JP2015035863A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2015035863A
JP2015035863A JP2013164671A JP2013164671A JP2015035863A JP 2015035863 A JP2015035863 A JP 2015035863A JP 2013164671 A JP2013164671 A JP 2013164671A JP 2013164671 A JP2013164671 A JP 2013164671A JP 2015035863 A JP2015035863 A JP 2015035863A
Authority
JP
Japan
Prior art keywords
current
mosfet
semiconductor module
detection unit
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013164671A
Other languages
Japanese (ja)
Other versions
JP6072645B2 (en
Inventor
森 和久
Kazuhisa Mori
和久 森
大沼 直人
Naoto Onuma
大沼  直人
石川 勝美
Katsumi Ishikawa
勝美 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013164671A priority Critical patent/JP6072645B2/en
Priority to CN201410381745.7A priority patent/CN104348369B/en
Publication of JP2015035863A publication Critical patent/JP2015035863A/en
Application granted granted Critical
Publication of JP6072645B2 publication Critical patent/JP6072645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion device which enables reducing of unevenness in current sharing in parallel connection at a stage as early as possible after occurrence.SOLUTION: A power conversion device includes a switching circuit in which semiconductor modules containing a pair of upper and lower MOSFETs are connected in parallel within a single phase, for conversion between DC and AC. It includes a current detection part which detects a current on an AC side of respective semiconductor modules, and a gate control part for controlling on/off of the MOSFET according to the current detected by the current detection part. The gate control part, during a period of reflux mode in which a reflux current flows any of the MOSFET, makes the time period during which the MOSFET on the side of reflux mode of a semiconductor module of a smaller current that is detected by the current detection part is turned on longer than the time period during which the MOSFET on the side of reflux mode of a semiconductor module of a larger current that is detected by the current detection part.

Description

本発明は、電力変換装置に関するものであり、特にMOSFETを有する半導体モジュールを1相内で並列接続して構成される電力変換装置に関する。   The present invention relates to a power converter, and more particularly to a power converter configured by connecting semiconductor modules having MOSFETs in parallel in one phase.

エレベータ駆動用電力変換装置などの中大容量電力変換装置では、負荷であるモータが高電圧とならないように、電流を増加させて大容量化を図っている。そのためには半導体スイッチング素子を1相内で並列接続した構成となる。並列接続においては、スイッチング素子特性だけではなく、主回路配線インダクタンスやゲート駆動回路の不均等が、電流分担不均等の要因となる。   In medium- and large-capacity power converters such as elevator-drive power converters, the capacity is increased by increasing the current so that the motor as a load does not become a high voltage. For this purpose, the semiconductor switching elements are connected in parallel within one phase. In the parallel connection, not only the switching element characteristics but also the non-uniformity of the main circuit wiring inductance and the gate drive circuit becomes the cause of non-uniform current sharing.

ここで、ゲート駆動回路を並列間で共通にすることで、ゲート駆動回路の不均等が及ぼす影響は除去することができる。   Here, by making the gate drive circuit common in parallel, the influence of the non-uniformity of the gate drive circuit can be eliminated.

また、例えば特許文献1のように、並列間で別々のゲート駆動回路とし、それぞれのゲート駆動回路への信号を遅延調整することでスイッチングのタイミングを調整して、電流分担不均等を低減できることが知られている。   Further, for example, as disclosed in Patent Document 1, it is possible to reduce the current sharing unevenness by adjusting the timing of switching by delay-adjusting the signal to each gate driving circuit by using separate gate driving circuits in parallel. Are known.

また、SiC(炭化珪素)を用いたMOSFETと環流ダイオードとしてSiCのショットキーバリアダイオード(SBD)を組み合わせて用いることで、スイッチングモジュールの低損失化が進んでいるが、それに伴い電圧変化率dv/dt及び電流変化率di/dtが増大しているため、わずかな配線インダクタンスの差異が電流分担不均等に影響を及ぼすことが懸念される。   Further, by using a combination of a MOSFET using SiC (silicon carbide) and a SiC Schottky barrier diode (SBD) as a free-wheeling diode, the switching module has been reduced in loss, but the voltage change rate dv / Since dt and current change rate di / dt are increasing, there is a concern that a slight difference in wiring inductance may affect current sharing unevenly.

特開2009−135626号公報JP 2009-135626 A

ここで、電流分担不均等への対応として、特許文献1では、並列接続されたスイッチング素子のゲート駆動回路を各々別にして、各スイッチング素子の温度を比較して、温度がバランスするようにゲート駆動回路への信号を遅延回路で調整することにより電流分担不均等の低減をしている。   Here, as a countermeasure to non-uniform current sharing, in Patent Document 1, the gate drive circuits of switching elements connected in parallel are separately provided, the temperature of each switching element is compared, and the gates are set so that the temperatures are balanced. The current sharing unevenness is reduced by adjusting the signal to the drive circuit by the delay circuit.

例えば図6に示す三相インバータ回路において、各相のスイッチング回路3を半導体モジュール31、32の並列接続で構成した電力変換装置の場合で説明する。図7に、半導体モジュール31の正極側スイッチング素子31QPの駆動信号GP1、負極側スイッチング素子31QNの駆動信号GN1、半導体モジュール31に並列接続された半導体モジュール32の正極側スイッチング素子32QPの駆動信号GP2、負極側スイッチング素子32QNの駆動信号GN2、スイッチング素子31QP、31QN、32QP、32QNの電圧VP1、VP2、VN1、VN2、スイッチング素子31QP、31QN、32QP、32QNの電流IP1、IP2、IN1、IN2、半導体モジュール31、32の交流出力端子31AC、32ACの電流Iac1、Iac2を示す。図7の横軸は時間である。   For example, in the three-phase inverter circuit shown in FIG. 6, the case of a power conversion device in which the switching circuit 3 of each phase is configured by parallel connection of semiconductor modules 31 and 32 will be described. 7, the drive signal GP1 of the positive side switching element 31QP of the semiconductor module 31, the drive signal GN1 of the negative side switching element 31QN, the drive signal GP2 of the positive side switching element 32QP of the semiconductor module 32 connected in parallel to the semiconductor module 31, Drive signal GN2 for negative side switching element 32QN, voltages VP1, VP2, VN1, and VN2 for switching elements 31QP, 31QN, 32QP, and 32QN, currents IP1, IP2, IN1, and IN2 for switching elements 31QP, 31QN, 32QP, and 32QN, semiconductor module Currents Iac1 and Iac2 of AC output terminals 31AC and 32AC of 31 and 32 are shown. The horizontal axis in FIG. 7 is time.

図7において、時刻t1までは正極側スイッチング素子31QP、32QPがオンしていて、電流は均等に流れているとする。そして、時刻t1でターンオフした際に、ゲート駆動回路あるいは素子特性のばらつきによりスイッチング素子31QPのオフが遅れて電流に不均等が発生した場合を想定する。その場合、後からオフしたスイッチング素子31QPの電流IP1が増大するため、交流出力端子の電流もIac1>Iac2となり、電流の不均等が発生する。時刻t1以後は負極側の環流モードとなるが、時刻t2まではスイッチング素子31QN、32QNの駆動信号GN1、GN2がオフのため、負極側の環流ダイオード31DN、32DNと、MOSFETで構成されたスイッチング素子31QN、32QNの寄生ダイオードに電流が流れる。   In FIG. 7, it is assumed that the positive side switching elements 31QP and 32QP are on and the current flows evenly until time t1. A case is assumed in which when the turn-off is performed at time t1, the switching element 31QP is delayed to be turned off due to variations in the gate drive circuit or element characteristics, resulting in uneven current. In this case, since the current IP1 of the switching element 31QP that is turned off later increases, the current of the AC output terminal also satisfies Iac1> Iac2, and current non-uniformity occurs. After the time t1, the negative-side freewheeling mode is set, but until the time t2, the driving signals GN1 and GN2 of the switching elements 31QN and 32QN are off, so that the negative-side freewheeling diodes 31DN and 32DN and a switching element constituted by a MOSFET Current flows through the 31QN and 32QN parasitic diodes.

図4にMOSFETの電流Id−電圧Vds特性を示すが、電流が逆向きでも寄生ダイオードにより通流することができる(図4の点線は環流ダイオードなしでMOSFET寄生ダイオードのみの場合、破線はMOSFET寄生ダイオードと環流ダイオードとしてSBD(ショットキーバリアダイオード)を組み合わせた場合を示す)。また、電流が逆向きでもゲート電圧を印加することで同期整流のモードとなり、電圧(Vdsの絶対値)を低減することができる(図4における「MOSFET同期整流」と示した実線)。ここで、低損失化を図るためには、時刻t2をできるだけ時刻t1に近づけるのが好ましいが、短絡防止のための期間(デッドタイム)が必要である。   FIG. 4 shows the current Id-voltage Vds characteristics of the MOSFET, but even if the current is in the reverse direction, the current can be passed by the parasitic diode (the dotted line in FIG. 4 is only the MOSFET parasitic diode without the circulating diode, the broken line is the MOSFET parasitic) A case where an SBD (Schottky barrier diode) is combined as a diode and a free-wheeling diode is shown). Further, even when the current is in the reverse direction, the gate voltage is applied to enter the synchronous rectification mode, and the voltage (absolute value of Vds) can be reduced (solid line indicated as “MOSFET synchronous rectification” in FIG. 4). Here, in order to reduce the loss, it is preferable to bring the time t2 as close as possible to the time t1, but a period (dead time) for preventing a short circuit is necessary.

時刻t2から時刻t4までの間は、環流電流が流れる環流モードのスイッチング素子31GN、32GNの駆動信号GN1、GN2をオンして、同期整流が行われる。この間は、電流の不均等が継続する。   Between time t2 and time t4, the driving signals GN1 and GN2 of the switching elements 31GN and 32GN in the circulating mode in which the circulating current flows are turned on to perform synchronous rectification. During this time, current unevenness continues.

時刻t4で負極側スイッチング素子31QN、32QNの駆動信号GN1、GN2がオフしてデッドタイム後に正極側スイッチング素子31QP、32QPをターンオンさせることになるが、この際に電流が大きい(Iac1>Iac2)側の駆動信号GP1を遅延させている。時刻t5で先にスイッチング素子32QPをターンオンさせ(駆動信号GP2をオンにする)、後から時刻t6でスイッチング素子31QPをターンオンさせる(駆動信号GP1をオンにする)ことにより、先にオンしたスイッチング素子32QPに電流IP2が流れ込むため電流均等化を図っている。ここで、時刻t5から時刻t6までの時間の長さは、スイッチング素子の温度の差が大きいほど電流の不均等が大きいため、長くされる。尚、図7の場合は、電流Iac1と電流Iac2の大きさが逆転するようにして電流分担の不均等を低減するようにしているが、電流Iac1と電流Iac2の大きさが逆転せず差が縮まるだけとしてもよく、その場合も何もしない場合に比べて電流分担の不均等を低減することができる。   At time t4, the drive signals GN1 and GN2 of the negative side switching elements 31QN and 32QN are turned off and the positive side switching elements 31QP and 32QP are turned on after the dead time. At this time, the current is large (Iac1> Iac2) Drive signal GP1 is delayed. Switching element 32QP is turned on first at time t5 (driving signal GP2 is turned on), and switching element 31QP is turned on at a later time t6 (driving signal GP1 is turned on). Since current IP2 flows into 32QP, current equalization is achieved. Here, the length of time from time t5 to time t6 is increased because the greater the temperature difference between the switching elements, the greater the current non-uniformity. In the case of FIG. 7, the magnitudes of the currents Iac1 and Iac2 are reversed so as to reduce the non-uniformity of current sharing. However, the magnitudes of the currents Iac1 and Iac2 are not reversed and the difference is In this case, the current sharing unevenness can be reduced as compared with the case where nothing is done.

しかしながら、図7のように、同期整流の終了後に、時刻t5から時刻t6において正極側スイッチング素子31QP、32QPをオンさせるタイミングをずらすことで電流分担の不均等を低減させることとすると、時刻t5よりも前の段階では電流の不均等が継続することとなる。電流の不均等が発生している間は、両者の発熱量が異なることとなるので、並列接続されたスイッチング素子の間でスイッチング素子の寿命に差が生じてしまう。したがって、電流の不均等が発生してからなるべく早い段階で電流分担の不均等を低減することが望まれる。   However, as shown in FIG. 7, if the current sharing unevenness is reduced by shifting the timing of turning on the positive side switching elements 31 QP and 32 QP from time t 5 to time t 6 after the end of synchronous rectification, from time t 5. However, the current unevenness continues in the previous stage. While the current non-uniformity is occurring, the amount of heat generated by the two is different, so that there is a difference in the life of the switching elements between the switching elements connected in parallel. Therefore, it is desired to reduce the current sharing unevenness as early as possible after the current unevenness occurs.

また、図8に示すように、2系統の三相巻線を有するモータ52の構成の場合は、さらに別の問題が発生する。図8に示す2系統の三相巻線を有するモータ52の構成では、ターンオンのタイミングをずらすと交流出力端子間に大きな電位差(セット並列構成の各々の電力変換装置301あるいは302の直流電圧相当)が発生する。すなわち、図9に示すように時刻t5で先にスイッチング素子32QPがターンオンするため、スイッチング素子32QPの電圧VP2が先にほぼ0となり、半導体モジュール32の交流出力端子32ACは、ほぼ正極P2の電位(半導体モジュール32の正極の電位)となる。一方、半導体モジュール31の交流出力端子31ACはまだスイッチング素子31QPがターンオンしていないため、ほぼ負極N1の電位(半導体モジュール31の負極の電位)のままであり、直流電圧相当の電位差が交流出力端子31ACと交流出力端子32ACとの間に発生する。そして、この電位差により循環する電流(交流出力端子32AC→U2相→浮遊容量523→U1相→交流出力端子31AC→環流ダイオード31DN→直流の負極N1→電力変換装置301のコンバータ側のスイッチング素子の何れか→電力変換装置302のコンバータ側のスイッチング素子の何れか→直流の負極N2→電力変換装置302の直流の平滑コンデンサ→直流の正極P2→スイッチング素子32QP→交流出力端子32ACの経路)が流れることによる配線導体等の温度上昇が懸念される。   Further, as shown in FIG. 8, in the case of the configuration of the motor 52 having two systems of three-phase windings, another problem occurs. In the configuration of the motor 52 having two systems of three-phase windings shown in FIG. 8, if the turn-on timing is shifted, a large potential difference between the AC output terminals (corresponding to the DC voltage of each power converter 301 or 302 in the set parallel configuration). Will occur. That is, as shown in FIG. 9, since the switching element 32QP is turned on first at time t5, the voltage VP2 of the switching element 32QP first becomes substantially zero, and the AC output terminal 32AC of the semiconductor module 32 is substantially at the potential of the positive electrode P2 ( Potential of the positive electrode of the semiconductor module 32). On the other hand, the AC output terminal 31AC of the semiconductor module 31 remains almost at the potential of the negative electrode N1 (the potential of the negative electrode of the semiconductor module 31) because the switching element 31QP is not yet turned on. Occurs between 31AC and the AC output terminal 32AC. Then, the current circulated by this potential difference (AC output terminal 32AC → U2 phase → floating capacitance 523 → U1 phase → AC output terminal 31AC → circulating diode 31DN → DC negative electrode N1 → switching element on the converter side of the power converter 301) Or any of the switching elements on the converter side of the power converter 302 → DC negative electrode N2 → DC smoothing capacitor of the power converter 302 → DC positive electrode P2 → switching element 32QP → AC output terminal 32AC path) There is a concern that the temperature of wiring conductors and the like may increase due to.

したがって、この場合も、時刻t5から時刻t6までの時間の長さは、スイッチング素子の温度の差が大きいほど電流の不均等が大きいため、時刻t5から時刻t6までの間の時間を短くするために、時刻t5の段階で電流分担の不均等が低減されていることが望ましく、図7の場合と同様に、電流の不均等が発生してからなるべく早い段階で電流分担の不均等を低減することが望まれる。   Accordingly, in this case as well, the length of time from time t5 to time t6 is such that the greater the temperature difference between the switching elements, the greater the current non-uniformity, so the time from time t5 to time t6 is shortened. In addition, it is desirable that the current sharing non-uniformity is reduced at the time t5, and the current sharing non-uniformity is reduced as early as possible after the current non-uniformity occurs as in the case of FIG. It is desirable.

本発明が解決しようとする課題は、並列間の電流分担の不均等を、発生してからできるだけ早い段階から低減できる電力変換装置を提供することである。   The problem to be solved by the present invention is to provide a power conversion device capable of reducing non-uniform current sharing between parallel circuits from the earliest possible stage.

上記の課題を解決するために、本発明では、同期整流の期間の長さを並列間で異ならせることとした。   In order to solve the above problem, in the present invention, the length of the synchronous rectification period is made different between the parallels.

具体的には、例えば、上下一対のMOSFETを有する半導体モジュールを1相内で複数並列接続したスイッチング回路を有し、直流と交流とを変換する電力変換装置において、各々の前記半導体モジュールの交流側の電流を検出する電流検出部と、前記電流検出部で検出した電流に応じて、前記MOSFETのオンおよびオフを制御するゲート制御部とを有し、前記ゲート制御部は、前記MOSFETの何れかに環流電流が流れる環流モードの期間において、前記電流検出部で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間を前記電流検出部で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間よりも長くすることを特徴とする。   Specifically, for example, in a power conversion device that includes a switching circuit in which a plurality of semiconductor modules having a pair of upper and lower MOSFETs are connected in parallel within one phase and converts direct current and alternating current, the alternating current side of each of the semiconductor modules And a gate control unit that controls on and off of the MOSFET according to the current detected by the current detection unit, the gate control unit being one of the MOSFETs In the period of the recirculation mode in which the recirculation current flows, the time during which the MOSFET on the side in the recirculation mode of the semiconductor module having the smaller current detected by the current detection unit is on is large in the current detected by the current detection unit The semiconductor module is characterized in that it is longer than the ON time of the MOSFET on the side of the semiconductor module in the reflux mode.

上記のような構成とすることで、同期整流の期間を利用して並列間の電流分担の不均等を低減できるので、並列間の電流分担の不均等を、発生してからできるだけ早い段階から低減できる。   By adopting the above configuration, it is possible to reduce non-uniform current sharing between parallels using the period of synchronous rectification, so that non-uniform current sharing between parallels is reduced from the earliest possible stage. it can.

本発明の実施例1の構成を示す図。The figure which shows the structure of Example 1 of this invention. 実施例1におけるゲート制御部の動作について示すフローチャート。5 is a flowchart illustrating the operation of a gate control unit according to the first embodiment. 実施例1におけるゲート駆動信号及び電流・電圧波形を示す図。FIG. 3 is a diagram illustrating a gate drive signal and current / voltage waveforms in the first embodiment. MOSFETの電流Id−電圧Vds特性を示す図。The figure which shows the electric current Id-voltage Vds characteristic of MOSFET. 本発明の実施例2の構成を示す図。The figure which shows the structure of Example 2 of this invention. 実施例1が適用される電力変換装置の回路構成を示す図。The figure which shows the circuit structure of the power converter device with which Example 1 is applied. 図6の回路での従来例におけるゲート駆動信号及び電流・電圧波形を示す図。The figure which shows the gate drive signal in the prior art example in the circuit of FIG. 6, and a current and a voltage waveform. 実施例2が適用される電力変換装置の回路構成を示す図。The figure which shows the circuit structure of the power converter device with which Example 2 is applied. 図8の回路での従来例におけるゲート駆動信号及び電流・電圧波形を示す図。The figure which shows the gate drive signal in the prior art example in the circuit of FIG. 8, and a current and a voltage waveform.

本発明の実施例を、図面を参照しながら説明する。尚、各図および各実施例において、同一又は類似の構成要素には同じ符号を付し、説明を省略する。   Embodiments of the present invention will be described with reference to the drawings. In each drawing and each embodiment, the same or similar components are denoted by the same reference numerals, and description thereof is omitted.

図1は、本発明の実施例1の構成を示す図である。図6は、実施例1が適用される電力変換装置の回路構成を示す。図1は、図6に示した三相インバータの1相分を半導体モジュール31、32の2並列で構成した場合である。   FIG. 1 is a diagram showing the configuration of the first embodiment of the present invention. FIG. 6 illustrates a circuit configuration of a power conversion device to which the first embodiment is applied. FIG. 1 shows a case where one phase portion of the three-phase inverter shown in FIG.

図6に示した三相インバータは、直流の正極(P)と直流の負極(N)との間に、スイッチング回路3(U相に対応して3(U)、V相に対応して3(V)、W相に対応して3(W))が接続されており、直流を交流に変換して負荷であるモータ51に供給する電力変換装置である。尚、図6に示した三相インバータは、回生モードでモータ51からの交流を直流に変換することも可能である。スイッチング回路3は、上下一対のMOSFETを有する半導体モジュールを1相内で複数並列接続した構成となっている。   The three-phase inverter shown in FIG. 6 includes a switching circuit 3 (3 (U) corresponding to the U phase and 3 (V) corresponding to the V phase) between the DC positive electrode (P) and the DC negative electrode (N). (V), 3 (W) corresponding to the W phase is connected, and is a power conversion device that converts direct current into alternating current and supplies it to a motor 51 that is a load. Note that the three-phase inverter shown in FIG. 6 can also convert alternating current from the motor 51 into direct current in the regeneration mode. The switching circuit 3 has a configuration in which a plurality of semiconductor modules having a pair of upper and lower MOSFETs are connected in parallel within one phase.

1相分のスイッチング回路3は、並列接続された半導体モジュール31と半導体モジュール32とを有している。   The switching circuit 3 for one phase has a semiconductor module 31 and a semiconductor module 32 connected in parallel.

半導体モジュール31は正極側スイッチング素子(MOSFET)31QPと、スイッチング素子31QPに逆並列に接続された環流ダイオード31DPと、負極側スイッチング素子(MOSFET)31QNと、スイッチング素子31QNに逆並列に接続された環流ダイオード31DNで構成される。図1に示すように、半導体モジュール31は、正極側の直流入力端子31Pと、負極側の直流入力端子31Nと、交流出力端子31ACとを有する。また、正極側スイッチング素子31QP及び負極側スイッチング素子31QNは、それぞれ、図1に示すゲート駆動回路41P、41Nで駆動される。   The semiconductor module 31 includes a positive side switching element (MOSFET) 31QP, a freewheeling diode 31DP connected in reverse parallel to the switching element 31QP, a negative side switching element (MOSFET) 31QN, and a freewheeling connected in reverse parallel to the switching element 31QN. It is composed of a diode 31DN. As shown in FIG. 1, the semiconductor module 31 includes a positive side DC input terminal 31P, a negative side DC input terminal 31N, and an AC output terminal 31AC. Further, the positive side switching element 31QP and the negative side switching element 31QN are driven by the gate drive circuits 41P and 41N shown in FIG. 1, respectively.

同様に、半導体モジュール32は正極側スイッチング素子(MOSFET)32QPと、スイッチング素子32QPに逆並列に接続された環流ダイオード32DPと、負極側スイッチング素子(MOSFET)32QNと、スイッチング素子32QNに逆並列に接続された環流ダイオード32DNで構成される。図1に示すように、半導体モジュール32は、正極側の直流入力端子32Pと、負極側の直流入力端子32Nと、交流出力端子32ACとを有する。また、正極側スイッチング素子32QP及び負極側スイッチング素子32QNは、それぞれ、図1に示すゲート駆動回路42P、42Nで駆動される。   Similarly, the semiconductor module 32 is connected to the positive side switching element (MOSFET) 32QP, the freewheeling diode 32DP connected in antiparallel to the switching element 32QP, the negative side switching element (MOSFET) 32QN, and connected to the switching element 32QN in antiparallel. The freewheeling diode 32DN is configured. As shown in FIG. 1, the semiconductor module 32 includes a positive side DC input terminal 32P, a negative side DC input terminal 32N, and an AC output terminal 32AC. The positive side switching element 32QP and the negative side switching element 32QN are driven by the gate drive circuits 42P and 42N shown in FIG. 1, respectively.

尚、図4で説明した通り、環流電流はMOSFETの寄生ダイオード及び同期整流でMOSFETを通流させることができるため、必ずしも環流ダイオード31DP、31DN、32DP、32DNは必要ではなく、省略しても良い。また、実施例1では直流を交流に変換する場合を例に説明しているので、交流出力端子31AC、32ACと呼んでいるが、交流を直流に変換する場合は交流入力端子となるので、交流側端子と称しても良い。   As described with reference to FIG. 4, the circulating current can be passed through the MOSFET's parasitic diode and synchronous rectification, so that the circulating diodes 31DP, 31DN, 32DP, and 32DN are not necessarily required and may be omitted. . In the first embodiment, the case of converting direct current to alternating current is described as an example, and therefore, the AC output terminals 31AC and 32AC are called. However, when alternating current is converted to direct current, an alternating current input terminal is used. You may call it a side terminal.

図1に示すように、本実施例の電力変換装置は、半導体モジュール31、32の交流側の電流を検出する電流検出部2を有する。具体的には、交流出力端子31AC、32ACの電流は、それぞれ半導体モジュール31、32の交流側に設けられた電流センサ21、22からの信号を用いて、電流検出部2にて各々の電流値を検出する。尚、電流検出部2は、図1に示したような方法で半導体モジュール31、32の交流側の電流を電流センサ21、22を用いて検出する方法に代えて、電流検出部2は、スイッチング素子を構成するMOSFETの温度が高いほど電流が大きいとみなして、図示しない温度センサを用いてスイッチング素子を構成するMOSFETの温度を検出することにより半導体モジュール31、32の交流側の電流を検出(厳密には推定して検出)するようにしてもよい。あるいは、直流の正極側および負極側の電流を図示しない電流センサで計測し、スイッチング素子のスイッチングタイミングも考慮に入れて電流検出部2で交流側の電流を検出(厳密には推定して検出)するようにしてもよい。   As shown in FIG. 1, the power conversion apparatus according to this embodiment includes a current detection unit 2 that detects current on the AC side of the semiconductor modules 31 and 32. Specifically, the currents of the AC output terminals 31AC and 32AC are respectively detected by the current detection unit 2 using signals from the current sensors 21 and 22 provided on the AC side of the semiconductor modules 31 and 32, respectively. Is detected. The current detection unit 2 replaces the method of detecting the current on the AC side of the semiconductor modules 31 and 32 using the current sensors 21 and 22 by the method shown in FIG. The current on the AC side of the semiconductor modules 31 and 32 is detected by detecting the temperature of the MOSFET constituting the switching element using a temperature sensor (not shown), assuming that the temperature of the MOSFET constituting the element is higher. Strictly, it may be estimated and detected). Alternatively, the current on the positive electrode side and the negative electrode side of DC is measured by a current sensor (not shown), and the current on the AC side is detected by the current detector 2 in consideration of the switching timing of the switching element (strictly estimated and detected). You may make it do.

また、電力変換装置は、スイッチング素子31QP、31QN、32QP、32QNのオンおよびオフを制御するゲート制御部1を有する。具体的には、ゲート制御部1は、ゲート駆動回路41P、41N、42P、42Nにゲート駆動信号を送ることで、スイッチング素子31QP、31QN、32QP、32QNのオンおよびオフを制御する。ゲート制御部1は、遅延判定部11と、遅延回路121、122、131、132とを有している。ゲート制御部1は、電流検出部2で検出した電流に応じて、スイッチング素子のオンおよびオフを制御する。具体的には、遅延判定部11は、電力変換装置制御部10からのゲート駆動信号と、電流検出部2で検出した電流値とから、電流分担不均等を低減できるように、それぞれのゲート駆動信号に適用すべき遅延時間(遅延なしも含む)を算出し、それぞれのゲート駆動信号は、遅延回路121、122、131、132を介して遅延判定部11で算出された遅延時間だけ遅延され、ゲート駆動回路41P、41N、42P、42Nに伝送される。   In addition, the power conversion device includes a gate control unit 1 that controls on and off of the switching elements 31QP, 31QN, 32QP, and 32QN. Specifically, the gate control unit 1 controls on and off of the switching elements 31QP, 31QN, 32QP, and 32QN by sending gate drive signals to the gate drive circuits 41P, 41N, 42P, and 42N. The gate control unit 1 includes a delay determination unit 11 and delay circuits 121, 122, 131, and 132. The gate control unit 1 controls on and off of the switching element according to the current detected by the current detection unit 2. Specifically, the delay determination unit 11 drives each gate drive so that the current sharing unevenness can be reduced from the gate drive signal from the power converter control unit 10 and the current value detected by the current detection unit 2. The delay time to be applied to the signal (including no delay) is calculated, and each gate drive signal is delayed by the delay time calculated by the delay determination unit 11 via the delay circuits 121, 122, 131, 132, It is transmitted to the gate drive circuits 41P, 41N, 42P, and 42N.

尚、電力変換装置制御部10からのゲート駆動信号は、電流分担不均等について考慮していない通常の電力変換装置のゲート駆動信号と同じであり、例えばスイッチング素子をPWM制御するためのゲート駆動信号である。本実施例では、電力変換装置制御部10とゲート制御部1とを分けた例で説明しているが、電力変換装置制御部10の中にゲート制御部1を設ける、あるいは、ゲート制御部1の中に電力変換装置制御部10設けて、両者を兼ねるようにしても良い。   Note that the gate drive signal from the power converter control unit 10 is the same as the gate drive signal of a normal power converter that does not consider the current sharing unevenness. For example, the gate drive signal for PWM control of the switching element It is. In this embodiment, the power conversion device control unit 10 and the gate control unit 1 are described separately. However, the gate control unit 1 is provided in the power conversion device control unit 10, or the gate control unit 1 is provided. It is also possible to provide the power conversion device control unit 10 in the inside so as to serve as both.

ゲート制御部1は、電流検出部2で検出した電流のアンバランスに応じて、スイッチング素子31QP、31QN、32QP、32QNの同期整流の期間の長さを互いに異ならせるように制御する。具体的には、ゲート制御部1は、MOSFETで構成されたスイッチング素子31QP、31QN、32QP、32QNの何れかに環流電流が流れる環流モードの期間において、電流検出部2で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間(同期整流の期間の長さ)を電流検出部2で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間(同期整流の期間の長さ)よりも長くするように制御する。尚、従来は、図7や図9に示すように、同期整流の期間は半導体モジュール31、32ともに同じ時間としていたので、この点で従来と大きく異なっている。   The gate control unit 1 performs control so that the lengths of the synchronous rectification periods of the switching elements 31QP, 31QN, 32QP, and 32QN are different from each other according to the current imbalance detected by the current detection unit 2. Specifically, the gate control unit 1 has a smaller current detected by the current detection unit 2 in the circulation mode period in which the circulation current flows in any of the switching elements 31QP, 31QN, 32QP, and 32QN configured by MOSFETs. In the semiconductor module of the semiconductor module, the MOSFET on the side that becomes the reflux mode of the semiconductor module with the larger current detected by the current detection unit 2 is the ON time of the MOSFET on the side that becomes the reflux mode of the semiconductor module (the length of the synchronous rectification period) Control is made to be longer than the ON time (the length of the synchronous rectification period). Conventionally, as shown in FIG. 7 and FIG. 9, the period of synchronous rectification is the same for both the semiconductor modules 31 and 32, and this is greatly different from the conventional one.

図2は、実施例1におけるゲート制御部の動作について示すフローチャートである。図2を用いて、ゲート制御部1での遅延設定手順について説明する。ゲート制御部1は、電流検出部2で検出した半導体モジュール31、32の交流の電流検出値である電流Iac1、Iac2から、差x(手順111)及び和Iac(手順117)を計算する。差xの絶対値と設定した閾値Xtとの大小を判定(手順112)して、差xの絶対値xが閾値Xt以下であれば遅延は無しとする(手順119)(遅延時間Td1=Td2=0)。差xの絶対値が閾値Xtを超える場合には、差xに比例する大きさの遅延時間dを設定する(手順113)(d=A・x)。極端に遅延時間dの絶対値が大きい場合には、遅延時間dが同期整流の期間を越えてしまう可能性があるので、制限値を設けておき(手順114)、制限値を超える場合には遅延時間dは正または負の制限値と等しくする。   FIG. 2 is a flowchart illustrating the operation of the gate control unit according to the first embodiment. The delay setting procedure in the gate control unit 1 will be described with reference to FIG. The gate control unit 1 calculates the difference x (procedure 111) and the sum Iac (procedure 117) from the currents Iac1 and Iac2 that are AC current detection values of the semiconductor modules 31 and 32 detected by the current detection unit 2. The magnitude of the absolute value of the difference x and the set threshold value Xt is determined (procedure 112). If the absolute value x of the difference x is less than or equal to the threshold value Xt, there is no delay (procedure 119) (delay time Td1 = Td2 = 0). When the absolute value of the difference x exceeds the threshold value Xt, a delay time d having a magnitude proportional to the difference x is set (procedure 113) (d = A · x). If the absolute value of the delay time d is extremely large, the delay time d may exceed the synchronous rectification period. Therefore, a limit value is provided (step 114). The delay time d is set equal to a positive or negative limit value.

次に、dの正負により半導体モジュール31、32のどちらを遅延させるか(すなわち、どちらの同期整流期間を他方より大きくするか)を決める(手順115)。   Next, it is determined which of the semiconductor modules 31 and 32 is delayed (that is, which of the synchronous rectification periods is made longer than the other) depending on whether d is positive or negative (procedure 115).

d>0の場合には電流Iac1が電流Iac2に比べて大きいため、電流の小さい側の半導体モジュール32の同期整流の期間を電流の大きい側の半導体モジュール31の同期整流の期間よりも長くするために、遅延時間Td1=d、遅延時間Td2=0(手順116、1161)に設定する。この場合、同期整流を行う環流モードの期間において、半導体モジュール31側のゲート駆動回路41P、41Nに接続されている遅延回路121、131のうち、環流モードとなる側のスイッチング素子をオンするためのゲート駆動信号を、遅延時間Td1=dだけ遅延させ、半導体モジュール32側のゲート駆動回路42P、42Nに接続されている遅延回路122、132のうち、環流モードとなる側のスイッチング素子をオンするためのゲート駆動信号を、遅延時間Td2=0だけ遅延させる(すなわち遅延させない)。例えば、後述する図3はd>0の場合の一例を示しており、同期整流を行う際に、スイッチング素子32QNが時刻t2でオンしているのに対して、スイッチング素子31QNが遅延時間dだけ遅延して時刻t3にオンしている。   When d> 0, the current Iac1 is larger than the current Iac2, so that the synchronous rectification period of the semiconductor module 32 on the smaller current side is longer than the synchronous rectification period of the semiconductor module 31 on the larger current side. And delay time Td1 = d and delay time Td2 = 0 (procedures 116 and 1161). In this case, of the delay circuits 121 and 131 connected to the gate drive circuits 41P and 41N on the semiconductor module 31 side in the period of the circulation mode in which synchronous rectification is performed, the switching element on the side in the circulation mode is turned on. In order to delay the gate drive signal by the delay time Td1 = d and to turn on the switching element on the side in the circulation mode among the delay circuits 122 and 132 connected to the gate drive circuits 42P and 42N on the semiconductor module 32 side. Are delayed by the delay time Td2 = 0 (that is, not delayed). For example, FIG. 3 to be described later shows an example in the case of d> 0. When synchronous rectification is performed, the switching element 32QN is turned on at time t2, whereas the switching element 31QN has only the delay time d. It is delayed and turned on at time t3.

逆にd<0の場合には電流Iac1が電流Iac2に比べて小さいため、電流の小さい側の半導体モジュール31の同期整流の期間を電流の大きい側の半導体モジュール32の同期整流の期間よりも長くするために、遅延時間Td1=0、遅延時間Td2=−d(手順116、1162)とする。ここで、−dとしたのは、遅延時間Td2をdの絶対値とするためである。これにより、同期整流を行う場合に、d>0の場合とは逆に、半導体モジュール32側のスイッチング素子を遅延時間Td2だけ遅延させてオンし、半導体モジュール31側のスイッチング素子は遅延時間Td1=0なので遅延させずにオンする。   On the contrary, when d <0, the current Iac1 is smaller than the current Iac2, and therefore the synchronous rectification period of the semiconductor module 31 on the smaller current side is longer than the synchronous rectification period of the semiconductor module 32 on the larger current side. Therefore, it is assumed that the delay time Td1 = 0 and the delay time Td2 = −d (procedures 116 and 1162). Here, −d is set so that the delay time Td2 is an absolute value of d. Thus, when performing synchronous rectification, the switching element on the semiconductor module 32 side is turned on by delaying by the delay time Td2, contrary to the case of d> 0, and the switching element on the semiconductor module 31 side is turned on by the delay time Td1 = Since it is 0, it is turned on without delay.

なお、図2では環流モードとなるスイッチング素子がP側かN側かを判断するために、手順117で算出した電流の和Iacの正負を判断して(手順118)、負の場合にはP側を調整し(手順120P)、正の場合にはN側を調整し(手順120N)、0の場合には遅延を行わないこととする(手順119)。例えば、後述する図3は、Iacが正なので、N側のスイッチング素子31QN、32QNが環流モードとなるので、N側で調整している。   In FIG. 2, in order to determine whether the switching element in the reflux mode is the P side or the N side, the sign of the current sum Iac calculated in step 117 is determined (step 118). The side is adjusted (procedure 120P). If it is positive, the N side is adjusted (procedure 120N). If it is 0, no delay is performed (procedure 119). For example, in FIG. 3 to be described later, since Iac is positive, the switching elements 31QN and 32QN on the N side are in the reflux mode, so adjustment is performed on the N side.

図3は、実施例1におけるゲート駆動信号及び電流・電圧波形を示す図である。図3は、図7に対応する図であるため、図7との違いのみを説明する。時刻t2までについては、前述した図7と同様であるため説明は省略する。図3では、Iac1>Iac2となるため、環流モードとなるスイッチング素子31QNの駆動信号GN1を環流モードとなるスイッチング素子32QNの駆動信号GN2より遅延時間dだけ遅延させる。時刻t2において駆動信号GN2だけがオンとなりスイッチング素子32QNが同期整流となるため抵抗が下がり、電流IN2が(負の方向に)増大することで電流均等化が図れる。時刻t2から遅延時間dだけ遅れた時刻t3で、駆動信号GN1もオンになるためスイッチング素子31QNも同期整流となり抵抗が下がる。同期整流は時刻t4で両方とも終了するため、結果的に電流Iac1が大きい方が同期整流の期間が短くなる。   FIG. 3 is a diagram illustrating a gate drive signal and current / voltage waveforms in the first embodiment. Since FIG. 3 is a diagram corresponding to FIG. 7, only the difference from FIG. 7 will be described. The description up to time t2 is the same as in FIG. In FIG. 3, since Iac1> Iac2, the driving signal GN1 of the switching element 31QN in the circulating mode is delayed by the delay time d from the driving signal GN2 of the switching element 32QN in the circulating mode. At time t2, only the drive signal GN2 is turned on and the switching element 32QN is synchronously rectified, so that the resistance is lowered and the current IN2 is increased (in the negative direction), so that current equalization can be achieved. At time t3, which is delayed by the delay time d from time t2, the drive signal GN1 is also turned on, so that the switching element 31QN is also synchronously rectified and the resistance is lowered. Since both synchronous rectifications are completed at time t4, as a result, the larger the current Iac1, the shorter the synchronous rectification period.

これにより、時刻t4の同期整流の終了時点で、既に電流IN1、IN2、電流Iac1、Iac2は差が低減、より好ましくは一致させることが可能となる。従来の図7や図9では、時刻t5で電流分担の不均等の低減が開始されるのに対して、時刻t5よりも早い時刻t4の同期整流の終了時点で既に電流分担の不均等の低減が行われているので、並列間の電流分担の不均等を、発生してからできるだけ早い段階から低減することができるとの効果が得られる。また、これにより、並列間のスイッチング素子の発熱量の差も低減でき、並列接続されたスイッチング素子の間におけるスイッチング素子の寿命に差を小さくできる。また、図7や図9とは異なり、時刻t5で電流分担不均等を低減するために駆動信号GP1、GP2のオンするタイミングをずらす必要がなくなる、あるいは、ずらす場合でも短い時間で済むという効果も得られる。   Thereby, at the end of the synchronous rectification at time t4, the currents IN1 and IN2 and the currents Iac1 and Iac2 can be reduced, more preferably matched. In FIG. 7 and FIG. 9 of the related art, the unequal reduction of current sharing is started at time t5, whereas the unequal reduction of current sharing is already completed at the end of synchronous rectification at time t4 earlier than time t5. As a result, it is possible to reduce the non-uniform current sharing between the parallel circuits from the earliest possible stage. Thereby, the difference in the heat generation amount of the switching elements between the parallel elements can be reduced, and the difference in the life of the switching elements between the switching elements connected in parallel can be reduced. Also, unlike FIGS. 7 and 9, there is no need to shift the timings at which the drive signals GP1 and GP2 are turned on in order to reduce the current sharing unevenness at time t5, or even if they are shifted, a short time is required. can get.

また、図3では、同期整流の開始タイミングで調整を行っており、時刻t2から電流分担の不均等の低減が開始され、時刻t3の時点で電流を一致させているので、電流分担の不均等の低減の効果がさらに大きい。尚、必ずしも電流を一致させる必要はなく、差を小さくできていれば、一致させる場合に比べれば効果は小さくなるものの、電流分担の不均等の低減の効果は得られる。   Further, in FIG. 3, the adjustment is performed at the start timing of the synchronous rectification, and the uneven current sharing is started from the time t2, and the currents are matched at the time t3, so that the current sharing is uneven. The effect of reducing is even greater. It is not always necessary to match the currents. If the difference can be reduced, the effect is reduced as compared with the case where the currents are matched, but the effect of reducing uneven current sharing can be obtained.

図5は、本発明の実施例2の構成を示す図である。図8は、実施例2が適用される電力変換装置の回路構成を示す図である。図5は、図8で示すような2系統の三相巻線を有するモータ52に交流を供給するセット並列構成の電力変換装置における、1相分の構成を示している。   FIG. 5 is a diagram showing the configuration of the second embodiment of the present invention. FIG. 8 is a diagram illustrating a circuit configuration of a power conversion device to which the second embodiment is applied. FIG. 5 shows a configuration for one phase in a power converter having a set parallel configuration for supplying alternating current to a motor 52 having two systems of three-phase windings as shown in FIG.

実施例2において、実施例1と共通する部分は説明を省略し、相違点を中心に説明する。   In the second embodiment, description of parts common to the first embodiment will be omitted, and differences will be mainly described.

図8に示した電力変換装置は、2つの電力変換装置301、302が、電源6および負荷であるモータ52に対して並列に接続されたセット並列構成となっており、2つの電力変換装置301、302を含めた全体を1つの電力変換装置とみなしている。よって、電力変換装置301の半導体モジュール31と電力変換装置302の半導体モジュール32は1相内で並列接続されているとみなせる。電源6と2つの電力変換装置301、302との間にはフィルタ7が設けられている。モータ52は、電力変換装置301に接続されたU1相、V1相、W1相の三層巻線と、電力変換装置302に接続されたU2相、V2相、W2相の三層巻線の2系統を有している。半導体モジュール31、32の基本的な構成は実施例1と同じである。   The power conversion device shown in FIG. 8 has a set parallel configuration in which two power conversion devices 301 and 302 are connected in parallel to the power source 6 and the motor 52 that is a load. , 302 are regarded as one power conversion device. Therefore, it can be considered that the semiconductor module 31 of the power conversion device 301 and the semiconductor module 32 of the power conversion device 302 are connected in parallel within one phase. A filter 7 is provided between the power source 6 and the two power converters 301 and 302. The motor 52 includes two layers of a U1 phase, a V1 phase, and a W1 phase three-layer winding connected to the power conversion device 301, and a three-layer winding of the U2, V2, and W2 phases connected to the power conversion device 302. Has a system. The basic configuration of the semiconductor modules 31 and 32 is the same as that of the first embodiment.

図5において、半導体モジュール31は直流の正極(P1)と直流の負極(N1)の間に接続され、半導体モジュール32は直流の正極(P2)と直流の負極(N2)の間に接続される。また、モータ52のU1端子に接続される巻線521とU2端子に接続される巻線522は接続されていないが、巻線間の浮遊容量523により静電結合している。そのため、図9の時刻t5及び時刻t6のようにU1端子とU2端子すなわち交流出力端子31ACと交流出力端子32ACとの電位差が変化する際に浮遊容量523に充放電電流が流れる。この電流がノイズを発生させたり、配線の温度上昇を招く懸念がある。   In FIG. 5, the semiconductor module 31 is connected between a direct current positive electrode (P1) and a direct current negative electrode (N1), and the semiconductor module 32 is connected between a direct current positive electrode (P2) and a direct current negative electrode (N2). . The winding 521 connected to the U1 terminal of the motor 52 and the winding 522 connected to the U2 terminal are not connected, but are electrostatically coupled by the stray capacitance 523 between the windings. For this reason, when the potential difference between the U1 terminal and the U2 terminal, that is, the AC output terminal 31AC and the AC output terminal 32AC, changes at time t5 and time t6 in FIG. There is a concern that this current may cause noise or increase the temperature of the wiring.

本実施例においても、基本的に実施例1と同様の効果が得られる。さらに、図9と比較すると、図3で示したように時刻t5では交流出力端子31ACと交流出力端子32ACとの電位差は発生しなくなるので、時刻t5で電流分担不均等を低減するために駆動信号GP1、GP2のオンするタイミングをずらす必要がなくなり、時刻t5から時刻t6で発生していた大きな電位差を発生させることもなくなる。あるいは、図3とは異なり交流出力端子31ACと交流出力端子32ACとの間に電位差が残っている場合でも、従来に比べて差を小さくすることができるので、時刻t5から時刻t6で電流分担不均等を低減するために駆動信号GP1、GP2のオンするタイミングをずらす期間を短くでき、時刻t5から時刻t6で発生していた大きな電位差が発生する時間を短くできる。   Also in the present embodiment, basically the same effects as those of the first embodiment can be obtained. Further, as compared with FIG. 9, as shown in FIG. 3, the potential difference between the AC output terminal 31AC and the AC output terminal 32AC does not occur at time t5, so that the drive signal is reduced in order to reduce current sharing unevenness at time t5. It is not necessary to shift the timings when GP1 and GP2 are turned on, and the large potential difference generated from time t5 to time t6 is not generated. Alternatively, unlike FIG. 3, even when a potential difference remains between the AC output terminal 31AC and the AC output terminal 32AC, the difference can be reduced as compared with the conventional case, so that current sharing is not possible from time t5 to time t6. In order to reduce the uniformity, the period during which the drive signals GP1 and GP2 are turned on can be shortened, and the time during which the large potential difference that has occurred from time t5 to time t6 can be shortened.

実施例3は、実施例1、実施例2の変形例である。   The third embodiment is a modification of the first and second embodiments.

例えば、図2に示したゲート制御部1の遅延設定手順では、遅延時間dを電流の差xに比例(手順113)させているが、比例ではなく差xの大きさに応じて階段状に変化させる関数としても良い。   For example, in the delay setting procedure of the gate control unit 1 shown in FIG. 2, the delay time d is proportional to the current difference x (procedure 113), but is not proportional but is stepped according to the magnitude of the difference x. It may be a function to change.

また、これまでの説明では、同期整流の開始タイミングを変化させ、同期整流に入るまでの遅延時間を変化させたが、これに限られず、同期整流の期間の長さを互いに異ならせることができればよいため、同期整流を終わらせるタイミングで調整しても良い。この場合は、電流Iac1、Iac2の大きい方を先に同期整流が終わるように調整することになる。この場合には、図3における時刻t2で同時に同期整流させた後まで電流検出できるため制御周期が短い場合でも対応できる。また、同期整流の開始タイミングと終了タイミングの両方で調整するようにしても良い。したがって、ゲート制御部1は、電流検出部2で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオンするタイミングを、電流検出部2で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオンするタイミングよりも早くしてもよいし、ゲート制御部1は、電流検出部2で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオフするタイミングを電流検出部2で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオフするタイミングよりも遅くしてもよいし、両方を併用してもよい。   In the description so far, the synchronous rectification start timing is changed to change the delay time until the synchronous rectification starts. However, the present invention is not limited to this, and the length of the synchronous rectification period can be made different from each other. Therefore, it may be adjusted at the timing when the synchronous rectification is finished. In this case, the larger one of the currents Iac1 and Iac2 is adjusted so that the synchronous rectification ends first. In this case, the current can be detected until after synchronous rectification at the time t2 in FIG. Moreover, you may make it adjust by both the start timing and completion | finish timing of synchronous rectification. Therefore, the gate control unit 1 uses the semiconductor module with the larger current detected by the current detection unit 2 to turn on the MOSFET on the side in the reflux mode of the semiconductor module with the smaller current detected by the current detection unit 2. The gate control unit 1 may be earlier than the turn-on timing of the MOSFET on the side in the recirculation mode, or the gate control unit 1 of the MOSFET on the side in the recirculation mode of the semiconductor module with the smaller current detected by the current detection unit 2 The turn-off timing may be set later than the turn-off timing of the MOSFET on the side in the reflux mode of the semiconductor module with the larger current detected by the current detector 2, or both may be used in combination.

また、MOSFETを炭化珪素(SiC)デバイスとすることで低損失化が図れる。但し、炭化珪素(SiC)デバイスに限定されず、他の材料を用いたデバイスでもよい。また、MOSFETと逆並列に接続した環流ダイオードについても同様に炭化珪素(SiC)のショットキーバリアダイオード(SBD)を使うことで低損失化が図れる。   Moreover, the loss can be reduced by using a MOSFET as the silicon carbide (SiC) device. However, it is not limited to a silicon carbide (SiC) device, and a device using other materials may be used. Similarly, a free-wheeling diode connected in reverse parallel to the MOSFET can also be reduced in loss by using a silicon carbide (SiC) Schottky barrier diode (SBD).

また、これまでの説明では、直流から交流に変換する場合を例に説明したが、回生モードで交流から直流に変換する場合にも適用が可能である。   In the above description, the case of converting from direct current to alternating current has been described as an example. However, the present invention can also be applied to the case of converting from alternating current to direct current in the regeneration mode.

以上、本発明の実施例を説明してきたが、これまでの各実施例で説明した構成はあくまで一例であり、本発明は、技術思想を逸脱しない範囲内で適宜変更が可能である。また、それぞれの実施例で説明した構成は、互いに矛盾しない限り、組み合わせて用いても良い。   As mentioned above, although the Example of this invention has been described, the structure demonstrated by each Example so far is an example to the last, and this invention can be suitably changed within the range which does not deviate from a technical idea. Further, the configurations described in the respective embodiments may be used in combination as long as they do not contradict each other.

1:ゲート制御部
2:電流検出部
3:スイッチング回路
31、32:半導体モジュール
31QP、31QN、32QP、32QN:スイッチング素子
31DP、31DN、32DP、32DN:環流ダイオード
31P、31N、32P、32N:直流入力端子
31AC、32AC:交流出力端子
41P、41N、42P、42N:ゲート駆動回路
51、52:モータ
6:電源
7:フィルタ
10:電力変換装置制御部
11:遅延判定部
21、22:電流センサ
301、302:電力変換装置
521、522:巻線
523:浮遊容量
1: Gate control unit 2: Current detection unit 3: Switching circuit 31, 32: Semiconductor modules 31QP, 31QN, 32QP, 32QN: Switching elements 31DP, 31DN, 32DP, 32DN: Free-wheeling diodes 31P, 31N, 32P, 32N: DC input Terminals 31AC, 32AC: AC output terminals 41P, 41N, 42P, 42N: Gate drive circuits 51, 52: Motor 6: Power supply 7: Filter 10: Power converter control unit 11: Delay determination unit 21, 22: Current sensor 301, 302: Power converter 521, 522: Winding 523: Stray capacitance

Claims (10)

上下一対のMOSFETを有する半導体モジュールを1相内で複数並列接続したスイッチング回路を有し、直流と交流とを変換する電力変換装置において、
各々の前記半導体モジュールの交流側の電流を検出する電流検出部と、
前記電流検出部で検出した電流に応じて、前記MOSFETのオンおよびオフを制御するゲート制御部とを有し、
前記ゲート制御部は、前記MOSFETの何れかに環流電流が流れる環流モードの期間において、前記電流検出部で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間を前記電流検出部で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間よりも長くすることを特徴とする電力変換装置。
In a power conversion device having a switching circuit in which a plurality of semiconductor modules having a pair of upper and lower MOSFETs are connected in parallel within one phase, and converting direct current and alternating current,
A current detector for detecting the current on the AC side of each of the semiconductor modules;
A gate control unit that controls on and off of the MOSFET according to the current detected by the current detection unit;
The gate control unit is a time during which the MOSFET on the side that is in the reflux mode of the semiconductor module with the smaller current detected by the current detection unit is on during the period of the reflux mode in which the reflux current flows through any of the MOSFETs. Is made longer than the ON time of the MOSFET on the side in which the semiconductor module having the larger current detected by the current detection unit is in the reflux mode.
請求項1において、
前記電流検出部は、前記半導体モジュールの交流側に設けられた電流センサを用いて前記半導体モジュールの交流側の電流を検出することを特徴とする電力変換装置。
In claim 1,
The current detection unit detects a current on an AC side of the semiconductor module using a current sensor provided on an AC side of the semiconductor module.
請求項1において、
前記電流検出部は、前記MOSFETの温度が高いほど電流が大きいとみなして、前記MOSFETの温度を検出することにより前記半導体モジュールの交流側の電流を検出することを特徴とする電力変換装置。
In claim 1,
The current detection unit is configured to detect the current on the AC side of the semiconductor module by detecting the temperature of the MOSFET, assuming that the current is larger as the temperature of the MOSFET is higher.
請求項1から3の何れかにおいて、
前記ゲート制御部は、前記電流検出部で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオンするタイミングを、前記電流検出部で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオンするタイミングよりも早くすることを特徴とする電力変換装置。
In any one of Claim 1 to 3,
The gate control unit determines when to turn on the MOSFET on the side of the semiconductor module with the smaller current detected by the current detection unit, and the circuit of the semiconductor module with the larger current detected by the current detection unit. A power conversion device characterized in that the power conversion device is set earlier than a timing at which a MOSFET on a mode side is turned on.
請求項1から4の何れかにおいて、
前記ゲート制御部は、前記電流検出部で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオフするタイミングを前記電流検出部で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオフするタイミングよりも遅くすることを特徴とする電力変換装置。
In any one of Claims 1-4,
The gate control unit is configured to detect the turn-off timing of the MOSFET on the side of the semiconductor module having the smaller current detected by the current detection unit. The circulation mode of the semiconductor module having the larger current detected by the current detection unit. A power conversion device characterized in that the power conversion device is slower than the timing at which the MOSFET on the side to be turned off.
請求項1から5の何れかにおいて、
前記MOSFETは炭化珪素(SiC)デバイスであることを特徴とする電力変換装置。
In any of claims 1 to 5,
The MOSFET is a silicon carbide (SiC) device.
請求項1から6の何れかにおいて、
前記半導体モジュールは、前記MOSFETと逆並列に接続されたダイオードを有することを特徴とする電力変換装置。
In any one of Claim 1 to 6,
The semiconductor module includes a diode connected in reverse parallel to the MOSFET.
請求項7において、
前記ダイオードが炭化珪素(SiC)のショットキーバリアダイオードであることを特徴とする電力変換装置。
In claim 7,
The power conversion device, wherein the diode is a silicon carbide (SiC) Schottky barrier diode.
請求項1から8の何れかにおいて、
前記ゲート制御部は、直流を交流に変換する際に、前記MOSFETの何れかに環流電流が流れる環流モードの期間において、前記電流検出部で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間を前記電流検出部で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間よりも長くすることを特徴とする電力変換装置。
In any one of Claims 1-8,
When the direct current is converted into alternating current, the gate control unit is in the recirculation mode of the semiconductor module with the smaller current detected by the current detection unit in the recirculation mode period in which the recirculation current flows in any of the MOSFETs. A power conversion device characterized in that the time during which the side MOSFET is on is longer than the time during which the side MOSFET in the circulating mode of the semiconductor module with the larger current detected by the current detection unit is on. .
請求項1から9の何れかにおいて、
前記ゲート制御部は、交流を直流に変換する際に、前記MOSFETの何れかに環流電流が流れる環流モードの期間において、前記電流検出部で検出した電流の小さい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間を前記電流検出部で検出した電流の大きい方の半導体モジュールの環流モードとなる側のMOSFETのオンしている時間よりも長くすることを特徴とする電力変換装置。
In any one of Claim 1 to 9,
When the alternating current is converted into direct current, the gate control unit is set to the recirculation mode of the semiconductor module having the smaller current detected by the current detection unit in the recirculation mode period in which the recirculation current flows through any of the MOSFETs. A power conversion device characterized in that the time during which the side MOSFET is on is longer than the time during which the side MOSFET in the circulating mode of the semiconductor module with the larger current detected by the current detection unit is on. .
JP2013164671A 2013-08-08 2013-08-08 Power converter Expired - Fee Related JP6072645B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013164671A JP6072645B2 (en) 2013-08-08 2013-08-08 Power converter
CN201410381745.7A CN104348369B (en) 2013-08-08 2014-08-05 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164671A JP6072645B2 (en) 2013-08-08 2013-08-08 Power converter

Publications (2)

Publication Number Publication Date
JP2015035863A true JP2015035863A (en) 2015-02-19
JP6072645B2 JP6072645B2 (en) 2017-02-01

Family

ID=52503363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164671A Expired - Fee Related JP6072645B2 (en) 2013-08-08 2013-08-08 Power converter

Country Status (2)

Country Link
JP (1) JP6072645B2 (en)
CN (1) CN104348369B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078058A1 (en) * 2015-11-06 2017-05-11 株式会社日立製作所 Electric power converter
JP2017135818A (en) * 2016-01-27 2017-08-03 株式会社日立製作所 Electric power conversion system
JP2017184601A (en) * 2016-03-28 2017-10-05 株式会社デンソー Power converter
WO2017169660A1 (en) * 2016-03-28 2017-10-05 株式会社デンソー Power conversion device
JP2017208978A (en) * 2016-05-20 2017-11-24 株式会社デンソー Power conversion apparatus
EP3767312A4 (en) * 2018-12-04 2021-08-04 Contemporary Amperex Technology Co., Limited Current sampling method and current sampling circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915351B2 (en) * 2017-04-05 2021-08-04 富士電機株式会社 Switching element drive device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221619A (en) * 1994-01-22 1995-08-18 Abb Manag Ag Method and apparatus for balancing of load of parallel-connected power semiconductor module
JP2002369498A (en) * 2001-06-07 2002-12-20 Fuji Electric Co Ltd Gate drive circiuit for power semiconductor element
JP2008017237A (en) * 2006-07-07 2008-01-24 Mitsubishi Electric Corp Electronic component and electric power converter using the electronic component
JP2009135626A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Parallel driving device
JP2012010430A (en) * 2010-06-22 2012-01-12 Toshiba Corp Semiconductor switch, control device, power converter, and semiconductor device
JP2012231672A (en) * 2009-01-16 2012-11-22 Mitsubishi Electric Corp Motor drive control device, compressor, air blower, air conditioner and refrigerator or freezer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580025B2 (en) * 1996-02-20 2004-10-20 富士電機デバイステクノロジー株式会社 Current balance circuit of parallel connected and controllable semiconductor elements
US5909108A (en) * 1998-02-23 1999-06-01 Lucent Technologies Inc. Current-sharing circuit for parallel-coupled switches and switch-mode power converter employing the same
CN101425798B (en) * 2007-10-30 2011-09-07 比亚迪股份有限公司 Dynamic current equalizing method and device for parallel IGBT
CN102891612B (en) * 2012-09-21 2014-12-10 上海交通大学 Current non-equalizing control method of converter multi-unit parallel system
CN103199679B (en) * 2013-04-18 2015-04-15 电子科技大学 Equalized current output circuit of insulated gate bipolar transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221619A (en) * 1994-01-22 1995-08-18 Abb Manag Ag Method and apparatus for balancing of load of parallel-connected power semiconductor module
JP2002369498A (en) * 2001-06-07 2002-12-20 Fuji Electric Co Ltd Gate drive circiuit for power semiconductor element
JP2008017237A (en) * 2006-07-07 2008-01-24 Mitsubishi Electric Corp Electronic component and electric power converter using the electronic component
JP2009135626A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Parallel driving device
JP2012231672A (en) * 2009-01-16 2012-11-22 Mitsubishi Electric Corp Motor drive control device, compressor, air blower, air conditioner and refrigerator or freezer
JP2012010430A (en) * 2010-06-22 2012-01-12 Toshiba Corp Semiconductor switch, control device, power converter, and semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078058A1 (en) * 2015-11-06 2017-05-11 株式会社日立製作所 Electric power converter
JP2017135818A (en) * 2016-01-27 2017-08-03 株式会社日立製作所 Electric power conversion system
JP2017184601A (en) * 2016-03-28 2017-10-05 株式会社デンソー Power converter
WO2017169660A1 (en) * 2016-03-28 2017-10-05 株式会社デンソー Power conversion device
CN109121461A (en) * 2016-03-28 2019-01-01 株式会社电装 Power inverter
CN109121461B (en) * 2016-03-28 2021-02-12 株式会社电装 Power conversion device
JP2017208978A (en) * 2016-05-20 2017-11-24 株式会社デンソー Power conversion apparatus
EP3767312A4 (en) * 2018-12-04 2021-08-04 Contemporary Amperex Technology Co., Limited Current sampling method and current sampling circuit
US11287454B2 (en) 2018-12-04 2022-03-29 Contemporary Amperex Technology Co., Limited Current sampling method and current sampling circuit

Also Published As

Publication number Publication date
CN104348369A (en) 2015-02-11
JP6072645B2 (en) 2017-02-01
CN104348369B (en) 2017-07-04

Similar Documents

Publication Publication Date Title
JP6072645B2 (en) Power converter
EP2445110B1 (en) Gate driver unit for electrical switching device
US9564822B2 (en) DC power supply device and power conversion method for converting an AC power supply into a DC power supply
JP6206502B2 (en) Power conversion device and power conversion method
JP4706987B2 (en) Power conversion circuit
KR101596340B1 (en) Parallel operation power supply apparatus
JP2006296098A (en) Ac-ac converter
CN107852106B (en) Control of parallel connected power devices
CN106664014A (en) Dc-dc converter
US11233453B2 (en) Power conversion device including a boosting converter for boosting output voltage from a DC power supply
TWI227590B (en) Pulse width modulation method and device thereof, power conversion method and power converter
JP2015208109A (en) Dc power supply device and air conditioner using the same
US10630204B2 (en) Network feedback unit to feed energy into a three-phase network and electrical drive system
JP2012235557A (en) Dc-ac conversion circuit and electric power conversion apparatus using the same
US9853572B2 (en) Bridge leg circuit
JP6705234B2 (en) Inverter control method
US20150117069A1 (en) Power supply apparatus and method of controlling the same
JP6167244B2 (en) Power conversion device, motor device and inverse converter module
JP7274713B1 (en) SWITCHING CIRCUIT, CURRENT DETECTION CIRCUIT, SWITCHING TIMING CONTROL METHOD AND CONTROL PROGRAM
US9748829B2 (en) Power module
JP2008131666A (en) Output voltage detector of ac-ac direct converter
JP2006094654A (en) Power conversion apparatus using gate control method of self arc-method for controlling gate of self arc-extinguishing type device connected in multiple series, and power conversion device using this method
JP2020010564A (en) Electric power conversion device
JP2013021795A (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6072645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees