量が小さいため、モノリス基材の温度を上昇しやすくし、以って触媒の暖機性能を向上させることができる。   The ceria-zirconia composite oxide used in the present invention preferably contains ceria in an amount of 30% by weight or more, particularly 40% by weight or more, more preferably 90% by weight or less, particularly preferably 80% by weight or less. . The ceria-zirconia composite oxide preferably contains zirconia in an amount of 60% by weight or less, particularly 50% by weight or less. Since such a ceria-zirconia composite oxide has a small heat capacity, the temperature of the monolith substrate can be easily increased, and thus the warm-up performance of the catalyst can be improved.

θ相のアルミナ粒子をセリア−ジルコニア複合酸化物の仕切り材として用いることにより、マイクロメートルサイズの三次元網目状細孔(マクロ孔)およびナノメートルサイズの細孔(メソ孔)の両方を大きくすることができ、触媒の圧力損失を低下させることができる。アルミナ粒子をθ構造化することにより排ガス中でのアルミナ相変化を抑制できるため、より高い耐熱性が実現可能となる。   By using θ-phase alumina particles as partition material for ceria-zirconia composite oxide, both micrometer-size three-dimensional network pores (macropores) and nanometer-size pores (mesopores) are enlarged. And the pressure loss of the catalyst can be reduced. Since the alumina phase change in the exhaust gas can be suppressed by making the alumina particles have a θ structure, higher heat resistance can be realized.

本発明の排ガス浄化触媒は、上記のモノリス基材に貴金属粒子が担持されている構造を有する。貴金属粒子は、好ましくは白金族金属、特にPt、RhおよびPdから選択される金属である。貴金属粒子のモノリス基材への担持は、従来のように助触媒(酸素貯蔵材)や担体、バインダーなどと共に混合してスラリーを調製し、それをモノリス基材にウォッシュコートすることにより行ってもよいが、本発明のモノリス基材はそれ自体が助触媒や担体の機能を有するため、貴金属粒子を直接担持させても高い浄化性能が期待できる。特にCold−HC低減には三元触媒の低熱容量化が効果的であるため、ウォッシュコートを無くすことにより触媒を低熱容量化することができ、より高いHC浄化性能が望める。なお、貴金属は、硝酸パラジウムや塩化ロジウムなどの一般的な試薬を用いて担持することができる。   The exhaust gas purification catalyst of the present invention has a structure in which noble metal particles are supported on the monolith substrate. The noble metal particles are preferably a platinum group metal, in particular a metal selected from Pt, Rh and Pd. The precious metal particles may be supported on the monolith substrate by mixing with a cocatalyst (oxygen storage material), carrier, binder, etc. to prepare a slurry, and washing the monolith substrate with it. However, since the monolith substrate of the present invention itself has the functions of a promoter and a carrier, high purification performance can be expected even when noble metal particles are directly supported. In particular, reducing the heat capacity of the three-way catalyst is effective for reducing Cold-HC, and thus the catalyst can be reduced in heat capacity by eliminating the washcoat, and higher HC purification performance can be expected. The noble metal can be supported using a general reagent such as palladium nitrate or rhodium chloride.

モノリス基材は、材料は異なるものの、従来のコージェライト基材と同様の製造法により製造することができる。例えば、セリア−ジルコニア複合酸化物粒子とθ相のアルミナ粒子の混合物に水とバインダーを加え、混錬した後に押し出し機により成形し、乾燥および焼成することにより製造することができる。   The monolith substrate can be manufactured by the same manufacturing method as the conventional cordierite substrate, although the material is different. For example, it can be produced by adding water and a binder to a mixture of ceria-zirconia composite oxide particles and θ-phase alumina particles, kneading, molding with an extruder, drying and firing.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

1.三元触媒の作製
表1に示した仕様に従って比較例1、比較例2および実施例1の触媒を作製した。比較例1および2の触媒は、所定のコージェライト基材上に触媒層をウォッシュコートした典型的な三元触媒であり、触媒浄化性能や圧力損失の比較のため作製した。ウォッシュコートは、いずれも基材容量に対してコーティング材料の総量が232g/Lとなるよう行った。
1. Preparation of three-way catalyst Catalysts of Comparative Example 1, Comparative Example 2, and Example 1 were prepared according to the specifications shown in Table 1. The catalysts of Comparative Examples 1 and 2 are typical three-way catalysts in which a catalyst layer is wash-coated on a predetermined cordierite substrate, and were prepared for comparison of catalyst purification performance and pressure loss. All the washcoats were performed so that the total amount of the coating material was 232 g / L with respect to the substrate capacity.

実施例1の触媒は、コージェライト基材に代えてCeO−ZrO粒子とAl粒子を用いて製造されたモノリス基材(気孔率48%、見かけ強度2MPa、セグメントかさ比重0.45g/ml、熱膨張率9ppm/K)を用いて作製した。図5は、θ相を有するAl粒子のX線回折像である。用いたAl粒子は、X線回折像によりθ相を有することを予め確認した。なお、このモノリス基材は自らが触媒担体機能および助触媒機能を有すると考えられるため、ウォッシュコートは行わず、所定量の貴金属を直接基材に担持させた。具体的には、硝酸パラジウムと塩化ロジウムを必要量分散させた水溶液中に基材を浸漬させて一定時間放置することにより基材上に貴金属を担持させた。比較例1および2ならびに実施例1の触媒の基材容量はいずれも0.9Lとした。 The catalyst of Example 1 is a monolith substrate (porosity 48%, apparent strength 2 MPa, segment bulk specific gravity 0. 0) produced using CeO 2 —ZrO 2 particles and Al 2 O 3 particles instead of the cordierite substrate. 45 g / ml, coefficient of thermal expansion 9 ppm / K). FIG. 5 is an X-ray diffraction image of Al 2 O 3 particles having a θ phase. It was confirmed in advance that the Al 2 O 3 particles used had a θ phase by an X-ray diffraction image. Since this monolith substrate itself is considered to have a catalyst carrier function and a promoter function, a predetermined amount of noble metal was directly supported on the substrate without performing a wash coat. Specifically, the base material was immersed in an aqueous solution in which necessary amounts of palladium nitrate and rhodium chloride were dispersed and allowed to stand for a certain period of time, thereby supporting the noble metal on the base material. The substrate volumes of the catalysts of Comparative Examples 1 and 2 and Example 1 were both 0.9 L.

Figure 2015085241
Figure 2015085241

2.耐久試験
V8 4.6Lエンジン直下に、作製した比較例1および2ならびに実施例1の触媒をセットした。A/Fはサイクリックに変化する複合パターンとし、床温1000℃で50時間の耐久試験を行った。
2. Durability Test The prepared catalysts of Comparative Examples 1 and 2 and Example 1 were set directly under the V8 4.6L engine. A / F was a complex pattern that changed cyclically, and a 50-hour durability test was conducted at a bed temperature of 1000 ° C.

3.触媒評価
直列4気筒2.4Lエンジンに、上記2の耐久試験を終えた各触媒をセットし、ストイキエンジン始動からHC濃度が50%以下となる時間を測定し、触媒暖機性能を評価した。また、ブロアーと圧力センサを用いた簡易的な測定装置を用いて触媒の圧力損失を測定した。
3. Catalyst Evaluation Each catalyst that had undergone the above endurance test 2 was set in an in-line 4-cylinder 2.4L engine, and the time during which the HC concentration was 50% or less from the start of the stoichiometric engine was measured to evaluate catalyst warm-up performance. Moreover, the pressure loss of the catalyst was measured using a simple measuring device using a blower and a pressure sensor.

図1は触媒暖機性能の評価結果をまとめたグラフである。従来のウォッシュコートにより触媒層を設けた比較例1および2の触媒と比較して、実施例1の触媒は最も暖機性能に優れていた。   FIG. 1 is a graph summarizing the evaluation results of catalyst warm-up performance. Compared to the catalysts of Comparative Examples 1 and 2 in which a catalyst layer was provided by a conventional washcoat, the catalyst of Example 1 was most excellent in warm-up performance.

図2は触媒の圧力損失の測定結果をまとめたグラフである。実施例1の触媒は、低メッシュ基材にウォッシュコートを行った従来品である比較例2の触媒と同等レベルの性能を有していた。   FIG. 2 is a graph summarizing the measurement results of the pressure loss of the catalyst. The catalyst of Example 1 had the same level of performance as the catalyst of Comparative Example 2, which was a conventional product in which a low mesh base material was wash coated.

図3は比較例1および2ならびに実施例1の触媒における特定流量時の圧力損失と触媒暖機性能値をプロットして、従来触媒に対する本発明の触媒の位置づけをマップ化した図である。本発明によれば、従来のトレードオフラインから性能が優れた側に大幅にシフト可能であることがわかる。   FIG. 3 is a diagram in which the pressure loss at a specific flow rate and the catalyst warm-up performance value in the catalysts of Comparative Examples 1 and 2 and Example 1 are plotted, and the position of the catalyst of the present invention relative to the conventional catalyst is mapped. According to the present invention, it can be seen that it is possible to significantly shift from the conventional trade off-line to the superior performance side.

4.モノリス基材強度評価
モノリス基材中のCeO−ZrO(CZ)含有量を変化させたモノリス基材を作製して曲げ強度を測定した。CZ含有量と基材強度との関係を評価した結果を図4のグラフにまとめた。評価の結果、25重量%以上のCZを含有させることで高い基材強度が実現可能であると判断された。
4). Monolith base material strength evaluation A monolith base material in which the content of CeO 2 —ZrO 2 (CZ) in the monolith base material was changed was prepared, and the bending strength was measured. The results of evaluating the relationship between CZ content and substrate strength are summarized in the graph of FIG. As a result of the evaluation, it was determined that high substrate strength can be achieved by containing 25 wt% or more of CZ.

Claims (3)

セリア−ジルコニア複合酸化物粒子とθ相のアルミナ粒子とを含み、セリア−ジルコニア複合酸化物粒子の含有量が全体重量に対して25重量%以上であるモノリス基材に貴金属粒子が担持された排ガス浄化触媒。   Exhaust gas in which noble metal particles are supported on a monolith substrate containing ceria-zirconia composite oxide particles and θ-phase alumina particles, and the content of ceria-zirconia composite oxide particles is 25% by weight or more based on the total weight Purification catalyst. セリア−ジルコニア複合酸化物粒子がセリアを30重量%以上の量で含む、請求項1に記載の排ガス浄化触媒。   The exhaust gas purification catalyst according to claim 1, wherein the ceria-zirconia composite oxide particles contain ceria in an amount of 30 wt% or more. セリア−ジルコニア複合酸化物粒子がジルコニアを60重量%以下の量で含む、請求項1または2に記載の排ガス浄化触媒。   The exhaust gas purification catalyst according to claim 1 or 2, wherein the ceria-zirconia composite oxide particles contain zirconia in an amount of 60% by weight or less.
JP2013224365A 2013-10-29 2013-10-29 Exhaust gas purification catalyst Active JP6208540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224365A JP6208540B2 (en) 2013-10-29 2013-10-29 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224365A JP6208540B2 (en) 2013-10-29 2013-10-29 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2015085241A true JP2015085241A (en) 2015-05-07
JP6208540B2 JP6208540B2 (en) 2017-10-04

Family

ID=53048647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224365A Active JP6208540B2 (en) 2013-10-29 2013-10-29 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6208540B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029971A1 (en) * 2015-08-18 2017-02-23 株式会社デンソー Exhaust gas purifying catalyst
WO2017126631A1 (en) 2016-01-21 2017-07-27 株式会社キャタラー Exhaust gas purification device
WO2017146175A1 (en) 2016-02-25 2017-08-31 株式会社キャタラー Exhaust-gas purifying catalyst and manufacturing method therefor
WO2017150350A1 (en) 2016-03-01 2017-09-08 株式会社キャタラー Exhaust gas purification catalyst
WO2017154685A1 (en) * 2016-03-09 2017-09-14 株式会社キャタラー Exhaust gas purification underfloor catalyst and catalyst system
WO2018012561A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure
WO2018012562A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
WO2018012565A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
WO2018012566A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
WO2018164069A1 (en) 2017-03-06 2018-09-13 イビデン 株式会社 Honeycomb filter
WO2018164070A1 (en) 2017-03-06 2018-09-13 イビデン 株式会社 Honeycomb filter
JP2018143957A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Manufacturing method of honeycomb filter
JP2018143958A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Honeycomb filter
WO2018216817A1 (en) 2017-05-25 2018-11-29 株式会社キャタラー Exhaust gas purification catalyst device
WO2019026645A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Method for producing honeycomb structure, and honeycomb structure
WO2019026646A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Honeycomb catalyst
JP2019026547A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Method for manufacturing honeycomb structure
JP2019025463A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Honeycomb catalyst
US20190091628A1 (en) * 2015-12-25 2019-03-28 Denso Corporation Exhaust gas filter
WO2019065797A1 (en) * 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst
WO2019065798A1 (en) * 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst
WO2019065806A1 (en) 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst
WO2019087875A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Exhaust gas purification device
WO2019163403A1 (en) 2018-02-21 2019-08-29 株式会社キャタラー Exhaust gas purification catalyst device
WO2019163446A1 (en) 2018-02-21 2019-08-29 株式会社キャタラー Exhaust gas purification catalyst device
WO2020008981A1 (en) 2018-07-05 2020-01-09 株式会社キャタラー Exhaust gas purification catalyst device
WO2020105545A1 (en) * 2018-11-21 2020-05-28 株式会社キャタラー Exhaust-gas purification apparatus and method for manufacturing same
WO2020129460A1 (en) 2018-12-19 2020-06-25 株式会社キャタラー Manufacturing method for exhaust gas purification device
DE102020200485A1 (en) 2019-01-17 2020-07-23 Ibiden Co., Ltd. HONEYCOMB STRUCTURE BODY
DE102020200484A1 (en) 2019-01-17 2020-07-23 Ibiden Co., Ltd. HONEYCOMB STRUCTURE BODY
EP3730203A1 (en) 2019-04-25 2020-10-28 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US10828602B2 (en) 2015-10-27 2020-11-10 Cataler Corporation Exhaust gas purifying catalyst and method for producing same, and exhaust gas purification device using same
WO2020230763A1 (en) 2019-05-15 2020-11-19 株式会社キャタラー Exhaust gas purification catalytic device
WO2020230762A1 (en) 2019-05-15 2020-11-19 株式会社キャタラー Exhaust gas purification catalyst device
WO2021044875A1 (en) * 2019-09-04 2021-03-11 イビデン株式会社 Method for producing honeycomb filter
CN113056331A (en) * 2018-11-21 2021-06-29 株式会社科特拉 Exhaust gas purification device and method for manufacturing same
US11179701B2 (en) 2016-03-25 2021-11-23 Cataler Corporation Exhaust gas purifying catalyst and production method therefor, and exhaust gas purification device using same
DE102021119964A1 (en) 2020-08-05 2022-02-10 Denso Corporation MONOLITH SUBSTRATE, METHOD OF MANUFACTURE OF MONOLITH SUBSTRATE, AND EMISSION CONTROL CATALYST COMPRISING MONOLITH SUBSTRATE
US11298686B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
US11298687B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
WO2022168507A1 (en) * 2021-02-08 2022-08-11 株式会社デンソー Internal combustion engine exhaust gas purifying device
US11433382B2 (en) * 2018-03-13 2022-09-06 Ibiden Co., Ltd. Honeycomb filter and method for manufacturing honeycomb filters
WO2023047892A1 (en) * 2021-09-21 2023-03-30 株式会社キャタラー Exhaust gas purification catalyst device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277389A (en) * 1997-04-02 1998-10-20 Toyota Central Res & Dev Lab Inc Catalyst for cleaning exhaust gas
JP2002316049A (en) * 2001-04-20 2002-10-29 Daiken Kagaku Kogyo Kk Catalyst for cleaning exhaust gas and manufacturing method for the same
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2007063057A (en) * 2005-08-30 2007-03-15 Toyota Central Res & Dev Lab Inc Compound metal oxide porous body
JP2007296514A (en) * 2006-04-07 2007-11-15 Ngk Insulators Ltd Catalytic body and manufacturing method of the same
JP2009255029A (en) * 2008-03-27 2009-11-05 Ibiden Co Ltd Honeycomb structure
JP2013072334A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP2013517934A (en) * 2010-02-01 2013-05-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Three-way catalyst with extruded solid body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277389A (en) * 1997-04-02 1998-10-20 Toyota Central Res & Dev Lab Inc Catalyst for cleaning exhaust gas
JP2002316049A (en) * 2001-04-20 2002-10-29 Daiken Kagaku Kogyo Kk Catalyst for cleaning exhaust gas and manufacturing method for the same
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2007063057A (en) * 2005-08-30 2007-03-15 Toyota Central Res & Dev Lab Inc Compound metal oxide porous body
JP2007296514A (en) * 2006-04-07 2007-11-15 Ngk Insulators Ltd Catalytic body and manufacturing method of the same
JP2009255029A (en) * 2008-03-27 2009-11-05 Ibiden Co Ltd Honeycomb structure
JP2013517934A (en) * 2010-02-01 2013-05-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Three-way catalyst with extruded solid body
JP2013072334A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Exhaust gas purifying device and exhaust gas purifying catalyst unit

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039069A (en) * 2015-08-18 2017-02-23 株式会社デンソー Exhaust gas purification catalyst
DE112016003738T5 (en) 2015-08-18 2018-05-09 Denso Corporation purifying catalyst
WO2017029971A1 (en) * 2015-08-18 2017-02-23 株式会社デンソー Exhaust gas purifying catalyst
US10828602B2 (en) 2015-10-27 2020-11-10 Cataler Corporation Exhaust gas purifying catalyst and method for producing same, and exhaust gas purification device using same
US20190091628A1 (en) * 2015-12-25 2019-03-28 Denso Corporation Exhaust gas filter
WO2017126631A1 (en) 2016-01-21 2017-07-27 株式会社キャタラー Exhaust gas purification device
JP6180697B1 (en) * 2016-01-21 2017-08-16 株式会社キャタラー Exhaust gas purification device
US10618034B2 (en) 2016-01-21 2020-04-14 Cataler Corporation Exhaust gas purification device
WO2017146175A1 (en) 2016-02-25 2017-08-31 株式会社キャタラー Exhaust-gas purifying catalyst and manufacturing method therefor
US10695752B2 (en) 2016-02-25 2020-06-30 Cataler Corporation Exhaust-gas purifying catalyst and manufacturing method therefor
JPWO2017146175A1 (en) * 2016-02-25 2018-11-29 株式会社キャタラー Exhaust gas purification catalyst and method for producing the same
US10710023B2 (en) 2016-03-01 2020-07-14 Cataler Corporation Exhaust gas purification catalyst
WO2017150350A1 (en) 2016-03-01 2017-09-08 株式会社キャタラー Exhaust gas purification catalyst
JPWO2017150350A1 (en) * 2016-03-01 2018-10-18 株式会社キャタラー Exhaust gas purification catalyst
WO2017154685A1 (en) * 2016-03-09 2017-09-14 株式会社キャタラー Exhaust gas purification underfloor catalyst and catalyst system
US11154842B2 (en) 2016-03-09 2021-10-26 Cataler Corporation Exhaust gas purification underfloor catalyst and catalyst system
JPWO2017154685A1 (en) * 2016-03-09 2018-11-29 株式会社キャタラー Exhaust gas purification underfloor catalyst and catalyst system
CN108698023A (en) * 2016-03-09 2018-10-23 株式会社科特拉 Catalyst and antigravity system under tail gas clean-up bottom plate
US11179701B2 (en) 2016-03-25 2021-11-23 Cataler Corporation Exhaust gas purifying catalyst and production method therefor, and exhaust gas purification device using same
JP2018008232A (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structural body
US10953395B2 (en) 2016-07-14 2021-03-23 Ibiden Co., Ltd. Honeycomb structure and production method for said honeycomb structure
WO2018012561A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure
WO2018012562A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
WO2018012565A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
US10472290B2 (en) 2016-07-14 2019-11-12 Ibiden Co., Ltd. Honeycomb structure and production method for said honeycomb structure
WO2018012566A1 (en) * 2016-07-14 2018-01-18 イビデン株式会社 Honeycomb structure and production method for said honeycomb structure
JPWO2018012562A1 (en) * 2016-07-14 2019-05-09 イビデン株式会社 Honeycomb structure and method for manufacturing the honeycomb structure
CN109414691A (en) * 2016-07-14 2019-03-01 揖斐电株式会社 The manufacturing method of honeycomb structure and the honeycomb structure
CN109414689A (en) * 2016-07-14 2019-03-01 揖斐电株式会社 The manufacturing method of honeycomb structure and the honeycomb structure
JPWO2018012565A1 (en) * 2016-07-14 2019-04-25 イビデン株式会社 Honeycomb structure and method for manufacturing the honeycomb structure
JP6998870B2 (en) 2016-07-14 2022-02-04 イビデン株式会社 Honeycomb structure and method for manufacturing the honeycomb structure
JP6998871B2 (en) 2016-07-14 2022-01-18 イビデン株式会社 Honeycomb structure and method for manufacturing the honeycomb structure
JPWO2018012566A1 (en) * 2016-07-14 2019-04-25 イビデン株式会社 Honeycomb structure and method for manufacturing the honeycomb structure
EP3593884A4 (en) * 2017-03-06 2021-01-13 Ibiden Co., Ltd. Honeycomb filter
EP3593885A4 (en) * 2017-03-06 2021-01-13 Ibiden Co., Ltd. Honeycomb filter
WO2018164070A1 (en) 2017-03-06 2018-09-13 イビデン 株式会社 Honeycomb filter
US11213778B2 (en) 2017-03-06 2022-01-04 Ibiden Co., Ltd. Honeycomb filter
JP2018143957A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Manufacturing method of honeycomb filter
JP2018143958A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Honeycomb filter
US10821420B2 (en) 2017-03-06 2020-11-03 Ibiden Co., Ltd. Honeycomb filter
WO2018164069A1 (en) 2017-03-06 2018-09-13 イビデン 株式会社 Honeycomb filter
WO2018216817A1 (en) 2017-05-25 2018-11-29 株式会社キャタラー Exhaust gas purification catalyst device
JP2019025463A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Honeycomb catalyst
JP2019025462A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Honeycomb catalyst
JP2019026547A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Method for manufacturing honeycomb structure
WO2019026646A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Honeycomb catalyst
WO2019026645A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Method for producing honeycomb structure, and honeycomb structure
CN111107932A (en) * 2017-09-27 2020-05-05 揖斐电株式会社 Honeycomb catalyst
WO2019065798A1 (en) * 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst
JP2019058876A (en) * 2017-09-27 2019-04-18 イビデン株式会社 Honeycomb catalyst
CN111107932B (en) * 2017-09-27 2023-04-07 揖斐电株式会社 Honeycomb catalyst
US11618009B2 (en) 2017-09-27 2023-04-04 Ibiden Co., Ltd. Honeycomb catalytic converter
JP2019058871A (en) * 2017-09-27 2019-04-18 イビデン株式会社 Honeycomb catalyst
EP3689453A4 (en) * 2017-09-27 2021-06-09 Ibiden Co., Ltd Honeycomb catalyst
CN111132763A (en) * 2017-09-27 2020-05-08 揖斐电株式会社 Honeycomb catalyst
US11298685B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
EP3689459A4 (en) * 2017-09-27 2021-06-09 Ibiden Co., Ltd. Honeycomb catalyst
WO2019065806A1 (en) 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst
US11298687B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
US11298686B2 (en) 2017-09-27 2022-04-12 Ibiden Co., Ltd. Honeycomb catalytic converter
JP2019058870A (en) * 2017-09-27 2019-04-18 イビデン株式会社 Honeycomb catalyst
WO2019065797A1 (en) * 2017-09-27 2019-04-04 イビデン株式会社 Honeycomb catalyst
WO2019087875A1 (en) * 2017-11-03 2019-05-09 株式会社デンソー Exhaust gas purification device
US11105242B2 (en) 2017-11-03 2021-08-31 Denso Corporation Exhaust gas purification device
JP2019084482A (en) * 2017-11-03 2019-06-06 株式会社デンソー Exhaust gas purification device
WO2019163403A1 (en) 2018-02-21 2019-08-29 株式会社キャタラー Exhaust gas purification catalyst device
WO2019163446A1 (en) 2018-02-21 2019-08-29 株式会社キャタラー Exhaust gas purification catalyst device
US11524285B2 (en) 2018-02-21 2022-12-13 Cataler Corporation Exhaust gas purification catalyst device
US11633724B2 (en) 2018-02-21 2023-04-25 Cataler Corporation Methods for exhaust gas purification
US11433382B2 (en) * 2018-03-13 2022-09-06 Ibiden Co., Ltd. Honeycomb filter and method for manufacturing honeycomb filters
US11352924B2 (en) 2018-07-05 2022-06-07 Cataler Corporation Exhaust gas purification catalyst device
CN112236228B (en) * 2018-07-05 2024-03-19 株式会社科特拉 Exhaust gas purifying catalyst device
CN112236228A (en) * 2018-07-05 2021-01-15 株式会社科特拉 Exhaust gas purifying catalyst device
JP2020006301A (en) * 2018-07-05 2020-01-16 株式会社キャタラー Exhaust gas purification device
JP7245613B2 (en) 2018-07-05 2023-03-24 株式会社キャタラー Exhaust gas purification catalyst device
WO2020008981A1 (en) 2018-07-05 2020-01-09 株式会社キャタラー Exhaust gas purification catalyst device
DE112019005828T5 (en) 2018-11-21 2021-08-05 Cataler Corporation Exhaust gas purification device and process for the production thereof
CN113056331A (en) * 2018-11-21 2021-06-29 株式会社科特拉 Exhaust gas purification device and method for manufacturing same
JP7340954B2 (en) 2018-11-21 2023-09-08 株式会社キャタラー Exhaust gas purification device and its manufacturing method
WO2020105545A1 (en) * 2018-11-21 2020-05-28 株式会社キャタラー Exhaust-gas purification apparatus and method for manufacturing same
WO2020129460A1 (en) 2018-12-19 2020-06-25 株式会社キャタラー Manufacturing method for exhaust gas purification device
DE102020200485A1 (en) 2019-01-17 2020-07-23 Ibiden Co., Ltd. HONEYCOMB STRUCTURE BODY
DE102020200484A1 (en) 2019-01-17 2020-07-23 Ibiden Co., Ltd. HONEYCOMB STRUCTURE BODY
US11187130B2 (en) 2019-01-17 2021-11-30 Ibiden Co., Ltd. Honeycomb structured body
US10989092B2 (en) 2019-01-17 2021-04-27 Ibiden Co., Ltd. Honeycomb structured body
EP3730203A1 (en) 2019-04-25 2020-10-28 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
WO2020230762A1 (en) 2019-05-15 2020-11-19 株式会社キャタラー Exhaust gas purification catalyst device
WO2020230763A1 (en) 2019-05-15 2020-11-19 株式会社キャタラー Exhaust gas purification catalytic device
WO2021044875A1 (en) * 2019-09-04 2021-03-11 イビデン株式会社 Method for producing honeycomb filter
DE102021119964A1 (en) 2020-08-05 2022-02-10 Denso Corporation MONOLITH SUBSTRATE, METHOD OF MANUFACTURE OF MONOLITH SUBSTRATE, AND EMISSION CONTROL CATALYST COMPRISING MONOLITH SUBSTRATE
US11498056B2 (en) 2020-08-05 2022-11-15 Toyota Jidosha Kabushiki Kaisha Monolith substrate, method for producing monolith substrate, and exhaust gas purification catalyst comprising monolith substrate
WO2022168507A1 (en) * 2021-02-08 2022-08-11 株式会社デンソー Internal combustion engine exhaust gas purifying device
JP2023045081A (en) * 2021-09-21 2023-04-03 株式会社キャタラー Exhaust gas purification catalyst device
JP7295188B2 (en) 2021-09-21 2023-06-20 株式会社キャタラー Exhaust gas purification catalyst device
WO2023047892A1 (en) * 2021-09-21 2023-03-30 株式会社キャタラー Exhaust gas purification catalyst device

Also Published As

Publication number Publication date
JP6208540B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6208540B2 (en) Exhaust gas purification catalyst
US8796172B2 (en) Exhaust gas purification catalyst
JP5910833B2 (en) Exhaust gas purification catalyst
JP6855445B2 (en) Exhaust gas purification catalyst
JP6907890B2 (en) Exhaust gas purification catalyst
JP6246192B2 (en) Three-way catalyst system
JP2010029752A (en) Catalyst device for purifying exhaust gas and exhaust gas purifying method
JP2628798B2 (en) Exhaust gas purification catalyst excellent in heat resistance and method for producing the same
US20070179054A1 (en) Exhaust gas purification catalyst
US11149603B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2014122149A (en) Composite oxide particle and catalyst for exhaust gas purification using the same
JPWO2019088302A1 (en) Oxygen storage/release material, catalyst, exhaust gas purification system, and exhaust gas treatment method
US20200129962A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
KR100749946B1 (en) Catalyst for purifying exhaust gases and method of evaluating low-temperature purifying ability of the same
WO2014171443A1 (en) Exhaust-gas purification catalyst
US11143072B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2003299967A (en) Catalyst carrier structure body and exhaust gas cleaning catalyst
JP2010051847A (en) Catalyst for cleaning exhaust gas
JP2018171560A (en) Catalyst for exhaust purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R151 Written notification of patent or utility model registration

Ref document number: 6208540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250