JP2015040794A - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP2015040794A
JP2015040794A JP2013172641A JP2013172641A JP2015040794A JP 2015040794 A JP2015040794 A JP 2015040794A JP 2013172641 A JP2013172641 A JP 2013172641A JP 2013172641 A JP2013172641 A JP 2013172641A JP 2015040794 A JP2015040794 A JP 2015040794A
Authority
JP
Japan
Prior art keywords
temperature
temperature chamber
chamber
cantilever
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172641A
Other languages
Japanese (ja)
Other versions
JP6230334B2 (en
Inventor
大 富松
Masaru Tomimatsu
大 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2013172641A priority Critical patent/JP6230334B2/en
Publication of JP2015040794A publication Critical patent/JP2015040794A/en
Application granted granted Critical
Publication of JP6230334B2 publication Critical patent/JP6230334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature sensor that is capable of detecting a change in temperature accurately and convenient.SOLUTION: A temperature sensor 1000 comprises: a first temperature compartment 200, the temperature of the inside of the first temperature compartment 200 varying according to a change in temperature of an external environment; a second temperature compartment 300 that is defined by a partition 400 between the second temperature compartment 300 and the first temperature compartment 200 adjacent to each other, the temperature of the inside of the second temperature compartment 300 being independent of a change in temperature of an external environment; and a sensor section 100 located on the partition 400. The partition 400 thermally insulates the first temperature compartment 200 from the second temperature compartment 300. The sensor section 100 has a cantilever 15 that bends and deforms depending on a difference in pressure between the first temperature compartment 200 and the second temperature compartment 300 and a gap 20 that allows a fluid to flow between the first temperature compartment 200 and the second temperature compartment 300. The sensor section 100 detects a degree of deformation of the cantilever.

Description

本発明は、温度センサに関する。   The present invention relates to a temperature sensor.

従来の温度センサとしては、半導体ピエゾ抵抗素子、サーミスタ素子などの測温抵抗体を用いたものが知られている。これらの温度センサは、電気抵抗値の温度変化を測定する方式であるため、当該電気抵抗値を測定する上で、素子に電流を流し、その時の電圧値を測定する必要がある。そのため、これらの温度センサは、温度測定に際して大きな電力消費を伴うものであるため、センサの省電力化に不向きである。   As a conventional temperature sensor, a sensor using a resistance temperature detector such as a semiconductor piezoresistive element or a thermistor element is known. Since these temperature sensors measure the temperature change of the electric resistance value, it is necessary to pass a current through the element and measure the voltage value at that time when measuring the electric resistance value. For this reason, these temperature sensors involve a large amount of power when measuring temperature, and are not suitable for power saving of the sensors.

一方、温度測定に際して電力消費を伴わない温度センサとしては、充満式温度センサが知られている。当該充満式温度センサとしては、例えば、ブルトン管充満式温度センサが広く用いられている。   On the other hand, a full-type temperature sensor is known as a temperature sensor that does not involve power consumption during temperature measurement. For example, a Breton tube full-type temperature sensor is widely used as the full-type temperature sensor.

当該ブルトン管充満式温度センサは、金属製のブルトン管内部に充満された流体が外気温変化に即して膨張・収縮することでブルトン管を変位させ、その変位量に即した外気温変化を指針によって温度指示するものである(例えば、特許文献1等参照)。   The Breton tube filled temperature sensor displaces the Breton tube by expanding and contracting the fluid filled inside the metal Breton tube according to the change in the outside air temperature, and changes the outside air temperature according to the amount of displacement. The temperature is indicated by a pointer (see, for example, Patent Document 1).

特開平11−51777号公報Japanese Patent Laid-Open No. 11-51777

しかしながら、上記特許文献1記載の充満式温度センサは、外気温変化を計測することができる一方で、他の温度変化(外気温と異なったある基準温度に対する相対的な温度変化)を精確に検知することができない。というのは、上記充満式温度センサでは、外気温と異なるある基準温度に設置する上で(例えば、外気温よりも遥かに高温の基準温度で維持されるべき装置に設置する場合など)、ブルトン管が膨張・収縮して、基準温度時点で指針による温度指示がなされてしまうためである。そのため、従来の充満式温度センサは、温度センサとしての利便性が不十分であるという課題があった。   However, while the full-type temperature sensor described in Patent Document 1 can measure an outside air temperature change, it accurately detects another temperature change (a relative temperature change with respect to a certain reference temperature different from the outside air temperature). Can not do it. This is because, in the above-mentioned full-type temperature sensor, when installed at a certain reference temperature different from the outside temperature (for example, when installed in a device that should be maintained at a reference temperature much higher than the outside temperature), Breton This is because the tube expands and contracts, and the temperature is indicated by the pointer at the reference temperature. Therefore, the conventional full-type temperature sensor has a problem that the convenience as a temperature sensor is insufficient.

そこで、本発明は、温度変化を精確に検出できる利便性の良い温度センサを提供することを目的とする。   Therefore, an object of the present invention is to provide a convenient temperature sensor that can accurately detect a temperature change.

上記課題を解決するために、請求項1に係る温度センサは、内部の温度が外部の温度変化に応じて変化し容積が一定の第1の温度室と、前記第1の温度室と仕切り板を介して連接され、内部の温度が外部の温度変化に追従しない容積が一定の第2の温度室と、を備え、前記仕切り板は、前記第1の温度室と前記第2の温度室とを熱的に絶縁し、前記仕切り板に配置され、前記第1の温度室と前記第2の温度室との圧力差に応じてたわみ変形するカンチレバーと、前記第1の温度室と第2の温度室との間で流体を流通させる間隙と、を含み当該カンチレバーの変形量を検出する検出部を有することを特徴とする。   In order to solve the above-described problem, a temperature sensor according to claim 1 includes a first temperature chamber whose internal temperature changes according to an external temperature change and has a constant volume, and the first temperature chamber and the partition plate. And a second temperature chamber having a constant volume in which the internal temperature does not follow the external temperature change, and the partition plate includes the first temperature chamber, the second temperature chamber, and the second temperature chamber. A cantilever that is disposed on the partition plate and is flexibly deformed in accordance with a pressure difference between the first temperature chamber and the second temperature chamber, and the first temperature chamber and the second temperature chamber. And a gap that allows fluid to flow between the temperature chamber and a detecting portion that detects a deformation amount of the cantilever.

請求項1記載の温度センサによると、ある基準温度に置かれた第1の温度室及び第2の温度室において、第1の温度室の温度(外部の温度)を変化させた場合、第1の温度室の内圧がその温度変化に応じて変化する一方で、第2の温度室の内圧(内部の温度)は変化しない。そのため、第1の温度室と第2の温度室の圧力差に応じてカンチレバーがたわみ変形するため、検出部にてその変形量を検出することで、基準温度に対する温度変化量(圧力変化量)を計測することが可能となる。しかも、第1の温度室及び第2の温度室をある基準温度に設置する際に第1の温度室の温度が変化したとしても、第1の温度室の流体が間隙を介して第2の温度室に流入するため、暫くすれば第1の温度室と第2の温度室は等温化(等圧化)されるため、カンチレバーをたわみの無い初期状態にすることができる。そのため、本発明の温度センサによると、第1の温度室と前記第2の温度室の相対的な温度変化量を精確に検出できる。   According to the temperature sensor of claim 1, when the temperature of the first temperature chamber (external temperature) is changed in the first temperature chamber and the second temperature chamber placed at a certain reference temperature, While the internal pressure of the second temperature chamber changes according to the temperature change, the internal pressure (internal temperature) of the second temperature chamber does not change. Therefore, since the cantilever bends and deforms according to the pressure difference between the first temperature chamber and the second temperature chamber, the amount of change in temperature (pressure change amount) relative to the reference temperature is detected by detecting the amount of deformation in the detection unit. Can be measured. In addition, even if the temperature of the first temperature chamber changes when the first temperature chamber and the second temperature chamber are installed at a certain reference temperature, the fluid in the first temperature chamber passes through the gap to the second temperature chamber. Since it flows into the temperature chamber, the first temperature chamber and the second temperature chamber are made isothermal (equal pressure) after a while, so that the cantilever can be in an initial state without deflection. Therefore, according to the temperature sensor of the present invention, the relative temperature change amount between the first temperature chamber and the second temperature chamber can be accurately detected.

また、請求項2に係る温度センサは、前記検出部は、前記カンチレバーの上部に配置された圧電素子を有することを特徴とする。
請求項2記載の温度センサによると、カンチレバーのたわみ変形に応じて圧電素子が圧電効果による起電力を発生させるので、当該起電力を検出することで温度変化量を計測することができる。つまり、請求項2記載の温度センサによると、圧電素子を用いることで、温度変化量を電気信号として出力できるとともに、温度測定に際しての電力消費を極力抑えることが可能となる。
The temperature sensor according to a second aspect is characterized in that the detection unit includes a piezoelectric element disposed on an upper portion of the cantilever.
According to the temperature sensor of the second aspect, since the piezoelectric element generates an electromotive force due to the piezoelectric effect in accordance with the bending deformation of the cantilever, the temperature change amount can be measured by detecting the electromotive force. That is, according to the temperature sensor of the second aspect, by using the piezoelectric element, it is possible to output the amount of temperature change as an electric signal and to suppress power consumption during temperature measurement as much as possible.

また、請求項3に係る温度センサは、前記仕切り板は、一部に開口を有し、前記カンチレバーは、前記開口の縁部に一端が固定され他端が自由端からなり、前記間隙を除く前記開口を閉塞するように配置されることを特徴とする。
請求項3記載の温度センサによると、カンチレバーが仕切り板の開口部分(つまり、第1の温度室と第2の温度室の境界部分)に設けられているので、一層精確に第1の温度室と第2の温度室の温度差を検出することができる。
Further, in the temperature sensor according to claim 3, the partition plate has an opening in a part thereof, and the cantilever has one end fixed to an edge of the opening and the other end formed as a free end, and the gap is excluded. It arrange | positions so that the said opening may be obstruct | occluded, It is characterized by the above-mentioned.
According to the temperature sensor of the third aspect, since the cantilever is provided in the opening portion of the partition plate (that is, the boundary portion between the first temperature chamber and the second temperature chamber), the first temperature chamber is more accurately detected. And the temperature difference between the second temperature chambers can be detected.

また、請求項4に係る温度センサは、前記第1の温度室は枠体が伝熱材からなり、前記第2の温度室は枠体が断熱材からなることを特徴とする。
請求項4記載の温度センサによると、一層容易に第1の温度室と第2の温度室の温度差形成が実現できる。
The temperature sensor according to claim 4 is characterized in that the first temperature chamber has a frame made of a heat transfer material, and the second temperature chamber has a frame made of a heat insulating material.
According to the temperature sensor of the fourth aspect, the temperature difference between the first temperature chamber and the second temperature chamber can be more easily realized.

また、請求項5に係る温度センサは、前記第1の温度室は、枠体が伝熱材からなる第3の温度室と、枠体が断熱材からなり、仕切り板を介して第2の温度室と連接された第4の温度室と、前記第3の温度室と前記第4の温度室とを分離し当該第3の温度室と第4の温度室とを熱的に絶縁する分離壁と、前記分離壁に設けられ、前記第3の温度室と前記第4の温度室との圧力差が予め定めた閾値を超えた場合に開弁して前記第3の温度室と前記第4の温度室との間で流体を流通させる前記間隙よりも大きな口径からなる弁部材と、を備えることを特徴とする。   Further, in the temperature sensor according to claim 5, the first temperature chamber includes a third temperature chamber in which the frame body is made of a heat transfer material, and a frame body is made of a heat insulating material. Separating the fourth temperature chamber connected to the temperature chamber, the third temperature chamber, and the fourth temperature chamber to thermally insulate the third temperature chamber from the fourth temperature chamber Provided on the wall and the separation wall, and opens when the pressure difference between the third temperature chamber and the fourth temperature chamber exceeds a predetermined threshold, and the third temperature chamber and the third temperature chamber And a valve member having a larger diameter than the gap for allowing fluid to flow between the four temperature chambers.

請求項5記載の温度センサによると、外部の温度が非常にゆっくりと変化し、間隙を介して外部の温度変化速度に併せて第1の温度室から第2の温度室への内部流体の流通が進行することで、双方の温度室間に十分な差圧が生じない場合であっても、第3の温度室と第4の温度室との圧力差が予め定めた閾値を超えるまで第4の温度室を第2の温度室と等温等圧に保ち、上記圧力差が閾値を超えると同時に、十分に高圧又は低圧化された第3の温度室の流体を第4の温度室に流入させることで、第4の温度室と第2の温度室との間(カンチレバーの表裏面)に差圧を形成することができる。そのため、請求項5記載の温度センサによると、外部の温度が非常にゆっくりと変化する場合であっても、精確に第1の温度室と第2の温度室の温度差を検出することができる。   According to the temperature sensor of claim 5, the external temperature changes very slowly, and the internal fluid flows from the first temperature chamber to the second temperature chamber through the gap in accordance with the external temperature change rate. Even if a sufficient differential pressure does not occur between the two temperature chambers as a result of the progress, the fourth temperature until the pressure difference between the third temperature chamber and the fourth temperature chamber exceeds a predetermined threshold value. The temperature chamber of the third temperature chamber is maintained at the same isothermal pressure as the second temperature chamber, and at the same time the pressure difference exceeds a threshold value, the fluid in the third temperature chamber that has been sufficiently increased in pressure or pressure is caused to flow into the fourth temperature chamber. Thus, a differential pressure can be formed between the fourth temperature chamber and the second temperature chamber (front and back surfaces of the cantilever). Therefore, the temperature sensor according to claim 5 can accurately detect the temperature difference between the first temperature chamber and the second temperature chamber even when the external temperature changes very slowly. .

したがって、本発明は、温度変化を精確に検出できる利便性の良い温度センサを提供できる。   Therefore, the present invention can provide a convenient temperature sensor that can accurately detect a temperature change.

本発明の第1実施形態に係る温度センサの外観を表す概略図である。It is the schematic showing the external appearance of the temperature sensor which concerns on 1st Embodiment of this invention. 図1に示す温度センサの縦断面図である。It is a longitudinal cross-sectional view of the temperature sensor shown in FIG. 図1に示す温度センサによる動作説明のための模式図であり、(A)は外気温の時間変化を、(B)は第1の温度室及び第2の温度室の内圧の時間変化を、それぞれ表す。It is a schematic diagram for the operation | movement description by the temperature sensor shown in FIG. 1, (A) is the time change of external temperature, (B) is the time change of the internal pressure of a 1st temperature chamber and a 2nd temperature chamber, Represent each. 本発明の第2実施形態に係る温度センサの縦断面図である。It is a longitudinal cross-sectional view of the temperature sensor which concerns on 2nd Embodiment of this invention. 図4に示す温度センサによる動作説明のための模式図であり、(A)は外気温の時間変化を、(B)は第1の温度室及び第2の温度室の内圧の時間変化を、それぞれ表す。It is a schematic diagram for operation | movement description by the temperature sensor shown in FIG. 4, (A) is a time change of external temperature, (B) is a time change of the internal pressure of a 1st temperature chamber and a 2nd temperature chamber, Represent each.

以下、本発明に係わる温度センサ1000の第1実施形態について図1〜図3を参照して説明する。
「第1実施形態」
(温度センサの全体構成)
図1及び図2に示すように、本実施形態に係る温度センサ1000は、外気温の変化に応じて内部の温度が変化する第1の温度室200と、外気温の変化に追従せずに内部の温度が一定の第2の温度室300と、第1の温度室200と第2の温度室300の間に設けられた仕切り板400と、仕切り板400の上部に配設された電極500及び圧力センサ部100と、を備え、第1の温度室200及び第2の温度室300の内部に流体(空気)が密閉された構造からなる。
Hereinafter, a first embodiment of a temperature sensor 1000 according to the present invention will be described with reference to FIGS.
“First Embodiment”
(Overall configuration of temperature sensor)
As shown in FIGS. 1 and 2, the temperature sensor 1000 according to the present embodiment includes a first temperature chamber 200 in which the internal temperature changes according to a change in the outside air temperature, and does not follow the change in the outside air temperature. A second temperature chamber 300 having a constant internal temperature, a partition plate 400 provided between the first temperature chamber 200 and the second temperature chamber 300, and an electrode 500 disposed above the partition plate 400 And the pressure sensor unit 100, and the fluid (air) is sealed in the first temperature chamber 200 and the second temperature chamber 300.

第1の温度室200は、内部及び底面が開口した箱形状からなる部材である。当該第1の温度室200は、例えば、アルミニウムや銅といった金属やSiなどの伝熱性の材料を用いて形成され、外気温の変化に応じて内部の温度が変化する。   The first temperature chamber 200 is a box-shaped member having an open interior and bottom surface. The first temperature chamber 200 is formed using, for example, a metal such as aluminum or copper, or a heat conductive material such as Si, and the internal temperature changes according to a change in the outside air temperature.

第2の温度室300は、仕切り板400を介して第1の温度室200の下部に配設され、内部及び上面が開口した箱形状からなる部材である。当該第2の温度室300は、樹脂表面に例えば、アルミニウムといった金属が成膜された材料やセラミック材など、内外を熱的に絶縁可能な材料を用いて形成され、外気温の変化に追従せずに内部の温度を一定に保つ。   The second temperature chamber 300 is a member that is disposed in the lower part of the first temperature chamber 200 with the partition plate 400 interposed therebetween, and has a box shape with the inside and upper surface opened. The second temperature chamber 300 is formed using a material that can thermally insulate the inside and outside, such as a material in which a metal such as aluminum is formed on the resin surface, or a ceramic material, and can follow changes in the outside air temperature. Keep the internal temperature constant.

仕切り板400は、第1の温度室200の底面と第2の温度室300の上面とを接続し、第1の温度室200と第2の温度室300の蓋として機能する板状の部材である。当該仕切り板400は、樹脂材やセラミック材を用いて構成され、第1の温度室200の内部と第2の温度室300の内部とを熱的に絶縁する。   The partition plate 400 is a plate-like member that connects the bottom surface of the first temperature chamber 200 and the top surface of the second temperature chamber 300 and functions as a lid for the first temperature chamber 200 and the second temperature chamber 300. is there. The partition plate 400 is configured using a resin material or a ceramic material, and thermally insulates the inside of the first temperature chamber 200 from the inside of the second temperature chamber 300.

また、仕切り板400は、第1の温度室200の内部と第2の温度室300の内部とを連接する貫通孔410を有する。
電極500は、仕切り板400上面に設けられ、一部が外部へ露出するように配置された電極であり、後述する圧力センサ部100と電気的に接続される。
In addition, the partition plate 400 includes a through hole 410 that connects the inside of the first temperature chamber 200 and the inside of the second temperature chamber 300.
The electrode 500 is an electrode provided on the upper surface of the partition plate 400 and disposed so as to be partially exposed to the outside, and is electrically connected to the pressure sensor unit 100 described later.

(圧力センサ部の構成)
圧力センサ部100は、図2に示すように、例えば、圧力センサの基部であるセンサフレーム10と、センサフレーム10の上部に基端側が支持されたカンチレバー15と、カンチレバー15の上部に配置された圧電体30と、カンチレバー15と貫通孔410の周縁との間に形成された間隙であり、第1の温度室200と第2の温度室300との間で内部流体を流通させるギャップ20と、を備えている。
(Configuration of pressure sensor)
As shown in FIG. 2, the pressure sensor unit 100 is disposed, for example, on the sensor frame 10 that is the base of the pressure sensor, the cantilever 15 that is supported on the base end side of the sensor frame 10, and the cantilever 15. A gap 20 formed between the piezoelectric body 30, the cantilever 15 and the periphery of the through-hole 410, and allows the internal fluid to flow between the first temperature chamber 200 and the second temperature chamber 300; It has.

上記センサフレーム10及びカンチレバー15は、例えば、シリコン支持層11、シリコン酸化膜12、およびシリコン活性層13を張り合わせたSOI基板14によって一体に形成される。
具体的には、センサフレーム10は、シリコン支持層11及びシリコン酸化膜12から構成され、貫通孔410に沿った孔を切り出した形状からなる。
The sensor frame 10 and the cantilever 15 are integrally formed by, for example, an SOI substrate 14 in which a silicon support layer 11, a silicon oxide film 12, and a silicon active layer 13 are bonded together.
Specifically, the sensor frame 10 includes a silicon support layer 11 and a silicon oxide film 12 and has a shape in which a hole along the through hole 410 is cut out.

一方、カンチレバー15は、平板状のシリコン活性層13よりギャップ20を切り出した形状からなる。つまり、カンチレバー15は、平面視矩形状の貫通孔410よりも長手方向及び幅方向の長さが僅かに小さくなるように(つまり、カンチレバー15が貫通孔410を塞ぐように)、平面視コ字状のギャップ20を切り出すことで、一端がセンサフレーム10に固定され、他端が自由端からなる矩形の片持ち梁状に形成される。ここで、ギャップ20は、第1の温度室200の内部と第2の温度室300の内部との微小な圧力差を検出するために、数マイクロメートルオーダーの大きさからなる。   On the other hand, the cantilever 15 has a shape in which the gap 20 is cut out from the flat silicon active layer 13. That is, the cantilever 15 is U-shaped in plan view so that the length in the longitudinal direction and the width direction is slightly smaller than the through hole 410 having a rectangular shape in plan view (that is, the cantilever 15 closes the through hole 410). By cutting out the gap 20, one end is fixed to the sensor frame 10 and the other end is formed in a rectangular cantilever shape having a free end. Here, the gap 20 has a size on the order of several micrometers in order to detect a minute pressure difference between the inside of the first temperature chamber 200 and the inside of the second temperature chamber 300.

圧電体30は、カンチレバー15の上面に配置され、カンチレバー15のたわみ変形に応じて撓み、圧電効果により起電力を出力する圧電材である。当該圧電体30は、MEMSプロセスによりシリコン基板上に圧電材をつけて加工したものである。このような構造により、微小な圧力差によっても、圧電体30が撓むことができるので、例えば1キロパスカル以下、数パスカルの圧力変化を検出できる感度を確保することができる。   The piezoelectric body 30 is a piezoelectric material that is disposed on the upper surface of the cantilever 15, bends according to the bending deformation of the cantilever 15, and outputs an electromotive force due to the piezoelectric effect. The piezoelectric body 30 is formed by attaching a piezoelectric material on a silicon substrate by a MEMS process. With such a structure, the piezoelectric body 30 can be bent even by a minute pressure difference, so that it is possible to secure a sensitivity capable of detecting a pressure change of, for example, 1 kilopascal or less and several pascals.

以上のように構成された圧力センサ部100によると、カンチレバー15の上面側である第1の温度室200の内圧と、カンチレバー15の下面側である第2の温度室300の内圧と、に差圧が生じた場合、カンチレバー15及び圧電体30が当該差圧に応じて撓み変形し、圧電体30から圧電効果に基づく起電力が出力されるので、当該起電力を電極500より検出することで、上記差圧を計測することが出来る。そして、第1の温度室200と第2の温度室300とは、微小なギャップ20を介して内部流体がゆっくりと流通するため、差圧が生じた後時間経過とともに、第1の温度室200と第2の温度室300とが徐々に等圧化される。その結果、上記等圧化された状態では、カンチレバー15及び圧電体30が元の状態(たわみ変形前の状態)に戻り、電極500による起電力の検出がなされなくなる。   According to the pressure sensor unit 100 configured as described above, there is a difference between the internal pressure of the first temperature chamber 200 that is the upper surface side of the cantilever 15 and the internal pressure of the second temperature chamber 300 that is the lower surface side of the cantilever 15. When pressure is generated, the cantilever 15 and the piezoelectric body 30 are bent and deformed according to the differential pressure, and an electromotive force based on the piezoelectric effect is output from the piezoelectric body 30, so that the electromotive force is detected from the electrode 500. The differential pressure can be measured. The first temperature chamber 200 and the second temperature chamber 300 flow slowly through the minute gap 20, so that the first temperature chamber 200 gradually passes with time after the differential pressure is generated. And the second temperature chamber 300 are gradually equalized. As a result, in the state where the pressure is equalized, the cantilever 15 and the piezoelectric body 30 return to the original state (the state before the deflection deformation), and the electromotive force is not detected by the electrode 500.

(温度センサの動作)
次いで、上述の温度センサ1000による測温時の動作について、図3を用いて説明する。ここで、第1の温度室200の内部温度/内圧をT1/P1,第2の温度室200の内部温度/内圧をT2/P2,外気の温度をTO、とする。また、測温時において外気の温度TOは、時間経過とともにTL→TH(TL<TH)へと変化していくものとする。
(Temperature sensor operation)
Next, an operation at the time of temperature measurement by the temperature sensor 1000 will be described with reference to FIG. Here, the internal temperature / internal pressure of the first temperature chamber 200 is T1 / P1, the internal temperature / internal pressure of the second temperature chamber 200 is T2 / P2, and the temperature of the outside air is TO. In addition, the temperature TO of the outside air during temperature measurement is assumed to change from TL to TH (TL <TH) with the passage of time.

はじめに、温度センサ1000が、図3(A)の時間S0に示すように、外気温TO(=TL)に変化の無い初期状態、つまり第1の温度室200の内部温度T1と第2の温度室300の内部温度T2とが等温状態(T1=T2=TL)にあるものとする。この場合、図3(B)の時間S0に示すように、第1の温度室200と第2の温度室300の容積がそれぞれ一定であるので、第1の温度室200の内圧P1と第1の温度室200の内圧P2も等圧(P1=P2=PL)となる。そのため、センサ部100において、カンチレバー15は上下面に差圧が生じないためにたわみ変形することなく、圧電体30から起電力が出力されることは無い。   First, as shown at time S0 in FIG. 3A, the temperature sensor 1000 is in an initial state in which the outside air temperature TO (= TL) does not change, that is, the internal temperature T1 and the second temperature of the first temperature chamber 200. It is assumed that the internal temperature T2 of the chamber 300 is in an isothermal state (T1 = T2 = TL). In this case, as shown at time S0 in FIG. 3B, the volumes of the first temperature chamber 200 and the second temperature chamber 300 are constant, so the internal pressure P1 of the first temperature chamber 200 and the first pressure chamber The internal pressure P2 of the temperature chamber 200 is equal pressure (P1 = P2 = PL). Therefore, in the sensor unit 100, the cantilever 15 does not generate a differential pressure on the upper and lower surfaces, and thus does not bend and deform, and no electromotive force is output from the piezoelectric body 30.

次に、上記の初期状態より外気温TOに変化が生じた、一例として、図3(A)の時間S0〜S1に示すように、外気温TOがTLからTHに変化(TH>TL)したものとする。この場合、第1の温度室200の内部温度T1は、外気温TOの変化に応じてTHに変化する一方、第2の温度室300の内部温度T2は、外気温TOの変化に依らずにTLを保つ。そのため、T1>T2の関係性と、第1の温度室200と第2の温度室300の容積の一定性と、により、図3(B)の時間S1に示すように、P1>P2の関係(P1=PH,P2=PL,PH>PL)が成り立つ。   Next, as an example, a change has occurred in the outside air temperature TO from the initial state described above, and the outside air temperature TO has changed from TL to TH (TH> TL) as shown at time S0 to S1 in FIG. Shall. In this case, the internal temperature T1 of the first temperature chamber 200 changes to TH according to the change in the outside air temperature TO, while the internal temperature T2 of the second temperature chamber 300 does not depend on the change in the outside air temperature TO. Keep TL. Therefore, as shown at time S1 in FIG. 3B, the relationship of P1> P2 is established by the relationship of T1> T2 and the constancy of the volumes of the first temperature chamber 200 and the second temperature chamber 300. (P1 = PH, P2 = PL, PH> PL) holds.

したがって、センサ部100において、カンチレバー15の上面側が下面側に対して高圧となってカンチレバー15がその差圧に応じて下向きにたわみ変形するので、当該変形量に応じた起電力が圧電体30から出力される。その結果、センサ部100は、外気温TOの変化に応じた起電力を検出することで、温度変化量を計測することが可能となる。   Accordingly, in the sensor unit 100, the upper surface side of the cantilever 15 becomes a high pressure with respect to the lower surface side, and the cantilever 15 bends and deforms downward according to the differential pressure. Is output. As a result, the sensor unit 100 can measure the temperature change amount by detecting the electromotive force according to the change in the outside air temperature TO.

そして、センサ部100は、当該温度を測定した後、第1の温度室200の内部流体と第2の温度室300の内部流体とが徐々に混ざり合っていき、第1の温度室200の内部温度T1と第2の温度室300の内部温度T2とが等温化されるにつれて、図3(B)の時間S2に示すように、カンチレバー15の上下面の差圧が消滅し(P1=P2=PHとなり)、カンチレバーがたわみのない状態に帰着する。   Then, after measuring the temperature, the sensor unit 100 gradually mixes the internal fluid of the first temperature chamber 200 and the internal fluid of the second temperature chamber 300, so that the inside of the first temperature chamber 200 As the temperature T1 and the internal temperature T2 of the second temperature chamber 300 are made isothermal, the differential pressure between the upper and lower surfaces of the cantilever 15 disappears (P1 = P2 =) as shown at time S2 in FIG. PH), and the cantilever returns to a state without deflection.

以上のように、本実施形態に係る温度センサ1000によると、ある基準温度に置かれた第1の温度室200及び第2の温度室300において、第1の温度室200の温度(外部の温度)を変化させた場合、第1の温度室200の内圧がその温度変化に応じて変化する一方で、第2の温度室300の内圧(内部の温度)は外部の温度に追従する変化をしない。そのため、第1の温度室200と第2の温度室300の圧力差に応じてカンチレバー15がたわみ変形するため、センサ部100にてその変形量を検出することで、基準温度に対する温度変化量(圧力変化量)を計測することが可能となる。しかも、第1の温度室200及び第2の温度室300をある基準温度に設置する際に第1の温度室200の温度が変化したとしても、第1の温度室200の流体がギャップ20を介して第2の温度室300に流入するため、暫くすれば第1の温度室200と第2の温度室300は等温化(等圧化)されるため、カンチレバー15をたわみの無い初期状態にすることができる。そのため、本発明の温度センサによると、第1の温度室200と第2の温度室300の相対的な温度変化量を精確に検出できる。   As described above, according to the temperature sensor 1000 according to the present embodiment, in the first temperature chamber 200 and the second temperature chamber 300 placed at a certain reference temperature, the temperature of the first temperature chamber 200 (external temperature). ) Is changed, the internal pressure of the first temperature chamber 200 changes according to the temperature change, while the internal pressure (internal temperature) of the second temperature chamber 300 does not change following the external temperature. . Therefore, since the cantilever 15 bends and deforms in accordance with the pressure difference between the first temperature chamber 200 and the second temperature chamber 300, the amount of change in temperature relative to the reference temperature (by detecting the amount of deformation by the sensor unit 100 ( Pressure change amount) can be measured. In addition, even if the temperature of the first temperature chamber 200 changes when the first temperature chamber 200 and the second temperature chamber 300 are installed at a certain reference temperature, the fluid in the first temperature chamber 200 causes the gap 20 to flow. Since the first temperature chamber 200 and the second temperature chamber 300 are isothermally (isobaric) after a while, the cantilever 15 is brought into an initial state with no deflection. can do. Therefore, according to the temperature sensor of the present invention, the relative temperature change amount between the first temperature chamber 200 and the second temperature chamber 300 can be accurately detected.

「第2実施形態」
次いで、本発明の第2実施形態に係る温度センサ1100について、図4〜図5を用いて説明する。なお、温度センサ1100の各部構成について、第1実施形態に係る温度センサ1000と同一構成については、同一の符号を付してその説明を省略する。
“Second Embodiment”
Next, a temperature sensor 1100 according to a second embodiment of the present invention will be described with reference to FIGS. In addition, about the structure of each part of the temperature sensor 1100, about the same structure as the temperature sensor 1000 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

第1実施形態に係る温度センサ1000では、図5の破線で示すように、微小時間S1で外気温TOがTLからTHに変化した際、その温度変化量を圧力センサ部100にて計測出来る旨を説明したが、図5の実線で示すように、外気温TOの変化が非常にゆっくりと変化する場合(S1<<S3)、外気温TOの変化速度に併せて第1の温度室200から第2の温度室300への内部流体の流通が進行することで、双方の温度室間に十分な差圧が生じない可能性もある。   In the temperature sensor 1000 according to the first embodiment, as shown by a broken line in FIG. 5, when the outside air temperature TO changes from TL to TH in the minute time S1, the temperature change amount can be measured by the pressure sensor unit 100. However, as shown by the solid line in FIG. 5, when the change in the outside air temperature TO changes very slowly (S1 << S3), the first temperature chamber 200 is changed in accordance with the changing speed of the outside air temperature TO. As the flow of the internal fluid to the second temperature chamber 300 proceeds, there is a possibility that a sufficient differential pressure does not occur between the two temperature chambers.

そこで、図4に示すように、本実施形態に係る温度センサ1100は、第1の温度室200と、第2の温度室300と、仕切り板400と、電極500と、圧力センサ部100と、を備え、第1の温度室200が、分離部600によって第3の温度室200aと第4の温度室200bとに分離される構成とする。   Therefore, as shown in FIG. 4, the temperature sensor 1100 according to the present embodiment includes a first temperature chamber 200, a second temperature chamber 300, a partition plate 400, an electrode 500, a pressure sensor unit 100, The first temperature chamber 200 is separated into the third temperature chamber 200a and the fourth temperature chamber 200b by the separation unit 600.

第3の温度室200aは、例えば、アルミニウムや銅といった金属やSiなどの伝熱性の材料を用いて形成され、外気温の変化に応じて内部の温度が変化する。
第4の温度室200bは、樹脂表面に例えば、アルミニウムといった金属が成膜された材料やセラミック材など、内外を熱的に絶縁可能な材料を用いて形成され、外気温の変化に追従せずに内部の温度を一定に保つ。
The third temperature chamber 200a is formed using, for example, a metal such as aluminum or copper, or a heat conductive material such as Si, and the internal temperature changes according to a change in the outside air temperature.
The fourth temperature chamber 200b is formed by using a material that can thermally insulate the inside and outside, such as a material in which a metal such as aluminum is formed on the resin surface or a ceramic material, and does not follow changes in the outside air temperature. Keep the internal temperature constant.

分離部600は、第1の温度室200を第3の温度室200aと第4の温度室200bとに分離する分離壁610,620と、予め定められた開弁圧で開弁する弁部材650と、で構成される。
分離壁610,620は、樹脂材やセラミック材を用いて構成され、第3の温度室200aと第4の温度室200bの内部とを熱的に絶縁する。
The separation unit 600 includes separation walls 610 and 620 that separate the first temperature chamber 200 into a third temperature chamber 200a and a fourth temperature chamber 200b, and a valve member 650 that opens at a predetermined valve opening pressure. And.
Separation walls 610 and 620 are formed using a resin material or a ceramic material, and thermally insulate the inside of the third temperature chamber 200a and the fourth temperature chamber 200b.

弁部材650は、第3の温度室200aと第4の温度室200bの差圧が開弁圧Pthを上回った際に開弁して、第3の温度室200aと第4の温度室200bとの間の流体の流通を許容する弁である。なお、弁部材650の開弁時の開口径は、ギャップ20の口径よりも十分大きいものとする。   The valve member 650 opens when the differential pressure between the third temperature chamber 200a and the fourth temperature chamber 200b exceeds the valve opening pressure Pth, and the third temperature chamber 200a and the fourth temperature chamber 200b It is a valve that allows fluid to flow between the two. Note that the opening diameter of the valve member 650 when opening is sufficiently larger than the diameter of the gap 20.

(温度センサの動作)
次いで、上述の温度センサ1100による測温時の動作について、図5を用いて説明する。ここで、第2の温度室300の内部温度/内圧をT2/P2,第3の温度室200aの内部温度/内圧をT3/P3,第4の温度室の内部温度/内圧をT4/P4、外気の温度をTO、とする。また、測温時において外気の温度TOは、時間経過とともにTL→TM1→TM2→TH(TL<TM1<TM2<TH)へと変化していくものとする。さらに、弁部材650の開弁圧Pthは、図5(B)に示される、PM1−PLよりも大きくPM2−PLよりも小さい値とする。
(Temperature sensor operation)
Next, the operation during temperature measurement by the temperature sensor 1100 described above will be described with reference to FIG. Here, the internal temperature / internal pressure of the second temperature chamber 300 is T2 / P2, the internal temperature / internal pressure of the third temperature chamber 200a is T3 / P3, and the internal temperature / internal pressure of the fourth temperature chamber is T4 / P4, The outside air temperature is assumed to be TO. In addition, the temperature TO of the outside air during temperature measurement is assumed to change from TL → TM1 → TM2 → TH (TL <TM1 <TM2 <TH) as time elapses. Further, the valve opening pressure Pth of the valve member 650 is set to a value larger than PM1-PL and smaller than PM2-PL as shown in FIG.

はじめに、図5(A)の実線の時間S0に示すように、温度センサ1000が、外気温TO(=TL)に変化の無い初期状態、つまり第2の温度室300〜第4の温度室200bの内部温度が等温状態(T2=T3=T4=TL)にある場合は、第1実施形態と同様である。   First, as shown by a solid line time S0 in FIG. 5A, the temperature sensor 1000 is in an initial state in which the outside air temperature TO (= TL) does not change, that is, the second temperature chamber 300 to the fourth temperature chamber 200b. Is in the isothermal state (T2 = T3 = T4 = TL), the same as in the first embodiment.

次に、図5(A)の実線の時間S1に示すように、上記の初期状態より外気温TOがTM1に変化したものとする。この場合、第3の温度室200aの内部温度T3が外気温TOの変化に応じてTM1に変化するため、図5(B)の実線で示すように内圧P3がPM1に上昇する。一方で、第2の温度室300の内部温度T2及び第4の温度室200bの内部温度T4は、外気温TOの変化に依らずにTLを保つため、図5(B)の破線及び一点鎖線で示すように、第2の温度室300の内圧P2及び第4の温度室200bの内圧P4はPLのままである。この際、第3の温度室200aと第4の温度室200bの圧力差は、PM1−PLであり、弁部材650の開弁圧Pth未満であるため、第3の温度室200aから第4の温度室200bへ内部流体は流通しない。   Next, it is assumed that the outside air temperature TO has changed to TM1 from the initial state as indicated by a solid time S1 in FIG. In this case, since the internal temperature T3 of the third temperature chamber 200a changes to TM1 according to the change of the external temperature TO, the internal pressure P3 rises to PM1 as shown by the solid line in FIG. On the other hand, the internal temperature T2 of the second temperature chamber 300 and the internal temperature T4 of the fourth temperature chamber 200b are maintained at TL irrespective of the change in the external temperature TO. As shown, the internal pressure P2 of the second temperature chamber 300 and the internal pressure P4 of the fourth temperature chamber 200b remain PL. At this time, the pressure difference between the third temperature chamber 200a and the fourth temperature chamber 200b is PM1-PL, which is less than the valve opening pressure Pth of the valve member 650. The internal fluid does not flow to the temperature chamber 200b.

次に、図5(A)の実線の時間S2に示すように、外気温TOがTM1からTM2に変化したものとする。この場合、第3の温度室200aの内部温度T3が外気温TOの変化に応じてTM2に変化するため、内圧P3がPM2に上昇する一方、第2の温度室300の内部温度T2及び第4の温度室200bの内部温度T4は、外気温TOの変化に依らずにTLを保つ。そのため、第2の温度室300の内圧P2及び第4の温度室200bの内圧P4はPLのままである。この際、第3の温度室200aと第4の温度室200bの圧力差は、PM2−PLであり、弁部材650の開弁圧Pthを超えるため弁部材650が開弁し、第3の温度室200aから第4の温度室200bへ高圧の内部流体が一気に流入する。   Next, it is assumed that the outside air temperature TO has changed from TM1 to TM2 as indicated by a solid line time S2 in FIG. In this case, since the internal temperature T3 of the third temperature chamber 200a changes to TM2 according to the change of the external temperature TO, the internal pressure P3 rises to PM2, while the internal temperature T2 and the fourth temperature of the second temperature chamber 300 The internal temperature T4 of the temperature chamber 200b is maintained at TL regardless of the change in the external temperature TO. Therefore, the internal pressure P2 of the second temperature chamber 300 and the internal pressure P4 of the fourth temperature chamber 200b remain PL. At this time, the pressure difference between the third temperature chamber 200a and the fourth temperature chamber 200b is PM2-PL and exceeds the valve opening pressure Pth of the valve member 650, so that the valve member 650 is opened, and the third temperature A high-pressure internal fluid flows from the chamber 200a into the fourth temperature chamber 200b at a stroke.

したがって、図5(A)の実線の時間S2〜S3にかけて、第4の温度室200bの内圧P4は第3の温度室200aの内圧P3に追従するように一気に昇圧される。一方で、第4の温度室200bと第2の温度室300との内部流体の流通は、弁部材650よりも十分小さな口径よりなるギャップ20を介してなされるため、第2の温度室300の内圧P2は非常にゆっくりと昇圧される。   Therefore, the internal pressure P4 of the fourth temperature chamber 200b is increased at a stretch so as to follow the internal pressure P3 of the third temperature chamber 200a over the time S2 to S3 of the solid line in FIG. On the other hand, the flow of the internal fluid between the fourth temperature chamber 200b and the second temperature chamber 300 is performed through the gap 20 having a sufficiently smaller diameter than the valve member 650. The internal pressure P2 is increased very slowly.

その結果、センサ部100において、カンチレバー15の上面側が下面側に対して高圧となってカンチレバー15がその差圧に応じて下向きにたわみ変形するので、当該変形量に応じた起電力が圧電体30から出力される。その結果、センサ部100は、外気温TOの変化に応じた起電力を検出することで、温度を計測することが可能となる。   As a result, in the sensor unit 100, the upper surface side of the cantilever 15 becomes a high pressure with respect to the lower surface side, and the cantilever 15 bends and deforms downward according to the differential pressure. Is output from. As a result, the sensor unit 100 can measure the temperature by detecting an electromotive force according to a change in the outside air temperature TO.

以上により、第2実施形態に係る温度センサ1100によると、第1実施形態に係る温度センサ1000と同様の効果が得られることは勿論、外気温が非常にゆっくりと変化した場合であっても、その温度変化量を計測することが可能となるので、一層利便性の良い温度センサを提供することができる。   As described above, according to the temperature sensor 1100 according to the second embodiment, the same effect as the temperature sensor 1000 according to the first embodiment can be obtained, and even when the outside air temperature changes very slowly, Since the temperature change amount can be measured, a more convenient temperature sensor can be provided.

なお、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上記実施形態への適宜の変更が可能である。具体的には、上記第1及び第2実施形態において、温度センサ1000,1100が外気温の変化を計測する例を示したが、温度センサ1000,1100は、所定の装置に取り付けられ当該装置の温度変化(停止時と駆動時の温度変化など)を計測することとしても勿論良い。この場合の温度センサ1000,1100は、熱伝導性に優れた第1の温度室200(第3の温度室200a)の表面側に上記装置が当接するように取り付けられることで、精確に装置の温度変化を計測することができる。   Note that the technical scope of the present invention is not limited to the above-described embodiments, and appropriate modifications to the above-described embodiments are possible without departing from the spirit of the present invention. Specifically, in the first and second embodiments, the temperature sensors 1000 and 1100 have shown an example in which changes in the outside air temperature are measured. However, the temperature sensors 1000 and 1100 are attached to a predetermined device and are connected to the device. Of course, it is also possible to measure a temperature change (temperature change at the time of stopping and driving, etc.). In this case, the temperature sensors 1000 and 1100 are attached so that the device comes into contact with the surface side of the first temperature chamber 200 (third temperature chamber 200a) having excellent thermal conductivity. Temperature change can be measured.

1000,1100 温度センサ
10
11 シリコン支持層
12 シリコン酸化膜
13 シリコン活性層
14 SOI基板
15 カンチレバー
20 ギャップ(間隙)
100 圧力センサ部
200 第1の温度室
200a 第3の温度室
200b 第4の温度室
300 第2の温度室
400 仕切り板
410 貫通孔(開口)
500 電極
600 分離部
610,620 分離壁
650 弁部材
1000, 1100 Temperature sensor 10
DESCRIPTION OF SYMBOLS 11 Silicon support layer 12 Silicon oxide film 13 Silicon active layer 14 SOI substrate 15 Cantilever 20 Gap (gap)
DESCRIPTION OF SYMBOLS 100 Pressure sensor part 200 1st temperature chamber 200a 3rd temperature chamber 200b 4th temperature chamber 300 2nd temperature chamber 400 Partition plate 410 Through-hole (opening)
500 Electrode 600 Separating part 610,620 Separating wall 650 Valve member

Claims (5)

内部の温度が外部の温度変化に応じて変化する第1の温度室と、
前記第1の温度室と仕切り板を介して連接され、内部の温度が外部の温度変化に追従しない第2の温度室と、
を備え、
前記仕切り板は、前記第1の温度室と前記第2の温度室とを熱的に絶縁し、
前記仕切り板に配置され、前記第1の温度室と前記第2の温度室との圧力差に応じてたわみ変形するカンチレバーと、前記第1の温度室と第2の温度室との間で流体を流通させる間隙と、を含み当該カンチレバーの変形量を検出する検出部を有することを特徴とする温度センサ。
A first temperature chamber in which an internal temperature changes according to an external temperature change;
A second temperature chamber connected to the first temperature chamber via a partition plate, and the internal temperature does not follow the external temperature change;
With
The partition plate thermally insulates the first temperature chamber and the second temperature chamber,
A cantilever disposed on the partition plate and deformed in accordance with a pressure difference between the first temperature chamber and the second temperature chamber, and a fluid between the first temperature chamber and the second temperature chamber. A temperature sensor comprising: a gap through which the cantilever is circulated; and a detection unit that detects a deformation amount of the cantilever.
前記検出部は、前記カンチレバーの上部に配置された圧電素子を有することを特徴とする請求項1に記載の温度センサ。   The temperature sensor according to claim 1, wherein the detection unit includes a piezoelectric element disposed on an upper portion of the cantilever. 前記仕切り板は、一部に開口を有し、
前記カンチレバーは、前記開口の縁部に一端が固定され他端が自由端からなり、前記間隙を除く前記開口を閉塞するように配置されることを特徴とする請求項1又は2に記載の温度センサ。
The partition plate has an opening in part,
3. The temperature according to claim 1, wherein the cantilever is arranged so that one end is fixed to an edge of the opening and the other end is a free end, and the opening excluding the gap is closed. Sensor.
前記第1の温度室は枠体が伝熱材からなり、前記第2の温度室は枠体が断熱材からなることを特徴とする請求項1〜3の何れか一項に記載の温度センサ。   The temperature sensor according to any one of claims 1 to 3, wherein the first temperature chamber has a frame made of a heat transfer material, and the second temperature chamber has a frame made of a heat insulating material. . 前記第1の温度室は、
枠体が伝熱材からなる第3の温度室と、
枠体が断熱材からなり、仕切り板を介して第2の温度室と連接された第4の温度室と、
前記第3の温度室と前記第4の温度室とを分離し当該第3の温度室と第4の温度室とを熱的に絶縁する分離壁と、
前記分離壁に設けられ、前記第3の温度室と前記第4の温度室との圧力差が予め定めた閾値を超えた場合に開弁して前記第3の温度室と前記第4の温度室との間で流体を流通させる前記間隙よりも大きな口径からなる弁部材と、
The first temperature chamber is
A third temperature chamber whose frame is made of a heat transfer material;
A fourth temperature chamber having a frame made of a heat insulating material and connected to the second temperature chamber via a partition plate;
A separation wall that separates the third temperature chamber from the fourth temperature chamber and thermally insulates the third temperature chamber from the fourth temperature chamber;
When the pressure difference between the third temperature chamber and the fourth temperature chamber exceeds a predetermined threshold, the valve is opened on the separation wall, and the third temperature chamber and the fourth temperature are opened. A valve member having a larger diameter than the gap through which fluid flows between the chamber and
JP2013172641A 2013-08-22 2013-08-22 Temperature sensor Active JP6230334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172641A JP6230334B2 (en) 2013-08-22 2013-08-22 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172641A JP6230334B2 (en) 2013-08-22 2013-08-22 Temperature sensor

Publications (2)

Publication Number Publication Date
JP2015040794A true JP2015040794A (en) 2015-03-02
JP6230334B2 JP6230334B2 (en) 2017-11-15

Family

ID=52695037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172641A Active JP6230334B2 (en) 2013-08-22 2013-08-22 Temperature sensor

Country Status (1)

Country Link
JP (1) JP6230334B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48113387U (en) * 1972-03-31 1973-12-25
WO2012102073A1 (en) * 2011-01-28 2012-08-02 国立大学法人東京大学 Differential pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48113387U (en) * 1972-03-31 1973-12-25
WO2012102073A1 (en) * 2011-01-28 2012-08-02 国立大学法人東京大学 Differential pressure sensor

Also Published As

Publication number Publication date
JP6230334B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US20220333966A1 (en) Thermal fluid flow sensor
Zhang et al. A self-bended piezoresistive microcantilever flow sensor for low flow rate measurement
JP5778619B2 (en) Pressure sensor
CN107445133B (en) Compact load cell device with low sensitivity to thermo-mechanical package stress
JP6168952B2 (en) Pressure sensor
JP6748788B2 (en) Pneumatic base tactile sensor
JP5853171B2 (en) Semiconductor pressure sensor and manufacturing method thereof
EP2700928A2 (en) Pressure sensor
JP6144540B2 (en) Pressure sensor
Rajavelu et al. Perforated diaphragms employed piezoresistive MEMS pressure sensor for sensitivity enhancement in gas flow measurement
US8511168B2 (en) Sensor element for capacitively measuring differential pressure
JP5656191B2 (en) Flow rate sensor
JP6184006B2 (en) Pressure sensor
JP6144594B2 (en) Pressure sensor
Yotter et al. On a micromachined fluidic inclinometer
Suja et al. Investigation on better sensitive silicon based MEMS pressure sensor for high pressure measurement
JP6230334B2 (en) Temperature sensor
Najmzadeh et al. A silicon straight tube fluid density sensor
JP2013108876A (en) Semiconductor pressure sensor and manufacturing method therefor
JP2013148495A (en) Semiconductor sensor
JP2014134543A (en) Sensor element, pressure-sensitive sensor, and tactile sensor
KR101024616B1 (en) Semicondutor-sensor for measuring tilt or acceleration, and manufacturing method thereof
JP2010230312A (en) Semiconductor sensor manufacturing method and semiconductor sensor
JP2010002421A (en) Servo electrostatic capacitance type vacuum sensor
JP6787636B2 (en) Vacuum measurement sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160609

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20161026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171017

R150 Certificate of patent or registration of utility model

Ref document number: 6230334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250