JP2015074863A - Heat-retaining fabric - Google Patents

Heat-retaining fabric Download PDF

Info

Publication number
JP2015074863A
JP2015074863A JP2013213804A JP2013213804A JP2015074863A JP 2015074863 A JP2015074863 A JP 2015074863A JP 2013213804 A JP2013213804 A JP 2013213804A JP 2013213804 A JP2013213804 A JP 2013213804A JP 2015074863 A JP2015074863 A JP 2015074863A
Authority
JP
Japan
Prior art keywords
fine particles
fiber
fabric
heat
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013213804A
Other languages
Japanese (ja)
Other versions
JP6211885B2 (en
Inventor
河野 敬
Takashi Kono
敬 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Unitika Trading Co Ltd
Original Assignee
Nippon Ester Co Ltd
Unitika Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd, Unitika Trading Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2013213804A priority Critical patent/JP6211885B2/en
Publication of JP2015074863A publication Critical patent/JP2015074863A/en
Application granted granted Critical
Publication of JP6211885B2 publication Critical patent/JP6211885B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fabric made of yarn appropriate for clothing for autumn and winter, having sustainable superior heat retaining effect independent of weather and excellent soft and warm feeling.SOLUTION: A heat-retaining fabric is made of a two-layer structure yarn with a core part made of a short-fiber bundle A and a sheath part made of a blended short-fiber bundle B. The short-fiber bundle A is made of a polyester short-fiber A containing far infrared radiation fine particles. The blended short-fiber bundle B is made of the polyester short-fiber B containing heat generating fine particles and at least one type of natural fiber and recycled fiber and has a mixed rate (polyester short-fiber B/sum of natural fiber and recycled fiber) within a range of 10/90 to 90/10. The core part and the sheath part of the two-layer structure yarn have a mass ratio (core part/sheath part) within a range of 10/90 to 60/40 and a twisting coefficient in a range of 2.0 to 4.0.

Description

本発明は、遠赤外線放射性能と吸光熱変換性能とを有し、保温効果、ソフト感及びウォーム感に優れ、秋冬衣料に好適な布帛に関するものである。   The present invention relates to a fabric that has far-infrared radiation performance and absorption heat conversion performance, is excellent in heat retaining effect, soft feeling and warm feeling, and is suitable for autumn and winter clothing.

従来から、保温を目的とする布帛が数多く上市されており、中空糸などによるデッドエアーの利用や吸湿発熱効果の利用、太陽光を熱に変換して利用する方法など、様々な手法を用いた布帛が提案されている。例えば、中空糸によるデッドエアーの利用したものとして、接結糸に中空糸を配し、その両側の表側にポリエステル仮撚糸を、裏側にその他の糸を各々配した布帛が提案されている(例えば、特許文献1)。   Many fabrics have been put on the market for the purpose of keeping warm, and various techniques such as the use of dead air with hollow fibers, the use of moisture absorption heat generation, and the method of converting sunlight into heat are used. Fabrics have been proposed. For example, as a technique using dead air by a hollow fiber, there has been proposed a fabric in which a hollow fiber is arranged in a binding yarn, a polyester false twist yarn is arranged on the front side of each side, and other yarns are arranged on the back side (for example, Patent Document 1).

また、吸湿発熱効果を利用したものとして、特定のアクリル酸系吸放湿吸水発熱性繊維を使用した布帛(例えば、特許文献2)や、セルロース分子にN-メチロール(メタ)アクリルアミドと特定の水溶性ビニル重合性化合物とを導入した吸湿発熱性セルロース繊維を使用した布帛(例えば、特許文献3)などが提案されている。   Moreover, as a thing using a moisture absorption exothermic effect, the cloth (for example, patent document 2) using a specific acrylic acid type moisture absorption / release moisture absorption exothermic fiber, N-methylol (meth) acrylamide, and a specific water-soluble cellulose molecule. A fabric (for example, Patent Document 3) using a hygroscopic exothermic cellulose fiber into which a polymerizable vinyl polymerizable compound is introduced has been proposed.

さらに、太陽光を熱に変換する手法を利用したものとして、特定の太陽光吸収性微粒子を含有するポリエステル繊維を使用した布帛(例えば、特許文献4)などが提案されている。   Furthermore, as a method using a method of converting sunlight into heat, a fabric using polyester fibers containing specific solar-absorbing fine particles (for example, Patent Document 4) has been proposed.

これに対して、近年、遠赤外線放射性微粒子を利用して布帛に保温効果を付与する技術が提案されている。例えば、当該微粒子として二酸化チタンを所定量含有するポリエステル繊維を使用した布帛(例えば、特許文献5)や、当該微粒子として特定の金属化合物を所定量含有するアクリル系繊維を使用した布帛(例えば、特許文献6)などが提案されている。   On the other hand, in recent years, a technique for imparting a heat retaining effect to a fabric using far-infrared radioactive fine particles has been proposed. For example, a fabric using polyester fibers containing a predetermined amount of titanium dioxide as the fine particles (for example, Patent Document 5), or a fabric using acrylic fibers containing a predetermined amount of a specific metal compound as the fine particles (for example, patents) Document 6) has been proposed.

特開2002−235264号公報JP 2002-235264 A 特公平7−59762号公報Japanese Patent Publication No. 7-59762 特許第2898623号公報Japanese Patent No. 2898623 特開平8−197659号公報JP-A-8-197659 特開2009−97105号公報JP 2009-97105 A 特開2007−270390号公報JP 2007-270390 A

しかしながら、デッドエアーを利用する手法は、空気を含ませることで放熱を抑えるという消極的な手法であるため、寒さに対する保温効果には限界があり、また空気層を利用するため、布帛が嵩高になってしまうという問題があった。   However, since the method using dead air is a passive method of suppressing heat dissipation by including air, there is a limit to the heat retention effect against the cold, and since the air layer is used, the fabric becomes bulky. There was a problem of becoming.

また、吸湿発熱効果を利用する手法は、いずれも発汗などによる湿気を吸収することで発熱を促す手法であり、湿気を吸収した際は発熱するものの、持続性が低く、すぐに放熱してしまうという問題があった。   In addition, all the methods that use the hygroscopic heat generation effect are methods that promote heat generation by absorbing moisture due to sweating, etc., but when it absorbs moisture, it generates heat, but its sustainability is low and it immediately dissipates heat. There was a problem.

さらに、太陽光を熱に変換する手法については、晴天時の屋外においては十分な効果が認められるものの、雨天時や室内ではその効果がほとんど期待できないという問題があっ た。   Furthermore, the method of converting sunlight into heat has a problem that it can be expected to be effective when it is raining or indoors, although it is sufficiently effective outdoors in fine weather.

そして、遠赤外線放射性微粒子の利用については、かかる微粒子のみで所望の保温効果を得るには、遠赤外線放射性微粒子を多量に繊維へ含有又は付着させなければならず、これにより、原糸製造における工程通過性(紡糸操業性)が低下するという問題があった。加えて、この手法のみでは、実現可能な保温効果に限界があり、十分な暖かさを具現するに至っていないのが実情である。   As for the use of far-infrared radioactive fine particles, in order to obtain a desired heat retaining effect with only such fine particles, a large amount of far-infrared radioactive fine particles must be contained or adhered to the fibers, thereby making it possible to produce a process in raw yarn production. There was a problem that the passability (spinning operability) was lowered. In addition, there is a limit to the heat insulation effect that can be achieved only with this method, and the actual situation is that sufficient warmth has not been realized.

さらに、上記の手法は、いずれもフィラメント糸使いの布帛へ専ら利用されるに留まり、紡績糸使いの布帛へ適用された例は未だ見当たらない。紡績糸はその表面に毛羽を有している。このため、紡績糸使いの布帛は、一般にフィラメント糸使いの布帛と比べふくらみ感に富み、そのふくらみ感に由来する各種風合いを付与できるという利点がある。例えば、秋冬衣料については、単に保温効果を付与するだけでは足りず、ふくらみ感に由来するウォーム感(ふっくらした温かみのある風合い)を与えることが商品価値を高めるうえで有利とされている。この場合、天然繊維や再生繊維を併用すれば、ソフト感をも付与できるから、商品価値を高めるうえで一層有利になると考えられる。例えば、羊毛繊維はウォーム感を、セルロース繊維は吸水吸湿性を付与するのに有利とされているから、これらを併用すれば、より価値あるものが提供できると考えられる。   Furthermore, all of the above methods are used only for fabrics using filament yarn, and no examples have been found yet applied to fabrics using spun yarn. The spun yarn has fluff on its surface. For this reason, fabrics using spun yarn are generally richer in swelling than fabrics using filament yarn, and have the advantage that various textures derived from the swelling can be imparted. For example, for autumn and winter clothing, it is not enough to simply provide a heat-retaining effect, and it is considered advantageous to increase the commercial value by giving a warm feeling derived from a puffy feeling (puffy warm texture). In this case, if natural fibers or recycled fibers are used in combination, a soft feeling can be imparted, which is considered to be more advantageous in increasing the commercial value. For example, wool fibers are advantageous for imparting a warm feeling, and cellulose fibers are advantageous for imparting water absorption and hygroscopicity. Therefore, it is considered that more valuable ones can be provided by using them together.

これに対し、フィラメント糸使いの布帛では、ウォーム感を付与するため、例えば布帛を起毛などしているが、起毛により、フィンガーマークや厚み斑などを抑えて均一な表面感を得るという新たな課題が生じる。その結果、工程の条件出し、管理が煩雑となり、コスト面でも不利となることから、好ましいとはいい難いのが実情である。   On the other hand, in the fabric using filament yarn, for example, the fabric is raised to give a warm feeling, but the new problem of obtaining a uniform surface feeling by suppressing finger marks and thickness spots by raising the fabric. Occurs. As a result, the condition setting and management of the process becomes complicated and disadvantageous in terms of cost, and it is difficult to say that it is preferable.

本発明のこのような従来技術の欠点を解消するものであり、天候に左右されず持続性ある優れた保温効果を有すると共に、ソフト感、ウォーム感にも優れ、秋冬衣料に好適な紡績糸使いの布帛を提供することを目的とするものである。   The present invention eliminates the disadvantages of the prior art of the present invention, has an excellent warming effect that is not affected by the weather, has a long lasting heat retention effect, and has a soft feeling and warm feeling, and is suitable for use in autumn and winter clothing. An object of the present invention is to provide a fabric.

本発明者は、上記課題を解決するべく鋭意検討した結果、遠赤外線放射性微粒子を利用する手法において発熱性微粒子を併用すると、遠赤外線放射作用と発熱作用との相乗効果により、各微粒子の使用量を減らして紡糸操業性を向上させても保温効果が低減せず、しかも、天候に左右されない持続性ある優れた保温効果も同時に得られることを見出し、さらに、紡績糸を用いて布帛を構成することで、起毛その他厚みなどを調整しなくても布帛にウォーム感を与えることができ、また、紡績糸を二層構造のものとし、芯部・鞘部に配すべき短繊維を特定することで、布帛に対し、一層の保温効果と、ソフト感に優れる風合いとを同時に付与できることを見出し、本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that when a pyrogenic fine particle is used in combination with a method using a far-infrared radioactive fine particle, the amount of each fine particle used due to a synergistic effect of the far-infrared radiation action and the exothermic action. It has been found that even if the spinning operability is improved by reducing the number of yarns, the heat retention effect is not reduced, and a superior heat retention effect that is not affected by the weather can be obtained at the same time, and further, a fabric is formed using the spun yarn. Therefore, it is possible to give a warm feeling to the fabric without adjusting the raising or other thicknesses, and to specify a short fiber to be arranged in the core and sheath by using a spun yarn having a two-layer structure. Thus, it has been found that a further heat retaining effect and a texture excellent in softness can be simultaneously imparted to the fabric, and the present invention has been made.

すなわち、本発明は以下を要旨とするものである。   That is, this invention makes the following a summary.

(1)芯部が短繊維束A、鞘部が混紡短繊維束Bからなる二層構造紡績糸を用いてなる布帛であって、前記短繊維束Aが、遠赤外線放射性微粒子を含有するポリエステル短繊維Aから構成され、前記混紡短繊維束Bが、発熱性微粒子を含有するポリエステル短繊維Bと、天然繊維及び再生繊維の少なくとも1種とから構成され、その混率(ポリエステル短繊維B/天然繊維及び再生繊維の合計)が10/90〜90/10の範囲にあり、さらに、前記二層構造紡績糸において、前記芯部と前記鞘部との質量比(芯部/鞘部)が10/90〜60/40の範囲にあり、かつ撚係数が2.0〜4.0の範囲にあることを特徴とする保温性布帛。
(2)前記遠赤外線放射性微粒子がマイカ、酸化スズ及びタルクからなる群より選ばれる少なくとも1種の微粒子であり、かつ前記発熱性微粒子がカーボン、酸化ジルコニウム及び炭化ジルコニウムからなる群より選ばれる少なくとも1種の微粒子であることを特徴とする(1)記載の保温性布帛。
(3)前記遠赤外線放射性微粒子及び前記発熱性微粒子がそれぞれの短繊維中に各々0.1〜10質量%含有されていることを特徴とする(1)又は(2)記載の保温性布帛。
(4)厚みが0.2〜2.0mmで、目付けが100〜250g/mの範囲にあることを特徴とする(1)〜(3)いずれかに記載の保温性布帛。
(1) A fabric using a two-layer structure spun yarn in which a core part is a short fiber bundle A and a sheath part is a blended short fiber bundle B, and the short fiber bundle A contains far-infrared radiation fine particles Composed of short fibers A, the blended short fiber bundle B is composed of polyester short fibers B containing exothermic fine particles and at least one of natural fibers and regenerated fibers, and the blend ratio (polyester short fibers B / natural The total of the fibers and the recycled fibers) is in the range of 10/90 to 90/10, and in the two-layer structure spun yarn, the mass ratio of the core portion to the sheath portion (core portion / sheath portion) is 10 / 90-60 / 40, and a twist coefficient is in the range of 2.0-4.0.
(2) The far-infrared radioactive fine particles are at least one fine particle selected from the group consisting of mica, tin oxide and talc, and the exothermic fine particles are at least one selected from the group consisting of carbon, zirconium oxide and zirconium carbide. The heat-retaining fabric according to (1), which is a seed fine particle.
(3) The heat-retaining cloth according to (1) or (2), wherein the far-infrared radioactive fine particles and the exothermic fine particles are each contained in an amount of 0.1 to 10% by mass in each short fiber.
(4) The heat-retaining fabric according to any one of (1) to (3), wherein the thickness is 0.2 to 2.0 mm and the basis weight is in the range of 100 to 250 g / m 2 .

本発明によれば、天候に左右されず持続性ある優れた保温効果と、ソフト感と、ウォーム感とに優れる布帛が提供できる。このため、秋冬衣料に好適である。本発明の布帛は紡績糸使いのため、特段の工夫を必要とせずに優れたウォーム感が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the cloth excellent in the heat retention effect excellent in sustainability without being influenced by the weather, a soft feeling, and a warm feeling can be provided. For this reason, it is suitable for autumn and winter clothing. Since the fabric of the present invention uses spun yarn, an excellent warm feeling can be obtained without requiring any special device.

また、本発明における紡績糸では、遠赤外線放射性微粒子及び発熱性微粒子が併用され、両者が比較的接近している。このため、遠赤外線放射作用と発熱作用とによる相乗効果が発揮され、これらの微粒子が比較的低量であっても優れた保温効果を発揮する。さらに、本発明における紡績糸は、二層構造を呈し、芯部及び鞘部に配すべき短繊維が特定されているから、布帛において上記相乗効果がより促進され、ソフト感に優れる風合いも得られる。   In the spun yarn of the present invention, far-infrared radioactive fine particles and exothermic fine particles are used in combination, and both are relatively close to each other. For this reason, the synergistic effect by a far-infrared radiation effect | action and a heat_generation | fever effect is exhibited, and even if these microparticles | fine-particles are comparatively low quantity, the outstanding heat retention effect is exhibited. Furthermore, since the spun yarn in the present invention has a two-layer structure and the short fibers to be arranged in the core portion and the sheath portion are specified, the above synergistic effect is further promoted in the fabric, and a soft texture is also obtained. It is done.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の布帛には、特定の紡績糸が用いられる。具体的には、遠赤外線放射性微粒子を含有するポリエステル短繊維Aから構成される短繊維束Aを芯部に配し、発熱性微粒子を含有するポリエステル短繊維Bと、天然繊維及び再生繊維の少なくとも1種とから構成される混紡短繊維束Bを鞘部に配した二層構造紡績糸が用いられる。   A specific spun yarn is used for the fabric of the present invention. Specifically, a short fiber bundle A composed of polyester short fibers A containing far-infrared emitting fine particles is arranged in the core, polyester short fibers B containing exothermic fine particles, and at least natural fibers and regenerated fibers. A double-layer structure spun yarn in which a blended short fiber bundle B composed of one kind is arranged in the sheath is used.

まず、短繊維A、Bを構成するポリエステルポリマーとしては、繊維形成能を有するポリエステルポリマーであれば、どのようなものでも使用できる。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートなどの芳香族ポリエステル、PLA(ポリ乳酸)などの脂肪族ポリエステルがあげられる。   First, as the polyester polymer constituting the short fibers A and B, any polyester polymer having fiber forming ability can be used. Examples thereof include aromatic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate, and aliphatic polyesters such as PLA (polylactic acid).

ポリエステルポリマーは、粘度、熱的特性、相溶性などに鑑みて、他の構成モノマーを共重合成分として含む共重合体であってもよい。共重合成分としては、例えば、イソフタル酸、5−スルホイソフタル酸などの芳香族ジカルボン酸;アジピン酸、コハク酸、スベリン酸、セバシン酸、ドデカン二酸などの脂肪族ジカルボン酸;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノールなどの脂肪族ジオール;グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシペンタン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸などのヒドロキシカルボン酸;ε−カプロラクトンなどの脂肪族ラクトンがあげられる。
短繊維A、Bには、必要に応じて艶消し剤、難燃剤、抗酸化剤といった無機微粒子や有機化合物などが含まれていてもよい。
The polyester polymer may be a copolymer containing another constituent monomer as a copolymerization component in view of viscosity, thermal characteristics, compatibility, and the like. Examples of copolymer components include aromatic dicarboxylic acids such as isophthalic acid and 5-sulfoisophthalic acid; aliphatic dicarboxylic acids such as adipic acid, succinic acid, suberic acid, sebacic acid, and dodecanedioic acid; ethylene glycol, propylene glycol Aliphatic diols such as 1,4-butanediol and 1,4-cyclohexanedimethanol; hydroxycarboxylic acids such as glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypentanoic acid, hydroxyheptanoic acid and hydroxyoctanoic acid Acid; aliphatic lactones such as ε-caprolactone.
The short fibers A and B may contain inorganic fine particles such as matting agents, flame retardants, and antioxidants, and organic compounds as necessary.

短繊維Aに含有される遠赤外線放射性微粒子としては、遠赤外線放射能を有する物質から構成される微粒子であれば、どのようなものでも使用できる。例えば、マイカ、タルク、方解石などの鉱物;酸化スズ、アルミナ、二酸化珪素などの酸化物系セラミックス;炭化珪素、炭化ホウ素などの炭化物系セラミックス;白金、タングステンなどの金属類があげられる。中でも、遠赤外線放射性能をより向上させる観点から、マイカ、酸化スズ、タルクが好適である。これらの遠赤外線放射性微粒子は、1種又は2種以上を組合せて使用してもよい。   As far-infrared radioactive fine particles contained in the short fiber A, any fine particles composed of a substance having far-infrared radiation can be used. Examples thereof include minerals such as mica, talc and calcite; oxide ceramics such as tin oxide, alumina and silicon dioxide; carbide ceramics such as silicon carbide and boron carbide; metals such as platinum and tungsten. Among these, mica, tin oxide, and talc are preferable from the viewpoint of further improving the far-infrared radiation performance. These far-infrared radioactive fine particles may be used alone or in combination of two or more.

遠赤外線放射性微粒子の平均粒子径としては、特に限定されないが、10μm以下が好ましく、0.1〜5μmがより好ましく、0.3〜3μmがさらに好ましい。このような範囲を満足する遠赤外線放射性微粒子を使用することで、布帛に優れた保温効果を与えることができる。また、微粒径を小さくすることは紡糸操業性を高めるうえでも好ましい。ここで、平均粒子径とは、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径をいう。   Although it does not specifically limit as an average particle diameter of a far-infrared radiation fine particle, 10 micrometers or less are preferable, 0.1-5 micrometers is more preferable, 0.3-3 micrometers is further more preferable. By using far-infrared radioactive fine particles that satisfy such a range, an excellent heat retention effect can be given to the fabric. Moreover, it is preferable to reduce the fine particle diameter in order to improve the spinning operability. Here, the average particle diameter refers to a volume average particle diameter measured using a laser diffraction scattering method particle size distribution measuring apparatus.

遠赤外線放射性微粒子の含有量としては、特に限定されないが、一般に短繊維A中に0.1〜10質量%含有されていることが好ましく、0.2〜5質量%がより好ましく、0.5〜2.5質量%がさらに好ましく、0.5〜2質量%が最も好ましい。本発明では、遠赤外線放射性微粒子の含有量が少なくても、後述する発熱性微粒子を併用しているため、優れた保温効果を奏するという利点がある。本発明では、発熱性微粒子が発する熱を保温効果の向上そのものに利用するだけでなく、その熱を遠赤外線放射性微粒子の温度上昇にも利用でき、これにより、遠赤外線放射性微粒子からは温度上昇に伴いより多くの遠赤外線が発せられるという相乗効果が奏される。したがって、優れた保温効果が得られる。   Although it does not specifically limit as content of a far-infrared radioactive fine particle, Generally it is preferable that 0.1-10 mass% is contained in the short fiber A, 0.2-5 mass% is more preferable, 0.5% -2.5 mass% is further more preferable, and 0.5-2 mass% is the most preferable. In this invention, even if there is little content of far-infrared radioactive fine particles, since the exothermic fine particle mentioned later is used together, there exists an advantage that there exists an outstanding heat retention effect. In the present invention, not only can the heat generated by the exothermic fine particles be used to improve the heat retaining effect itself, but the heat can also be used to increase the temperature of the far-infrared radiation fine particles. Along with this, a synergistic effect that more far infrared rays are emitted is produced. Therefore, an excellent heat retention effect can be obtained.

一方、短繊維Bに含有される発熱性微粒子としては、電磁波(太陽光を含む)の吸収により発熱する物質から構成される微粒子であれば、どのようなものでも使用できる。例えば、カーボン、酸化ジルコニウム、炭化ジルコニウムなどがあげられる。中でも発熱性能をより向上させる観点から、カーボン、炭化ジルコニウムが好適である。これらの発熱性微粒子は、1種又は2種以上を組合せて使用してもよい。   On the other hand, as the exothermic fine particles contained in the short fibers B, any fine particles composed of a substance that generates heat by absorbing electromagnetic waves (including sunlight) can be used. Examples thereof include carbon, zirconium oxide, zirconium carbide and the like. Among these, carbon and zirconium carbide are preferable from the viewpoint of further improving the heat generation performance. These exothermic fine particles may be used alone or in combination of two or more.

発熱性微粒子の平均粒子径としては、特に限定されないが、0.01〜5μmが好ましく、0.05〜3μmがより好ましく、0.1〜2μmがさらに好ましい。このような範囲を満足する発熱性微粒子を使用することで、布帛に優れた保温効果を与えることができる。また、微粒径を小さくすることは紡糸操業性を高めるうえでも好ましい。ここで、平均粒子径とは、上記遠赤外線放射性微粒子の場合と同じく、レーザー回折散乱法粒度分布測定装置を用いて測定される体積平均粒子径をいう。   Although it does not specifically limit as an average particle diameter of exothermic fine particle, 0.01-5 micrometers is preferable, 0.05-3 micrometers is more preferable, 0.1-2 micrometers is further more preferable. By using exothermic fine particles satisfying such a range, an excellent heat retention effect can be given to the fabric. Moreover, it is preferable to reduce the fine particle diameter in order to improve the spinning operability. Here, the average particle diameter refers to the volume average particle diameter measured using a laser diffraction / scattering particle size distribution analyzer, as in the case of the far-infrared radioactive fine particles.

発熱性微粒子の含有量としては、特に限定されないが、一般に短繊維B中に0.1〜10質量%含有されていることが好ましい。遠赤外線放射性微粒子の場合と同様、発熱性微粒子の場合もその含有量が少なくても、優れた保温効果を奏する利点がある。かかる観点から、当該微粒子の含有量としては、0.2〜5質量%がより好ましく、0.5〜2.5質量%がさらに好ましく、0.5〜2質量%が最も好ましい。発熱性微粒子の使用量を低減することで、紡糸操業性も良好なものとなる。   The content of the exothermic fine particles is not particularly limited, but is generally preferably 0.1 to 10% by mass in the short fiber B. Similar to the case of the far-infrared radioactive fine particles, the exothermic fine particles have the advantage of having an excellent heat retaining effect even if the content thereof is small. From this viewpoint, the content of the fine particles is more preferably 0.2 to 5% by mass, further preferably 0.5 to 2.5% by mass, and most preferably 0.5 to 2% by mass. By reducing the amount of exothermic fine particles used, the spinning operability is also improved.

本発明における各短繊維に含有させるべき微粒子の組み合わせとしては、上記相乗効果をより発揮させる観点から、マイカとカーボン、マイカと炭化ジルコニウムの組み合わせが好ましい。   The combination of fine particles to be contained in each short fiber in the present invention is preferably a combination of mica and carbon, or mica and zirconium carbide from the viewpoint of further exerting the above synergistic effect.

短繊維A、Bの単糸繊度としては、可紡性の点から各々0.6〜4.4dtexが好ましく、1.0〜4.4dtexがより好ましい。平均繊維長としては、各々32〜51mmが好ましい。   The single yarn fineness of the short fibers A and B is preferably 0.6 to 4.4 dtex, more preferably 1.0 to 4.4 dtex, from the viewpoint of spinnability. The average fiber length is preferably 32 to 51 mm.

短繊維A、Bは、例えば、上記ポリエステルポリマーに上記各微粒子を各々所定量練り込み、溶融紡糸後、所定の長さに切断することにより得ることができる。   The short fibers A and B can be obtained by, for example, kneading a predetermined amount of each of the fine particles in the polyester polymer, cutting the melt to a predetermined length after melt spinning.

本発明における二層構造紡績糸では、芯部が短繊維束A、鞘部が混紡短繊維束Bから構成されている。具体的に、紡績糸の芯部は、複数のポリエステル短繊維Aが束となり形成されている。一方、鞘部は、複数のポリエステル短繊維Bと複数の天然繊維、複数のポリエステル短繊維Bと複数の再生繊維、及び複数のポリエステル短繊維Bと複数の天然繊維と複数の再生繊維のいずれかの組み合わせによる繊維群が束となり形成されている。かかる紡績糸では、通常、繊維束Bが短繊維束Aに順次捲回するなどして、混紡繊維束Bが短繊維束Aの周囲を取り囲むがごとくに配置されている。   In the double-layer structure spun yarn of the present invention, the core portion is composed of the short fiber bundle A and the sheath portion is composed of the mixed spun fiber bundle B. Specifically, the core portion of the spun yarn is formed by a bundle of a plurality of polyester short fibers A. On the other hand, the sheath is one of a plurality of polyester short fibers B and a plurality of natural fibers, a plurality of polyester short fibers B and a plurality of regenerated fibers, and a plurality of polyester short fibers B, a plurality of natural fibers and a plurality of regenerated fibers. The fiber group by the combination of is formed into a bundle. In such a spun yarn, usually, the fiber bundle B is wound around the short fiber bundle A so that the mixed fiber bundle B surrounds the short fiber bundle A.

ここで、天然繊維としては、例えば、綿、麻などのセルロース繊維;羊毛、アンゴラ、カシミヤ、モヘア、アルパカ、絹などの動物繊維があげられる。一方、再生繊維としては、例えば、ビスコースレーヨン、キュプラ、リヨセル、モダール、ポリノジックなどのセルロース繊維があげられる。本発明では、天然繊維、再生繊維を使用することで、布帛にソフト感に優れる風合いを付与できる。中でも、ソフト感と併せウォーム感をさらに向上させるには、羊毛を用いることが好ましく、新たに吸水吸湿性をも付与するには、セルロース繊維を用いることが好しい。なお、セルロース繊維の中では、特に綿、リヨセルが好ましい。   Here, examples of natural fibers include cellulose fibers such as cotton and hemp; animal fibers such as wool, angora, cashmere, mohair, alpaca, and silk. On the other hand, examples of the regenerated fiber include cellulose fibers such as viscose rayon, cupra, lyocell, modal, and polynosic. In the present invention, by using natural fibers and regenerated fibers, it is possible to impart a texture with excellent soft feeling to the fabric. Among them, wool is preferably used for further improving the warm feeling together with the soft feeling, and cellulose fiber is preferably used for newly imparting water absorption and hygroscopicity. Among cellulose fibers, cotton and lyocell are particularly preferable.

天然繊維、再生繊維の単糸繊度としては、可紡性の観点から各々0.6〜4.2dtexが好ましく、1.0〜3.9dtexがより好ましい。平均繊維長としては、各々30〜40mmが好ましい。   The single yarn fineness of natural fiber and regenerated fiber is preferably 0.6 to 4.2 dtex, more preferably 1.0 to 3.9 dtex, from the viewpoint of spinnability. The average fiber length is preferably 30 to 40 mm.

本発明では、紡績糸の鞘部に混紡短繊維束Bを配することで、光の吸収を促進することができると同時に、布帛にソフトな風合いを与えることができる。これは、紡績糸の表面に短繊維Bと、天然繊維及び再生繊維の少なくとも一方とが同時に露出するからである。これに対し、短繊維束Bを多重構造のものにすると、紡績糸表面における短繊維Bの露出量が減るか、又は天然繊維、再生繊維の露出量が減ることとなる。短繊維Bの露出量が減れば、その分、光を取り込み難くなるから、上記した相乗効果が奏され難く、保温効果の向上は期待できない。一方、天然繊維、再生繊維の露出量が減れば、その分、風合いの向上は期待できなくなる。また、短繊維束Bを紡績糸の芯部に配してしまうと、短繊維Bだけでなく天然繊維、再生繊維の露出量も減るから、保温効果と風合いの向上が共に期待できない。   In the present invention, by arranging the mixed short fiber bundle B in the sheath portion of the spun yarn, light absorption can be promoted and a soft texture can be given to the fabric. This is because the short fibers B and at least one of natural fibers and regenerated fibers are simultaneously exposed on the surface of the spun yarn. On the other hand, when the short fiber bundle B has a multiple structure, the exposure amount of the short fibers B on the surface of the spun yarn is reduced, or the exposure amounts of natural fibers and regenerated fibers are reduced. If the exposure amount of the short fiber B decreases, it becomes difficult to capture light accordingly, so that the above-described synergistic effect is difficult to be achieved, and an improvement in the heat retaining effect cannot be expected. On the other hand, if the exposure amount of natural fibers and recycled fibers is reduced, the texture cannot be improved accordingly. Further, if the short fiber bundle B is disposed on the core of the spun yarn, the exposure amount of not only the short fiber B but also natural fibers and regenerated fibers is reduced, so that neither a heat retaining effect nor an improved texture can be expected.

本発明の布帛では、このように保温効果とソフト感に優れる風合いとを同時に得ることができるが、これらの効果をバランスよく発現させるために、混紡短繊維束B中の混率を規定する必要がある。具体的に、その混率(ポリエステル短繊維B/天然繊維及び再生繊維の合計)は、10/90〜90/10の範囲にある必要がある。混率がこの範囲を外れると、保温効果及びソフト感の一方だけが強く布帛に反映されることとなり、さらなる用途展開を図るうえで不利となる。   In the fabric of the present invention, it is possible to simultaneously obtain a heat retaining effect and a soft texture, but in order to express these effects in a balanced manner, it is necessary to define the mixing ratio in the blended short fiber bundle B. is there. Specifically, the mixing ratio (the total of polyester short fiber B / natural fiber and regenerated fiber) needs to be in the range of 10/90 to 90/10. When the mixing ratio is out of this range, only one of the heat retaining effect and the soft feeling is strongly reflected in the fabric, which is disadvantageous for further application development.

また、紡績糸における芯部と鞘部との質量比(芯部/鞘部)としては、10/90〜60/40の範囲にある必要があり、20/80〜40/60の範囲にあることが好ましい。本発明では、赤外線放射性微粒子及び発熱性微粒子が使用され、微粒子個々の特性により保温効果が奏されるが、これに留まらず、両者を一本の紡績糸の中に含ませることでこれらを接近させ、発熱性微粒子が発する熱で遠赤外線放射を促し、もって個々の微粒子の総和による保温効果を超える相乗的な保温効果を奏することができる。よって、赤外線放射性微粒子及び発熱性微粒子をバランスよく配合させる観点から、紡績糸中の芯部及び鞘部の質量比を上記のように規定する必要がある。本発明では、上記範囲を外れても、保温効果自体が発揮されないわけではないが、天候に左右され易い持続性に乏しい保温効果しか得られない。   Moreover, as mass ratio (core part / sheath part) of the core part in a spun yarn, it needs to exist in the range of 10 / 90-60 / 40, and exists in the range of 20 / 80-40 / 60. It is preferable. In the present invention, infrared radiation fine particles and exothermic fine particles are used, and a heat retention effect is exhibited by the characteristics of the fine particles. However, the present invention is not limited to this, and both of them are included in a single spun yarn. Therefore, far infrared radiation is promoted by the heat generated by the exothermic fine particles, and thus a synergistic heat retaining effect exceeding the heat retaining effect by the sum of the individual fine particles can be achieved. Therefore, from the viewpoint of blending the infrared radiation fine particles and the exothermic fine particles in a balanced manner, it is necessary to define the mass ratio of the core portion and the sheath portion in the spun yarn as described above. In the present invention, even if out of the above range, the heat retaining effect itself is not exhibited, but only the heat retaining effect with poor sustainability that is easily affected by the weather can be obtained.

さらに、紡績糸の撚係数としては、2.0〜4.0の範囲にある必要があり、2.5〜3.0の範囲にあることが好ましい。撚係数とは、K=T/N1/2(K:撚係数、T:撚数(回/インチ)、N:得られた紡績糸の太さ(英式綿番手))なる式で算出されるものである。撚係数が2.0未満になると、紡績糸を構成する短繊維が十分に集束せず、引張強度に劣る紡績糸しか得られない。このような紡績糸では、製織編の際に支障をきたすだけでなく、衣料に必要な強度も得られない。一方、4.0を超えると、短繊維が過度に集束し、ソフト感やウォーム感に優れる布帛が得られなくなる。また、精紡の途中で糸切れすることがあり、作業工程上も好ましくない。 Furthermore, the twist coefficient of the spun yarn needs to be in the range of 2.0 to 4.0, and is preferably in the range of 2.5 to 3.0. The twist coefficient is calculated by the following equation: K = T / N 1/2 (K: twist coefficient, T: number of twists (times / inch), N: thickness of the obtained spun yarn (English cotton count)) It is what is done. When the twist coefficient is less than 2.0, the short fibers constituting the spun yarn are not sufficiently converged, and only a spun yarn having inferior tensile strength can be obtained. Such spun yarn not only hinders weaving and knitting, but also does not provide the strength required for clothing. On the other hand, if the ratio exceeds 4.0, the short fibers are excessively focused, and a fabric excellent in soft feeling and warm feeling cannot be obtained. Further, the yarn may be broken during the spinning, which is not preferable in terms of the work process.

紡績糸の毛羽指数としては、特に限定されないが、例えば毛羽を低減する目的でコンパクトスピン紡績法を利用すれば、紡績糸の強度が上がり、布帛に光沢感を与えることも可能となる。   The fluff index of the spun yarn is not particularly limited. For example, if the compact spin spinning method is used for the purpose of reducing the fluff, the strength of the spun yarn can be increased, and the fabric can be given a glossy feeling.

また、紡績糸には、本発明の効果を損なわない範囲で他の短繊維が含まれていてもよい。通常、芯部には上記短繊維Aが80質量部以上含まれていることが好ましく、鞘部には上記短繊維Bと天然繊維及び再生繊維とが合計で80質量部以上含まれていることが好ましい。   Further, the spun yarn may contain other short fibers as long as the effects of the present invention are not impaired. Usually, the core part preferably contains 80 parts by mass or more of the short fibers A, and the sheath part contains 80 parts by mass or more of the short fibers B, natural fibers and regenerated fibers in total. Is preferred.

次に、本発明における紡績糸を得るための方法について説明する。   Next, a method for obtaining the spun yarn in the present invention will be described.

本発明における紡績糸を得るには、例えば、上記短繊維Aから構成されるスライバーAと、上記短繊維Bと天然繊維及び再生繊維の少なくとも1種とから構成される混紡スライバーBとを用意し、スライバーAを芯部へ、混紡スライバーBを鞘部へそれぞれ配しながら粗紡し、後に得られた複合粗糸を精紡する方法、又はスライバーA、Bをそれぞれ個別に粗紡し、後にスライバーAに由来する粗糸Aを芯部へ、スライバーBに由来する粗糸Bを鞘部へそれぞれ配しながら精紡する方法などがあげられる。なお、混紡スライバーBは、例えば、紡績工程中、混打綿又は練条の過程で繊維同士を混合することにより得ることができる。   In order to obtain the spun yarn in the present invention, for example, a sliver A composed of the short fibers A and a mixed sliver B composed of the short fibers B and at least one of natural fibers and recycled fibers are prepared. , Sliver is spun while the sliver A is placed on the core and the mixed sliver B is placed on the sheath, and the resulting composite roving is finely spun, or the sliver A and B are separately roasted separately, and then the sliver A And the like, and the like, and the like. The blended sliver B can be obtained, for example, by mixing fibers in a blended cotton or kneaded process during the spinning process.

本発明では、被覆性に優れる紡績糸を得る観点から、前者の方法を採用するのが好ましい。   In the present invention, it is preferable to employ the former method from the viewpoint of obtaining a spun yarn having excellent coverage.

前者の方法において、スライバーAの周囲にスライバーBを捲回させるには、粗紡機のフライヤーヘッドから見てドラフト域の外側にスライバーAを、内側にスライバーBをそれぞれ導入し粗紡すればよい。また、粗紡工程中、スライバーBの送り出し量をスライバーAの送り出し量より高く設定することで、Aの周囲にBを順次捲回させてもよい。   In the former method, in order to wind the sliver B around the sliver A, the sliver A may be introduced into the outside of the draft area as viewed from the fryer head of the roving machine, and the sliver B may be introduced into the inside to perform the roving. Further, during the roving process, B may be sequentially wound around A by setting the delivery amount of sliver B higher than the delivery amount of sliver A.

一方、後者の方法では、精紡機のフロントローラーから紡出される粗糸Bの量が粗糸Aの量より多くよるように送り出し量を調整し、紡出後、両者を重ね合わせ、リング、トラベラで実撚りを与えればよい。   On the other hand, in the latter method, the feed amount is adjusted so that the amount of the roving yarn B spun from the front roller of the spinning machine is larger than the amount of the roving yarn A, and after spinning, the two are overlapped, and the ring, traveler Just give a real twist.

そして、両方法とも、紡績糸の被覆性を高める目的で、Bをそれぞれ複数本使用してAに捲回させてもよいし、精紡後、必要に応じて複数の紡績糸を上撚りしてもよい。また、前者の方法では、複合粗糸を精紡交撚してもよい。   In both methods, for the purpose of improving the covering property of the spun yarn, a plurality of B may be used and wound around A, or after spinning, a plurality of spun yarns may be twisted as necessary. May be. In the former method, the composite roving may be finely spun and twisted.

本発明の布帛は、以上の二層構造紡績糸を用いてなるものである。本発明では、発熱性微粒子によって太陽光を効率的に熱に変換することで十分な暖かさが具現でき、同時に雨天時や室内など太陽光の届きにくい場所でも、遠赤外線放射性微粒子によって暖かさを維持することができる。このため、本発明では、布帛をことさら厚くしなくても所望の保温効果を得ることができる。したがって、本発明の布帛は、多くの用途へ好ましく適用できる。   The fabric of the present invention is formed using the above two-layer structure spun yarn. In the present invention, sufficient warmth can be realized by efficiently converting sunlight into heat with exothermic fine particles, and at the same time, warmth can be achieved with far-infrared radioactive fine particles even in places where it is difficult to reach sunlight, such as in rainy weather or indoors. Can be maintained. For this reason, in the present invention, a desired heat retaining effect can be obtained without increasing the thickness of the fabric. Therefore, the fabric of the present invention can be preferably applied to many uses.

具体的に、布帛の厚みとしては0.2〜2.0mmの範囲が好ましく、目付けとしては、100〜250g/mの範囲が好ましい。布帛の厚みが0.2mm未満もしくは目付けが100g/m未満になると、上記紡績糸の絶対量が減り、所望の保温効果が得られ難く、また、ふくらみ感が低下することでウォーム感も得られ難くなる。一方、布帛の厚みが2.0mmを超えるもしくは目付けが250g/mを超えると、布帛が重たくなり、衣料に適用し難くなる。 Specifically, the thickness of the fabric is preferably in the range of 0.2 to 2.0 mm, and the basis weight is preferably in the range of 100 to 250 g / m 2 . When the thickness of the fabric is less than 0.2 mm or the basis weight is less than 100 g / m 2 , the absolute amount of the spun yarn is reduced, it is difficult to obtain a desired heat retaining effect, and a feeling of warmness is obtained by reducing the feeling of swelling. It becomes difficult to be. On the other hand, when the thickness of the fabric exceeds 2.0 mm or the basis weight exceeds 250 g / m 2 , the fabric becomes heavy and difficult to apply to clothing.

布帛の厚みはJIS L1096.8.5.1に基づき測定し、目付けはJIS L1096.8.4.2に基づき測定する。   The thickness of the fabric is measured based on JIS L10968.5.1, and the basis weight is measured based on JIS L10968.8.4.

本発明の布帛には、本発明の効果を損なわない範囲で、上記紡績糸以外の他の糸条が含まれていてもよい。本発明の布帛には、保温効果の観点から、上記紡績糸が60質量部以上含まれていることが好ましい。   The fabric of the present invention may contain other yarns other than the spun yarn as long as the effects of the present invention are not impaired. The fabric of the present invention preferably contains 60 parts by mass or more of the spun yarn from the viewpoint of a heat retaining effect.

また、布帛の形状としては、織物、編物、不織布などがあげられる。特に、形状が織物又は編物である場合、その組織としては、特に限定されず、目的に応じて適宜の組織を採用すればよい。また、布帛の設計についても、特に限定されず、好ましくは仕上げ時の厚み、目付けが上記範囲を満たすように設計すればよい。   Examples of the shape of the fabric include woven fabric, knitted fabric, and non-woven fabric. In particular, when the shape is a woven fabric or a knitted fabric, the structure is not particularly limited, and an appropriate structure may be adopted depending on the purpose. Also, the design of the fabric is not particularly limited, and it may be designed so that the finishing thickness and basis weight preferably satisfy the above ranges.

本発明の布帛は、製織編後、精練、リラックス、ファイナルセットすることにより得ることができる。一連の後加工の途中もしくは最終段階において、公知の知見に基づき布帛を染色、着色プリント、エンボス加工、撥水加工、抗菌加工、蓄光加工、消臭加工などしてもよい。一般にはリラックスの後、染色することが好ましい。   The fabric of the present invention can be obtained by scouring, relaxing, and final setting after weaving and knitting. During or after the series of post-processing, the fabric may be dyed, colored, embossed, water-repellent, antibacterial, phosphorescent, deodorized, and the like based on known knowledge. Generally, it is preferable to dye after relaxing.

本発明の織編物の用途については、特に限定されないが、例えば、各種インナー、Tシャツ、ジャケット、ウインドブレーカー、ウェットスーツ、スキーウエア、手袋、帽子、テント、靴の中敷き、布団の側地などの保温性が求められる各種繊維製品の素材として好適に使用される。   The use of the knitted or knitted fabric of the present invention is not particularly limited. It is suitably used as a material for various textile products that require heat retention.

以下、実施例及び比較例をあげてさらに詳細に本発明を説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.

各測定方法及び評価方法は以下の通りである。   Each measuring method and evaluation method are as follows.

(1)遠赤外線放射性
各実施例及び比較例で得られた織物の遠赤外線放射強度を測定した。測定は、赤外分光光度計FT−IR装置(パーキンエルマー社製「Spectrum GX FT−IR(商品名)」)を使用し、測定温度40℃、測定波長域5〜20μmで行った。その際、同条件における黒体の遠赤外線放射強度も測定し、各波長における黒体の放射強度を100%とした場合の各織物の放射強度の比率(%)を求め、各波長で算出された比率の平均値を平均放射率(%)として算出した。また、ブランクとして、遠赤外線放射性微粒子及び発熱性微粒子を含まないこと以外は、各実施例及び比較例と同組成の繊維を用いて製織、後加工した織物を用い、同様に平均放射率(%)を求めた。そして、次式に基づいて、遠赤外線放射性を算出した。
<遠赤外線放射性の算出式>
遠赤外線放射性=〔(得られた織物の平均放射率(%)−ブランクの平均放射率(%))/ブランクの平均放射率(%)〕×100
(1) Far-infrared radiation The far-infrared radiation intensity of the woven fabric obtained in each Example and Comparative Example was measured. The measurement was performed using an infrared spectrophotometer FT-IR apparatus (“Spectrum GX FT-IR (trade name)” manufactured by PerkinElmer) at a measurement temperature of 40 ° C. and a measurement wavelength range of 5 to 20 μm. At that time, the far-infrared radiant intensity of the black body under the same conditions is also measured, and the ratio (%) of the radiant intensity of each fabric when the radiant intensity of the black body at each wavelength is defined as 100% is calculated at each wavelength. The average value of the ratio was calculated as the average emissivity (%). In addition, as a blank, except that it does not contain far-infrared radioactive fine particles and exothermic fine particles, weaving using post-processed woven fabrics using fibers of the same composition as each Example and Comparative Example, the average emissivity (% ) And far-infrared radiation was computed based on following Formula.
<Calculation formula of far-infrared radiation>
Far-infrared radiation = [(average emissivity of the resulting fabric (%) − average emissivity of blank (%)) / average emissivity of blank (%)] × 100

(2)発熱特性
温度が20℃、湿度が65%に保たれた恒温恒湿状態の室内において、各実施例及び比較例で得られた織物へ、レフランプから照度10000LUXの光を照射し、裏面からサーモグラフィー(赤外線センサー、日本電子株式会社製「JTG−4200(商品名)」)で織物の表面温度を観察した。
(2) Heat generation characteristics In a room of constant temperature and humidity maintained at 20 ° C. and humidity of 65%, the fabric obtained in each of the examples and comparative examples was irradiated with light having an illuminance of 10,000 LUX from the reflex lamp, and the back surface The surface temperature of the fabric was observed by thermography (infrared sensor, “JTG-4200 (trade name)” manufactured by JEOL Ltd.).

(3)ソフト感
10人のパネラーにより得られた織物を官能検査(ハンドリング)し、以下の3段階で評価した。
○:ソフト感に優れると判断した者が8人以上。
△:ソフト感に優れると判断した者が5人以上7人以下。
×:ソフト感に優れると判断した者が4人以下。
(3) Soft feeling The fabric obtained by 10 panelists was subjected to a sensory test (handling) and evaluated in the following three stages.
○: Eight or more people judged to have excellent softness.
Δ: There are 5 or more and 7 or less people judged to have excellent soft feeling.
X: Less than 4 persons judged to be excellent in soft feeling.

(4)ウォーム感
10人のパネラーにより得られた織物を官能検査(ハンドリング)し、以下の3段階で評価した。
○:ウォーム感に優れると判断した者が8人以上。
△:ウォーム感に優れると判断した者が5人以上7人以下。
×:ウォーム感に優れると判断した者が4人以下。
(4) Warm feeling The fabric obtained by 10 panelists was subjected to a sensory test (handling) and evaluated in the following three stages.
○: Eight or more people judged to have excellent warm feeling.
Δ: 5 or more and 7 or less people judged to have excellent warm feeling.
X: Less than 4 persons judged to be excellent in warm feeling.

(実施例1)
単糸繊度が1.7dtexで平均繊維長が38mmであって、遠赤外線放射性微粒子として平均粒子径3μmのマイカを1.5質量%含有するポリエステル短繊維AからなるスライバーAを用意した。さらに、単糸繊度が1.3dtexで平均繊維長が38mmであって、発熱性微粒子として平均粒子径1.5μmの炭化ジルコニウムを2.0質量%含有するポリエステル短繊維Bと、単糸繊度が0.9dtexで平均繊維長が34mmであるリヨセル短繊維とからなる混紡スライバーBを用意した。この混紡スライバーは、短繊維Bとリヨセル短繊維とを練条工程で混合することにより得たもので、混率(短繊維B/リヨセル短繊維)は、30/70であった。
(Example 1)
A sliver A comprising polyester short fibers A having a single yarn fineness of 1.7 dtex and an average fiber length of 38 mm and containing 1.5% by mass of mica having an average particle diameter of 3 μm as far-infrared radiation fine particles was prepared. Furthermore, a polyester short fiber B having a single yarn fineness of 1.3 dtex and an average fiber length of 38 mm and containing 2.0% by mass of zirconium carbide having an average particle diameter of 1.5 μm as heat-generating fine particles, and a single yarn fineness of A blended sliver B composed of lyocell short fibers having an average fiber length of 34 mm at 0.9 dtex was prepared. This blended sliver was obtained by mixing the short fiber B and the lyocell short fiber in a drawing step, and the mixing ratio (short fiber B / lyocell short fiber) was 30/70.

そして、両スライバーを粗紡機へ導入し、フライヤーヘッドから見てドラフト域の外側にスライバーAを、内側にスライバーBをそれぞれ配しながらドラフトし、スライバーAの周りにスライバーBを捲回させ、複合粗糸とした。続いて、得られた複合粗糸を精紡し、撚係数3.6、太さ40番手(英式綿番手)の二層構造紡績糸を得た。この紡績糸において、芯部と鞘部との質量比(芯部/鞘部)は30/70であった。   Then, both slivers were introduced into the roving machine, and the sliver was placed outside the draft area and the sliver B was placed inside the draft area as viewed from the flyer head, and the sliver B was wound around the sliver A, and combined. A roving yarn was obtained. Subsequently, the obtained composite roving was finely spun to obtain a double-layered spun yarn having a twist coefficient of 3.6 and a thickness of 40 (English cotton count). In this spun yarn, the mass ratio of the core part to the sheath part (core part / sheath part) was 30/70.

次に、得られた紡績糸を経緯糸に用いてエアージェット織機(津田駒工業株式会社製「ZA209i(商品名)」)にて2/2綾組織の生機を製織した。その後、生機を順次、精練、リラックス、染色、ファイナルセットし、厚み0.3mm、目付け127g/mで経緯糸密度が118本×80本/インチの保温性布帛を得た。 Next, using the obtained spun yarn as a warp and weft, an air jet loom (“ZA209i (trade name)” manufactured by Tsuda Koma Kogyo Co., Ltd.) was used to weave a 2/2 twill textured machine. Thereafter, the raw machine was sequentially scoured, relaxed, dyed, and finally set to obtain a heat-retaining fabric having a thickness of 0.3 mm, a basis weight of 127 g / m 2 and a weft density of 118 × 80 yarns / inch.

(比較例1)
スライバーBとしてポリエステル短繊維Bのみからなるものを使用すること以外は、実施例1と同様に行い、保温性布帛を得た。
(Comparative Example 1)
A heat-retaining fabric was obtained in the same manner as in Example 1 except that a sliver B consisting of only polyester short fibers B was used.

(比較例2、3)
紡績糸における芯部と鞘部との質量比が表1記載のものとなるように、スライバーA、Bの太さ及び粗紡時のドラフト率を調整すること以外は、実施例1と同様に行い、保温性布帛を得た。
(Comparative Examples 2 and 3)
Except for adjusting the thickness of the sliver A and B and the draft ratio during roving so that the mass ratio of the core portion to the sheath portion in the spun yarn is as shown in Table 1, it is carried out in the same manner as in Example 1. A heat-retaining fabric was obtained.

(比較例4、5)
紡績糸の撚係数が表1記載のものとなるように、精紡時の撚数を調整する以外は、実施例1と同様に行い、保温性布帛を得た。
(Comparative Examples 4 and 5)
A heat-retaining fabric was obtained in the same manner as in Example 1 except that the number of twists during spinning was adjusted so that the twist coefficient of the spun yarn was as shown in Table 1.

(実施例2)
炭化ジルコニウムに代えて、平均粒子径1.5μmのカーボンを2.0質量%含有させること以外は、実施例1と同様に行い、保温性布帛を得た。
(Example 2)
A heat-retaining fabric was obtained in the same manner as in Example 1 except that 2.0% by mass of carbon having an average particle size of 1.5 μm was contained instead of zirconium carbide.

(実施例3)
マイカに代えて、平均粒子径3μmの酸化スズを1.5質量%含有させること以外は、実施例1と同様に行い、保温性布帛を得た。
(Example 3)
A heat insulating fabric was obtained in the same manner as in Example 1 except that 1.5% by mass of tin oxide having an average particle diameter of 3 μm was contained instead of mica.

(実施例4)
紡績糸の太さが60番手となるように精紡時のドラフト率を調整すること、及び生機組織を平組織に変更するなどして織物設計を変更すること以外は、実施例2と同様に行い、厚み0.2mm、目付け89g/mで経緯糸密度が132本×98本/インチの保温性布帛を得た。
Example 4
Except for adjusting the draft rate at the time of spinning so that the thickness of the spun yarn is 60, and changing the fabric design by changing the raw tissue structure to a plain structure, the same as in Example 2. Thus, a heat insulating fabric having a thickness of 0.2 mm, a basis weight of 89 g / m 2 and a warp / weft density of 132 × 98 yarns / inch was obtained.

(比較例6)
粗紡の際、フライヤーヘッドから見てドラフト域の外側にスライバーBを、内側にスライバーAをそれぞれ配することで、芯部に短繊維B及びリヨセル短繊維を、鞘部に短繊維Aをそれぞれ配した二層構造紡績糸となす以外は、実施例2と同様に行い、保温性布帛を得た。
(Comparative Example 6)
During roving, the sliver B and the sliver A are arranged on the outside and the inside of the draft area as viewed from the flyer head, so that the short fiber B and the lyocell short fiber are arranged on the core and the short fiber A is arranged on the sheath A heat insulating fabric was obtained in the same manner as in Example 2 except that the spun yarn with the two-layer structure was made.

以上で得た布帛の評価結果を表1に示す。   The evaluation results of the fabric obtained above are shown in Table 1.

実施例1〜3にかかる布帛では、個々の微粒子による発熱及び遠赤外線放射に加え、発熱性微粒子が発する熱で遠赤外線放射がより促されたため、優れた保温効果が得られた。中でも実施例2にかかる布帛は、微粒子相互の相乗的な保温効果が一層発揮されたため、実施例1、3にかかる布帛と比べより保温効果に優れていた。また、実施例1〜3にかかる布帛は、いずれもがソフト感に優れていた。さらに、これらはいずれも秋冬衣料に好適であることが確認できた。   In the fabrics according to Examples 1 to 3, in addition to the heat generated by the individual fine particles and the far infrared radiation, the far infrared radiation was further promoted by the heat generated by the exothermic fine particles, so that an excellent heat retaining effect was obtained. Among them, the fabric according to Example 2 was more excellent in the heat retention effect than the fabrics according to Examples 1 and 3 because the synergistic heat retention effect between the fine particles was further exhibited. Moreover, as for the fabric concerning Examples 1-3, all were excellent in the soft feeling. Furthermore, it was confirmed that these were all suitable for autumn / winter clothing.

これに対し、比較例1にかかる布帛では、紡績糸鞘部に天然繊維及び再生繊維のいずれもが配されていなかったため、実施例1にかかる布帛と比べソフト感に欠けるものとなった。   On the other hand, in the fabric according to Comparative Example 1, neither the natural fiber nor the regenerated fiber was arranged in the spun yarn sheath portion, so that the soft feeling was lacking compared with the fabric according to Example 1.

比較例2、3にかかる布帛では、紡績糸において芯部と鞘部との質量比がバランスを欠いており、それに伴い両微粒子の質量比もバランスを欠くものであったため、発熱及び赤外線放射性の点で実施例1にかかる布帛ほどのバランスの取れた保温効果は得られなかった。つまり、保温効果の点で、実施例1の布帛と比べ天候に左右され易い持続性に乏しいものとなった。   In the fabrics according to Comparative Examples 2 and 3, since the mass ratio of the core portion and the sheath portion in the spun yarn lacks balance, and the mass ratio of both fine particles also lacks balance, the heat generation and infrared radiation characteristics In this respect, the heat-retaining effect as balanced as the fabric according to Example 1 was not obtained. That is, in terms of the heat retaining effect, the sustainability is less likely to be affected by the weather than the fabric of Example 1.

比較例4では紡績糸の撚係数が低すぎたため、所定の強度を有する紡績糸が得られず、製織時に糸切れが多発したため、製織を途中で中止した。一方、比較例5では、紡績糸の撚係数が高すぎたため、ソフト感及びウォーム感に優れる布帛が得られなかった。   In Comparative Example 4, since the twist coefficient of the spun yarn was too low, a spun yarn having a predetermined strength could not be obtained, and many yarn breaks occurred during weaving. Therefore, weaving was stopped halfway. On the other hand, in Comparative Example 5, since the twist coefficient of the spun yarn was too high, a fabric excellent in soft feeling and warm feeling could not be obtained.

また、実施例4では、布帛の厚みがあまり好ましいとはいえず、実施例2にかかる布帛ほどのウォーム感は得られなかった。   Moreover, in Example 4, the thickness of the fabric was not very preferable, and the warm feeling as the fabric according to Example 2 was not obtained.

そして、比較例6では、紡績糸鞘部に発熱性微粒子を含有するポリエステル短繊維が配されていなかったため、実施例2にかかる布帛ほどの発熱効果は得られなかった。加えて、鞘部に天然繊維及び再生繊維のいずれもが配されていなかったため、ソフト感にも欠けるものとなった。
In Comparative Example 6, since the polyester short fibers containing exothermic fine particles were not arranged in the spun yarn sheath portion, the heat generation effect as in the fabric according to Example 2 was not obtained. In addition, since neither a natural fiber nor a regenerated fiber was arranged in the sheath, the soft feeling was lacking.

Claims (4)

芯部が短繊維束A、鞘部が混紡短繊維束Bからなる二層構造紡績糸を用いてなる布帛であって、前記短繊維束Aが、遠赤外線放射性微粒子を含有するポリエステル短繊維Aから構成され、前記混紡短繊維束Bが、発熱性微粒子を含有するポリエステル短繊維Bと、天然繊維及び再生繊維の少なくとも1種とから構成され、その混率(ポリエステル短繊維B/天然繊維及び再生繊維の合計)が10/90〜90/10の範囲にあり、さらに、前記二層構造紡績糸において、前記芯部と前記鞘部との質量比(芯部/鞘部)が10/90〜60/40の範囲にあり、かつ撚係数が2.0〜4.0の範囲にあることを特徴とする保温性布帛。 A polyester short fiber A comprising a double-layer structure spun yarn having a short fiber bundle A as a core and a mixed short fiber bundle B as a sheath, wherein the short fiber bundle A contains far-infrared radiation fine particles. The blended short fiber bundle B is composed of a polyester short fiber B containing exothermic fine particles, and at least one of natural fiber and regenerated fiber, and its mixing ratio (polyester short fiber B / natural fiber and regenerated fiber) The total ratio of the fibers is in the range of 10/90 to 90/10. Furthermore, in the double-layered spun yarn, the mass ratio of the core part to the sheath part (core part / sheath part) is 10/90 to A heat-retaining fabric characterized by being in the range of 60/40 and having a twist coefficient in the range of 2.0 to 4.0. 前記遠赤外線放射性微粒子がマイカ、酸化スズ及びタルクからなる群より選ばれる少なくとも1種の微粒子であり、かつ前記発熱性微粒子がカーボン、酸化ジルコニウム及び炭化ジルコニウムからなる群より選ばれる少なくとも1種の微粒子であることを特徴とする請求項1記載の保温性布帛。 The far infrared radiation fine particles are at least one fine particle selected from the group consisting of mica, tin oxide and talc, and the exothermic fine particles are at least one fine particle selected from the group consisting of carbon, zirconium oxide and zirconium carbide. The heat-retaining fabric according to claim 1, wherein 前記遠赤外線放射性微粒子及び前記発熱性微粒子がそれぞれの短繊維中に各々0.1〜10質量%含有されていることを特徴とする請求項1又は2記載の保温性布帛。 The heat-retaining fabric according to claim 1 or 2, wherein the far-infrared radioactive fine particles and the exothermic fine particles are each contained in an amount of 0.1 to 10% by mass in each short fiber. 厚みが0.2〜2.0mmで、目付けが100〜250g/mの範囲にあることを特徴とする請求項1〜3いずれかに記載の保温性布帛。
The thickness was 0.2 to 2.0 mm, insulation fabric according to any one claims 1 to 3 weight per unit area is equal to or in the range of 100 to 250 g / m 2.
JP2013213804A 2013-10-11 2013-10-11 Thermal insulation fabric Expired - Fee Related JP6211885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213804A JP6211885B2 (en) 2013-10-11 2013-10-11 Thermal insulation fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213804A JP6211885B2 (en) 2013-10-11 2013-10-11 Thermal insulation fabric

Publications (2)

Publication Number Publication Date
JP2015074863A true JP2015074863A (en) 2015-04-20
JP6211885B2 JP6211885B2 (en) 2017-10-11

Family

ID=52999954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213804A Expired - Fee Related JP6211885B2 (en) 2013-10-11 2013-10-11 Thermal insulation fabric

Country Status (1)

Country Link
JP (1) JP6211885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150122A (en) * 2016-02-23 2017-08-31 崔 ▲鉉▼▲澤▼CUI Xuanze Light-absorbing heat-generating composition and method for manufacturing woven fabric including the composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229473U (en) * 1988-08-12 1990-02-26
JPH0742039A (en) * 1993-07-30 1995-02-10 Kuraray Co Ltd Spun yarn of double layer structure
JPH0977961A (en) * 1995-09-14 1997-03-25 Nippon Ester Co Ltd Far infrared emitting polyester composition
JPH108345A (en) * 1996-06-21 1998-01-13 Unitika Ltd Lightweight heat insulating fabric
JP2002363833A (en) * 2001-06-04 2002-12-18 Teijin Ltd Multilayer structural yarn and quick-drying fabric
JP2006132042A (en) * 2004-11-08 2006-05-25 Sumitomo Metal Mining Co Ltd Near-infrared absorption fiber and textile product using the same
JP2006225786A (en) * 2005-02-16 2006-08-31 Unitika Textiles Ltd Spun yarn in double layer structure and woven or knitted fabric
JP2007332472A (en) * 2006-06-12 2007-12-27 Unitika Textiles Ltd Multi-layered yarn and method for producing the same
JP2009228185A (en) * 2008-03-25 2009-10-08 Unitika Textiles Ltd Spun yarn and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229473U (en) * 1988-08-12 1990-02-26
JPH0742039A (en) * 1993-07-30 1995-02-10 Kuraray Co Ltd Spun yarn of double layer structure
JPH0977961A (en) * 1995-09-14 1997-03-25 Nippon Ester Co Ltd Far infrared emitting polyester composition
JPH108345A (en) * 1996-06-21 1998-01-13 Unitika Ltd Lightweight heat insulating fabric
JP2002363833A (en) * 2001-06-04 2002-12-18 Teijin Ltd Multilayer structural yarn and quick-drying fabric
JP2006132042A (en) * 2004-11-08 2006-05-25 Sumitomo Metal Mining Co Ltd Near-infrared absorption fiber and textile product using the same
JP2006225786A (en) * 2005-02-16 2006-08-31 Unitika Textiles Ltd Spun yarn in double layer structure and woven or knitted fabric
JP2007332472A (en) * 2006-06-12 2007-12-27 Unitika Textiles Ltd Multi-layered yarn and method for producing the same
JP2009228185A (en) * 2008-03-25 2009-10-08 Unitika Textiles Ltd Spun yarn and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150122A (en) * 2016-02-23 2017-08-31 崔 ▲鉉▼▲澤▼CUI Xuanze Light-absorbing heat-generating composition and method for manufacturing woven fabric including the composition

Also Published As

Publication number Publication date
JP6211885B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6360319B2 (en) Long / short composite spun yarn and fabric using the same
JP6106487B2 (en) Functional fiber
JP2014079367A (en) Inner cotton and fiber product
JP6346768B2 (en) Knitted fabric, textile product, and method of manufacturing knitted fabric
TW201629282A (en) Heat-retaining fleece and method of producing the same
CN103526422B (en) Far infrared cashmere fiber home textile fabric
JPH05148734A (en) Fiber structure having ultraviolet-shielding property and textile product produced therefrom
JP2006138036A (en) Blended product
JP6211885B2 (en) Thermal insulation fabric
JP2010013760A (en) Spun yarn and woven or knitted fabric
JP2015101815A (en) Functional fiber, and heat retaining woven fabric to be constituted of the fiber
JP2004339650A (en) Spun yarn and woven or knitted fabric
JP6360318B2 (en) Composite-bound spun yarn and fabric using the same
JP6388471B2 (en) Thermal insulation fabric
JP6211878B2 (en) Thermal insulation fabric
JP2015183326A (en) Splash-patterned cool feeling fabric
JP6498873B2 (en) Functional fiber yarn and woven or knitted fabric using the same
JP2015105444A (en) Functional composite yarn
JP6751558B2 (en) Double-sided knitted fabric
JP6259318B2 (en) Method for producing false twisted yarn for black formal clothing
JP2006291427A (en) Composite twisted yarn and textile using the same
CN204653795U (en) A kind of health-care underclothes
JP2015124453A (en) Spun yarn and heat-retaining cloth including the spun yarn
TW201912858A (en) Multi-functional sheath-core fiber and manufacturing method of composite yarn thereof combine the yarn characteristics of cool feeling function such as sweat absorption, heat resistance, cool feeling, quick drying, gloss, and UV resistance
JP5857479B2 (en) Spun yarn and woven / knitted fabric using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R150 Certificate of patent or registration of utility model

Ref document number: 6211885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees