JP2015053468A - Method for manufacturing semiconductor package - Google Patents

Method for manufacturing semiconductor package Download PDF

Info

Publication number
JP2015053468A
JP2015053468A JP2014126120A JP2014126120A JP2015053468A JP 2015053468 A JP2015053468 A JP 2015053468A JP 2014126120 A JP2014126120 A JP 2014126120A JP 2014126120 A JP2014126120 A JP 2014126120A JP 2015053468 A JP2015053468 A JP 2015053468A
Authority
JP
Japan
Prior art keywords
resin sheet
grinding
sealing resin
semiconductor
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014126120A
Other languages
Japanese (ja)
Inventor
浩介 盛田
Kosuke Morita
浩介 盛田
石坂 剛
Takeshi Ishizaka
剛 石坂
豊田 英志
Hideshi Toyoda
英志 豊田
豪士 志賀
Goshi Shiga
豪士 志賀
智絵 飯野
Chie Iino
智絵 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014126120A priority Critical patent/JP2015053468A/en
Priority to KR1020167005740A priority patent/KR20160041966A/en
Priority to PCT/JP2014/068975 priority patent/WO2015019817A1/en
Priority to TW103125706A priority patent/TW201513195A/en
Publication of JP2015053468A publication Critical patent/JP2015053468A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor package capable of forming an intended circuit element with a high yield, after a sealant using a sealing resin sheet, is ground.SOLUTION: A method for manufacturing a semiconductor package comprises: a sealant formation step for forming a sealant in which one or a plurality of semiconductor chips are embedded in a sealing resin sheet; and a grinding step for grinding the sealing resin sheet of the sealant so that a surface on the opposite side of an active surface of the semiconductor chip is exposed, to form a ground body. A maximum difference of elevation between the surface of the sealing resin sheet on the ground body and an exposed surface of the semiconductor chip is equal to or less than 10 μm.

Description

本発明は、半導体パッケージの製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor package.

近年、電子機器の小型化、軽量化、高機能化の要求が高まっており、それに応じて電子機器を構成するパッケージについても小型化、薄型化、高密度実装が求められている。   In recent years, there is an increasing demand for downsizing, lightening, and high functionality of electronic devices, and accordingly, packages that make up electronic devices are also required to be downsized, thinned, and mounted with high density.

半導体パッケージの作製には、代表的に、基板や仮止め材等に固定された電子部品を封止樹脂にて封止し、必要に応じて封止物を電子部品単位のパッケージとなるようにダイシングするという手順が採用されている。このような過程の中で、上記要求に応えるべく、樹脂封止後に封止物を研削して薄型化を図る技術が提案されている(例えば、特許文献1、2等)。フリップチップBGA(Ball Grid Array)、フリップチップSiP(System in Package)、ファンイン型ウェハレベルパッケージ、ファンアウト型ウェハレベルパッケージ等の薄型半導体パッケージの製造工程においては、こうした研削による薄型化も重要な要素となる。   For the manufacture of a semiconductor package, typically, an electronic component fixed to a substrate, a temporary fixing material, or the like is sealed with a sealing resin, and the sealed product is packaged in units of electronic components as necessary. The procedure of dicing is adopted. In such a process, in order to meet the above requirements, a technique for reducing the thickness by grinding a sealing material after resin sealing has been proposed (for example, Patent Documents 1 and 2). Thinning by grinding is also important in the manufacturing process of thin semiconductor packages such as flip chip BGA (Ball Grid Array), flip chip SiP (System in Package), fan-in type wafer level package, and fan out type wafer level package. Become an element.

特許第3420748号Japanese Patent No. 3420748 特許第3666576号Patent No. 3666576

しかしながら、封止物の研削後、研削面とは反対側の面に対して再配線やバンプ等の回路要素を形成するプロセスを施そうとしても、所望の再配線やバンプを形成することができなかったり、再配線形成後に再配線の剥離が生じたりするという不具合が生じる場合があることが判明した。これらの不具合は、上記特許文献1及び2の技術では認識されておらず、その解決が望まれている。   However, after grinding the sealing material, it is possible to form a desired rewiring or bump even if a process for forming a circuit element such as a rewiring or a bump on the surface opposite to the ground surface is performed. It has been found that there may be a problem that the rewiring is peeled off after the rewiring is formed. These inconveniences are not recognized by the techniques of Patent Documents 1 and 2 described above, and their solutions are desired.

本発明の目的は、封止樹脂シートを用いた封止物の研削後に目的とする回路要素を歩留まり良く形成可能な半導体パッケージの製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the semiconductor package which can form the target circuit element with a sufficient yield after grinding of the sealing material using the sealing resin sheet.

本発明者らは、研削面の状態が研削面とは反対側の面への回路要素形成に影響を及ぼすとの考えに基づき、鋭意検討した結果、以下の構成により上記課題を解決できることを見出し、本発明を完成させた。   As a result of intensive studies based on the idea that the state of the grinding surface affects the formation of circuit elements on the surface opposite to the grinding surface, the present inventors have found that the above problem can be solved by the following configuration. The present invention has been completed.

すなわち、本発明は、一又は複数の半導体チップが封止樹脂シートに埋め込まれた封止体を形成する封止体形成工程、及び
前記封止体の前記封止樹脂シートを前記半導体チップの活性面とは反対側の表面が露出するように研削して研削体を形成する研削工程
を含み、
前記研削体における前記封止樹脂シートの表面と前記半導体チップの露出面との最大高低差が10μm以下である半導体パッケージの製造方法である。
That is, the present invention provides a sealing body forming step of forming a sealing body in which one or a plurality of semiconductor chips are embedded in a sealing resin sheet, and the sealing resin sheet of the sealing body is activated by the semiconductor chip. A grinding step of forming a grinding body by grinding so that a surface opposite to the surface is exposed,
In this method, the maximum height difference between the surface of the sealing resin sheet and the exposed surface of the semiconductor chip in the grinding body is 10 μm or less.

本発明者らは、回路要素の形成の際に不具合が生じる原因が、回路要素を形成する面とは反対側の研削体の研削面の状態、特に表面の段差にあることを突き止めた。研削体の研削面とは反対側の面(以下、単に「裏面」ともいう。)に再配線やバンプ等の回路要素を形成する際に研削面を固定面とすると、研削面における段差の影響が裏面にまで及び、裏面においても段差が生じることになる。裏面に段差が生じた状態で回路要素を形成しようとすると、その段差の影響により再配線のウェハ等への密着性が低下して剥離しやすくなったり、バンプ形成の位置決めが困難となったりし、裏面における回路要素の形成の歩留まりが低下してしまう。当該製造方法では、研削体における封止樹脂シートの表面と半導体チップの露出面との最大高低差(以下、単に「最大高低差」ともいう。)を10μm以下としているので、研削面における段差を小さくすることができ、裏面における回路要素の形成を歩留まり良く行うことができる。上記最大高低差が10μmを超えると、上述の回路要素形成の際の不具合が生じる場合がある。   The inventors of the present invention have found that the cause of the trouble in forming the circuit element is the state of the grinding surface of the grinding body opposite to the surface on which the circuit element is formed, particularly the level difference of the surface. When forming a circuit element such as rewiring or bump on the surface opposite to the grinding surface of the grinding body (hereinafter also simply referred to as “back surface”), if the grinding surface is a fixed surface, the effect of steps on the grinding surface Extends to the back surface, and a step is also formed on the back surface. If you try to form a circuit element with a step on the back side, the adhesion of the rewiring to the wafer will decrease due to the effect of the step, and it will be easy to peel off, or positioning of bump formation will be difficult. The yield of forming circuit elements on the back surface is reduced. In the manufacturing method, the maximum height difference (hereinafter also simply referred to as “maximum height difference”) between the surface of the encapsulating resin sheet and the exposed surface of the semiconductor chip in the grinding body is 10 μm or less. The circuit elements on the back surface can be formed with good yield. If the maximum height difference exceeds 10 μm, there may be a problem in forming the circuit elements described above.

150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃におけるショアD硬度が60以上であることが好ましい。また、150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃における貯蔵弾性率が3GPa以上であることが好ましい。本発明者らの検討によると、研削体の研削面の段差の主因の1つは、封止体における封止樹脂シート(熱硬化処理後)の硬度と半導体チップの硬度との差(以下、単に「硬度差」ともいう。)であると推察される。すなわち、硬度差が大きいと段差も大きくなり、硬度差が小さいと段差も小さくなるという相関関係が成立すると考えられる。当該製造方法において、上記ショアD硬度又は上記貯蔵弾性率を上記範囲とすることにより、硬度差を小さくして研削体の研削面における上記最大高低差を小さくすることができ、その結果、裏面での回路要素の形成効率を向上させることができる。   It is preferable that the Shore D hardness at 25 ° C. of the encapsulating resin sheet after the thermosetting treatment at 150 ° C. for 1 hour is 60 or more. Moreover, it is preferable that the storage elastic modulus in 25 degreeC of the said sealing resin sheet after performing a thermosetting process at 150 degreeC for 1 hour is 3 GPa or more. According to the study by the present inventors, one of the main causes of the level difference of the grinding surface of the grinding body is the difference between the hardness of the sealing resin sheet (after thermosetting treatment) in the sealing body and the hardness of the semiconductor chip (hereinafter, It is presumed that it is simply called “hardness difference”. That is, it can be considered that a correlation is established that the difference in hardness is large when the hardness difference is large, and the difference is small when the hardness difference is small. In the manufacturing method, by setting the Shore D hardness or the storage elastic modulus in the above range, the hardness difference can be reduced to reduce the maximum height difference in the grinding surface of the grinding body. The formation efficiency of the circuit element can be improved.

前記封止体形成工程において、半導体ウェハにフリップチップ接続された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成してもよく、あるいは、仮固定材に固定された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成してもよい。前者は半導体チップをウェハに整列させて半導体装置を作製するチップオンウェハプロセスに好適であり、後者はファンアウト型ウェハレベルパッケージのプロセスに好適である。いずれの形態で封止体を形成しても、研削体の裏面において歩留まり良く回路要素を形成することができる。   In the sealing body forming step, the semiconductor chip flip chip connected to a semiconductor wafer may be embedded in the sealing resin sheet to form the sealing body, or the semiconductor fixed to a temporary fixing material The sealing body may be formed by embedding a chip in the sealing resin sheet. The former is suitable for a chip-on-wafer process in which semiconductor chips are aligned on a wafer to produce a semiconductor device, and the latter is suitable for a fan-out type wafer level package process. Even if the sealing body is formed in any form, circuit elements can be formed on the back surface of the grinding body with good yield.

前記研削工程後、前記研削体の前記半導体チップの活性面側の面に再配線を形成する再配線形成工程をさらに含んでいてもよい。   After the grinding step, a rewiring forming step of forming a rewiring on the active surface side surface of the semiconductor chip of the grinding body may be further included.

当該製造方法では、前記半導体チップが複数用いられており、
前記再配線形成工程後に、前記研削体を目的の半導体チップ単位でダイシングするダイシング工程をさらに含んでいてもよい。
In the manufacturing method, a plurality of the semiconductor chips are used,
After the rewiring forming step, a dicing step of dicing the ground body in units of a target semiconductor chip may be further included.

本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る封止樹脂シートを模式的に示す断面図である。It is sectional drawing which shows typically the sealing resin sheet which concerns on one Embodiment of this invention. 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on another one Embodiment of this invention. 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on another one Embodiment of this invention. 研削体の研削面における最大高低差を測定する手順を模式的に示す平面図である。It is a top view which shows typically the procedure which measures the maximum height difference in the grinding surface of a grinding body.

本発明の半導体パッケージの製造方法の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。   An embodiment of a method for manufacturing a semiconductor package of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, parts unnecessary for the description are omitted, and there are parts shown enlarged or reduced for easy explanation. The terms indicating the positional relationship such as up and down are merely used for ease of explanation, and are not intended to limit the configuration of the present invention.

<第1実施形態>
[半導体パッケージの製造方法]
封止樹脂シートを用いる本実施形態に係る半導体パッケージの製造方法について図1A〜図1Gを参照しつつ説明する。図1A〜図1Gはそれぞれ、本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。第1実施形態では、半導体ウェハ上に搭載された半導体チップを封止樹脂シートにより樹脂封止して半導体パッケージを作製する。第1実施形態に係る半導体パッケージの製造方法は、チップ・オン・ウェハ(COW)プロセスに好適である。
<First Embodiment>
[Semiconductor package manufacturing method]
A method of manufacturing a semiconductor package according to this embodiment using a sealing resin sheet will be described with reference to FIGS. 1A to 1G. FIG. 1A to FIG. 1G are cross-sectional views schematically showing one step of a method for manufacturing a semiconductor package according to an embodiment of the present invention. In the first embodiment, a semiconductor chip is manufactured by sealing a semiconductor chip mounted on a semiconductor wafer with a sealing resin sheet. The semiconductor package manufacturing method according to the first embodiment is suitable for a chip-on-wafer (COW) process.

(チップ搭載ウェハ準備工程)
チップ搭載ウェハ準備工程では、複数の半導体チップ13がフリップチップ接続された半導体ウェハ12Aを準備する(図1A参照)。半導体チップ13は、所定の回路が形成された半導体ウェハを公知の方法でダイシングして個片化することにより形成することができる。半導体チップ13の半導体ウェハ12Aへの搭載には、フリップチップボンダーなどの公知の装置を用いることができる。本実施形態では、半導体チップ13の突起電極13aが形成された活性面A1が半導体ウェハ12Aと対向するフリップチップ接続を採用している。半導体チップ13に形成されたバンプ等の突起電極13aと、半導体ウェハ12Aに設けられた貫通電極12aとを介して、半導体チップ13と半導体ウェハ12Aとが電気的に接続されている。貫通電極12aは、TSV(Through Silicon Via)形式の電極を好適に用いることができる。
(Chip mounting wafer preparation process)
In the chip mounting wafer preparation step, a semiconductor wafer 12A in which a plurality of semiconductor chips 13 are flip-chip connected is prepared (see FIG. 1A). The semiconductor chip 13 can be formed by dicing a semiconductor wafer on which a predetermined circuit is formed by a known method. For mounting the semiconductor chip 13 on the semiconductor wafer 12A, a known device such as a flip chip bonder can be used. In the present embodiment, flip chip connection is employed in which the active surface A1 on which the protruding electrode 13a of the semiconductor chip 13 is formed faces the semiconductor wafer 12A. The semiconductor chip 13 and the semiconductor wafer 12A are electrically connected to each other through bump electrode electrodes 13a formed on the semiconductor chip 13 and through electrodes 12a provided on the semiconductor wafer 12A. As the through-electrode 12a, a TSV (Through Silicon Via) type electrode can be preferably used.

また、半導体チップ13と半導体ウェハ12Aとの間には両者の熱膨張率の差を緩和して特に接続部位におけるクラック等の発生を防止するためのアンダーフィル材14が充填されている。アンダーフィル材14としては公知のものを用いればよい。アンダーフィル材14の配置は、半導体チップ13の半導体ウェハ12Aへの搭載後、両者間に液状のアンダーフィル材14を注入させることにより行ってもよく、シート状のアンダーフィル材14付きの半導体チップ13又は半導体ウェハ12Aを用意した上で、半導体チップ13と半導体ウェハ12Aとを接続することにより行ってもよい。   In addition, an underfill material 14 is filled between the semiconductor chip 13 and the semiconductor wafer 12A in order to reduce the difference in thermal expansion coefficient between the semiconductor chip 13 and the semiconductor wafer 12A, and in particular, to prevent the occurrence of cracks or the like at the connection site. A known material may be used as the underfill material 14. The underfill material 14 may be arranged by injecting the liquid underfill material 14 between the semiconductor chips 13 after the semiconductor chip 13 is mounted on the semiconductor wafer 12A. The semiconductor chip with the sheet-like underfill material 14 may be disposed. 13 or the semiconductor wafer 12A may be prepared, and the semiconductor chip 13 and the semiconductor wafer 12A may be connected to each other.

(封止工程)
封止工程では、半導体チップ13を埋め込むように半導体ウェハ12Aへ封止樹脂シート11を積層し、半導体チップ13を上記封止樹脂シートで樹脂封止する(図1B参照)。この封止樹脂シート11は、半導体チップ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
(Sealing process)
In the sealing step, the sealing resin sheet 11 is laminated on the semiconductor wafer 12A so as to embed the semiconductor chip 13, and the semiconductor chip 13 is resin-sealed with the sealing resin sheet (see FIG. 1B). The sealing resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 13 and its accompanying elements from the external environment.

封止樹脂シート11の積層方法としては特に限定されず、封止樹脂シートを形成するための樹脂組成物の溶融混練物を押出成形し、押出成形物を半導体ウェハ12A上に載置してプレスすることにより封止樹脂シート11の形成と積層とを一括にて行う方法や、封止樹脂シート11を形成するための樹脂組成物を離型処理シート上に塗布し、塗布膜を乾燥させて封止樹脂シート11を形成した上で、この封止樹脂シート11を半導体ウェハ12A上に転写する方法などが挙げられる。   The method for laminating the sealing resin sheet 11 is not particularly limited, and a melt-kneaded product of the resin composition for forming the sealing resin sheet is extruded, and the extruded product is placed on the semiconductor wafer 12A and pressed. By applying the resin composition for forming the encapsulating resin sheet 11 and laminating at once or the resin composition for forming the encapsulating resin sheet 11 on the release treatment sheet, the coating film is dried. Examples include a method of forming the sealing resin sheet 11 and transferring the sealing resin sheet 11 onto the semiconductor wafer 12A.

本実施形態では、上記封止樹脂シート11を採用することにより、半導体チップ13の被覆に半導体ウェハ12A上に貼り付けるだけで半導体チップ13を埋め込むことができ、半導体パッケージの生産効率を向上させることができる。この場合、熱プレスやラミネータなど公知の方法により封止樹脂シート11を半導体ウェハ12A上に積層することができる。熱プレス条件としては、温度が、例えば、40〜120℃、好ましくは、50〜100℃であり、圧力が、例えば、50〜2500kPa、好ましくは、100〜2000kPaであり、時間が、例えば、0.3〜10分間、好ましくは、0.5〜5分間である。また、封止樹脂シート11の半導体チップ13及び半導体ウェハ12Aへの密着性および追従性の向上を考慮すると、好ましくは、減圧条件下(例えば10〜2000Pa)において、プレスすることが好ましい。   In the present embodiment, by adopting the sealing resin sheet 11, the semiconductor chip 13 can be embedded simply by sticking the semiconductor chip 13 on the semiconductor wafer 12 </ b> A, thereby improving the production efficiency of the semiconductor package. Can do. In this case, the sealing resin sheet 11 can be laminated on the semiconductor wafer 12A by a known method such as hot pressing or laminator. As the hot press conditions, the temperature is, for example, 40 to 120 ° C., preferably 50 to 100 ° C., the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa, and the time is, for example, 0 .3 to 10 minutes, preferably 0.5 to 5 minutes. Further, in consideration of improvement in the adhesion and followability of the sealing resin sheet 11 to the semiconductor chip 13 and the semiconductor wafer 12A, it is preferable to press under reduced pressure conditions (for example, 10 to 2000 Pa).

(封止体形成工程)
封止体形成工程では、上記封止樹脂シートを熱硬化処理して半導体チップ13が封止樹脂シート11に埋め込まれた封止体15を形成する(図1B参照)。封止樹脂シートの熱硬化処理の条件は、加熱温度として好ましくは100℃から200℃、より好ましくは120℃から180℃、加熱時間として好ましくは10分から180分、より好ましくは30分から120分の間、必要に応じて加圧しても良い。加圧の際は、好ましくは0.1MPaから10MPa、より好ましくは0.5MPaから5MPaを採用することができる。
(Sealing body forming process)
In the sealing body forming step, the sealing resin sheet is thermally cured to form the sealing body 15 in which the semiconductor chip 13 is embedded in the sealing resin sheet 11 (see FIG. 1B). The conditions for the thermosetting treatment of the sealing resin sheet are preferably 100 to 200 ° C., more preferably 120 to 180 ° C. as the heating temperature, and preferably 10 to 180 minutes, more preferably 30 to 120 minutes as the heating time. You may pressurize as needed. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed.

(研削工程)
研削工程では、封止体15の封止樹脂シート11を半導体チップ13の活性面Aとは反対側の表面が露出するように研削して研削体16Aを形成する(図1C参照)。研削の際、図1Cに示すように封止樹脂シート11とともに半導体チップ13も研削してもよく、封止樹脂シート11のみを研削してもよい。研削は公知の研削装置を用いて行えばよい。ダイアモンドバイト等の研削バイトを回転させながら、そこに封止体15を送りつつ封止体表面を研削して研削体16Aを形成する手順を好適に採用することができる。
(Grinding process)
In the grinding step, the sealing resin sheet 11 of the sealing body 15 is ground so that the surface opposite to the active surface A of the semiconductor chip 13 is exposed to form a grinding body 16A (see FIG. 1C). During grinding, the semiconductor chip 13 may be ground together with the sealing resin sheet 11 as shown in FIG. 1C, or only the sealing resin sheet 11 may be ground. Grinding may be performed using a known grinding apparatus. A procedure for forming the grinding body 16A by grinding the surface of the sealing body while feeding the sealing body 15 while rotating a grinding tool such as a diamond tool can be suitably employed.

研削体16Aにおける封止樹脂シートの表面11Sと半導体チップの露出面13Sとの最大高低差は10μm以下であり、好ましくは7μm以下であり、より好ましくは5μm以下である。研削面G1における最大高低差を上記範囲とすることにより、半導体ウェハ12Aを研削した研削体16B(図1E参照)の研削面G1における段差の裏面B1への影響を小さくすることができ、歩留まり良く再配線19を形成することができる。なお、上記最低高低差の下限は小さいほど好ましく、0μmが好ましいが、物理的限界から0.1μm以上であってもよい。   The maximum height difference between the surface 11S of the sealing resin sheet and the exposed surface 13S of the semiconductor chip in the grinding body 16A is 10 μm or less, preferably 7 μm or less, more preferably 5 μm or less. By setting the maximum height difference on the grinding surface G1 within the above range, the influence on the back surface B1 of the step in the grinding surface G1 of the grinding body 16B (see FIG. 1E) obtained by grinding the semiconductor wafer 12A can be reduced, and the yield is improved. A rewiring 19 can be formed. In addition, although the minimum of the said minimum height difference is so preferable that it is small and 0 micrometer is preferable, 0.1 micrometer or more may be sufficient from a physical limit.

(裏面研削工程)
裏面研削工程では、研削体16Aの研削面G1とは反対側の面(すなわち、裏面B1)を研削する(図1D参照)。これにより、半導体ウェハ12Aの露出面を研削することになり、薄型化した半導体ウェハ12Bを得ることができる。研削後の半導体ウェハ12Bの厚さは目的とするパッケージの仕様により変更すればよく、例えば25〜200μmが好ましく、50〜100μmがより好ましい。研削は公知の研削装置を用いて行えばよい。研削面G1の最大高低差が小さくなっているので、研削体16Aの固定に裏面研削用テープを別途用意しなくても平滑な裏面研削を行うことができ、生産効率の向上及びコストカットを図ることができる。もちろん、裏面研削用テープを用いて研削体16Aを固定してもよく、この場合は裏面研削の際の研削面G1の汚染を防止することができる。裏面研削用テープは公知のものを用いることができる。
(Back grinding process)
In the back surface grinding step, the surface opposite to the grinding surface G1 of the grinding body 16A (that is, the back surface B1) is ground (see FIG. 1D). As a result, the exposed surface of the semiconductor wafer 12A is ground, and a thinned semiconductor wafer 12B can be obtained. What is necessary is just to change the thickness of the semiconductor wafer 12B after grinding according to the specification of the target package, for example, 25-200 micrometers is preferable and 50-100 micrometers is more preferable. Grinding may be performed using a known grinding apparatus. Since the maximum height difference of the ground surface G1 is small, smooth back surface grinding can be performed without separately preparing a back surface grinding tape for fixing the grinding body 16A, thereby improving production efficiency and reducing costs. be able to. Of course, the back surface grinding tape may be used to fix the grinding body 16A. In this case, contamination of the grinding surface G1 during back surface grinding can be prevented. A well-known thing can be used for the tape for back surface grinding.

(再配線形成工程)
本実施形態ではさらに、研削体16Bの半導体チップ13の活性面A1側の面B1に再配線19を形成する再配線形成工程を含むことが好ましい(図1E参照)。再配線形成工程では、裏面研削による薄型化した半導体ウェハ12Bの形成後、半導体ウェハ12Bの貫通電極12aと接続する再配線19を研削体16B上に形成する。
(Rewiring process)
In the present embodiment, it is preferable to further include a rewiring forming step of forming the rewiring 19 on the surface B1 on the active surface A1 side of the semiconductor chip 13 of the grinding body 16B (see FIG. 1E). In the rewiring forming step, after the thinned semiconductor wafer 12B is formed by back grinding, the rewiring 19 connected to the through electrode 12a of the semiconductor wafer 12B is formed on the grinding body 16B.

再配線の形成方法としては、例えば、露出している半導体ウェハ12B上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線19を形成することができる。   As a method for forming the rewiring, for example, a metal seed layer is formed on the exposed semiconductor wafer 12B using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method. The wiring 19 can be formed.

かかる後に、再配線19及び研削体16B上へポリイミドやPBOなどの絶縁層を形成してもよい。   After this, an insulating layer such as polyimide or PBO may be formed on the rewiring 19 and the grinding body 16B.

(バンプ形成工程)
次いで、形成した再配線19上にバンプ17を形成するバンピング加工を行ってもよい(図1F参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプの材質は特に限定されず、例えば、錫−鉛系金属材、錫−銀系金属材、錫−銀−銅系金属材、錫−亜鉛系金属材、錫−亜鉛−ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。
(Bump formation process)
Next, bumping processing for forming bumps 17 on the formed rewiring 19 may be performed (see FIG. 1F). The bumping process can be performed by a known method such as a solder ball or solder plating. The material of the bump is not particularly limited. For example, a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, a tin-zinc-bismuth metal material, etc. Solders (alloys), gold-based metal materials, copper-based metal materials, and the like.

(チップ裏面保護工程)
バンプ17を形成した後、半導体チップ13の露出面13Sを保護するために、研削体16Aの研削面G1(図1C参照)を再度樹脂封止してもよい。封止方法としては特に限定されず、公知の液状やフィルム状の封止樹脂を研削面G1に塗布ないし貼り合わせ、乾燥、硬化させればよい。なお、本工程は、研削工程後であってダイシング工程前であればいずれの段階で行ってもよい。
(Chip back surface protection process)
After forming the bumps 17, in order to protect the exposed surface 13S of the semiconductor chip 13, the grinding surface G1 (see FIG. 1C) of the grinding body 16A may be resin-sealed again. The sealing method is not particularly limited, and a known liquid or film-like sealing resin may be applied or bonded to the grinding surface G1, dried, and cured. This step may be performed at any stage after the grinding step and before the dicing step.

(ダイシング工程)
続いて、封止樹脂シート11、半導体ウェハ12B、及び半導体チップ13などの要素からなるバンプ形成を経た研削体16Cのダイシングを行ってもよい(図1G参照)。これにより、目的とする半導体チップ13単位での半導体パッケージ18を得ることができる。図1Gでは、1つの半導体チップに対応させてダイシングしているが、2つ以上の半導体チップを一単位としてダイシングを行ってもよい。ダイシングは、通常、従来公知のダイシングシートにより上記研削体16を固定した上で行う。切断箇所の位置合わせは直接照明又は間接照明を用いた画像認識により行ってもよい。
(Dicing process)
Subsequently, the grinding body 16C may be diced through bump formation including elements such as the sealing resin sheet 11, the semiconductor wafer 12B, and the semiconductor chip 13 (see FIG. 1G). As a result, the semiconductor package 18 can be obtained in units of the target semiconductor chip 13. In FIG. 1G, dicing is performed corresponding to one semiconductor chip, but dicing may be performed with two or more semiconductor chips as a unit. Dicing is usually performed after the grinding body 16 is fixed by a conventionally known dicing sheet. The alignment of the cut portion may be performed by image recognition using direct illumination or indirect illumination.

本工程では、例えば、ダイシングシートまで切込みを行うフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。   In this step, for example, a cutting method called full cut for cutting up to a dicing sheet can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.

なお、ダイシング工程に続いて研削体のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。エキスパンド装置は、ダイシングリングを介してダイシングシートを下方へ押し下げることが可能なドーナッツ状の外リングと、外リングよりも径が小さくダイシングシートを支持する内リングとを有している。このエキスパンド工程により、隣り合う半導体パッケージ18同士が接触して破損するのを防ぐことができる。   In addition, when expanding a grinding body following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus. The expanding device includes a donut-shaped outer ring that can push down the dicing sheet through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing sheet. By this expanding process, it is possible to prevent the adjacent semiconductor packages 18 from coming into contact with each other and being damaged.

(基板実装工程)
必要に応じて、上記で得られた半導体パッケージ18を別途の基板(図示せず)に実装する基板実装工程を行うことができる。半導体パッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Board mounting process)
If necessary, a substrate mounting step of mounting the semiconductor package 18 obtained above on a separate substrate (not shown) can be performed. For mounting the semiconductor package 18 on the substrate, a known device such as a flip chip bonder or a die bonder can be used.

[封止樹脂シート]
本実施形態に係る封止樹脂シートについて図2を参照しつつ説明する。図2は、本発明の一実施形態に係る封止樹脂シートを模式的に示す断面図である。封止樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルム等の支持体11a上に積層された状態で提供される。なお、支持体11aには封止樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。
[Sealing resin sheet]
The sealing resin sheet according to the present embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view schematically showing a sealing resin sheet according to an embodiment of the present invention. The sealing resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be applied to the support 11a in order to easily peel off the sealing resin sheet 11.

また、150℃で1時間熱硬化処理を施した後の封止樹脂シート11の25℃におけるショアD硬度が60以上であることが好ましく、70以上であることがより好ましい。上記ショアD硬度の上限は92以下であることが好ましい。さらに、150℃で1時間熱硬化処理を施した後の封止樹脂シート11の25℃における貯蔵弾性率が3GPa以上であることが好ましく、10GPa以上であることがより好ましい。上記貯蔵弾性率の上限は30GPa以下であることが好ましい。熱硬化処理後の封止樹脂シート11のショアD硬度や貯蔵弾性率を上記範囲とすることにより、硬度差を小さくすることができ、これにより上記最大高低差を小さくすることができる。   Moreover, it is preferable that the Shore D hardness in 25 degreeC of the sealing resin sheet 11 after performing a thermosetting process at 150 degreeC for 1 hour is 60 or more, and it is more preferable that it is 70 or more. The upper limit of the Shore D hardness is preferably 92 or less. Furthermore, it is preferable that the storage elastic modulus in 25 degreeC of the sealing resin sheet 11 after performing a thermosetting process at 150 degreeC for 1 hour is 3 GPa or more, and it is more preferable that it is 10 GPa or more. The upper limit of the storage elastic modulus is preferably 30 GPa or less. By setting the Shore D hardness and the storage elastic modulus of the encapsulating resin sheet 11 after the thermosetting treatment to the above ranges, the hardness difference can be reduced, and thereby the maximum height difference can be reduced.

(封止樹脂シートを形成する樹脂組成物)
封止樹脂シートを形成する樹脂組成物は、上述のような特性を好適に有し、半導体チップ等の電子部品の樹脂封止に利用可能なものであれば、特に限定されないが、例えば以下のA成分からE成分を含有するエポキシ樹脂組成物が好ましいものとして挙げられる。なお、C成分は必要に応じて添加しても添加しなくてもよい。
A成分:エポキシ樹脂
B成分:フェノール樹脂
C成分:エラストマー
D成分:無機充填剤
E成分:硬化促進剤
(Resin composition forming a sealing resin sheet)
The resin composition for forming the sealing resin sheet is not particularly limited as long as it has the above-described characteristics and can be used for resin sealing of electronic components such as semiconductor chips. An epoxy resin composition containing an A component to an E component is preferable. The C component may or may not be added as necessary.
A component: Epoxy resin B component: Phenol resin C component: Elastomer D component: Inorganic filler E component: Curing accelerator

(A成分)
エポキシ樹脂(A成分)としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
(A component)
The epoxy resin (component A) is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.

エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150〜250、軟化点もしくは融点が50〜130℃の常温で固形のものが好ましく、中でも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。   From the viewpoint of ensuring the toughness after curing of the epoxy resin and the reactivity of the epoxy resin, those having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. are preferably solid, and in particular, from the viewpoint of reliability. Therefore, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are preferable.

また、低応力性の観点から、アセタール基やポリオキシアルキレン基等の柔軟性骨格を有する変性ビスフェノールA型エポキシ樹脂が好ましく、アセタール基を有する変性ビスフェノールA型エポキシ樹脂は、液体状で取り扱いが良好であることから、特に好適に用いることができる。   Also, from the viewpoint of low stress, a modified bisphenol A type epoxy resin having a flexible skeleton such as an acetal group or a polyoxyalkylene group is preferable, and a modified bisphenol A type epoxy resin having an acetal group is in a liquid state and is easy to handle. Therefore, it can be particularly preferably used.

エポキシ樹脂(A成分)の含有量は、エポキシ樹脂組成物全体に対して1〜10重量%の範囲に設定することが好ましい。   The content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.

(B成分)
フェノール樹脂(B成分)は、エポキシ樹脂(A成分)との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂、等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
(B component)
The phenol resin (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A). For example, a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.

フェノール樹脂としては、エポキシ樹脂(A成分)との反応性の観点から、水酸基当量が70〜250、軟化点が50〜110℃のものを用いることが好ましく、中でも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。   From the viewpoint of reactivity with the epoxy resin (component A), it is preferable to use a phenolic resin having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C., among which the curing reactivity is high. A phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.

エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、硬化反応性という観点から、エポキシ樹脂(A成分)中のエポキシ基1当量に対して、フェノール樹脂(B成分)中の水酸基の合計が0.7〜1.5当量となるように配合することが好ましく、より好ましくは0.9〜1.2当量である。   From the viewpoint of curing reactivity, the blending ratio of the epoxy resin (component A) and the phenol resin (component B) is a hydroxyl group in the phenol resin (component B) with respect to 1 equivalent of the epoxy group in the epoxy resin (component A). It is preferable to mix | blend so that it may become 0.7-1.5 equivalent, More preferably, it is 0.9-1.2 equivalent.

封止樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2.5重量%以上が好ましく、3.0重量%以上がより好ましい。2.5重量%以上であると、半導体チップ13、半導体ウェハ12Aなどに対する接着力が良好に得られる。封止樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、吸湿性を低減できる。   The total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 2.5% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to the semiconductor chip 13, the semiconductor wafer 12A, etc. is obtained favorably as it is 2.5 wt% or more. The total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 20% by weight or less, and more preferably 10% by weight or less. Hygroscopicity can be reduced as it is 20 weight% or less.

(C成分)
エポキシ樹脂(A成分)及びフェノール樹脂(B成分)とともに用いられるエラストマー(C成分)は、封止樹脂シートによる電子部品の封止に必要な可撓性をエポキシ樹脂組成物に付与するものであり、このような作用を奏するものであれば特にその構造を限定するものではない。例えば、ポリアクリル酸エステル等の各種アクリル系共重合体、スチレンアクリレート系共重合体、ブタジエンゴム、スチレン−ブタジエンゴム(SBR)、エチレン−酢酸ビニルコポリマー(EVA)、イソプレンゴム、アクリロニトリルゴム等のゴム質重合体を用いることができる。中でも、エポキシ樹脂(A成分)へ分散させやすく、またエポキシ樹脂(A成分)との反応性も高いために、得られる封止樹脂シートの耐熱性や強度を向上させることができるという観点から、アクリル系共重合体を用いることが好ましい。これらは単独で用いてもよいし、2種以上併せて用いてもよい。
(C component)
The elastomer (component C) used together with the epoxy resin (component A) and the phenol resin (component B) provides the epoxy resin composition with the flexibility necessary for sealing electronic components with a sealing resin sheet. The structure is not particularly limited as long as such an effect is exhibited. For example, various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used. Among them, from the viewpoint that it is easy to disperse in the epoxy resin (component A), and because the reactivity with the epoxy resin (component A) is high, the heat resistance and strength of the resulting sealing resin sheet can be improved. It is preferable to use an acrylic copolymer. These may be used alone or in combination of two or more.

なお、アクリル系共重合体は、例えば、所定の混合比にしたアクリルモノマー混合物を、定法によってラジカル重合することにより合成することができる。ラジカル重合の方法としては、有機溶剤を溶媒に行う溶液重合法や、水中に原料モノマーを分散させながら重合を行う懸濁重合法が用いられる。その際に用いる重合開始剤としては、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、その他のアゾ系又はジアゾ系重合開始剤、ベンゾイルパーオキサイド及びメチルエチルケトンパーオキサイド等の過酸化物系重合開始剤等が用いられる。なお、懸濁重合の場合は、例えばポリアクリルアミド、ポリビニルアルコールのような分散剤を加えることが望ましい。   The acrylic copolymer can be synthesized, for example, by radical polymerization of an acrylic monomer mixture having a predetermined mixing ratio by a conventional method. As a method for radical polymerization, a solution polymerization method in which an organic solvent is used as a solvent or a suspension polymerization method in which polymerization is performed while dispersing raw material monomers in water are used. As a polymerization initiator used in that case, for example, 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis-4- Methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators, peroxide polymerization initiators such as benzoyl peroxide and methyl ethyl ketone peroxide are used. In the case of suspension polymerization, it is desirable to add a dispersing agent such as polyacrylamide or polyvinyl alcohol.

エラストマー(C成分)の含有量は、エポキシ樹脂組成物全体の15〜30重量%である。エラストマー(C成分)の含有量が15重量%未満では、封止樹脂シート11の柔軟性及び可撓性を得るのが困難となり、さらには封止樹脂シートの反りを抑えた樹脂封止も困難となる。逆に上記含有量が30重量%を超えると、封止樹脂シート11の溶融粘度が高くなって半導体チップ13の埋まり込み性が低下するとともに、封止樹脂シート11の硬化体の強度及び耐熱性が低下する傾向がみられる。   Content of an elastomer (C component) is 15 to 30 weight% of the whole epoxy resin composition. When the content of the elastomer (component C) is less than 15% by weight, it becomes difficult to obtain the flexibility and flexibility of the sealing resin sheet 11, and it is also difficult to perform resin sealing while suppressing warping of the sealing resin sheet. It becomes. On the other hand, when the content exceeds 30% by weight, the melt viscosity of the sealing resin sheet 11 is increased, the embedding property of the semiconductor chip 13 is lowered, and the strength and heat resistance of the cured body of the sealing resin sheet 11 are reduced. There is a tendency to decrease.

また、エラストマー(C成分)のエポキシ樹脂(A成分)に対する重量比率(C成分の重量/A成分の重量)は、3〜4.7の範囲に設定することが好ましい。上記重量比率が3未満の場合は、封止樹脂シート11の流動性をコントロールすることが困難となり、4.7を超えると封止樹脂シート11の半導体チップ13への接着性が劣る傾向がみられるためである。   The weight ratio of the elastomer (component C) to the epoxy resin (component A) (weight of component C / weight of component A) is preferably set in the range of 3 to 4.7. When the weight ratio is less than 3, it is difficult to control the fluidity of the sealing resin sheet 11, and when it exceeds 4.7, the adhesion of the sealing resin sheet 11 to the semiconductor chip 13 tends to be inferior. Because it is.

(D成分)
無機質充填剤(D成分)は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
(D component)
The inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used. For example, quartz glass, talc, silica (fused silica, crystalline silica, etc.), alumina, nitriding Examples thereof include aluminum, silicon nitride, and boron nitride powders. These may be used alone or in combination of two or more.

中でも、エポキシ樹脂組成物の硬化体の熱線膨張係数が低減することにより内部応力を低減し、その結果、電子部品の封止後の封止樹脂シート11の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましい。中でも、平均粒径が0.1〜30μmの範囲のものを用いることが好ましく、1〜20μmの範囲のものを用いることがより好ましい。   Among these, silica powder is used in that the internal stress is reduced by reducing the coefficient of thermal expansion of the cured product of the epoxy resin composition, and as a result, warpage of the sealing resin sheet 11 after sealing of the electronic component can be suppressed. It is preferable to use a fused silica powder among the silica powders. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder. Among them, those having an average particle size in the range of 0.1 to 30 μm are preferably used, and those having a range of 1 to 20 μm are more preferable.

なお、平均粒径は、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。   The average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.

無機質充填剤(D成分)の含有量は、好ましくはエポキシ樹脂組成物全体の70〜95重量%であり、より好ましくは75〜92重量%であり、さらに好ましくは80〜90重量%である。無機質充填剤(D成分)の含有量が50重量%未満では、エポキシ樹脂組成物の硬化体の線膨張係数が大きくなるために、封止樹脂シート11の反りが大きくなる傾向がみられる。一方、上記含有量が90重量%を超えると、封止樹脂シート11の柔軟性や流動性が悪くなるために、半導体チップとの接着性が低下する傾向がみられる。   Content of an inorganic filler (D component) becomes like this. Preferably it is 70 to 95 weight% of the whole epoxy resin composition, More preferably, it is 75 to 92 weight%, More preferably, it is 80 to 90 weight%. When the content of the inorganic filler (component D) is less than 50% by weight, the linear expansion coefficient of the cured product of the epoxy resin composition increases, and thus the warpage of the sealing resin sheet 11 tends to increase. On the other hand, since the softness | flexibility and fluidity | liquidity of the sealing resin sheet 11 will worsen when the said content exceeds 90 weight%, the tendency for adhesiveness with a semiconductor chip to fall is seen.

(E成分)
硬化促進剤(E成分)は、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されるものではないが、硬化性と保存性の観点から、トリフェニルホスフィンやテトラフェニルホスホニウムテトラフェニルボレート等の有機リン系化合物や、イミダゾール系化合物が好適に用いられる。これら硬化促進剤は、単独で用いても良いし、他の硬化促進剤と併用しても構わない。
(E component)
The curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.

硬化促進剤(E成分)の含有量は、エポキシ樹脂(A成分)及びフェノール樹脂(B成分)の合計100重量部に対して0.1〜5重量部であることが好ましい。   It is preferable that content of a hardening accelerator (E component) is 0.1-5 weight part with respect to a total of 100 weight part of an epoxy resin (A component) and a phenol resin (B component).

(その他の成分)
また、エポキシ樹脂組成物には、A成分からE成分に加えて、難燃剤成分を加えてもよい。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物等の各種金属水酸化物を用いることができる。
(Other ingredients)
In addition to the A component to the E component, a flame retardant component may be added to the epoxy resin composition. As the flame retardant composition, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, and complex metal hydroxide can be used.

金属水酸化物の平均粒径としては、エポキシ樹脂組成物を加熱した際に適当な流動性を確保するという観点から、平均粒径が1〜10μmであることが好ましく、さらに好ましくは2〜5μmである。金属水酸化物の平均粒径が1μm未満では、エポキシ樹脂組成物中に均一に分散させることが困難となるとともに、エポキシ樹脂組成物の加熱時における流動性が十分に得られない傾向がある。また、平均粒径が10μmを超えると、金属水酸化物(E成分)の添加量あたりの表面積が小さくなるため、難燃効果が低下する傾向がみられる。   The average particle diameter of the metal hydroxide is preferably 1 to 10 μm, more preferably 2 to 5 μm, from the viewpoint of ensuring appropriate fluidity when the epoxy resin composition is heated. It is. When the average particle size of the metal hydroxide is less than 1 μm, it becomes difficult to uniformly disperse in the epoxy resin composition, and the fluidity during heating of the epoxy resin composition tends to be insufficient. Moreover, since the surface area per addition amount of a metal hydroxide (E component) will become small when an average particle diameter exceeds 10 micrometers, the tendency for a flame-retardant effect to fall is seen.

また、難燃剤成分としては上記金属水酸化物のほか、ホスファゼン化合物を用いることができる。ホスファゼン化合物としては、例えばSPR−100、SA−100、SP−100(以上、大塚化学株式会社)、FP−100、FP−110(以上、株式会社伏見製薬所)等が市販品として入手可能である。   As the flame retardant component, a phosphazene compound can be used in addition to the metal hydroxide. As phosphazene compounds, for example, SPR-100, SA-100, SP-100 (above, Otsuka Chemical Co., Ltd.), FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are available as commercial products. is there.

少量でも難燃効果を発揮するという観点から、式(1)又は式(2)で表されるホスファゼン化合物が好ましく、これらホスファンゼン化合物に含まれるリン元素の含有率は、12重量%以上であることが好ましい。

Figure 2015053468
(式(1)中、nは3〜25の整数であり、R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。)
Figure 2015053468
(式(2)中、n及びmは、それぞれ独立して3〜25の整数である。R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する2価の有機基である。) The phosphazene compound represented by the formula (1) or the formula (2) is preferable from the viewpoint of exhibiting a flame retardant effect even in a small amount, and the content of phosphorus element contained in these phosphanzene compounds is 12% by weight or more. Is preferred.
Figure 2015053468
(In the formula (1), n is an integer of 3 to 25, R 1 and R 2 are the same or different and are selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. A monovalent organic group having
Figure 2015053468
(In the formula (2), n and m are each independently an integer of 3 to 25. R 3 and R 5 are the same or different and are composed of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. R 4 is a divalent organic group having a functional group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. .)

また、安定性及びボイドの生成抑制という観点から、式(3)で表される環状ホスファゼンオリゴマーを用いることが好ましい。

Figure 2015053468
(式(3)中、nは3〜25の整数であり、R及びRは同一又は異なって、水素、水酸基、アルキル基、アルコキシ基又はグリシジル基である。) Moreover, it is preferable to use the cyclic phosphazene oligomer represented by Formula (3) from a viewpoint of stability and suppression of void formation.
Figure 2015053468
(In Formula (3), n is an integer of 3 to 25, and R 6 and R 7 are the same or different and are hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, or a glycidyl group.)

上記式(3)で表される環状ホスファゼンオリゴマーは、例えばFP−100、FP−110(以上、株式会社伏見製薬所)等が市販品として入手可能である。   As the cyclic phosphazene oligomer represented by the above formula (3), for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are commercially available.

ホスファゼン化合物の含有量は、エポキシ樹脂組成物中に含まれるエポキシ樹脂(A成分)、フェノール樹脂(B成分)、エラストマー(D成分)、硬化促進剤(E成分)及びホスファゼン化合物(その他の成分)を含む有機成分全体の10〜30重量%であることが好ましい。すなわち、ホスファゼン化合物の含有量が、有機成分全体の10重量%未満では、封止樹脂シート11の難燃性が低下するとともに、被着体(半導体チップを搭載した半導体ウェハ)等に対する凹凸追従性が低下し、ボイドが発生する傾向がみられる。上記含有量が有機成分全体の30重量%を超えると、封止樹脂シート11の表面にタックが生じやすくなり、被着体に対する位置合わせをしにくくなる等作業性が低下する傾向がみられる。   The content of the phosphazene compound includes the epoxy resin (component A), phenol resin (component B), elastomer (component D), curing accelerator (component E) and phosphazene compound (other components) contained in the epoxy resin composition. It is preferable that it is 10 to 30 weight% of the whole organic component containing. That is, when the content of the phosphazene compound is less than 10% by weight of the total organic component, the flame retardancy of the sealing resin sheet 11 is reduced and the unevenness followability to an adherend (semiconductor wafer on which a semiconductor chip is mounted) or the like. Tends to decrease, and voids tend to occur. When the content exceeds 30% by weight of the whole organic component, tackiness is likely to occur on the surface of the sealing resin sheet 11, and the workability tends to be lowered, such as difficulty in alignment with the adherend.

また、上記金属水酸化物及びホスファゼン化合物を併用し、シート封止に必要な可撓性を確保しつつ、難燃性に優れた封止樹脂シート11を得ることもできる。両者を併用することにより、金属水酸化物のみを用いた場合の十分な難燃性と、ホスファゼン化合物のみを用いた場合は、十分な可撓性を得ることができる。   Moreover, the said metal hydroxide and the phosphazene compound can be used together, and the sealing resin sheet 11 excellent in the flame retardance can also be obtained, ensuring the flexibility required for sheet sealing. By using both in combination, sufficient flame retardancy when only the metal hydroxide is used and sufficient flexibility can be obtained when only the phosphazene compound is used.

上記難燃剤のうち、樹脂封止の成型時における封止樹脂シートの変形性、被着体の凹凸への追従性、半導体チップや半導体ウェハへの密着性の点から有機系難燃剤を用いるのが望ましく、特にホスファゼン系難燃剤が好適に用いられる。   Among the above flame retardants, organic flame retardants are used from the viewpoint of the deformability of the sealing resin sheet at the time of molding the resin seal, the conformity to the unevenness of the adherend, and the adhesion to the semiconductor chip or the semiconductor wafer. In particular, phosphazene flame retardants are preferably used.

なお、エポキシ樹脂組成物は、上記の各成分以外に必要に応じて、カーボンブラックをはじめとする顔料等、他の添加剤を適宜配合することができる。   In addition to the above components, the epoxy resin composition can be appropriately mixed with other additives such as a pigment including carbon black as necessary.

(封止樹脂シートの作製方法)
封止樹脂シートの作製方法を以下に説明する。まず、上述の各成分を混合することによりエポキシ樹脂組成物を調製する。混合方法は、各成分が均一に分散混合される方法であれば特に限定するものではない。その後、例えば、各成分を有機溶剤等に溶解又は分散したワニスを塗工してシート状に形成する。あるいは、各配合成分を直接ニーダー等で混練することにより混練物を調製し、このようにして得られた混練物を押し出してシート状に形成してもよい。
(Method for producing sealing resin sheet)
A method for producing the sealing resin sheet will be described below. First, an epoxy resin composition is prepared by mixing the above-described components. The mixing method is not particularly limited as long as each component is uniformly dispersed and mixed. Thereafter, for example, a varnish in which each component is dissolved or dispersed in an organic solvent or the like is applied to form a sheet. Alternatively, a kneaded material may be prepared by directly kneading each compounding component with a kneader or the like, and the kneaded material thus obtained may be extruded to form a sheet.

ワニスを用いる具体的な作製手順としては、上記A〜E成分及び必要に応じて他の添加剤を常法に準じて適宜混合し、有機溶剤に均一に溶解あるいは分散させ、ワニスを調製する。ついで、上記ワニスをポリエステル等の支持体上に塗布し乾燥させることにより封止樹脂シート11を得ることができる。そして必要により、封止樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。剥離シートは封止時に剥離する。   As a specific production procedure using a varnish, the above components A to E and, if necessary, other additives are appropriately mixed according to a conventional method, and uniformly dissolved or dispersed in an organic solvent to prepare a varnish. Subsequently, the sealing resin sheet 11 can be obtained by applying the varnish on a support such as polyester and drying it. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the sealing resin sheet. The release sheet peels at the time of sealing.

上記有機溶剤としては、特に限定されるものではなく従来公知の各種有機溶剤、例えばメチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。また通常、ワニスの固形分濃度が30〜60重量%の範囲となるように有機溶剤を用いることが好ましい。   The organic solvent is not particularly limited, and various conventionally known organic solvents such as methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, ethyl acetate and the like can be used. These may be used alone or in combination of two or more. Usually, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 30 to 60% by weight.

有機溶剤乾燥後のシートの厚みは、特に制限されるものではないが、厚みの均一性と残存溶剤量の観点から、通常、5〜100μmに設定することが好ましく、より好ましくは20〜70μmである。   Although the thickness of the sheet after drying the organic solvent is not particularly limited, it is usually preferably set to 5 to 100 μm, more preferably 20 to 70 μm, from the viewpoint of uniformity of thickness and the amount of residual solvent. is there.

一方、混練を用いる場合には、上記A〜E成分及び必要に応じて他の添加剤の各成分をミキサーなど公知の方法を用いて混合し、その後、溶融混練することにより混練物を調製する。溶融混練する方法としては、特に限定されないが、例えば、ミキシングロール、加圧式ニーダー、押出機などの公知の混練機により、溶融混練する方法などが挙げられる。混練条件としては、温度が、上記した各成分の軟化点以上であれば特に制限されず、例えば30〜150℃、エポキシ樹脂の熱硬化性を考慮すると、好ましくは40〜140℃、さらに好ましくは60〜120℃であり、時間が、例えば1〜30分間、好ましくは5〜15分間である。これによって、混練物を調製することができる。   On the other hand, when kneading is used, the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product. . The method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder. The kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above. For example, 30 to 150 ° C., preferably 40 to 140 ° C., more preferably considering the thermosetting property of the epoxy resin. It is 60-120 degreeC, and time is 1 to 30 minutes, for example, Preferably it is 5 to 15 minutes. Thereby, a kneaded material can be prepared.

得られる混練物を押出成形により成形することにより、封止樹脂シート11を得ることができる。具体的には、溶融混練後の混練物を冷却することなく高温状態のままで、押出成形することで、封止樹脂シート11を形成することができる。このような押出方法としては、特に制限されず、Tダイ押出法、ロール圧延法、ロール混練法、共押出法、カレンダー成形法などが挙げられる。押出温度としては、上記した各成分の軟化点以上であれば、特に制限されないが、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40〜150℃、好ましくは、50〜140℃、さらに好ましくは70〜120℃である。以上により、封止樹脂シート11を形成することができる。   The sealing resin sheet 11 can be obtained by molding the obtained kneaded material by extrusion molding. Specifically, the encapsulating resin sheet 11 can be formed by extrusion molding without cooling the kneaded product after melt-kneading while maintaining a high temperature state. Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method. The extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above, but considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C, preferably 50 to 140 ° C, Preferably it is 70-120 degreeC. As described above, the sealing resin sheet 11 can be formed.

このようにして得られた封止樹脂シートは、必要により所望の厚みとなるように積層して使用してもよい。すなわち、封止樹脂シートは、単層構造にて使用してもよいし、2層以上の多層構造に積層してなる積層体として使用してもよい。   The encapsulating resin sheet thus obtained may be used by being laminated so as to have a desired thickness if necessary. That is, the sealing resin sheet may be used in a single layer structure, or may be used as a laminate formed by laminating two or more multilayer structures.

<第2実施形態>
以下、本発明の一実施形態である第2実施形態について説明する。図3A〜図3Gはそれぞれ、本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。第1実施形態では、半導体ウェハにフリップチップ接続された半導体チップを封止樹脂シートにて樹脂封止しているが、第2実施形態では、半導体チップを半導体ウェハではなく仮固定材に仮固定した状態で樹脂封止を行う。この第2実施形態は、いわゆるFan−out(ファンアウト)型ウェハレベルパッケージ(WLP)と呼称される半導体パッケージの製造に好適である。
Second Embodiment
Hereinafter, a second embodiment which is an embodiment of the present invention will be described. FIG. 3A to FIG. 3G are cross-sectional views schematically showing one process of a method for manufacturing a semiconductor package according to another embodiment of the present invention. In the first embodiment, the semiconductor chip flip-chip connected to the semiconductor wafer is resin-sealed with a sealing resin sheet. However, in the second embodiment, the semiconductor chip is temporarily fixed to a temporary fixing material instead of the semiconductor wafer. In this state, resin sealing is performed. The second embodiment is suitable for manufacturing a semiconductor package called a so-called Fan-out (fan-out) wafer level package (WLP).

[仮固定材準備工程]
仮固定材準備工程では、支持体2b上に熱膨張性粘着剤層2aが積層された仮固定材2を準備する(図3A参照)。なお、熱膨張性粘着剤層に代えて、放射線硬化型粘着剤層を用いることもできる。本実施形態では、熱膨張性粘着剤層を備える仮固定材2について説明する。
[Temporary fixing material preparation process]
In the temporary fixing material preparing step, the temporary fixing material 2 in which the thermally expandable pressure-sensitive adhesive layer 2a is laminated on the support 2b is prepared (see FIG. 3A). In addition, it can replace with a thermally expansible adhesive layer, and can also use a radiation curing type adhesive layer. In the present embodiment, a temporary fixing material 2 including a thermally expandable pressure-sensitive adhesive layer will be described.

(熱膨張性粘着剤層)
熱膨張性粘着剤層2aは、ポリマー成分と、発泡剤とを含む粘着剤組成物により形成することができる。ポリマー成分(特にベースポリマー)としては、アクリル系ポリマー(「アクリルポリマーA」と称する場合がある)を好適に用いることができる。アクリルポリマーAとしては、(メタ)アクリル酸エステルを主モノマー成分として用いたものが挙げられる。前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、sec−ブチルエステル、t−ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2−エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1〜30、特に炭素数4〜18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)などが挙げられる。これらの(メタ)アクリル酸エステルは単独で又は2種以上を併用してもよい。
(Thermal expansion adhesive layer)
The heat-expandable pressure-sensitive adhesive layer 2a can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent. As the polymer component (particularly the base polymer), an acrylic polymer (sometimes referred to as “acrylic polymer A”) can be suitably used. Examples of the acrylic polymer A include those using (meth) acrylic acid ester as a main monomer component. Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl ester (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, octadecyl ester or eicosyl ester Le etc.) and (meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.) and the like. These (meth) acrylic acid esters may be used alone or in combination of two or more.

なお、前記アクリルポリマーAは、凝集力、耐熱性、架橋性などの改質を目的として、必要に応じて、前記(メタ)アクリル酸エステルと共重合可能な他の単量体成分に対応する単位を含んでいてもよい。このような単量体成分として、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、カルボキシエチルアクリレートなどのカルボキシル基含有モノマー;無水マレイン酸、無水イコタン酸などの酸無水物基含有モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルなどのヒドロキシル基含有モノマー;(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メチロールプロパン(メタ)アクリルアミドなどの(N−置換又は無置換)アミド系モノマー;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル系モノマー;スチレン、α−メチルスチレンなどのスチレン系モノマー;ビニルメチルエーテル、ビニルエチルエーテルなどのビニルエーテル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;エチレン、プロピレン、イソプレン、ブタジエン、イソブチレンなどのオレフィン又はジエン系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N−ジメチルアミノエチル、(メタ)アクリル酸t−ブチルアミノエチルなどの(置換又は無置換)アミノ基含有モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N−ビニルピロリドン、N−メチルビニルピロリドン、N−ビニルピリジン、N−ビニルピペリドン、N−ビニルピリミジン、N−ビニルピペラジン、N−ビニルピラジン、N−ビニルピロール、N−ビニルイミダゾール、N−ビニルオキサゾール、N−ビニルモルホリン、N−ビニルカプロラクタムなどの窒素原子含有環を有するモノマー;N−ビニルカルボン酸アミド類;スチレンスルホン酸、アリルスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレートなどのスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;N−シクロヘキシルマレイミド、N−イソプロピルマレイミド、N−ラウリルマレイミド、N−フェニルマレイミドなどのマレイミド系モノマー;N−メチルイタコンイミド、N−エチルイタコンイミド、N−ブチルイタコンイミド、N−オクチルイタコンイミド、N−2−エチルヘキシルイタコンイミド、N−シクロヘキシルイタコンイミド、N−ラウリルイタコンイミドなどのイタコンイミド系モノマー;N−(メタ)アクリロイルオキシメチレンスクシンイミド、N−(メタ)アクルロイル−6−オキシヘキサメチレンスクシンイミド、N−(メタ)アクリロイル−8−オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリルなどの酸素原子含有複素環を有するモノマー;フッ素系(メタ)アクリレートなどのフッ素原子を含有するアクリル酸エステル系モノマー;シリコーン系(メタ)アクリレートなどのケイ素原子を含有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレートなどの多官能モノマー等が挙げられる。   The acrylic polymer A corresponds to other monomer components that can be copolymerized with the (meth) acrylic acid ester, if necessary, for the purpose of modifying cohesive strength, heat resistance, crosslinkability, and the like. Units may be included. Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and carboxyethyl acrylate; acid anhydrides such as maleic anhydride and itaconic anhydride Physical group-containing monomers; hydroxyl group-containing monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (N-substituted or unsubstituted) amide monomers such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide; vinyl ester monomers such as vinyl acetate and vinyl propionate Styling Styrene monomers such as α-methylstyrene; vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth) acrylate Olefin or diene monomer such as ethylene, propylene, isoprene, butadiene and isobutylene; aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, etc. (Substituted or unsubstituted) amino group-containing monomers; (meth) acrylic acid alkoxyalkyl monomers such as (meth) acrylic acid methoxyethyl and (meth) acrylic acid ethoxyethyl; N-vinylpyrrolidone, N -Methyl vinyl pyrrolidone, N-vinyl pyridine, N-vinyl piperidone, N-vinyl pyrimidine, N-vinyl piperazine, N-vinyl pyrazine, N-vinyl pyrrole, N-vinyl imidazole, N-vinyl oxazole, N-vinyl morpholine, N -Monomers having a nitrogen atom-containing ring such as vinyl caprolactam; N-vinylcarboxylic acid amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate A phosphate group-containing monomer such as 2-hydroxyethylacryloyl phosphate; a maleimide monomer such as N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide; N Itacimide monomers such as methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-octylitaconimide, N-2-ethylhexylitaconimide, N-cyclohexylitaconimide, N-laurylitaconimide; N- ( Succinimide monomers such as (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, N- (meth) acryloyl-8-oxyoctamethylene succinimide; polyethylene glycol (meth) acrylate, (meta ) Glycol acrylic ester monomers such as polypropylene glycol acrylate; Monomers having an oxygen atom-containing heterocycle such as tetrahydrofurfuryl (meth) acrylate; Fluorine Acrylic acid ester monomer containing fluorine atom such as (meth) acrylate; Acrylic acid ester monomer containing silicon atom such as silicone (meth) acrylate; Hexanediol di (meth) acrylate, (Poly) ethylene glycol di (Meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, epoxy acrylate, polyester acrylate, urethane acrylate, divinylbenzene, butyl di (meth) acrylate, hexyl And polyfunctional monomers such as di (meth) acrylate.

前記アクリルポリマーAは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合(例えば、ラジカル重合、アニオン重合、カチオン重合など)、乳化重合、塊状重合、懸濁重合、光重合(例えば、紫外線(UV)重合など)等の何れの方式で行うこともできる。   The acrylic polymer A can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.

アクリルポリマーAの重量平均分子量は、特に制限されないが、好ましくは35万〜100万、更に好ましくは45万〜80万程度である。   The weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.

また、熱膨張性粘着剤には、粘着力を調整するため、外部架橋剤を適宜に用いることもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。外部架橋剤の使用量は、一般的には、前記ベースポリマー100重量部に対して、20重量部以下(好ましくは0.1重量部〜10重量部)である。   In addition, an external cross-linking agent can be appropriately used for the heat-expandable pressure-sensitive adhesive in order to adjust the pressure-sensitive adhesive force. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. The amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.

熱膨張性粘着剤層2aは、前述のように、熱膨張性を付与するための発泡剤を含有している。そのため、仮固定材2の熱膨張性粘着剤層2a上に研削された半導体チップ23を含む研削体26が形成された状態で(図3C参照)、任意な時に仮固定材2を少なくとも部分的に加熱して、該加熱された熱膨張性粘着剤層2aの部分に含有されている発泡剤を発泡及び/又は膨張させることにより、熱膨張性粘着剤層2aが少なくとも部分的に膨張し、この熱膨張性粘着剤層2aの少なくとも部分的な膨張により、該膨張した部分に対応した粘着面(研削体26との界面)が凹凸状に変形して、該熱膨張性粘着剤層2aと研削体26との接着面積が減少し、これにより、両者間の接着力が減少し、研削体26を仮固定材2から剥離させることができる(図3D参照)。   As described above, the heat-expandable pressure-sensitive adhesive layer 2a contains a foaming agent for imparting heat-expandability. Therefore, in a state where the grinding body 26 including the semiconductor chip 23 ground on the thermally expandable pressure-sensitive adhesive layer 2a of the temporary fixing material 2 is formed (see FIG. 3C), the temporary fixing material 2 is at least partially attached at any time. And the foaming agent contained in the heated thermally expandable pressure-sensitive adhesive layer 2a is foamed and / or expanded, so that the heat-expandable pressure-sensitive adhesive layer 2a is at least partially expanded. Due to at least partial expansion of the thermally expandable pressure-sensitive adhesive layer 2a, the pressure-sensitive adhesive surface (interface with the grinding body 26) corresponding to the expanded portion is deformed into an uneven shape, and the heat-expandable pressure-sensitive adhesive layer 2a and The adhesion area with the grinding body 26 is reduced, whereby the adhesive force between the two is reduced, and the grinding body 26 can be peeled from the temporary fixing material 2 (see FIG. 3D).

(発泡剤)
熱膨張性粘着剤層2aにおいて用いられている発泡剤としては、特に制限されず、公知の発泡剤から適宜選択することができる。発泡剤は単独で又は2種以上組み合わせて使用することができる。発泡剤としては、熱膨張性微小球を好適に用いることができる。
(Foaming agent)
The foaming agent used in the thermally expandable pressure-sensitive adhesive layer 2a is not particularly limited, and can be appropriately selected from known foaming agents. A foaming agent can be used individually or in combination of 2 or more types. As the foaming agent, thermally expandable microspheres can be suitably used.

(熱膨張性微小球)
熱膨張性微小球としては、特に制限されず、公知の熱膨張性微小球(種々の無機系熱膨張性微小球や、有機系熱膨張性微小球など)から適宜選択することができる。熱膨張性微小球としては、混合操作が容易である観点などより、マイクロカプセル化されている発泡剤を好適に用いることができる。このような熱膨張性微小球としては、例えば、イソブタン、プロパン、ペンタンなどの加熱により容易にガス化して膨張する物質を、弾性を有する殻内に内包させた微小球などが挙げられる。前記殻は、熱溶融性物質や熱膨張により破壊する物質で形成される場合が多い。前記殻を形成する物質として、例えば、塩化ビニリデン−アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。
(Thermally expandable microsphere)
The heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres). As the thermally expandable microspheres, a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation. Examples of such thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell. The shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion. Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.

熱膨張性微小球は、慣用の方法、例えば、コアセルベーション法や、界面重合法などにより製造できる。なお、熱膨張性微小球には、例えば、松本油脂製薬株式会社製の商品名「マツモトマイクロスフェアー」のシリーズ(例えば、商品名「マツモトマイクロスフェアーF30」、同「マツモトマイクロスフェアーF301D」、同「マツモトマイクロスフェアーF50D」、同「マツモトマイクロスフェアーF501D」、同「マツモトマイクロスフェアーF80SD」、同「マツモトマイクロスフェアーF80VSD」など)の他、エクスパンセル社製の商品名「051DU」、同「053DU」、同「551DU」、同「551−20DU」、同「551−80DU」などの市販品を使用することができる。   Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method. Examples of thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.). "Matsumoto Microsphere F50D", "Matsumoto Microsphere F501D", "Matsumoto Microsphere F80SD", "Matsumoto Microsphere F80VSD", etc.) Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.

なお、発泡剤として熱膨張性微小球を用いた場合、該熱膨張性微小球の粒径(平均粒子径)としては、熱膨張性粘着剤層の厚みなどに応じて適宜選択することができる。熱膨張性微小球の平均粒子径としては、例えば、100μm以下(好ましくは80μm以下、さらに好ましくは1μm〜50μm、特に1μm〜30μm)の範囲から選択することができる。なお、熱膨張性微小球の粒径の調整は、熱膨張性微小球の生成過程で行われていてもよく、生成後、分級などの手段により行われてもよい。熱膨張性微小球としては、粒径が揃えられていることが好ましい。   When thermally expandable microspheres are used as the foaming agent, the particle size (average particle diameter) of the thermally expandable microspheres can be appropriately selected according to the thickness of the thermally expandable pressure-sensitive adhesive layer. . The average particle diameter of the heat-expandable microspheres can be selected from a range of, for example, 100 μm or less (preferably 80 μm or less, more preferably 1 μm to 50 μm, particularly 1 μm to 30 μm). Note that the adjustment of the particle size of the thermally expandable microspheres may be performed in the process of generating the thermally expandable microspheres, or may be performed by means such as classification after the generation. It is preferable that the thermally expandable microspheres have the same particle size.

(その他の発泡剤)
本実施形態では、発泡剤としては、熱膨張性微小球以外の発泡剤も用いることもできる。このような発泡剤としては、種々の無機系発泡剤や有機系発泡剤などの各種発泡剤を適宜選択して使用することができる。無機系発泡剤の代表的な例としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水酸化ホウ素ナトリウム、各種アジド類などが挙げられる。
(Other foaming agents)
In the present embodiment, as the foaming agent, a foaming agent other than the thermally expandable microsphere can also be used. As such a foaming agent, various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used. Typical examples of the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.

また、有機系発泡剤の代表的な例としては、例えば、水;トリクロロモノフルオロメタン、ジクロロモノフルオロメタンなどの塩フッ化アルカン系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレートなどのアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン−3,3´−ジスルホニルヒドラジド、4,4´−オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)などのヒドラジン系化合物;p−トルイレンスルホニルセミカルバジド、4,4´−オキシビス(ベンゼンスルホニルセミカルバジド)などのセミカルバジド系化合物;5−モルホリル−1,2,3,4−チアトリアゾールなどのトリアゾール系化合物;N,N´−ジニトロソペンタメチレンテロラミン、N,N´−ジメチル−N,N´−ジニトロソテレフタルアミドなどのN−ニトロソ系化合物などが挙げられる。   Representative examples of organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi. Azo compounds such as carboxylate; hydrazine compounds such as p-toluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosopene Methylene terrorism Ramin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.

本実施形態では、加熱処理により、熱膨張性粘着剤層の接着力を効率よく且つ安定して低下させるため、体積膨張率が5倍以上、なかでも7倍以上、特に10倍以上となるまで破裂しない適度な強度を有する発泡剤が好ましい。   In this embodiment, in order to reduce the adhesive force of the heat-expandable pressure-sensitive adhesive layer efficiently and stably by heat treatment, the volume expansion coefficient is 5 times or more, especially 7 times or more, particularly 10 times or more. A foaming agent having an appropriate strength that does not burst is preferred.

発泡剤(熱膨張性微小球など)の配合量は、熱膨張性粘着剤層の膨張倍率や接着力の低下性などに応じて適宜設定しうるが、一般には熱膨張性粘着剤層を形成するベースポリマー100重量部に対して、例えば1重量部〜150重量部(好ましくは10重量部〜130重量部、さらに好ましくは25重量部〜100重量部)である。   The amount of foaming agent (thermally expandable microspheres, etc.) can be set as appropriate depending on the expansion ratio of the thermally expandable pressure-sensitive adhesive layer and the ability to lower the adhesive strength, but generally a thermally expandable pressure-sensitive adhesive layer is formed. The amount is, for example, 1 part by weight to 150 parts by weight (preferably 10 parts by weight to 130 parts by weight, more preferably 25 parts by weight to 100 parts by weight) with respect to 100 parts by weight of the base polymer.

本実施形態では、発泡剤としては、発泡開始温度(熱膨張開始温度)(T)が80℃〜210℃の範囲のものを好適に用いることができ、好ましくは90℃〜200℃(より好ましくは95℃〜200℃、特に好ましくは100℃〜170℃)の発泡開始温度を有するものである。発泡剤の発泡開始温度が80℃より低いと、封止体ないし研削体の製造時や使用時の熱により発泡剤が発泡してしまう場合があり、取り扱い性や生産性が低下する。一方、発泡剤の発泡開始温度が210℃を超える場合には、仮固定材の支持体や封止樹脂に過度の耐熱性が必要となり、取り扱い性、生産性やコスト面で好ましくない。なお、発泡剤の発泡開始温度(T)は、熱膨張性粘着剤層の発泡開始温度(T)に相当する。 In this embodiment, a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 80 ° C. to 210 ° C. can be suitably used, and preferably 90 ° C. to 200 ° C. (more Preferably, it has a foaming start temperature of 95 ° C to 200 ° C, particularly preferably 100 ° C to 170 ° C. When the foaming start temperature of the foaming agent is lower than 80 ° C., the foaming agent may foam due to heat during production or use of the sealing body or the grinding body, and handling properties and productivity are lowered. On the other hand, when the foaming start temperature of the foaming agent exceeds 210 ° C., excessive heat resistance is required for the support of the temporary fixing material and the sealing resin, which is not preferable in terms of handleability, productivity, and cost. Incidentally, the foaming starting temperature (T 0) of the blowing agent, corresponding to the foaming starting temperature of the heat-expandable pressure-sensitive adhesive layer (T 0).

なお、発泡剤を発泡させる方法(すなわち、熱膨張性粘着剤層を熱膨張させる方法)としては、公知の加熱発泡方法から適宜選択して採用することができる。   In addition, as a method of foaming the foaming agent (that is, a method of thermally expanding the heat-expandable pressure-sensitive adhesive layer), it can be appropriately selected from known heat foaming methods.

本実施形態では、熱膨張性粘着剤層は、加熱処理前の適度な接着力と加熱処理後の接着力の低下性のバランスの点から、発泡剤を含有しない形態での弾性率が23℃〜150℃において5×10Pa〜1×10Paであることが好ましく、さらに好ましくは5×10Pa〜8×10Paであり、特に5×10Pa〜5×10Paであることが好適である。熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃〜150℃)が5×10Pa未満であると熱膨張性が劣り、剥離性が低下する場合がある。また、熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃〜150℃)が1×10Paより大きい場合、初期接着性が劣る場合がある。 In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 × 10 4 Pa to 1 × 10 6 Pa at ˜150 ° C., more preferably 5 × 10 4 Pa to 8 × 10 5 Pa, and particularly 5 × 10 4 Pa to 5 × 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is less than 5 × 10 4 Pa, the thermal expandability may be inferior and the peelability may decrease. . Moreover, when the elasticity modulus (temperature: 23 degreeC-150 degreeC) in the form which does not contain the foaming agent of a thermally expansible adhesive layer is larger than 1 * 10 < 6 > Pa, initial stage adhesiveness may be inferior.

なお、発泡剤を含有しない形態の熱膨張性粘着剤層は、粘着剤(発泡剤は含まれていない)により形成された粘着剤層に相当する。従って、熱膨張性粘着剤層の発泡剤を含有していない形態での弾性率は、粘着剤(発泡剤は含まれていない)を用いて測定することができる。なお、熱膨張性粘着剤層は、23℃〜150℃における弾性率が5×10Pa〜1×10Paである粘着剤層を形成可能な粘着剤と、発泡剤とを含む熱膨張性粘着剤により形成することができる。 In addition, the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included). In addition, a thermal expansion adhesive layer is a thermal expansion containing the adhesive which can form the adhesive layer whose elasticity modulus in 23 degreeC-150 degreeC is 5 * 10 < 4 > Pa-1 * 10 < 6 > Pa, and a foaming agent. It can be formed with an adhesive.

熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率は、発泡剤が添加されていない形態の熱膨張性粘着剤層(すなわち、発泡剤が含まれていない粘着剤による粘着剤層)(サンプル)を作製し、レオメトリック社製動的粘弾性測定装置「ARES」を用いて、サンプル厚さ:約1.5mmで、φ7.9mmパラレルプレートの治具を用い、剪断モードにて、周波数:1Hz、昇温速度:5℃/分、歪み:0.1%(23℃)、0.3%(150℃)にて測定し、23℃および150℃で得られた剪断貯蔵弾性率G´の値とする。   The modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent). ) (Sample), using a rheometric dynamic viscoelasticity measuring device “ARES”, sample thickness: about 1.5 mm, φ7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained The value of the rate G ′ is assumed.

熱膨張性粘着剤層の弾性率は、粘着剤のベースポリマーの種類、架橋剤、添加剤などを調節することによりコントロールすることができる。   The elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.

熱膨張性粘着剤層の厚さは、特に制限されず、接着力の低減性などにより適宜に選択することができ、例えば、5μm〜300μm(好ましくは20μm〜150μm)程度である。ただし、発泡剤として熱膨張性微小球が用いられている場合、熱膨張性粘着剤層の厚さは、含まれている熱膨張性微小球の最大粒径よりも厚いことが好ましい。熱膨張性粘着剤層の厚さが薄すぎると、熱膨張性微小球の凹凸により表面平滑性が損なわれ、加熱前(未発泡状態)の接着性が低下する。また、加熱処理による熱膨張性粘着剤層の変形度が小さく、接着力が円滑に低下しにくくなる。一方、熱膨張性粘着剤層の厚さが厚すぎると、加熱処理による膨張乃至発泡後に、熱膨張性粘着剤層に凝集破壊が生じやすくなり、研削体26に糊残りが発生する場合がある。   The thickness of the heat-expandable pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the reduction in adhesive strength, and is, for example, about 5 μm to 300 μm (preferably 20 μm to 150 μm). However, when heat-expandable microspheres are used as the foaming agent, the thickness of the heat-expandable pressure-sensitive adhesive layer is preferably thicker than the maximum particle size of the heat-expandable microspheres contained. When the thickness of the heat-expandable pressure-sensitive adhesive layer is too thin, the surface smoothness is impaired by the unevenness of the heat-expandable microspheres, and the adhesiveness before heating (unfoamed state) is lowered. In addition, the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered. On the other hand, if the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure is likely to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated in the grinding body 26. .

なお、熱膨張性粘着剤層は単層、複層の何れであってもよい。   The thermally expandable pressure-sensitive adhesive layer may be either a single layer or multiple layers.

本実施形態では、熱膨張性粘着剤層には、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。   In the present embodiment, the heat-expandable pressure-sensitive adhesive layer has various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an anti-aging agent, an antioxidant, and a surfactant. Agent, cross-linking agent, etc.).

(支持体)
支持体2bは、仮固定材2の強度母体となる薄板状部材である。支持体2bの材料としては取り扱い性や耐熱性等を考慮して適宜選択すればよく、例えばSUS等の金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等のプラスチック材料、ガラスやシリコンウェハ等を用いることができる。これらの中でも、耐熱性や強度、再利用可能性等の観点から、SUSプレートが好ましい。
(Support)
The support 2b is a thin plate member that serves as a strength matrix of the temporary fixing material 2. The material of the support 2b may be appropriately selected in consideration of handling properties, heat resistance, and the like. For example, metal materials such as SUS, plastic materials such as polyimide, polyamideimide, polyether ether ketone, and polyether sulfone, glass Alternatively, a silicon wafer or the like can be used. Among these, a SUS plate is preferable from the viewpoints of heat resistance, strength, reusability, and the like.

支持体2bの厚さは目的とする強度や取り扱い性を考慮して適宜選択することができ、好ましくは100〜5000μmであり、より好ましくは300〜2000μmである。   The thickness of the support 2b can be appropriately selected in consideration of the intended strength and handleability, and is preferably 100 to 5000 μm, more preferably 300 to 2000 μm.

(仮固定材の形成方法)
仮固定材2は、支持体2b上に熱膨張性粘着剤層2aを形成することにより得られる。熱膨張性粘着剤層は、例えば、粘着剤と、発泡剤(熱膨張性微小球など)と、必要に応じて溶媒やその他の添加剤などとを混合して、シート状の層に形成する慣用の方法を利用し形成することができる。具体的には、例えば、粘着剤、発泡剤(熱膨張性微小球など)、および必要に応じて溶媒やその他の添加剤を含む混合物を、支持体2b上に塗布する方法、適当なセパレータ(剥離紙など)上に前記混合物を塗布して熱膨張性粘着剤層を形成し、これを支持体2b上に転写(移着)する方法などにより、熱膨張性粘着剤層を形成することができる。
(Method for forming temporary fixing material)
The temporary fixing material 2 is obtained by forming the thermally expandable pressure-sensitive adhesive layer 2a on the support 2b. The heat-expandable pressure-sensitive adhesive layer is formed into a sheet-like layer by mixing, for example, a pressure-sensitive adhesive, a foaming agent (such as heat-expandable microspheres), and a solvent or other additives as necessary. It can be formed using conventional methods. Specifically, for example, a method of applying a mixture containing an adhesive, a foaming agent (such as thermally expandable microspheres), and, if necessary, a solvent and other additives onto the support 2b, an appropriate separator ( The heat-expandable pressure-sensitive adhesive layer can be formed by applying the mixture on a release paper or the like to form a heat-expandable pressure-sensitive adhesive layer and transferring (transferring) it onto the support 2b. it can.

(熱膨張性粘着剤層の熱膨張方法)
本実施形態では、熱膨張性粘着剤層は、加熱により熱膨張させることができる。加熱処理方法としては、例えば、ホットプレート、熱風乾燥機、近赤外線ランプ、エアードライヤーなどの適宜な加熱手段を利用して行うことができる。加熱処理時の加熱温度は、熱膨張性粘着剤層中の発泡剤(熱膨張性微小球など)の発泡開始温度(熱膨張開始温度)以上であればよいが、加熱処理の条件は、発泡剤(熱膨張性微小球など)の種類等による接着面積の減少性、支持体、半導体チップを含む研削体等の耐熱性、加熱方法(熱容量、加熱手段等)などにより適宜設定できる。一般的な加熱処理条件としては、温度100℃〜250℃で、1秒間〜90秒間(ホットプレートなど)または5分間〜15分間(熱風乾燥機など)である。なお、加熱処理は使用目的に応じて適宜な段階で行うことができる。また、加熱処理時の熱源としては、赤外線ランプや加熱水を用いることができる場合もある。
(Thermal expansion method of the thermally expandable pressure-sensitive adhesive layer)
In the present embodiment, the thermally expandable pressure-sensitive adhesive layer can be thermally expanded by heating. As the heat treatment method, for example, an appropriate heating means such as a hot plate, a hot air dryer, a near infrared lamp, an air dryer or the like can be used. The heating temperature during the heat treatment may be equal to or higher than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermally expansible microspheres, etc.) in the heat-expandable pressure-sensitive adhesive layer. It can be set as appropriate depending on the reduction of the adhesion area depending on the type of agent (thermally expandable microspheres, etc.), the heat resistance of a support, a grinding body including a semiconductor chip, etc., the heating method (heat capacity, heating means, etc.), and the like. As general heat treatment conditions, the temperature is 100 ° C. to 250 ° C., and it is 1 second to 90 seconds (hot plate or the like) or 5 minutes to 15 minutes (hot air dryer or the like). Note that the heat treatment can be performed at an appropriate stage depending on the purpose of use. In some cases, an infrared lamp or heated water can be used as the heat source during the heat treatment.

(中間層)
本実施形態では、熱膨張性粘着剤層2aと支持体2bとの間に、密着力の向上や加熱後の剥離性の向上等を目的とした中間層が設けられていても良い(図示せず)。中でも、中間層としてゴム状有機弾性中間層が設けられていることが好ましい。このように、ゴム状有機弾性中間層を設けることにより、半導体チップ23を仮固定材2に接着する際に(図3A参照)、熱膨張性粘着剤層2aの表面を半導体チップ23の表面形状に良好に追従させて、接着面積を大きくすることができるとともに、仮固定材2から研削加工後の研削体26を加熱剥離させる際に、熱膨張性粘着剤層2aの加熱膨張を高度に(精度よく)コントロールし、熱膨張性粘着剤層2aを厚さ方向へ優先的に且つ均一に膨張させることができる。
(Middle layer)
In the present embodiment, an intermediate layer may be provided between the heat-expandable pressure-sensitive adhesive layer 2a and the support 2b for the purpose of improving adhesion and improving peelability after heating (not shown). ) Among them, it is preferable that a rubbery organic elastic intermediate layer is provided as the intermediate layer. Thus, by providing the rubber-like organic elastic intermediate layer, when the semiconductor chip 23 is bonded to the temporary fixing material 2 (see FIG. 3A), the surface of the thermally expandable pressure-sensitive adhesive layer 2a is changed to the surface shape of the semiconductor chip 23. The adhesion area can be increased, and the thermal expansion of the thermally expandable pressure-sensitive adhesive layer 2a is highly enhanced when the grinding body 26 after grinding is thermally peeled from the temporary fixing material 2 (see FIG. The heat-expandable pressure-sensitive adhesive layer 2a can be preferentially and uniformly expanded in the thickness direction.

なお、ゴム状有機弾性中間層は、支持体2bの片面又は両面に介在させることができる。   The rubbery organic elastic intermediate layer can be interposed on one side or both sides of the support 2b.

ゴム状有機弾性中間層は、例えば、ASTM D−2240に基づくD型シュアーD型硬度が、50以下、特に40以下の天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂により形成することが好ましい。なお、ポリ塩化ビニルなどのように本質的には硬質系ポリマーであっても、可塑剤や柔軟剤等の配合剤との組み合わせによりゴム弾性が発現しうる。このような組成物も、前記ゴム状有機弾性中間層の構成材料として使用できる。   The rubber-like organic elastic intermediate layer is preferably formed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity having a D-type Sure D-type hardness of 50 or less, particularly 40 or less based on ASTM D-2240. Even if it is essentially a hard polymer such as polyvinyl chloride, rubber elasticity can be manifested in combination with compounding agents such as plasticizers and softeners. Such a composition can also be used as a constituent material of the rubbery organic elastic intermediate layer.

ゴム状有機弾性中間層は、例えば、前記天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂などのゴム状有機弾性層形成材を含むコーティング液を基材上に塗布する方式(コーティング法)、前記ゴム状有機弾性層形成材からなるフィルム、又は予め1層以上の熱膨張性粘着剤層上に前記ゴム状有機弾性層形成材からなる層を形成した積層フィルムを基材と接着する方式(ドライラミネート法)、基材の構成材料を含む樹脂組成物と前記ゴム状有機弾性層形成材を含む樹脂組成物とを共押出しする方式(共押出し法)などの形成方法により形成することができる。   The rubber-like organic elastic intermediate layer is, for example, a method (coating method) in which a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate, A method in which a film made of a rubbery organic elastic layer forming material or a laminated film in which a layer made of the rubbery organic elastic layer forming material is previously formed on one or more thermally expandable pressure-sensitive adhesive layers is bonded to a substrate (dry Laminating method), and a forming method such as a method of co-extruding a resin composition containing a constituent material of a base material and a resin composition containing the rubber-like organic elastic layer forming material (co-extrusion method).

なお、ゴム状有機弾性中間層は、天然ゴムや合成ゴム又はゴム弾性を有する合成樹脂を主成分とする粘着性物質で形成されていてもよく、また、かかる成分を主体とする発泡フィルム等で形成されていてもよい。発泡は、慣用の方法、例えば、機械的な攪拌による方法、反応生成ガスを利用する方法、発泡剤を使用する方法、可溶性物質を除去する方法、スプレーによる方法、シンタクチックフォームを形成する方法、焼結法などにより行うことができる。   The rubbery organic elastic intermediate layer may be formed of a sticky substance mainly composed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity, and may be a foam film or the like mainly composed of such a component. It may be formed. Foaming is a conventional method, for example, a method using mechanical stirring, a method using a reaction product gas, a method using a foaming agent, a method for removing soluble substances, a method using a spray, a method for forming a syntactic foam, It can be performed by a sintering method or the like.

ゴム状有機弾性中間層等の中間層の厚さは、例えば、5μm〜300μm、好ましくは20μm〜150μm程度である。なお、中間層が、例えば、ゴム状有機弾性中間層である場合、ゴム状有機弾性中間層の厚さが薄すぎると、加熱発泡後の3次元的構造変化を形成することができず、剥離性が悪化する場合がある。   The thickness of the intermediate layer such as the rubbery organic elastic intermediate layer is, for example, about 5 μm to 300 μm, preferably about 20 μm to 150 μm. In addition, when the intermediate layer is, for example, a rubber-like organic elastic intermediate layer, if the thickness of the rubber-like organic elastic intermediate layer is too thin, it is not possible to form a three-dimensional structural change after heating and foaming. Sexuality may worsen.

ゴム状有機弾性中間層等の中間層は単層であってもよく、2以上の層で構成されていてもよい。   The intermediate layer such as the rubbery organic elastic intermediate layer may be a single layer or may be composed of two or more layers.

なお、中間層には、仮固定材の作用効果を損なわない範囲で、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。   In the intermediate layer, various additives (for example, a colorant, a thickener, an extender, a filler, a tackifier, a plasticizer, an anti-aging agent, an oxidation agent, etc.) An inhibitor, a surfactant, a cross-linking agent, etc.).

(半導体チップ配置工程)
半導体チップ配置工程では、上記仮固定材2上に複数の半導体チップ23をその活性面A2が仮固定材2に対向するように配置する(図3A参照)。半導体チップ23の配置には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Semiconductor chip placement process)
In the semiconductor chip arrangement step, a plurality of semiconductor chips 23 are arranged on the temporary fixing material 2 such that the active surface A2 faces the temporary fixing material 2 (see FIG. 3A). A known device such as a flip chip bonder or a die bonder can be used for arranging the semiconductor chip 23.

半導体チップ23の配置のレイアウトや配置数は、仮固定材2の形状やサイズ、目的とするパッケージの生産数などに応じて適宜設定することができ、例えば、複数行で、かつ複数列のマトリックス状に整列させて配置することができる。   The layout and the number of arrangement of the semiconductor chips 23 can be appropriately set according to the shape and size of the temporary fixing material 2, the number of target packages produced, and the like, for example, a matrix of a plurality of rows and a plurality of columns. Can be arranged in a line.

(封止工程)
封止工程では、複数の半導体チップ23を覆うように封止樹脂シート21を仮固定材2上へ積層して樹脂封止する(図3B参照)。封止樹脂シート21の仮固定材2上への積層方法は、第1実施形態と同様の条件を採用することができる。
(Sealing process)
In the sealing step, the sealing resin sheet 21 is laminated on the temporary fixing material 2 so as to cover the plurality of semiconductor chips 23 and is resin-sealed (see FIG. 3B). The same conditions as in the first embodiment can be adopted for the method of laminating the sealing resin sheet 21 on the temporary fixing material 2.

(封止体形成工程)
封止体形成工程では、上記封止樹脂シート21に熱硬化処理を施して封止体25を形成する(図3B参照)。封止樹脂シート21の熱硬化処理の条件は、第1実施形態と同様の条件を採用することができる。
(Sealing body forming process)
In the sealing body forming step, the sealing resin sheet 21 is subjected to a thermosetting process to form the sealing body 25 (see FIG. 3B). The conditions for the thermosetting treatment of the sealing resin sheet 21 can employ the same conditions as in the first embodiment.

(研削工程)
研削工程では、封止体25の封止樹脂シート21を半導体チップ23の活性面A2とは反対側の表面23Sが露出するように研削して研削体26を形成する(図3C参照)。研削は公知の研削装置を用いて行えばよい。
(Grinding process)
In the grinding step, the sealing resin sheet 21 of the sealing body 25 is ground so that the surface 23S opposite to the active surface A2 of the semiconductor chip 23 is exposed to form the grinding body 26 (see FIG. 3C). Grinding may be performed using a known grinding apparatus.

研削体26における封止樹脂シートの表面21Sと半導体チップの露出面23Sとの最大高低差は10μm以下であり、好ましくは7μm以下であり、より好ましくは5μm以下である。研削面G2(図3E参照)における最大高低差を上記範囲とすることにより、研削体26の研削面G2における段差の裏面B2への影響を小さくすることができ、歩留まり良く再配線29を形成することができる。   The maximum height difference between the surface 21S of the sealing resin sheet and the exposed surface 23S of the semiconductor chip in the grinding body 26 is 10 μm or less, preferably 7 μm or less, more preferably 5 μm or less. By setting the maximum height difference on the grinding surface G2 (see FIG. 3E) within the above range, the influence of the step on the grinding surface G2 of the grinding body 26 on the back surface B2 can be reduced, and the rewiring 29 is formed with high yield. be able to.

(熱膨張性粘着剤層剥離工程)
熱膨張性粘着剤層剥離工程では、仮固定材2を加熱して熱膨張性粘着剤層2aを熱膨張させることにより、熱膨張性粘着剤層2aと研削体26との間で剥離を行う(図3D参照)。あるいは、支持体2bと熱膨張性粘着剤層2aとの界面で剥離を行い、その後、熱膨張性粘着剤層2aと研削体26との界面で熱膨張による剥離を行うという手順も好適に採用することができる。いずれも場合であっても、熱膨張性粘着剤層2a加熱して熱膨張させその粘着力を低下させることで、熱膨張性粘着剤層2aと研削体26との界面での剥離を容易に行うことができる。熱膨張の条件としては、上述の「熱膨張性粘着剤層の熱膨張方法」の欄の条件を好適に採用することができる。
(Thermal expansion adhesive layer peeling process)
In the heat-expandable pressure-sensitive adhesive layer peeling step, the temporary fixing material 2 is heated to thermally expand the heat-expandable pressure-sensitive adhesive layer 2a, whereby peeling is performed between the heat-expandable pressure-sensitive adhesive layer 2a and the grinding body 26. (See FIG. 3D). Alternatively, a procedure of peeling at the interface between the support 2b and the heat-expandable pressure-sensitive adhesive layer 2a and then peeling at the interface between the heat-expandable pressure-sensitive adhesive layer 2a and the grinding body 26 is preferably employed. can do. In either case, the heat-expandable pressure-sensitive adhesive layer 2a is heated and thermally expanded to reduce the adhesive force, thereby easily peeling at the interface between the heat-expandable pressure-sensitive adhesive layer 2a and the grinding body 26. It can be carried out. As the conditions for thermal expansion, the conditions in the above-mentioned column “Thermal expansion method for thermally expandable pressure-sensitive adhesive layer” can be preferably employed.

本工程では、半導体チップ23が露出した状態で、再配線形成工程に先だってプラズマ処理などにより研削体26の表面をクリーニングしてもよい。   In this step, the surface of the grinding body 26 may be cleaned by plasma treatment or the like prior to the rewiring forming step with the semiconductor chip 23 exposed.

(再配線形成工程)
本実施形態ではさらに、研削体26の半導体チップ23の活性面A2側の面B2に再配線29を形成する再配線形成工程を含むことが好ましい。再配線形成工程では、上記熱膨張性粘着剤層2aの剥離後、上記露出した半導体チップ23と接続する再配線29を研削体26上に形成する(図3E参照)。
(Rewiring process)
In the present embodiment, it is preferable to further include a rewiring forming step of forming the rewiring 29 on the surface B2 on the active surface A2 side of the semiconductor chip 23 of the grinding body 26. In the rewiring forming step, after the thermally expandable pressure-sensitive adhesive layer 2a is peeled off, a rewiring 29 connected to the exposed semiconductor chip 23 is formed on the grinding body 26 (see FIG. 3E).

再配線の形成方法としては、例えば、露出している半導体チップ23上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線29を形成することができる。   As a method of forming the rewiring, for example, a metal seed layer is formed on the exposed semiconductor chip 23 using a known method such as a vacuum film forming method, and then re-reformed by a known method such as a semi-additive method. The wiring 29 can be formed.

かかる後に、再配線29及び研削体26上へポリイミドやPBOなどの絶縁層を形成してもよい。   After this, an insulating layer such as polyimide or PBO may be formed on the rewiring 29 and the grinding body 26.

(バンプ形成工程)
次いで、形成した再配線29上にバンプ27を形成するバンピング加工を行ってもよい(図3F参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプ27の材質は、第1実施形態と同様の材質を好適に用いることができる。
(Bump formation process)
Next, a bumping process for forming bumps 27 on the formed rewiring 29 may be performed (see FIG. 3F). The bumping process can be performed by a known method such as a solder ball or solder plating. As the material of the bump 27, the same material as that of the first embodiment can be suitably used.

(チップ裏面保護工程)
バンプ27を形成した後、半導体チップ23の露出面23Sを保護するために、研削体26Aの研削面G2(図3C参照)を再度樹脂封止してもよい。封止方法としては特に限定されず、公知の液状やフィルム状の封止樹脂を研削面G2に塗布ないし貼り合わせ、乾燥、硬化させればよい。なお、本工程は、研削工程後であってダイシング工程前であればいずれの段階で行ってもよい。
(Chip back surface protection process)
After the bumps 27 are formed, the ground surface G2 (see FIG. 3C) of the ground body 26A may be resin-sealed again in order to protect the exposed surface 23S of the semiconductor chip 23. The sealing method is not particularly limited, and a known liquid or film-like sealing resin may be applied or bonded to the grinding surface G2, dried, and cured. This step may be performed at any stage after the grinding step and before the dicing step.

(ダイシング工程)
最後に、半導体チップ23、封止樹脂シート21及び再配線29などの要素からなる積層体のダイシングを行う(図3G参照)。これにより、チップ領域の外側に配線を引き出した半導体パッケージ28を半導体チップ単位で得ることができる。ダイシング方法は、第1実施形態と同様の方法を採用することができる。
(Dicing process)
Finally, dicing is performed on the laminate including elements such as the semiconductor chip 23, the sealing resin sheet 21, and the rewiring 29 (see FIG. 3G). Thereby, the semiconductor package 28 in which the wiring is drawn outside the chip region can be obtained in units of semiconductor chips. As the dicing method, the same method as in the first embodiment can be adopted.

以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。   Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in this example are not intended to limit the scope of the present invention only to those unless otherwise specified. The term “parts” means parts by weight.

[実施例1]
(封止樹脂シートの作製)
以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止樹脂シートAを作製した。
[Example 1]
(Preparation of sealing resin sheet)
The following components were blended with a mixer, melt kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to prepare a sealing resin sheet A having a thickness of 500 μm.

エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV−80XY(エポキシ当量200g/eq.軟化点80℃)) 286部
フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH−7851−SS(水酸基当量203g/eq.、軟化点67℃))
303部
硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ−PW) 6部
無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB−9454、平均粒子径20μm) 3695部
シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM−403) 5部
カーボンブラック(三菱化学(株)製、#20) 5部
Epoxy resin: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epoxy equivalent 200 g / eq. Softening point 80 ° C.)) 286 parts Phenol resin: phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
303 parts Curing accelerator: Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 6 parts Inorganic filler: Spherical fused silica powder (manufactured by Denki Kagaku Kogyo, FB-9454, average particle size) 3695 parts Silane coupling agent: Epoxy group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) 5 parts Carbon black (manufactured by Mitsubishi Chemical Corporation, # 20) 5 parts

[実施例2]
(封止樹脂シートの作製)
以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止樹脂シートBを作製した。
[Example 2]
(Preparation of sealing resin sheet)
The following components were blended with a mixer, melt-kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T die to prepare a sealing resin sheet B having a thickness of 500 μm.

エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV−80XY(エポキシ当量200g/eq.軟化点80℃)) 169部
フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH−7851−SS(水酸基当量203g/eq.、軟化点67℃))
179部
硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ−PW) 6部
エラストマー:スチレン−イソブチレン−スチレントリブロック共重合体((株)カネカ製、SIBSTAR 072T) 152部
無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB−9454、平均粒子径20μm) 1100部
シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM−403) 5部
カーボンブラック(三菱化学(株)製、#20) 5部
難燃剤:ホスファゼン化合物((株)伏見製薬所製、FP−100) 89部
Epoxy resin: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epoxy equivalent 200 g / eq. Softening point 80 ° C.)) 169 parts Phenol resin: phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
179 parts Curing accelerator: Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 6 parts Elastomer: Styrene-isobutylene-styrene triblock copolymer (manufactured by Kaneka Corporation, SIBSTAR 072T) 152 parts Inorganic filler: spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-9454, average particle size 20 μm) 1100 parts Silane coupling agent: epoxy group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM) -403) 5 parts Carbon black (Mitsubishi Chemical Corporation, # 20) 5 parts Flame retardant: Phosphazene compound (FP-100, Fushimi Pharmaceutical Co., Ltd.) 89 parts

[比較例1]
(封止樹脂シートの作製)
以下の成分をメチルエチルケトンに溶解ないし分散し、固形分40重量%のワニスを作製した。
[Comparative Example 1]
(Preparation of sealing resin sheet)
The following components were dissolved or dispersed in methyl ethyl ketone to prepare a varnish having a solid content of 40% by weight.

液状エポキシ樹脂(大日本インキ化学工業(株)製、EXA−4850−150)
80部
固形エポキシ樹脂(日本化薬(株)製、EPPN−501−HY) 20部
フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH−7851−SS(水酸基当量203g/eq.、軟化点67℃))
60部
硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ−PW) 3部
アクリル共重合体(*) 330部
無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB−9454、平均粒子径20μm) 400部
カーボンブラック(三菱化学(株)製、#20) 7部
Liquid epoxy resin (Dai Nippon Ink Chemical Co., Ltd., EXA-4850-150)
80 parts Solid epoxy resin (Nippon Kayaku Co., Ltd., EPPN-501-HY) 20 parts Phenol resin: Phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq. , Softening point 67 ℃))
60 parts Curing accelerator: Imidazole catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 3 parts Acrylic copolymer (*) 330 parts Inorganic filler: Spherical fused silica powder (Electrochemical Co., Ltd.) FB-9454, average particle size 20 μm) 400 parts Carbon black (Mitsubishi Chemical Corporation, # 20) 7 parts

なお、上記(*)のアクリル共重合体は、BA(ブチルアクリレート):AN(アクリロニトリル):GMA(グリシジルメタクリレート)=85:8:7重量%からなる共重合体であり、重量平均分子量は80万である。上記アクリル共重合体は次のように合成した。ブチルアクリレート、アクリロニトリル、グリシジルメタクリレートを85:8:7の仕込み重量比率にて、2,2’−アゾビスイソブチロニトリルを重合開始剤に用い、メチルエチルケトン中で窒素気流下、70℃で5時間と80℃で1時間のラジカル重合を行うことにより、目的とするアクリル共重合体を得た。   The acrylic copolymer (*) is a copolymer comprising BA (butyl acrylate): AN (acrylonitrile): GMA (glycidyl methacrylate) = 85: 8: 7% by weight, and the weight average molecular weight is 80. Ten thousand. The acrylic copolymer was synthesized as follows. Butyl acrylate, acrylonitrile, glycidyl methacrylate in a weight ratio of 85: 8: 7, using 2,2′-azobisisobutyronitrile as a polymerization initiator in methyl ethyl ketone at 70 ° C. for 5 hours under a nitrogen stream Radical polymerization at 80 ° C. for 1 hour to obtain the desired acrylic copolymer.

離型処理を施したPETフィルム上に、溶剤乾燥後の塗膜の厚さが50μmになるように上記ワニスを塗工し、次いで乾燥条件を120℃、3分として上記塗膜を乾燥させて厚さ50μmの樹脂シートを得た。得られた樹脂シートを、ラミネータを用いて厚み500μmまで積層し封止樹脂シートCを作製した。   On the PET film subjected to the mold release treatment, the varnish was applied so that the thickness of the coating film after drying the solvent was 50 μm, and then the drying film was dried at 120 ° C. for 3 minutes to dry the coating film. A resin sheet having a thickness of 50 μm was obtained. The obtained resin sheet was laminated | stacked to thickness of 500 micrometers using the laminator, and the sealing resin sheet C was produced.

(封止樹脂シートの貯蔵弾性率の測定)
貯蔵弾性率の測定は、固体粘弾性測定装置(レオメトリックサイエンティック社製:形式:RSA−III)を用いて行った。具体的には、各封止樹脂シートを150℃で1時間加熱して熱硬化させ、この硬化物からサンプルサイズを長さ400mm×幅2mm×厚さ80μmとして測定試料を得た後、測定試料をフィルム引っ張り測定用治具にセットし−50〜300℃の温度域での貯蔵弾性率及び損失弾性率を、周波数1Hz、昇温速度10℃/min、歪み0.05%の条件下で測定し、25℃での貯蔵弾性率(E’)を読み取ることにより得た。
(Measurement of storage elastic modulus of sealing resin sheet)
The storage elastic modulus was measured using a solid viscoelasticity measuring apparatus (manufactured by Rheometric Scientific: model: RSA-III). Specifically, each sealing resin sheet is heated and cured at 150 ° C. for 1 hour, and a measurement sample is obtained from the cured product with a sample size of 400 mm long × 2 mm wide × 80 μm thick, and then the measurement sample. Is measured in a film tension measuring jig, and the storage elastic modulus and loss elastic modulus in the temperature range of −50 to 300 ° C. are measured under the conditions of a frequency of 1 Hz, a heating rate of 10 ° C./min, and a strain of 0.05%. And the storage elastic modulus (E ′) at 25 ° C. was read.

(封止樹脂シートのショアD硬度の測定)
各封止樹脂シートを2mm厚となるようにラミネータを用いて積層し、この積層体を150℃で1時間加熱して熱硬化させた後、JIS K 7215に準拠し、硬度計((株)ミツトヨ製、プラスチック用硬度計)を用いて、25℃での測定値を読み取ることで得た。
(Measurement of Shore D hardness of encapsulating resin sheet)
Each sealing resin sheet was laminated using a laminator so as to have a thickness of 2 mm, and this laminate was heated at 150 ° C. for 1 hour to be thermally cured, and in accordance with JIS K 7215, a hardness meter (Corporation) It was obtained by reading the measured value at 25 ° C. using a Mitutoyo plastic hardness tester.

(半導体パッケージの作製)
以下の仕様の半導体チップがシリコンインターポーザーにフリップチップ実装され、チップ−インターポーザー間がビスフェノールA型エポキシ系熱硬化性アンダーフィル材で封止されたチップ実装インターポーザーを準備した。
(Production of semiconductor package)
A chip mounting interposer was prepared in which a semiconductor chip having the following specifications was flip-chip mounted on a silicon interposer, and the space between the chip and the interposer was sealed with a bisphenol A type epoxy thermosetting underfill material.

<半導体チップ>
半導体チップサイズ:7.3mm□(厚さ400μm)
バンプ材質:Cu 30μm、Sn−Ag 15μm厚み
バンプ数:544バンプ
バンプピッチ:50μm
チップ数:16個(4個×4個)
<Semiconductor chip>
Semiconductor chip size: 7.3 mm □ (thickness 400 μm)
Bump material: Cu 30 μm, Sn-Ag 15 μm thickness Number of bumps: 544 bumps Bump pitch: 50 μm
Number of chips: 16 (4 x 4)

<シリコンインターポーザー>
直径:8インチ
厚さ:730μm
電極:スルーシリコンビア(径:30μm)
<Silicon interposer>
Diameter: 8 inches Thickness: 730 μm
Electrode: Through silicon via (diameter: 30 μm)

得られたチップ実装インターポーザー上に、以下に示す加熱加圧条件下、封止樹脂シートA〜Cのそれぞれを真空プレスにより貼付けた。   On the obtained chip mounting interposer, each of the sealing resin sheets A to C was pasted by a vacuum press under the heating and pressing conditions shown below.

<貼り付け条件>
温度:90℃
加圧力:0.5MPa
真空度:2000Pa
プレス時間:3分
<Paste conditions>
Temperature: 90 ° C
Applied pressure: 0.5 MPa
Degree of vacuum: 2000Pa
Press time: 3 minutes

大気圧に開放した後、熱風乾燥機中、150℃、1時間の条件で封止樹脂シートを熱硬化させ、封止体を得た。次に、切削装置((株)DISCO製、サーフェスプレーナー「DFS8910」)を用いた研削により、研削バイトの周速度1000m/min、送りピッチ100μm、切り込み深さ10μmの条件で、半導体チップの厚さが100μmとなるまで封止体を半導体チップ共々薄化することで、研削体を作製した。   After releasing to atmospheric pressure, the sealing resin sheet was thermoset in a hot air dryer at 150 ° C. for 1 hour to obtain a sealing body. Next, the thickness of the semiconductor chip is obtained by grinding using a cutting device (manufactured by DISCO Corporation, surface planar “DFS8910”) under the conditions of a peripheral speed of the grinding tool of 1000 m / min, a feed pitch of 100 μm, and a cutting depth of 10 μm. By grinding the sealing body together with the semiconductor chip until the thickness becomes 100 μm, a ground body was produced.

得られた研削体のシリコンインターポーザーの露出面(封止樹脂シートを貼り合わせた面とは反対側の面)を研削装置(DISCO社製、「DGP8761」)によりシリコンインターポーザーの厚さが100μmとなるまで研削した。   The exposed surface of the silicon interposer (the surface opposite to the surface on which the sealing resin sheet is bonded) of the obtained grinding body is removed by a grinding device (“DGP8761” manufactured by DISCO) and the thickness of the silicon interposer is 100 μm. Grinded until

シリコンインターポーザーの研削面にポリアミック酸(3,4’,3,4’−ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテル、パラフェニレンジアミンを反応して得たもの)を塗布し、熱硬化させて、厚さ10μmのポリイミド層を形成した。スルーシリコンビアに対応する位置に、レーザー加工によって開口を形成し、該ビアを露出させた。開口を含むポリイミド層表面に、めっきによって金膜、ニッケル膜を順次形成した。さらに、クロム、銅の順にスパッタリングを施して、種膜(クロム層の厚さ20nm、銅層の厚さ100nm)を形成し、電解銅めっきにより所定の配線パターンを有する再配線層を形成することにより半導体パッケージを作製した。   Apply polyamic acid (obtained by reacting 3,4 ', 3,4'-biphenyltetracarboxylic dianhydride, 4,4'-diaminodiphenyl ether, paraphenylenediamine) to the ground surface of the silicon interposer. Then, a polyimide layer having a thickness of 10 μm was formed by thermosetting. An opening was formed by laser processing at a position corresponding to the through-silicon via to expose the via. A gold film and a nickel film were sequentially formed on the surface of the polyimide layer including the opening by plating. Further, sputtering is performed in the order of chromium and copper to form a seed film (chrome layer thickness 20 nm, copper layer thickness 100 nm), and a rewiring layer having a predetermined wiring pattern is formed by electrolytic copper plating. Thus, a semiconductor package was produced.

(研削面の最大高低差の測定)
実施例及び比較例の半導体パッケージを用い、触針式表面形状測定器(「Dektak 8」、アルバック株式会社製)を用いて半導体パッケージの研削面における封止樹脂シートの表面と半導体チップの露出面との最大高低差を測定した。具体的には、図4に示すように、マトリックス状に配置されている半導体チップ13の各行及び各列を含むように表面を行ごと及び列ごとに1回スキャニングすることにより研削面の表面形状を求め、この表面形状に基づき最大高低差を算出した。また再配線形成面にて、配線の破断があるかどうかを顕微鏡(倍率:500倍)にて確認し、破断のない場合を「○」、破断のある場合を「×」として評価した。結果を表1に示す。
(Measurement of maximum height difference of ground surface)
Using the semiconductor package of Example and Comparative Example, the surface of the sealing resin sheet and the exposed surface of the semiconductor chip on the ground surface of the semiconductor package using a stylus type surface shape measuring instrument (“Dektak 8”, ULVAC, Inc.) The maximum height difference was measured. Specifically, as shown in FIG. 4, the surface shape of the grinding surface is obtained by scanning the surface once for every row and every column so as to include each row and each column of the semiconductor chips 13 arranged in a matrix. The maximum height difference was calculated based on this surface shape. Further, on the rewiring formation surface, whether or not there was a break in the wiring was confirmed with a microscope (magnification: 500 times). The results are shown in Table 1.

Figure 2015053468
Figure 2015053468

表1からも明らかなように、実施例1及び2では、研削後の最大高低差が10μm以下であることから、半導体パッケージの回路面要素としての再配線の形成を歩留りよく行うことができるのに対し、比較例1の半導体パッケージでは、最大高低差が10μmを超えていることから、再配線の形成性に劣る結果となった。   As is clear from Table 1, in Examples 1 and 2, the maximum height difference after grinding is 10 μm or less, so that rewiring can be formed as a circuit surface element of a semiconductor package with a high yield. On the other hand, in the semiconductor package of Comparative Example 1, the maximum height difference exceeded 10 μm, resulting in poor rewiring formability.

11、21 封止樹脂シート
11S、21S (研削後の)封止樹脂シートの表面
12A (研削前の)半導体ウェハ
12B (研削後の)半導体ウェハ
13、23 半導体チップ
13S、23S (研削後の)半導体チップの露出面
15、25 封止体
16A、16B、16C、26 研削体
18、28 半導体パッケージ
19、29 再配線
11, 21 Encapsulating resin sheet 11S, 21S Surface of encapsulating resin sheet (after grinding) 12A (Before grinding) Semiconductor wafer 12B (After grinding) Semiconductor wafer 13, 23 Semiconductor chip 13S, 23S (After grinding) Exposed surface of semiconductor chip 15, 25 Sealing body 16A, 16B, 16C, 26 Grinding body 18, 28 Semiconductor package 19, 29 Rewiring

Claims (7)

一又は複数の半導体チップが封止樹脂シートに埋め込まれた封止体を形成する封止体形成工程、及び
前記封止体の前記封止樹脂シートを前記半導体チップの活性面とは反対側の表面が露出するように研削して研削体を形成する研削工程
を含み、
前記研削体における前記封止樹脂シートの表面と前記半導体チップの露出面との最大高低差が10μm以下である半導体パッケージの製造方法。
A sealing body forming step of forming a sealing body in which one or a plurality of semiconductor chips are embedded in a sealing resin sheet; and the sealing resin sheet of the sealing body on a side opposite to an active surface of the semiconductor chip. Grinding process to form a grinding body by grinding so that the surface is exposed,
The manufacturing method of the semiconductor package whose maximum height difference of the surface of the said sealing resin sheet in the said grinding body and the exposed surface of the said semiconductor chip is 10 micrometers or less.
150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃におけるショアD硬度が60以上である請求項1に記載の半導体パッケージの製造方法。   2. The method of manufacturing a semiconductor package according to claim 1, wherein the Shore D hardness at 25 ° C. of the encapsulating resin sheet after performing a thermosetting treatment at 150 ° C. for 1 hour is 60 or more. 150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃における貯蔵弾性率が3GPa以上である請求項1又は2に記載の半導体パッケージの製造方法。   3. The method for manufacturing a semiconductor package according to claim 1, wherein a storage elastic modulus at 25 ° C. of the encapsulating resin sheet after performing a thermosetting treatment at 150 ° C. for 1 hour is 3 GPa or more. 前記封止体形成工程において、半導体ウェハにフリップチップ接続された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成する請求項1〜3のいずれか1項に記載の半導体パッケージの製造方法。   The semiconductor package according to any one of claims 1 to 3, wherein, in the sealing body forming step, the sealing body is formed by embedding the semiconductor chip flip-chip connected to a semiconductor wafer in the sealing resin sheet. Manufacturing method. 前記封止体形成工程において、仮固定材に固定された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成する請求項1〜3のいずれか1項に記載の半導体パッケージの製造方法。   The semiconductor package according to any one of claims 1 to 3, wherein, in the sealing body forming step, the sealing body is formed by embedding the semiconductor chip fixed to a temporary fixing material in the sealing resin sheet. Production method. 前記研削工程後、前記研削体の前記半導体チップの活性面側の面に再配線を形成する再配線形成工程をさらに含む請求項1〜5のいずれか1項に記載の半導体パッケージの製造方法。   6. The method of manufacturing a semiconductor package according to claim 1, further comprising a rewiring forming step of forming a rewiring on a surface on an active surface side of the semiconductor chip of the ground body after the grinding step. 前記半導体チップが複数用いられており、
前記再配線形成工程後に、前記研削体を目的の半導体チップ単位でダイシングするダイシング工程をさらに含む請求項6項に記載の半導体パッケージの製造方法。




A plurality of the semiconductor chips are used,
The semiconductor package manufacturing method according to claim 6, further comprising a dicing step of dicing the ground body in units of a target semiconductor chip after the rewiring forming step.




JP2014126120A 2013-08-07 2014-06-19 Method for manufacturing semiconductor package Pending JP2015053468A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014126120A JP2015053468A (en) 2013-08-07 2014-06-19 Method for manufacturing semiconductor package
KR1020167005740A KR20160041966A (en) 2013-08-07 2014-07-17 Method for producing semiconductor package
PCT/JP2014/068975 WO2015019817A1 (en) 2013-08-07 2014-07-17 Method for producing semiconductor package
TW103125706A TW201513195A (en) 2013-08-07 2014-07-28 Method for producing semiconductor package

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013164354 2013-08-07
JP2013164354 2013-08-07
JP2014126120A JP2015053468A (en) 2013-08-07 2014-06-19 Method for manufacturing semiconductor package

Publications (1)

Publication Number Publication Date
JP2015053468A true JP2015053468A (en) 2015-03-19

Family

ID=52461156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126120A Pending JP2015053468A (en) 2013-08-07 2014-06-19 Method for manufacturing semiconductor package

Country Status (4)

Country Link
JP (1) JP2015053468A (en)
KR (1) KR20160041966A (en)
TW (1) TW201513195A (en)
WO (1) WO2015019817A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076748A (en) * 2015-10-16 2017-04-20 リンテック株式会社 Adhesive sheet, and method for manufacturing semiconductor device
KR20170129115A (en) * 2015-03-12 2017-11-24 린텍 가부시키가이샤 Film for forming a protective film
JP2019509620A (en) * 2016-03-31 2019-04-04 エルジー・ケム・リミテッド Semiconductor device and manufacturing method of semiconductor device
JP2020057710A (en) * 2018-10-03 2020-04-09 株式会社ディスコ Wafer processing method
DE112019006485T5 (en) 2018-12-28 2021-11-04 Nagase & Co., Ltd. Semiconductor device and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518387B2 (en) * 2017-07-18 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Grinding element, grinding wheel and manufacturing method of semiconductor package using the same
CN112912243A (en) 2018-07-16 2021-06-04 维纳米技术公司 Method and system for improving connectivity of integrated components embedded in a host structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567986B2 (en) * 2000-03-17 2010-10-27 パナソニック株式会社 Electrical element built-in module and manufacturing method thereof
JP3862001B2 (en) * 2002-03-18 2006-12-27 信越化学工業株式会社 Liquid epoxy resin composition for wafer mold and semiconductor device using the same
US7880317B2 (en) * 2005-11-22 2011-02-01 Sony Corporation Semiconductor device and method of manufacturing semiconductor device
JP5401905B2 (en) * 2008-04-25 2014-01-29 日立化成株式会社 Thermosetting resin composition
KR20120132483A (en) * 2010-01-20 2012-12-05 스미또모 베이크라이트 가부시키가이샤 Film for forming semiconductor protection film, and semiconductor device
JP2012227441A (en) * 2011-04-21 2012-11-15 Sumitomo Bakelite Co Ltd Semiconductor device manufacturing method and semiconductor device
JP5961055B2 (en) * 2012-07-05 2016-08-02 日東電工株式会社 Sealing resin sheet, electronic component package manufacturing method, and electronic component package
JP2014197670A (en) * 2013-03-07 2014-10-16 日東電工株式会社 Semiconductor device manufacturing method and thermosetting resin sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170129115A (en) * 2015-03-12 2017-11-24 린텍 가부시키가이샤 Film for forming a protective film
KR102390521B1 (en) 2015-03-12 2022-04-25 린텍 가부시키가이샤 Film for forming a protective film
JP2017076748A (en) * 2015-10-16 2017-04-20 リンテック株式会社 Adhesive sheet, and method for manufacturing semiconductor device
JP2019509620A (en) * 2016-03-31 2019-04-04 エルジー・ケム・リミテッド Semiconductor device and manufacturing method of semiconductor device
JP2020057710A (en) * 2018-10-03 2020-04-09 株式会社ディスコ Wafer processing method
JP7175698B2 (en) 2018-10-03 2022-11-21 株式会社ディスコ Wafer processing method
DE112019006485T5 (en) 2018-12-28 2021-11-04 Nagase & Co., Ltd. Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201513195A (en) 2015-04-01
KR20160041966A (en) 2016-04-18
WO2015019817A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5961055B2 (en) Sealing resin sheet, electronic component package manufacturing method, and electronic component package
JP5943898B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
WO2015019817A1 (en) Method for producing semiconductor package
JP5837381B2 (en) Manufacturing method of semiconductor device
WO2015019816A1 (en) Method for producing semiconductor package
JP6484061B2 (en) Manufacturing method of electronic component package
JP2015032647A (en) Semiconductor device manufacturing method and sealing sheet
WO2015076088A1 (en) Sealing sheet with separators on both surfaces, and method for manufacturing semiconductor device
WO2014196296A1 (en) Method for manufacturing semiconductor device
WO2015060106A1 (en) Semiconductor package manufacturing method
JP6041933B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
JP2014170845A (en) Method for manufacturing semiconductor device, sheet-like resin composition, and dicing tape integrated sheet-like resin composition
WO2016031579A1 (en) Method for manufacturing semiconductor device, and sealing sheet
JP2015053408A (en) Semiconductor device manufacturing method
WO2014083974A1 (en) Semiconductor-device manufacturing method
JP2015126129A (en) Method of manufacturing electronic component package
WO2015053081A1 (en) Method for manufacturing semiconductor device
JP2014170848A (en) Method for manufacturing semiconductor device, sheet-like resin composition, and dicing tape integrated sheet-like resin composition
JP2015126131A (en) Method of manufacturing electronic component package