JP2015074930A - Joint structure of composite beam and column - Google Patents

Joint structure of composite beam and column Download PDF

Info

Publication number
JP2015074930A
JP2015074930A JP2013212369A JP2013212369A JP2015074930A JP 2015074930 A JP2015074930 A JP 2015074930A JP 2013212369 A JP2013212369 A JP 2013212369A JP 2013212369 A JP2013212369 A JP 2013212369A JP 2015074930 A JP2015074930 A JP 2015074930A
Authority
JP
Japan
Prior art keywords
hole
column
composite beam
pin
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013212369A
Other languages
Japanese (ja)
Other versions
JP6252893B2 (en
Inventor
兼司 大西
Kenji Onishi
兼司 大西
足立 有弘
Arihiro Adachi
有弘 足立
真平 山本
Shinpei Yamamoto
真平 山本
健 工藤
Takeshi Kudo
健 工藤
吉田 秀和
Hidekazu Yoshida
秀和 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013212369A priority Critical patent/JP6252893B2/en
Publication of JP2015074930A publication Critical patent/JP2015074930A/en
Application granted granted Critical
Publication of JP6252893B2 publication Critical patent/JP6252893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

【課題】施工性および接合強度に優れた複合梁と柱材との接合構造を提供すること。【解決手段】鉄骨材3の表面に木質端材4が配設された複合梁1と、柱材2との接合構造であって、前記複合梁1は、長さ方向に対し直角に貫通する横穴51を有する金属製のほぞピン5が木質端材4から突出しており、前記柱材2には、木口にほぞ穴21が形成され、かつ、対向する一対の側面間に貫通穴22が一つ形成されており、かつ、前記柱材2の前記貫通穴22の周囲には、前記柱材2より強度が高い補強材7が前記柱材2と複合一体化されており、前記柱材2は、前記ほぞ穴21に前記ほぞピン5が挿入され、前記ほぞピン5の前記横穴51と前記柱材2の前記貫通穴22とが一致した状態において、ドリフトピン6が前記貫通穴22を通じて前記横穴51に差し込まれることにより、前記複合梁1に接合される。【選択図】図1An object of the present invention is to provide a joint structure between a composite beam and a column member excellent in workability and joint strength. A composite beam 1 in which a wooden end member 4 is disposed on the surface of a steel frame member 3 and a column member 2, wherein the composite beam 1 penetrates at right angles to the length direction. A metal mortise pin 5 having a lateral hole 51 protrudes from the woody end material 4, and a mortise hole 21 is formed in the end of the pillar 2, and a through hole 22 is formed between a pair of opposing side surfaces. The reinforcing material 7 having higher strength than the pillar material 2 is combined and integrated with the pillar material 2 around the through hole 22 of the pillar material 2. In the state where the tenon pin 5 is inserted into the tenon hole 21 and the lateral hole 51 of the tenon pin 5 and the through hole 22 of the column member 2 coincide with each other, the drift pin 6 passes through the through hole 22. By being inserted into the horizontal hole 51, it is joined to the composite beam 1. [Selection] Figure 1

Description

本発明は、複合梁と柱材との接合構造に関する。   The present invention relates to a joint structure between a composite beam and a column member.

これまでに、本出願人は、施工性に優れた複合梁と柱材との接合構造を提案している(特許文献1)。   So far, the present applicant has proposed a joint structure between a composite beam and a column material excellent in workability (Patent Document 1).

具体的には、図9に示したように、特許文献1の複合梁1と柱材2の接合構造では、断面H字型形状を有する鉄骨材3の各々の平板部31の表面に、木質端材4が配設されている。そして、複合梁1には、長さ方向に対し直角に貫通する横穴51を有する一本の金属製のほぞピン5が木質端材4の開口部41から突出して立設されている。柱材2には、木口にほぞ穴21が一つ、対向する一対の側面間に貫通穴22が一つ形成されている。そして、柱材2は、ほぞ穴21にほぞピン5が挿入され、その横穴51に一致する貫通穴22を通じてドリフトピン6がほぞピン5の横穴51に差し込まれることにより、複合梁1に接合される。   Specifically, as shown in FIG. 9, in the joint structure of the composite beam 1 and the column member 2 of Patent Document 1, a wooden material is formed on the surface of each flat plate portion 31 of the steel frame member 3 having an H-shaped cross section. End material 4 is disposed. In the composite beam 1, a single mortise pin 5 having a horizontal hole 51 that penetrates at right angles to the length direction protrudes from the opening 41 of the wood end material 4 and stands. In the column member 2, one mortise 21 is formed at the mouth, and one through hole 22 is formed between a pair of opposing side surfaces. The column member 2 is joined to the composite beam 1 by inserting the tenon pin 5 into the tenon hole 21 and inserting the drift pin 6 into the horizontal hole 51 of the tenon pin 5 through the through hole 22 that coincides with the horizontal hole 51. The

特許第3546819号Patent No. 3546819

しかしながら、特許文献1の接合構造は施工性には優れるものの、その接合強度においてはさらに改善すべき点があると考えられた。すなわち、複合梁と柱材との接合構造には、例えば地震などによって外部から引張力が加わった場合にも、接合部分が安定に維持される接合強度が求められている。   However, although the joint structure of Patent Document 1 is excellent in workability, it is considered that there is a point to be further improved in the joint strength. That is, the joint structure between the composite beam and the column member is required to have a joint strength that maintains the joint portion stably even when a tensile force is applied from the outside due to, for example, an earthquake.

本発明は、以上のとおりの事情に鑑みてなされたものであり、施工性および接合強度に優れた複合梁と柱材との接合構造を提供することを課題としている。   This invention is made | formed in view of the situation as mentioned above, and makes it the subject to provide the joining structure of the composite beam and column material excellent in workability and joining strength.

上記の課題を解決するために、本発明の複合梁と柱材との接合構造は、鉄骨材の表面に木質端材が配設された複合梁と、柱材との接合構造であって、前記複合梁は、長さ方向に対し直角に貫通する横穴を有する金属製のほぞピンが木質端材から突出しており、 前記柱材には、木口にほぞ穴が形成され、かつ、対向する一対の側面間に貫通穴が一つ形成されており、かつ、前記柱材の前記貫通穴の周囲には、前記柱材より強度が高い補強材が前記柱材と複合一体化されており、前記柱材は、前記ほぞ穴に前記ほぞピンが挿入され、前記ほぞピンの前記横穴と前記柱材の前記貫通穴とが一致した状態において、ドリフトピンが前記貫通穴を通じて前記横穴に差し込まれることにより、前記複合梁に接合されることを特徴としている。   In order to solve the above-described problem, the joint structure of the composite beam and the column material of the present invention is a joint structure of the composite beam in which the wood end material is disposed on the surface of the steel frame and the column material, In the composite beam, a metal mortise pin having a transverse hole penetrating at right angles to the length direction protrudes from the wood end material, and the column member is formed with a mortise hole formed in a mouth and a pair of opposing mortars. A through hole is formed between the side surfaces of the column material, and a reinforcing material having a higher strength than the column material is combined and integrated with the column material around the through hole of the column material, In the column material, the tenon pin is inserted into the tenon hole, and in a state where the horizontal hole of the tenon pin and the through hole of the column material coincide with each other, the drift pin is inserted into the horizontal hole through the through hole. And being joined to the composite beam.

この複合梁と柱材との接合構造では、前記貫通穴の中心から前記柱材の下端方向への前記補強材の長さは、前記貫通穴の幅の3倍以上であり、かつ、前記補強材の幅は、前記貫通穴の幅の2倍以上であることが好ましい。   In the joint structure of the composite beam and the column material, the length of the reinforcing material from the center of the through hole toward the lower end of the column material is three times or more the width of the through hole, and the reinforcement The width of the material is preferably at least twice the width of the through hole.

この複合梁と柱材との接合構造では、前記補強材は、密度が800kg/m3以上であることがより好ましい。 In the joint structure of the composite beam and the column member, the reinforcing member preferably has a density of 800 kg / m 3 or more.

この複合梁と柱材との接合構造では、前記補強材は、竹ストランドまたは麻系天然繊維からなる成形材であることがさらに好ましい。   In the joint structure of the composite beam and the column material, the reinforcing material is more preferably a molded material made of bamboo strands or hemp-based natural fibers.

本発明の複合梁と柱材との接合構造によれば、施工性および接合強度の向上を図ることができる。   According to the joint structure of the composite beam and the column member of the present invention, it is possible to improve workability and joint strength.

本発明の複合梁と柱材との接合構造の第1実施形態を例示した分解斜視図である。It is the disassembled perspective view which illustrated 1st Embodiment of the joining structure of the composite beam and column material of this invention. 図1に例示した複合梁と柱材を接合させた状態を例示した斜視図である。FIG. 2 is a perspective view illustrating a state in which the composite beam illustrated in FIG. 1 and a column member are joined. 本発明の複合梁と柱材との接合構造の第2実施形態を例示した斜視図である。It is the perspective view which illustrated 2nd Embodiment of the joining structure of the composite beam and column material of this invention. 本発明の複合梁と柱材との接合構造の第3実施形態を例示した斜視図である。It is the perspective view which illustrated 3rd Embodiment of the joining structure of the composite beam and column material of this invention. 本発明の複合梁と柱材との接合構造の第4実施形態を例示した斜視図である。It is the perspective view which illustrated 4th Embodiment of the junction structure of the composite beam and column material of this invention. 実施例1で使用した柱材、補強材を木口側から視た斜視図である。It is the perspective view which looked at the pillar material and the reinforcing material which were used in Example 1 from the mouth side. 実施例4で使用した柱材、補強材を木口側から視た斜視図である。It is the perspective view which looked at the pillar material and the reinforcing material which were used in Example 4 from the mouth end side. 実施例6で使用した柱材、補強材を木口側から視た斜視図である。It is the perspective view which looked at the pillar material and the reinforcing material which were used in Example 6 from the mouth end side. 従来の複合梁と柱材との接合構造を例示した分解斜視図および斜視図である。It is the disassembled perspective view and perspective view which illustrated the junction structure of the conventional composite beam and column material.

図1は、本発明の複合梁と柱材との接合構造の第1実施形態を例示した分解斜視図である。図2は、図1に例示した複合梁と柱材を接合させた状態を例示した斜視図である。   FIG. 1 is an exploded perspective view illustrating a first embodiment of a joint structure of a composite beam and a column member according to the present invention. FIG. 2 is a perspective view illustrating a state in which the composite beam illustrated in FIG. 1 and the column member are joined.

複合梁1は、鉄骨材3の表面に木質端材4が配設されている。鉄骨材3は長尺であり、対向する平板部31が中央の垂直板部32を介して連結した断面H字型形状に形成されている。この平板部31の表面からは、一本の金属製のほぞピン5が、平板部31に対して略垂直に立設されている。ほぞピン5は円柱形であり、鉄骨材3の長さ方向に直交する方向に貫通する横穴51を有している。   In the composite beam 1, a wood end material 4 is disposed on the surface of a steel frame material 3. The steel frame material 3 is long and is formed in an H-shaped cross section in which opposed flat plate portions 31 are connected via a central vertical plate portion 32. From the surface of the flat plate portion 31, one metal mortise pin 5 is erected substantially perpendicular to the flat plate portion 31. The tenon pin 5 has a cylindrical shape and has a horizontal hole 51 that penetrates in a direction orthogonal to the length direction of the steel frame 3.

木質端材4には、鉄骨材3のほぞピン5と対応する位置に円形開口部41が形成されている。   A circular opening 41 is formed in the wood end material 4 at a position corresponding to the tenon pin 5 of the steel frame material 3.

図2に例示したように、複合梁1は、鉄骨材3の表面に接合されたほぞピン5が木質端材4の円形開口部41に挿通されて、木質端材4からほぞピン5が突出している。   As illustrated in FIG. 2, in the composite beam 1, the tenon pin 5 joined to the surface of the steel frame member 3 is inserted into the circular opening 41 of the wooden end member 4, and the tenon pin 5 protrudes from the wooden end member 4. ing.

柱材2は角柱状であり、その材料は特に限定されない。具体的には、柱材2の材料は、例えば、無垢材あるいは集成材を例示することができる。例えば、集成材としては、木材挽板を接着剤で貼り合わせた集成材、スギ集成材、ホワイトウッド集成材、レッドウッド集成材、ヒノキ集成材、カラマツ集成材、ベイマツ集成材、ヒバ集成材などを例示することができる。また、例えば、無垢材としては、スギ無垢材、ヒノキ無垢材、ヒバ無垢材などを例示することができる。これらの柱材2に用いられる材料のおおよその比重(密度)は、350〜600kg/m3の範囲のものが一般的である。 The column material 2 has a prismatic shape, and the material is not particularly limited. Specifically, for example, the material of the column member 2 can be a solid material or a laminated material. For example, as laminated wood, laminated wood with glue glued together, cedar laminated wood, whitewood laminated wood, redwood laminated wood, cypress laminated wood, larch laminated wood, bay pine laminated wood, hiba laminated wood, etc. Can be illustrated. Further, for example, as a solid material, a cedar solid material, a cypress solid material, a pure hiba material, and the like can be exemplified. The approximate specific gravity (density) of the material used for these column members 2 is generally in the range of 350 to 600 kg / m 3 .

柱材2の下端部の木口にほぞ穴21が一つ形成されている。ほぞ穴21は、断面円形状であり、複合梁1から突出しているほぞピン5の突出長さ、径と対応している。   One mortise 21 is formed in the lower end of the column 2. The mortise 21 has a circular cross section and corresponds to the protruding length and diameter of the mortise pin 5 protruding from the composite beam 1.

また、柱材2には、対向する一対の側面間に円柱状の貫通穴22が一つ形成されている。貫通穴22とほぞ穴21は、柱材2の中心付近で交差している。   The column member 2 has one cylindrical through hole 22 formed between a pair of opposing side surfaces. The through hole 22 and the mortise 21 intersect near the center of the column member 2.

柱材2の貫通穴22の周囲には、柱材2より強度が高い補強材7が柱材2と複合一体化して配設されている。図1、図2に例示した形態においては、補強材7は、貫通穴22が開口している柱材2の側面の内側の2か所に対向して複合一体化されており、柱材2の下端部からほぞ穴21の頂部付近までの高さを有する角柱状に形成されている。したがって、貫通穴22は、柱材2の両側の側面の内側付近の領域において、その周囲が補強材7に覆われた状態となっている。   Around the through hole 22 of the pillar member 2, a reinforcing member 7 having a higher strength than the pillar member 2 is disposed in a composite and integrated manner with the pillar member 2. In the form illustrated in FIGS. 1 and 2, the reinforcing member 7 is composite-integrated so as to oppose two inner portions of the side surface of the column member 2 in which the through holes 22 are opened. Is formed in a prismatic shape having a height from the lower end of the mortar to the vicinity of the top of the mortise 21. Accordingly, the through hole 22 is in a state where the periphery thereof is covered with the reinforcing material 7 in the region near the inside of the side surfaces on both sides of the column member 2.

柱材2は、ほぞ穴21にほぞピン5が挿入され、ほぞピン5の横穴51と柱材2の貫通穴22とが一致した状態において、ドリフトピン6が貫通穴22を通じて横穴51に差し込まれることにより、複合梁1と柱材2とが接合される。   In the column 2, the mortise pin 5 is inserted into the mortise 21, and the drift pin 6 is inserted into the lateral hole 51 through the through hole 22 in a state where the lateral hole 51 of the mortise pin 5 and the through hole 22 of the pillar 2 match. Thus, the composite beam 1 and the column member 2 are joined.

この接合構造では、貫通穴22およびほぞピン5の横穴51にドリフトピン6を差し込むだけで接合構造を組みあげることができるため、釘などが不要であり、施工性にも優れている。さらに、この接合構造では、柱材2に引張力が加わった際に、貫通穴22に挿入されたドリフトピン6からの荷重がその周囲の補強材7で支持される。そして、補強材7が柱材2よりも高強度であるため、柱材2の貫通穴22が破壊され難く、ドリフトピン6を支持する荷重、すなわち柱材2の引張耐力が大きく向上するため、引張力に対する高い接合強度が実現される。   In this joining structure, since the joining structure can be assembled only by inserting the drift pin 6 into the through hole 22 and the lateral hole 51 of the tenon pin 5, a nail or the like is unnecessary, and the workability is excellent. Furthermore, in this joining structure, when a tensile force is applied to the column member 2, the load from the drift pin 6 inserted into the through hole 22 is supported by the surrounding reinforcing material 7. And since the reinforcing material 7 is stronger than the column material 2, the through hole 22 of the column material 2 is not easily broken, and the load supporting the drift pin 6, that is, the tensile strength of the column material 2 is greatly improved. High joint strength against tensile force is realized.

ここで、補強材7は、柱材2より強度が高い材料であれば特に限定されない。具体的には、補強材7の材料としては、例えば、高比重(高密度)・高強度木材単板から構成されるLVL(Laminated Veneer Lumber:単盤積層材)や合板を例示することができる。さらに、例えば、フェノール樹脂含浸単板を積層したLVLや合板、ガラス繊維、炭素繊維、アラミド繊維などで強化した繊維強化プラスチックなどを例示することができる。また、竹や麻系繊維から構成される成形材などを例示することができる。   Here, the reinforcing material 7 is not particularly limited as long as it has a higher strength than the pillar material 2. Specifically, as a material of the reinforcing material 7, for example, LVL (Laminated Veneer Lumber) or plywood composed of a high specific gravity (high density) / high strength wood veneer can be exemplified. . Furthermore, for example, LVL or plywood laminated with phenol resin impregnated single plates, fiber reinforced plastics reinforced with glass fibers, carbon fibers, aramid fibers, and the like can be exemplified. Moreover, the molding material etc. which are comprised from a bamboo or hemp fiber can be illustrated.

また、補強材7の強度の目安としては密度を基準とすることができ、密度が800kg/m3以上であることが好ましい。これによって、柱材2の引張耐力がさらに高まるため、接続構造の接合強度が向上する。 Further, as a measure of the strength of the reinforcing material 7, the density can be used as a reference, and the density is preferably 800 kg / m 3 or more. As a result, the tensile strength of the column 2 is further increased, so that the joint strength of the connection structure is improved.

なかでも、補強材7の材料としては、竹ストランドや麻系天然繊維からなる成形材を好ましく例示することができる。   Especially, as a material of the reinforcing material 7, the molding material which consists of bamboo strands and hemp system natural fiber can be illustrated preferably.

ここで、竹ストランドとは、竹原料を縦割りにすることにより得られる材料であり、維管束と呼ばれる高強度な植物繊維層を含んだ構造を有している。このため、竹ストランドの繊維方向を揃えるように積層接着させることで極めて高強度な成形体を得ることができる。   Here, the bamboo strand is a material obtained by vertically dividing a bamboo raw material, and has a structure including a high-strength plant fiber layer called a vascular bundle. For this reason, a very high-strength molded body can be obtained by laminating and bonding so that the fiber directions of the bamboo strands are aligned.

なお、竹ストランドを積層接着させる際には、一般的には熱プレスを用いることができるが、その時の温度や圧力を適宜設定することにより、密度800kg/m以上の成形材を容易に得ることが可能となる。 In addition, when laminating and bonding bamboo strands, a hot press can generally be used, but a molding material having a density of 800 kg / m 3 or more can be easily obtained by appropriately setting the temperature and pressure at that time. It becomes possible.

竹ストランドによる成形体としては、具体的には、例えば、竹LVLや、竹PSL(parallel strand lumber:平行ストランド材)などを例示することができる。竹LVLは、厚みがほぼ一定の竹ストランドを、厚さ方向に積層することで得られるものであり、竹PSLは、不定形状の竹ストランドを方向性を揃えて高圧で圧縮してブロック状に成形することにより得られるものである。なお、竹PSLの原料となる竹材の特徴としてその成長が非常に早いことが挙げられる。おおよそ3年で材として使用できる直径20〜30cm、高さ10m以上にまで成長する。分布範囲は極めて広範囲で乾燥地や寒冷地を除けば世界中いたるところに生育しており、インド、中国、ミャンマー、ベトナムなどのアジア地域での竹林面積が特に多く、将来に渡って安定的に供給可能な植物系資源と考えられる。   Specific examples of the molded body using bamboo strands include bamboo LVL and bamboo PSL (parallel strand lumber). Bamboo LVL is obtained by laminating bamboo strands with a substantially constant thickness in the thickness direction. Bamboo PSL is a block-shaped block of irregularly shaped bamboo strands that are compressed at high pressure with the same orientation. It is obtained by molding. In addition, it is mentioned that the growth of the bamboo material used as the raw material of bamboo PSL is very fast. It grows to a diameter of 20-30cm and a height of 10m or more that can be used as a material in approximately 3 years. The distribution range is extremely wide, and it grows all over the world except dry and cold regions. The bamboo forest area in Asia, such as India, China, Myanmar, and Vietnam, is particularly large and stable in the future. It is considered a plant-based resource that can be supplied.

さらには、竹ストランドの繊維方向に対して極めて優れた強度を有するため、例えば、竹LVLや竹PSLを補強材7として用いる際に、柱材2の繊維方向と竹LVL、竹PSLの繊維方向を揃えて複合一体化することが好ましい。これによって、柱材2の引張耐力がさらに大きくなり、引張力に対しより高い接合強度を有することが可能となる。   Furthermore, since it has extremely excellent strength with respect to the fiber direction of the bamboo strand, for example, when using bamboo LVL or bamboo PSL as the reinforcing material 7, the fiber direction of the pillar material 2 and the fiber direction of bamboo LVL or bamboo PSL Are preferably combined and integrated. As a result, the tensile strength of the column member 2 is further increased, and it is possible to have a higher bonding strength with respect to the tensile force.

また、補強材7として、平均長さが5〜100mm、平均径が20〜400μmである麻系天然繊維を接着剤で接着して成形したものを用いることも好ましい。補強材7として麻系天然繊維の成形体を用いることで、引張力に対し高い接合強度を有する接合構造とすることができる。麻系天然繊維の材料は具体的に限定されないが、例えば、ジュート、ケナフ、亜麻、ラミー、ヘンプ、サイザルなどの麻系植物から得られる繊維などを例示することができる。これら麻系植物は高密度で高強度な繊維が得られるため、積層成形条件を適宜設定することによって、密度800kg/m以上の成形材を容易に得ることができる。 Further, it is also preferable to use a reinforcing material 7 formed by bonding hemp-based natural fibers having an average length of 5 to 100 mm and an average diameter of 20 to 400 μm with an adhesive. By using a hemp-based natural fiber molded body as the reinforcing material 7, a bonded structure having a high bonding strength with respect to a tensile force can be obtained. The material of the hemp-based natural fiber is not specifically limited, and examples thereof include fibers obtained from hemp-based plants such as jute, kenaf, flax, ramie, hemp, and sisal. Since these hemp plants can obtain high-density and high-strength fibers, a molding material having a density of 800 kg / m 3 or more can be easily obtained by appropriately setting the lamination molding conditions.

なお、例えば、竹LVLや竹PSLなどの成形材に用いる接着剤の種類は特に限定はされない。具体的には、例えば、フェノール樹脂、レゾルシノール樹脂、ユリヤ樹脂、メラミン樹脂などのホルムアルデヒド系接着剤や、イソシアネート系樹脂接着剤、ウレタン樹脂系接着剤などを例示することができる。さらに、接着剤の形態も特に限定されず、例えば粉末状や溶液状であってよい。   For example, the type of adhesive used for the molding material such as bamboo LVL and bamboo PSL is not particularly limited. Specific examples include formaldehyde adhesives such as phenol resins, resorcinol resins, urea resins, and melamine resins, isocyanate resin adhesives, urethane resin adhesives, and the like. Furthermore, the form of the adhesive is not particularly limited, and may be, for example, powder or solution.

そして、補強材7のサイズは、貫通穴22の中心から柱材2の下端方向への長さL1が、貫通穴22の直径の3倍以上であり、かつ、補強材7の幅L2(貫通穴22の幅に対応する方向の長さ)が、柱材2の貫通穴22の幅の2倍以上であることが好ましい。ここで、貫通穴22の幅とは、貫通穴22が円柱状である場合には、断面円形の直径を意味する。補強材7のサイズがこの範囲であると、貫通穴22に挿入されたドリフトピン6からの荷重を確実に補強材7で支持することができ、柱材2の引張耐力がさらに大きく向上し、引張力に対する高い接合強度が実現される。また、補強材7の縦方向長さL4は、貫通穴22の配設高さ(下端部からの距離)より大きく、また、図1、図2に例示したように、貫通穴22が開口している柱材2の側面付近の2か所に補強材7を設ける場合には、1つの補強材7の奥行き長さL3(貫通穴22の長さ方向と平行な方向への長さ)は、柱材2の幅(側面間の長さ)の1/3程度であることが好ましい。これによって、貫通穴22に挿入されたドリフトピン6からの荷重を確実に補強材7で支持することができ、柱材2の引張耐力がさらに大きく向上し、引張力に対する高い接合強度が実現される。   The size of the reinforcing member 7 is such that the length L1 from the center of the through hole 22 to the lower end direction of the pillar member 2 is at least three times the diameter of the through hole 22 and the width L2 (through hole) of the reinforcing member 7 The length in the direction corresponding to the width of the hole 22 is preferably at least twice the width of the through-hole 22 of the column member 2. Here, the width of the through hole 22 means a diameter of a circular cross section when the through hole 22 is cylindrical. When the size of the reinforcing member 7 is within this range, the load from the drift pin 6 inserted into the through hole 22 can be reliably supported by the reinforcing member 7, and the tensile strength of the column member 2 is further greatly improved. High joint strength against tensile force is realized. Further, the longitudinal length L4 of the reinforcing member 7 is larger than the arrangement height (distance from the lower end portion) of the through hole 22, and the through hole 22 opens as illustrated in FIGS. When the reinforcing material 7 is provided at two locations near the side surface of the pillar material 2 that is provided, the depth length L3 of one reinforcing material 7 (the length in the direction parallel to the length direction of the through hole 22) is It is preferable that it is about 1/3 of the width (length between side surfaces) of the column member 2. As a result, the load from the drift pin 6 inserted into the through hole 22 can be reliably supported by the reinforcing material 7, the tensile strength of the column 2 is further improved, and a high bonding strength against the tensile force is realized. The

図3は、本発明の複合梁と柱材2の接合構造の第2実施形態を例示した斜視図である。第1実施形態と共通する部分には同一の符号を付し、以下では説明を省略する。   FIG. 3 is a perspective view illustrating a second embodiment of the joint structure of the composite beam and the column member 2 according to the present invention. Portions common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted below.

この接合構造では、補強材7は、貫通穴22の長さ方向に長尺な角柱状であり、柱材2の対向する側面間において貫通穴22に沿って複合一体化している。すなわち、補強材7の奥行き長さは、貫通穴22の長さと等しく設計されている。したがって、貫通穴22は、長さ方向のすべての領域が補強材7によって覆われており、挿入されたドリフトピン6はそのすべての領域(全長および全周)において補強材7に支持される。   In this joining structure, the reinforcing material 7 has a rectangular column shape that is long in the length direction of the through hole 22, and is integrally integrated along the through hole 22 between the opposing side surfaces of the column material 2. That is, the depth of the reinforcing member 7 is designed to be equal to the length of the through hole 22. Therefore, the through hole 22 is covered with the reinforcing material 7 in the entire region in the length direction, and the inserted drift pin 6 is supported by the reinforcing material 7 in the entire region (the entire length and the entire circumference).

この接合構造においても、柱材2に引張力が加わった際に、貫通穴22に挿入されたドリフトピン6からの荷重が補強材7で確実に支持される。そして、補強材7が柱材2よりも高強度であるため、柱材2の貫通穴22が破壊され難く、ドリフトピン6を支持する荷重、すなわち柱材2の引張耐力が大きく向上するため、引張力に対する高い接合強度が実現される。   Also in this joint structure, when a tensile force is applied to the column member 2, the load from the drift pin 6 inserted into the through hole 22 is reliably supported by the reinforcing member 7. And since the reinforcing material 7 is stronger than the column material 2, the through hole 22 of the column material 2 is not easily broken, and the load supporting the drift pin 6, that is, the tensile strength of the column material 2 is greatly improved. High joint strength against tensile force is realized.

この接合構造における補強材7のサイズは、補強材7の幅L2が、柱材2の貫通穴22の幅の2倍以上であることが好ましい。補強材7のサイズがこの範囲であると、貫通穴22に挿入されたドリフトピン6からの荷重を確実に補強材7で支持することができ、柱材2の引張耐力がさらに大きく向上し、引張力に対する高い接合強度が実現される。   The size of the reinforcing material 7 in this joint structure is preferably such that the width L2 of the reinforcing material 7 is twice or more the width of the through hole 22 of the pillar material 2. When the size of the reinforcing member 7 is within this range, the load from the drift pin 6 inserted into the through hole 22 can be reliably supported by the reinforcing member 7, and the tensile strength of the column member 2 is further greatly improved. High joint strength against tensile force is realized.

図4は、本発明の複合梁と柱材との接合構造の第3実施形態を例示した斜視図である。第1実施形態と共通する部分には同一の符号を付し、以下では説明を省略する。   FIG. 4 is a perspective view illustrating a third embodiment of a joint structure of a composite beam and a column member according to the present invention. Portions common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted below.

この接合構造では、貫通穴22が開口している柱材2の側面の内側の2か所に、貫通穴22の長さ方向と平行に伸びる円柱状の補強材7が柱材2と複合一体化して設けられており、この補強材7によって柱材2の側面の内側付近の貫通穴22の周囲が覆われている。   In this joining structure, columnar reinforcing members 7 extending in parallel with the length direction of the through hole 22 are combined with the column member 2 at two locations inside the side surface of the column member 2 where the through hole 22 is open. The reinforcing material 7 covers the periphery of the through hole 22 in the vicinity of the inside of the side surface of the pillar material 2.

この接合構造においても、柱材2に引張力が加わった際に、貫通穴22に挿入されたドリフトピン6からの荷重が補強材7で確実に支持される。そして、補強材7が柱材2よりも高強度であるため、柱材2の貫通穴22が破壊され難く、ドリフトピン6を支持する荷重、すなわち柱材2の引張耐力が大きく向上するため、引張力に対する高い接合強度が実現される。   Also in this joint structure, when a tensile force is applied to the column member 2, the load from the drift pin 6 inserted into the through hole 22 is reliably supported by the reinforcing member 7. And since the reinforcing material 7 is stronger than the column material 2, the through hole 22 of the column material 2 is not easily broken, and the load supporting the drift pin 6, that is, the tensile strength of the column material 2 is greatly improved. High joint strength against tensile force is realized.

この接合構造における補強材7のサイズは、円柱の直径Rが、柱材2の貫通穴22の幅の3倍以上であることが好ましい。補強材7のサイズがこの範囲であると、貫通穴22に挿入されたドリフトピン6からの荷重を確実に補強材7で支持することができ、柱材2の引張耐力がさらに大きく向上し、引張力に対する高い接合強度が実現される。   As for the size of the reinforcing member 7 in this joining structure, it is preferable that the diameter R of the column is three times or more the width of the through hole 22 of the column member 2. When the size of the reinforcing member 7 is within this range, the load from the drift pin 6 inserted into the through hole 22 can be reliably supported by the reinforcing member 7, and the tensile strength of the column member 2 is further greatly improved. High joint strength against tensile force is realized.

図5は、本発明の複合梁と柱材との接合構造の第4実施形態を例示した斜視図である。第1実施形態と共通する部分には同一の符号を付し、以下では説明を省略する。   FIG. 5 is a perspective view illustrating a fourth embodiment of the joint structure between the composite beam and the column member of the present invention. Portions common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted below.

この接合構造では、補強材7は柱材2の縦方向に長い角柱状であり、貫通穴22が開口している柱材2の側面の内側の2か所に対向して複合一体化されている。したがって、柱材2の両側の側面の内側付近に位置する貫通穴22の領域では、その周囲が補強材7に覆われた状態となっている。この補強材7の下端は柱材2の下端の木口には達しておらず、貫通穴22の周囲のみに配設されている。   In this joining structure, the reinforcing member 7 is a prismatic shape that is long in the vertical direction of the column member 2, and is composite-integrated so as to face two locations inside the side surface of the column member 2 in which the through holes 22 are open. Yes. Therefore, in the region of the through hole 22 located near the inside of the side surfaces on both sides of the column member 2, the periphery is covered with the reinforcing material 7. The lower end of the reinforcing member 7 does not reach the bottom end of the pillar member 2 and is disposed only around the through hole 22.

この接合構造においても、柱材2に引張力が加わった際に、貫通穴22に挿入されたドリフトピン6からの荷重が補強材7で確実に支持される。そして、補強材7が柱材2よりも高強度であるため、柱材2の貫通穴22が破壊され難く、ドリフトピン6を支持する荷重、すなわち柱材2の引張耐力が大きく向上するため、引張力に対する高い接合強度が実現される。   Also in this joint structure, when a tensile force is applied to the column member 2, the load from the drift pin 6 inserted into the through hole 22 is reliably supported by the reinforcing member 7. And since the reinforcing material 7 is stronger than the column material 2, the through hole 22 of the column material 2 is not easily broken, and the load supporting the drift pin 6, that is, the tensile strength of the column material 2 is greatly improved. High joint strength against tensile force is realized.

この接合構造における補強材7のサイズは、貫通穴22の中心から柱材2の下端方向への長さL1が、貫通穴22の直径の3倍以上であり、かつ、補強材7の幅L2が、柱材2の貫通穴22の幅の2倍以上であることが好ましい。補強材7のサイズがこの範囲であると、貫通穴22に挿入されたドリフトピン6からの荷重を確実に補強材7で支持することができ、柱材2の引張耐力がさらに大きく向上し、引張力に対する高い接合強度が実現される。縦方向長さL4が、貫通穴22の中心から柱材2の下端方向への長さL1の2倍程度であることが好ましい。また、1つの補強材7の奥行き長さL4(貫通穴22の長さ方向と平行な方向への長さ)は、柱材2の幅(側面間の長さ)の1/3程度であることが好ましい。   The size of the reinforcing member 7 in this joint structure is such that the length L1 from the center of the through hole 22 toward the lower end of the column member 2 is three times or more the diameter of the through hole 22, and the width L2 of the reinforcing member 7 However, it is preferable that the width of the through hole 22 of the column member 2 is twice or more. When the size of the reinforcing member 7 is within this range, the load from the drift pin 6 inserted into the through hole 22 can be reliably supported by the reinforcing member 7, and the tensile strength of the column member 2 is further greatly improved. High joint strength against tensile force is realized. The longitudinal length L4 is preferably about twice as long as the length L1 from the center of the through hole 22 toward the lower end of the column member 2. Moreover, the depth length L4 (length in a direction parallel to the length direction of the through hole 22) of one reinforcing member 7 is about 1/3 of the width (length between side surfaces) of the column member 2. It is preferable.

このように、本発明は、鉄骨材3の表面に木質端材4が配設された複合梁1と、柱材2との接合構造である。複合梁1は、長さ方向に対し直角に貫通する横穴51を有する金属製のほぞピン5が木質端材4から突出している。柱材2には、木口にほぞ穴21が形成され、かつ、対向する一対の側面間に貫通穴22が一つ形成されており、かつ、柱材2の貫通穴22の周囲には、柱材2より強度が高い補強材7が柱材2と複合一体化されている。柱材2は、ほぞ穴21にほぞピン5が挿入され、ほぞピン5の横穴51と柱材2の貫通穴22とが一致した状態において、ドリフトピン6が貫通穴22を通じて横穴51に差し込まれることにより、複合梁1に接合される。   As described above, the present invention is a joint structure of the composite beam 1 in which the wood end material 4 is disposed on the surface of the steel frame material 3 and the column material 2. In the composite beam 1, a metal mortise pin 5 having a lateral hole 51 penetrating at right angles to the length direction protrudes from the wood end material 4. The column member 2 has a mortise 21 formed in the mouth, and one through hole 22 is formed between a pair of opposing side surfaces. A reinforcing material 7 having higher strength than the material 2 is combined and integrated with the column material 2. In the column 2, the mortise pin 5 is inserted into the mortise 21, and the drift pin 6 is inserted into the lateral hole 51 through the through hole 22 in a state where the lateral hole 51 of the mortise pin 5 and the through hole 22 of the pillar 2 match. Thus, the composite beam 1 is joined.

本発明の複合梁と柱材との接合構造は以上の実施形態に限定されるものではない。具体的には、例えば、補強材の形状は、柱材の貫通穴を覆って挿入されたドリフトピンを安定に支持可能な形状、配設位置に適宜設計することができる。また、ほぞピンの形状や、鉄骨材の形状、構造も適宜設計することができる。例えば、ほぞピンは、横穴にドリフトピンを挿入することで柱材と固定できる構造であればよい。   The joint structure of the composite beam and the column material of the present invention is not limited to the above embodiment. Specifically, for example, the shape of the reinforcing member can be appropriately designed in a shape and an arrangement position that can stably support the drift pin inserted so as to cover the through hole of the column member. In addition, the shape of the mortise pin and the shape and structure of the steel frame can be designed as appropriate. For example, the mortise pin may have a structure that can be fixed to the column member by inserting a drift pin into the horizontal hole.

以下、実施例において本発明の複合梁と柱材との接合構造についてさらに詳しく説明するが、本発明の複合梁と柱材との接合構造は以下の実施例に何ら限定されるものではない。   Hereinafter, although the connection structure of the composite beam and the column material of the present invention will be described in more detail in the examples, the connection structure of the composite beam and the column material of the present invention is not limited to the following examples.

<実施例1>
鉄骨材として、直径22mmのほぞピンを備えた厚み3mmのH型鋼材(幅100mm、100mm)を用い、このH型鋼材のほぞピンを木質端材(幅105mm、厚み30mm)の開口部に挿入して木質端材からほぞピンが突出した複合梁を形成した。ほぞピンの横穴の中心位置は、柱材のほぞ穴21に挿入された状態で、柱材下端部から50mmの位置になるように設計した。
<Example 1>
As a steel frame, a 3 mm thick H-shaped steel material (width: 100 mm, 100 mm) with a mortise pin with a diameter of 22 mm is used, and this H-shaped steel mortise pin is inserted into the opening of a wooden edge (width: 105 mm, thickness: 30 mm). Thus, a composite beam in which tenon pins protruded from the wood ends was formed. The center position of the horizontal hole of the mortise pin is designed to be 50 mm from the lower end of the column material while being inserted into the mortise 21 of the column material.

図6は、実施例1で使用した柱材、補強材を木口側から視た斜視図である。   FIG. 6 is a perspective view of the pillar material and the reinforcing material used in Example 1 as viewed from the mouth end side.

柱材2の材料としては、1辺の長さが105mmであるスプルースの集成材を用いた。この柱材の密度は450kg/m3であった。 As the material of the pillar material 2, a spruce laminated material having a side length of 105 mm was used. The density of this column material was 450 kg / m 3 .

補強材7として、以下の方法で得た竹PSLを使用した。
(1)原料の竹材として、2m長さに切断した直径が約20cm程度の孟宗竹を竹割機で分割し、幅が約30mm、厚さが10〜15mmの竹平板原料を得た。
(2)前記平板原料を加熱することにより含水率を15%以下となるように乾燥した後、粗切削機により竹表面の青皮部分と裏面となる柔細胞部分を切削除去し長さ方向にも切断することにより、厚みが約5〜10mm、幅が約25mm、長さが約400mmの竹ストランドを得た。
(3)得られた竹ストランドに水溶性のフェノール樹脂接着剤を塗布した後、その繊維方向を揃えるようにして適宜積層し、温度150℃で30分間の熱圧成形をすることにより、竹PSLに仕上げた。その後、この竹PSLを切断し、幅L2:30mm、奥行き長さL3:30mm、縦方向長さL4:100mmの補強材7を得た。加工後の竹PSLの密度は1150kg/m3であることが確認された。すなわち、この補強材7は、スプルースの集成材からなる柱材よりも高い強度を有している。
Bamboo PSL obtained by the following method was used as the reinforcing material 7.
(1) As a bamboo material, 2m long cut Miso bamboo with a diameter of about 20cm was divided by a bamboo splitting machine to obtain a bamboo plate material with a width of about 30mm and a thickness of 10-15mm.
(2) After heating the flat plate material to dry the moisture content to 15% or less, the rough cut machine is used to cut and remove the green skin part and the soft cell part on the back side of the bamboo surface. By cutting, a bamboo strand having a thickness of about 5 to 10 mm, a width of about 25 mm, and a length of about 400 mm was obtained.
(3) After applying a water-soluble phenolic resin adhesive to the obtained bamboo strand, it is laminated as appropriate so that its fiber direction is aligned, and then hot-pressed at a temperature of 150 ° C for 30 minutes, bamboo PSL Finished. Thereafter, the bamboo PSL was cut to obtain a reinforcing material 7 having a width L2: 30 mm, a depth length L3: 30 mm, and a longitudinal length L4: 100 mm. It was confirmed that the density of bamboo PSL after processing was 1150 kg / m 3 . That is, the reinforcing material 7 has higher strength than the pillar material made of the spruce aggregate.

そして、図6に示す形状で、柱材の側面の下端部付近を竹PSL補強材7サイズに合わせて切り欠き、一液ポリウレタン樹脂接着剤を用いて複合一体化させた。その後、柱材の側面間に、ドリフトピンを挿入するための直径13mmの貫通穴22に補強材7を貫通させて形成した。さらに、ほぞピンを挿入するためのほぞ穴21(直径22mm、深さ70mm)を穴開け加工によって形成した。なお、補強材7は、柱材の貫通穴22の中心位置から、補強材7の下端部までの長さL1を50mmとした。   Then, in the shape shown in FIG. 6, the vicinity of the lower end portion of the side surface of the pillar material was cut out in accordance with the size of the bamboo PSL reinforcing material 7 and combined and integrated using a one-pack polyurethane resin adhesive. After that, the reinforcing material 7 was formed between the side surfaces of the pillar material through a through hole 22 having a diameter of 13 mm for inserting a drift pin. Furthermore, a mortise 21 (diameter 22 mm, depth 70 mm) for inserting a mortise pin was formed by drilling. The reinforcing member 7 has a length L1 from the center position of the through hole 22 of the pillar member to the lower end of the reinforcing member 7 of 50 mm.

そして、補強材7を複合した柱材の木口のほぞ穴21に、複合梁のほぞピンを差し入れ、ほぞピンの横穴と柱材の貫通穴22の位置を一致させた。さらに、亜鉛メッキ鋼材質の直径13mmのドリフトピンを柱材の貫通穴22から差し込み、ほぞピンの横穴を通すように押し込むことで接合構造を構成した。   The mortise pin of the composite beam was inserted into the mortise 21 of the top of the pillar material combined with the reinforcing material 7, and the positions of the horizontal hole of the mortise pin and the through hole 22 of the pillar material were matched. Furthermore, a drift pin having a diameter of 13 mm made of galvanized steel was inserted from the through hole 22 of the column material, and was pushed into the side hole of the mortise pin to form a joining structure.

<実施例2>
柱材に複合する補強材として、竹PSLの代わりにFRP成形材を用いる以外は、実施例1と同様にして接合構造を得た。
<Example 2>
A joining structure was obtained in the same manner as in Example 1 except that an FRP molding material was used in place of bamboo PSL as the reinforcing material combined with the column material.

なお、補強材として用いたFRPはガラス繊維を25%含有した不飽和ポリエステル樹脂からなるガラス繊維強化プラスチックであり、密度は1800kg/m3であった。すなわち、この補強材は、スプルースの集成材からなる柱材よりも高い強度を有している。この補強材を、補強材のサイズに切り欠いた柱材と複合一体化させた。 The FRP used as the reinforcing material was a glass fiber reinforced plastic made of an unsaturated polyester resin containing 25% glass fiber, and the density was 1800 kg / m 3 . That is, this reinforcing material has higher strength than a pillar material made of a spruce aggregate. This reinforcing material was combined and integrated with a pillar material cut out in the size of the reinforcing material.

<実施例3>
柱材に複合する補強材として、竹PSLの代わりジュートファイバーボードを用いる以外は、実施例1と同様にして接合構造を得た。
<Example 3>
A joining structure was obtained in the same manner as in Example 1 except that a jute fiber board was used in place of bamboo PSL as a reinforcing material combined with the column material.

このファイバーボードを構成する原料繊維として平均長さが5〜100mm、平均径が20〜400μmであるジュート繊維を用いた。また接着剤として、粒状のフェノール樹脂粉末を用い、接着剤の含有率が22%となるように前記ジュート繊維に樹脂粉末を添加した。なお、接着剤として用いたフェノール樹脂粉末は、ノボラック型フェノールであり、その平均粒径は約20μmであった。   Jute fibers having an average length of 5 to 100 mm and an average diameter of 20 to 400 μm were used as raw fibers constituting the fiber board. Further, granular phenol resin powder was used as an adhesive, and the resin powder was added to the jute fiber so that the content of the adhesive was 22%. The phenol resin powder used as the adhesive was novolak type phenol, and the average particle size was about 20 μm.

次に、このジュート繊維と粒状接着剤の混合物を、ピン付きシリンダーを有する小型の混綿機に投入することで、原料繊維と接着剤が均一となるよう混合した後、この混合物を散布する機構を有した簡易フォーミング装置(内寸:30cm角)を用いて、繊維マット状に形成した。前記繊維マット状に形成し、繊維マットを上蓋で軽く圧締めした後、型枠から取り出し、小型熱圧プレス機でマットを軽く圧締しながら140℃で約1分間加熱し、フェノール樹脂粉末を溶融させることにより、ハンドリングが可能な繊維マットを得た。   Next, the mixture of the jute fiber and the granular adhesive is put into a small cotton blender having a pinned cylinder so that the raw fiber and the adhesive are mixed uniformly, and then a mechanism for spraying the mixture is provided. Using a simple forming device (inner size: 30 cm square), it was formed into a fiber mat shape. After forming the fiber mat into a shape and lightly pressing the fiber mat with an upper lid, the fiber mat is removed from the mold and heated at 140 ° C. for about 1 minute while lightly pressing the mat with a small hot press machine. A fiber mat that can be handled was obtained by melting.

この後、この繊維マットを所定の厚み、密度のボードが得られるように積層し、前記小型プレス機を用いて、180℃、4MPa、30分間の条件で加熱加圧成形し、30cm角サイズで、厚さ30mmのジュートファイバーボードを得た。なお、補強材に用いたボードの密度は約950kg/m3であった。すなわち、この補強材は、スプルースの集成材からなる柱材よりも高い強度を有している。この補強材を、補強材のサイズに切り欠いた柱材と複合一体化させた。 Thereafter, the fiber mat is laminated so that a board having a predetermined thickness and density is obtained, and is heated and pressed under the conditions of 180 ° C., 4 MPa, 30 minutes using the small press machine, and the size is 30 cm square. A 30mm thick jute fiber board was obtained. The density of the board used for the reinforcing material was about 950 kg / m 3 . That is, this reinforcing material has higher strength than a pillar material made of a spruce aggregate. This reinforcing material was combined and integrated with a pillar material cut out in the size of the reinforcing material.

<実施例4>
図7は、実施例4で使用した柱材、補強材を木口側から視た斜視図である。
<Example 4>
FIG. 7 is a perspective view of the pillar material and the reinforcing material used in Example 4 as viewed from the end side.

柱材における補強材の複合構造として、図7に示した補強材の形状、サイズとする以外は、実施例1と同様にして接合構造を得た。   A joined structure was obtained in the same manner as in Example 1 except that the reinforcing material composite structure of the pillar material was the shape and size of the reinforcing material shown in FIG.

具体的には、竹PSLからなる補強材7のサイズは、幅L2:70mm、奥行き長さL3:30mm、縦方向長さL4:50mmとした。この補強材7を、補強材7のサイズに切り欠いた柱材と複合一体化させた。また、柱材の貫通穴22の中心位置から、補強材7の下端方向への長さL1は、40mmとした。   Specifically, the size of the reinforcing material 7 made of bamboo PSL was a width L2: 70 mm, a depth length L3: 30 mm, and a longitudinal length L4: 50 mm. This reinforcing material 7 was combined and integrated with a pillar material cut out to the size of the reinforcing material 7. Further, the length L1 from the center position of the through hole 22 of the column member to the lower end direction of the reinforcing member 7 was set to 40 mm.

<実施例5>
柱材に複合する補強材の材質として、竹PSLの替わりに竹LVLを用いる以外は、実施例4と同様にして接合構造を得た。
<Example 5>
A joining structure was obtained in the same manner as in Example 4 except that bamboo LVL was used instead of bamboo PSL as the material of the reinforcing material combined with the column material.

竹LVLの原料としては、実施例1で記した、厚みが約5〜10mm、幅が約25mm、長さが400mmの竹ストランドの仕上げ加工として表裏面の切削加工を行い、厚み5mmの竹平板を用いた。得られた竹平板に水性ビニルウレタン系接着剤を200g/m2塗布した後、その繊維方向を揃えるようにして適宜積層し、温度150℃で30分間の熱圧成形を行ない、長さ400mm、幅200mm、厚み30mmの竹LVLを得た。なお、竹平板は、幅方向の継ぎ目が重ならないように各層をずらしながら積層することが好ましく、またその長さ方向の継ぎ目についても、重ならないようにずらしながら積層することが好ましい。実施例5では6層積層の竹LVLに仕上げた。得られた竹LVLを切断し、幅L2:70mm、奥行き長さL3:30mm、縦方向長さL4:50mmの補強材を得た。なお、加工後の補強材の密度は850kg/m3であった。すなわち、この補強材は、スプルースの集成材からなる柱材よりも高い強度を有している。この補強材を、補強材のサイズに切り欠いた柱材と複合一体化させた。そして、柱材の貫通穴22の中心位置から、補強材の下端方向への長さL1は、40mmとした。 As a raw material for bamboo LVL, the 5 mm thick bamboo flat plate was cut as the finishing process of bamboo strands with a thickness of about 5-10 mm, a width of about 25 mm, and a length of 400 mm as described in Example 1. Was used. After applying 200 g / m 2 of aqueous vinyl urethane adhesive to the resulting bamboo flat plate, the layers were properly laminated so that the fiber directions were aligned, and subjected to hot pressing at a temperature of 150 ° C. for 30 minutes, a length of 400 mm, A bamboo LVL with a width of 200 mm and a thickness of 30 mm was obtained. In addition, it is preferable to laminate | stack a bamboo flat plate, shifting each layer so that the seam of the width direction may not overlap, and it is preferable to laminate | stack also about the joint of the length direction so that it may not overlap. In Example 5, a 6-layer laminated bamboo LVL was finished. The obtained bamboo LVL was cut to obtain a reinforcing material having a width L2: 70 mm, a depth length L3: 30 mm, and a longitudinal length L4: 50 mm. The density of the reinforcing material after processing was 850 kg / m 3 . That is, this reinforcing material has higher strength than a pillar material made of a spruce aggregate. This reinforcing material was combined and integrated with a pillar material cut out in the size of the reinforcing material. And length L1 from the center position of the through-hole 22 of a pillar material to the lower end direction of a reinforcing material was 40 mm.

<実施例6>
図8は、実施例6で使用した柱材、補強材を木口側から視た斜視図である。
<Example 6>
FIG. 8 is a perspective view of the pillar material and the reinforcing material used in Example 6 as viewed from the end side.

柱材における補強材の複合構造として、図8に示すような形状とする以外は、実施例3と同様にして接合構造を得た。   A joining structure was obtained in the same manner as in Example 3 except that the composite structure of the reinforcing members in the columnar material had a shape as shown in FIG.

なお、ジュートファイバーボードからなる補強材7のサイズは、幅L2:40mm、奥行き長さL3:105mm、縦方向長さL4:80mmであり、柱材の貫通穴22の中心位置から、補強材7の下端方向への長さL1は40mmとした。この補強材7は、貫通穴22の長さ方向に長尺な角柱状であり、柱材の対向する側面間において貫通穴22に沿って複合一体化している。この補強材7を、補強材7のサイズに切り欠いた柱材と複合一体化させた。   The size of the reinforcing material 7 made of jute fiber board is width L2: 40 mm, depth length L3: 105 mm, and vertical length L4: 80 mm. From the central position of the through hole 22 of the column material, the reinforcing material 7 The length L1 in the lower end direction was 40 mm. The reinforcing member 7 has a rectangular column shape that is long in the length direction of the through hole 22, and is integrally integrated along the through hole 22 between the opposing side surfaces of the column member. This reinforcing material 7 was combined and integrated with a pillar material cut out to the size of the reinforcing material 7.

<実施例7>
補強材の縦方向長さ85mmとする以外は、実施例1と同様にして、接合構造を得た。なお、貫通孔の中心位置から補強材の下端方向への長さL1は35mmとした。
<Example 7>
A joined structure was obtained in the same manner as in Example 1 except that the longitudinal length of the reinforcing material was 85 mm. The length L1 from the center position of the through hole toward the lower end of the reinforcing material was 35 mm.

<実施例8>
補強材の幅L2を25mmとする以外は、実施例1と同様にして、接合構造を得た。
<Example 8>
A joined structure was obtained in the same manner as in Example 1 except that the width L2 of the reinforcing material was 25 mm.

<比較例1>
補強材を複合しないスプルース集成材を柱材として用い、実施例1と同様にして、接合構造を得た。
<Comparative Example 1>
A spruce laminated material not combined with a reinforcing material was used as a pillar material, and a joined structure was obtained in the same manner as in Example 1.

<比較例2>
比較例1で示した接合構造に、市販のホールダウン金物を施工して、複合梁と柱材との接合部分を補強した接合構造を得た。なお、ホールダウン金物の基準耐力は25kNのものを用いた。
<Comparative Example 2>
A commercially available hole-down hardware was applied to the joint structure shown in Comparative Example 1 to obtain a joint structure in which the joint portion between the composite beam and the column member was reinforced. The standard proof stress of the hole-down hardware was 25 kN.

上記の実施例1〜8、及び比較例1、2で作製した接合構造について引張耐力性能を評価した。耐力評価方法としては、実施例、比較例で得られた接合構造の複合梁部分の長さを900mmに、また柱材の長さを600mmサイズとしたものを試験体とした。   The tensile strength performance was evaluated for the joint structures prepared in Examples 1 to 8 and Comparative Examples 1 and 2. As a method for evaluating the proof stress, a test specimen was obtained in which the length of the composite beam portion of the joint structure obtained in the example and the comparative example was 900 mm, and the length of the column member was 600 mm.

大型引張試験機に複合梁を固定し、複合梁と接合している柱材の上端部から100mmの位置に引張治具を取り付け、一定速度での引張試験を接合部分が破壊するまで行い、最大荷重を計測した。   The composite beam is fixed to a large tensile testing machine, a tensile jig is attached at a position 100 mm from the upper end of the column material joined to the composite beam, and a tensile test at a constant speed is performed until the joint is broken. The load was measured.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2015074930
Figure 2015074930

表1において、最大荷重が50kN以上のものを◎、40kN以上を○、20kN以上を△、20kN未満のものを×とした。同時に、加工性ならびに施工性の評価を行い、従来技術に相当する比較例1の加工性や施工性を基準として、その判定結果として同等レベルのものを○、やや劣るものを△、劣るものを×と表記した。   In Table 1, the maximum load is 50 kN or more, ◎, 40 kN or more is ◯, 20 kN or more is Δ, and less than 20 kN is ×. At the same time, the workability and workability are evaluated, and based on the workability and workability of Comparative Example 1 corresponding to the prior art, the judgment result is equivalent to ○, slightly inferior to △, inferior. Indicated as x.

表1に示したように、実施例1〜6の接合構造は、その最大荷重が約45kN(実施例2では44.8kN)以上と高く、比較例1の接合構造と比較して2.5倍以上の耐力性能を有していることが確認された。また、実施例1〜6の接合構造は、ホールダウン金物を用いた比較例2の接合構造と同等レベル以上の最大荷重を有していることが確認された。   As shown in Table 1, in the joining structures of Examples 1 to 6, the maximum load is as high as about 45 kN (44.8 kN in Example 2) or more, which is 2.5 times or more compared to the joining structure of Comparative Example 1. It was confirmed to have proof stress performance. Moreover, it was confirmed that the joining structure of Examples 1-6 has the maximum load more than an equivalent level with the joining structure of the comparative example 2 using a hole down metal fitting.

また、実施例1と実施例7とを比較すると、貫通穴22の直径に対する貫通穴22の中心から柱材下端方向への長さが3倍以上である実施例1(3.8倍)では、3倍未満の実施例7(2.3倍)よりも最大荷重に優れていることが確認された。   Moreover, when Example 1 and Example 7 are compared, in Example 1 (3.8 times) in which the length from the center of the through hole 22 to the lower end direction of the column member is 3 times or more with respect to the diameter of the through hole 22, It was confirmed that the maximum load was superior to Example 7 (2.3 times) less than double.

さらに、実施例1と実施例8を比較すると、貫通穴22直径に対する補強材の幅の倍率が2倍以上である実施例1(2.3倍)では、2倍未満の実施例8(1.9倍)よりも最大荷重に優れていることが確認された。   Furthermore, when Example 1 and Example 8 are compared, in Example 1 (2.3 times) in which the magnification of the width of the reinforcing material with respect to the diameter of the through hole 22 is 2 times or more, Example 8 (1.9 times) less than 2 times. It was confirmed that the maximum load was superior.

このように、補強材のサイズが貫通穴22の直径(ドリフトピン直径)に対して十分な大きさであり、柱材に強い引張力を受けた際にも補強材の破壊を伴わないでドリフトピンを支持する荷重、すなわち柱材の引張耐力が大きくなる。その結果として複合梁と柱材との接合構造は、高い接合強度を有することが可能となる。   In this way, the size of the reinforcing material is sufficiently large with respect to the diameter of the through hole 22 (drift pin diameter), and even when the column material is subjected to a strong tensile force, the reinforcing material drifts without being destroyed. The load for supporting the pin, that is, the tensile strength of the column material is increased. As a result, the joint structure between the composite beam and the column member can have high joint strength.

さらに、例えば、実施例1、3と実施例2とを比較すると、実施例1、3では、引張力に対して高強度な竹ストランドや麻系天然繊維からなる密度800kg/m3以上の成形材を補強材として用いているため、特に優れた引張耐力性能を有する接合構造であることが分かる。 Furthermore, for example, when Examples 1 and 3 are compared with Example 2, in Examples 1 and 3 , molding with a density of 800 kg / m 3 or more made of bamboo strands and hemp-based natural fibers that are high in strength against tensile force. Since the material is used as a reinforcing material, it can be seen that the joint structure has particularly excellent tensile strength performance.

以上のように、実施例1〜8に示した接合構造は、貫通穴へのドリフトピンの差し込みのみで構造が組み上がるため施工性に優れ、かつ、引張力に対し高い接合強度を有することが確認された。   As described above, the joining structures shown in Examples 1 to 8 are excellent in workability because the structure is assembled only by inserting the drift pins into the through holes, and have a high joining strength against the tensile force. confirmed.

1 複合梁
2 柱材
21 ほぞ穴
22 貫通穴
3 鉄骨材
4 木質端材
5 ほぞピン
51 横穴
6 ドリフトピン
7 補強材



DESCRIPTION OF SYMBOLS 1 Composite beam 2 Column 21 Mortise 22 Through-hole 3 Steel frame
4 Wood edge 5 Mortise pin 51 Side hole 6 Drift pin 7 Reinforcement material



Claims (4)

鉄骨材の表面に木質端材が配設された複合梁と、柱材との接合構造であって、
前記複合梁は、長さ方向に対し直角に貫通する横穴を有する金属製のほぞピンが木質端材から突出しており、
前記柱材には、木口にほぞ穴が形成され、かつ、対向する一対の側面間に貫通穴が一つ形成されており、かつ、前記柱材の前記貫通穴の周囲には、前記柱材より強度が高い補強材が前記柱材と複合一体化されており、
前記柱材は、前記ほぞ穴に前記ほぞピンが挿入され、前記ほぞピンの前記横穴と前記柱材の前記貫通穴とが一致した状態において、ドリフトピンが前記貫通穴を通じて前記横穴に差し込まれることにより、前記複合梁に接合されることを特徴とする複合梁と柱材との接合構造。
It is a joint structure of a composite beam in which a wooden end material is arranged on the surface of a steel frame, and a pillar material,
In the composite beam, a metal mortise pin having a horizontal hole penetrating at right angles to the length direction protrudes from the wood end material,
The column member has a mortise formed in a mouth end, and one through hole is formed between a pair of opposing side surfaces, and the column member is provided around the through hole of the column member. Reinforcing material with higher strength is combined and integrated with the pillar material,
In the column member, the tenon pin is inserted into the tenon hole, and the drift pin is inserted into the horizontal hole through the through hole in a state where the horizontal hole of the tenon pin and the through hole of the column member coincide with each other. The bonded structure of a composite beam and a column material, wherein the bonded structure is bonded to the composite beam.
前記貫通穴の中心から前記柱材の下端方向への前記補強材の長さは、前記貫通穴の幅の3倍以上であり、かつ、前記補強材の幅は、前記貫通穴の幅の2倍以上であることを特徴とする請求項1に記載の複合梁と柱材との接合構造。   The length of the reinforcing material from the center of the through hole toward the lower end of the column member is at least three times the width of the through hole, and the width of the reinforcing material is 2 times the width of the through hole. The joint structure of a composite beam and a column material according to claim 1, wherein the structure is two times or more. 前記補強材は、密度が800kg/m3以上であることを特徴とする請求項1または2に記載の複合梁と柱材との接合構造。 The joint structure of a composite beam and a column material according to claim 1, wherein the reinforcing material has a density of 800 kg / m 3 or more. 前記補強材は、竹ストランドまたは麻系天然繊維からなる成形材であることを特徴とする請求項1から3のいずれか一項に記載の複合梁と柱材との接合構造。
The said reinforcement material is a molding material which consists of a bamboo strand or hemp system natural fiber, The joining structure of the composite beam and column material as described in any one of Claim 1 to 3 characterized by the above-mentioned.
JP2013212369A 2013-10-09 2013-10-09 Joint structure of composite beam and column Active JP6252893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013212369A JP6252893B2 (en) 2013-10-09 2013-10-09 Joint structure of composite beam and column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013212369A JP6252893B2 (en) 2013-10-09 2013-10-09 Joint structure of composite beam and column

Publications (2)

Publication Number Publication Date
JP2015074930A true JP2015074930A (en) 2015-04-20
JP6252893B2 JP6252893B2 (en) 2017-12-27

Family

ID=53000017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212369A Active JP6252893B2 (en) 2013-10-09 2013-10-09 Joint structure of composite beam and column

Country Status (1)

Country Link
JP (1) JP6252893B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206922A (en) * 2016-05-20 2017-11-24 パナソニックIpマネジメント株式会社 Building unit and method of manufacturing the same
WO2022083019A1 (en) * 2020-10-19 2022-04-28 青岛理工大学 Mortise-and-tenon square steel-wood assembled joint and mounting method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519736A (en) * 2000-01-13 2003-06-24 イッモ エメルホ,ナームローゼ フェンノートシャップ External stiffeners for beams, columns, plates, and others
JP3546819B2 (en) * 1999-09-20 2004-07-28 松下電工株式会社 Joint structure of composite beam and column
JP2007146592A (en) * 2005-11-30 2007-06-14 Houmu:Kk Shear reinforcing member, joint structure between woody structure member using it and method for joining woody structure member
JP4299158B2 (en) * 2003-03-12 2009-07-22 株式会社三恵ホーム Bonded hardware
US20100232872A1 (en) * 2009-03-16 2010-09-16 Toshiyuki Kato Tenon Rod and Tenon Joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546819B2 (en) * 1999-09-20 2004-07-28 松下電工株式会社 Joint structure of composite beam and column
JP2003519736A (en) * 2000-01-13 2003-06-24 イッモ エメルホ,ナームローゼ フェンノートシャップ External stiffeners for beams, columns, plates, and others
JP4299158B2 (en) * 2003-03-12 2009-07-22 株式会社三恵ホーム Bonded hardware
JP2007146592A (en) * 2005-11-30 2007-06-14 Houmu:Kk Shear reinforcing member, joint structure between woody structure member using it and method for joining woody structure member
US20100232872A1 (en) * 2009-03-16 2010-09-16 Toshiyuki Kato Tenon Rod and Tenon Joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206922A (en) * 2016-05-20 2017-11-24 パナソニックIpマネジメント株式会社 Building unit and method of manufacturing the same
WO2022083019A1 (en) * 2020-10-19 2022-04-28 青岛理工大学 Mortise-and-tenon square steel-wood assembled joint and mounting method therefor

Also Published As

Publication number Publication date
JP6252893B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
Dauletbek et al. A review of basic mechanical behavior of laminated bamboo lumber
KR20180136986A (en) Veneered elements and methods of making such veneered elements
RU2702589C2 (en) Composite plate made from recycled and recyclable materials
US10307994B2 (en) Composite board composed of wood material
Mohamad et al. Bending strength properties of glued laminated timber from selected Malaysian hardwood timber
Song et al. Performance evaluation of the bending strength of larch cross-laminated timber
CN113263802A (en) Composite panel made of wood material with an intermediate layer made of plywood
JP6469318B2 (en) Wood laminate
JP6252893B2 (en) Joint structure of composite beam and column
CN103029177B (en) Soaking compression restructuring artificial board and method for producing same
CN208293858U (en) A kind of assembled floor made with CLT plate and unbonded prestressing tendon
KR100928683B1 (en) Aggregated Logs and Manufacturing Method Thereof
JP6041103B2 (en) Lamina and method for producing lamina
Ramful Evaluation of the Mechanical Properties of Bambusa Bamboo Laminates through Destructive Testing
NO820638L (en) ELEVATIVE COMPOSITION TREMATERIAL CONSTRUCTION ELEMENTS
RU2634016C2 (en) Method to produce multilayer article of polymer composite material
CN109732711A (en) A kind of manufacturing method of reconstituted composite structure bamboo
CA2984079A1 (en) Method of manufacturing glue laminated timber columns
JP2018089897A (en) Woody laminated lumber
JP2008230032A (en) Structural material and its manufacturing method
KR101892224B1 (en) Reinforced wood structure using steel bar embedded lamination wood
Wang et al. Reinforcement of laminated veneer lumber with ramie fibre
KR101848060B1 (en) Reinforcing method of wood structure using steel bar embedded lamination wood
KR101879817B1 (en) Reinforcing method of wood structure using steel bar embedded and steel plate attached lamination wood
JP4227864B2 (en) Joists, foundations, pillars and panel frames

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171116

R151 Written notification of patent or utility model registration

Ref document number: 6252893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151