JP2015016231A - Biological implant - Google Patents

Biological implant Download PDF

Info

Publication number
JP2015016231A
JP2015016231A JP2013146676A JP2013146676A JP2015016231A JP 2015016231 A JP2015016231 A JP 2015016231A JP 2013146676 A JP2013146676 A JP 2013146676A JP 2013146676 A JP2013146676 A JP 2013146676A JP 2015016231 A JP2015016231 A JP 2015016231A
Authority
JP
Japan
Prior art keywords
silver
antibacterial
test
biological implant
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013146676A
Other languages
Japanese (ja)
Inventor
道正 加茂
Michimasa Kamo
道正 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Medical Corp
Original Assignee
Kyocera Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Medical Corp filed Critical Kyocera Medical Corp
Priority to JP2013146676A priority Critical patent/JP2015016231A/en
Publication of JP2015016231A publication Critical patent/JP2015016231A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a biological implant which does not decrease in antibacterial action due to machine work, and can be made at lower costs.SOLUTION: A biological implant is made by molding a resin comprising at least one inorganic antimicrobial material selected from the group consisting of copper, zinc, silver, and their salt and oxide, and calcium phosphate material.

Description

本発明は、生体インプラントに関し、さらに詳しくは人工歯根や人工頭蓋骨等に用いる生体インプラントに関する。   The present invention relates to a living body implant, and more particularly to a living body implant used for an artificial tooth root, an artificial skull, or the like.

虫歯や歯周病等によって欠損した歯を修復するために、欠損部に歯根部となる人工歯根を顎の歯槽骨に埋め込み、その人工歯根に歯冠を装填するインプラント治療が行われている。   In order to repair a tooth that has been lost due to caries, periodontal disease, or the like, an implant treatment is performed in which an artificial tooth root serving as a root is embedded in the alveolar bone of the jaw and a dental crown is loaded on the artificial tooth root.

インプラント治療に用いる人工歯根は、一般に、顎骨内に埋入されるフィクスチャーと、該フィクスチャーに取り付け、補綴物を取り付けるための支台として機能するアバットメントから構成されているツーピースタイプと、フィクスチャーとアバットメントが一体となったワンピースタイプがある。人工歯根には一般的に、骨癒合性に優れたチタンまたはチタン合金が用いられている。人工歯根は歯槽骨に埋め込まれ、人工歯根の周囲の歯槽骨が治癒することによって、歯槽骨に固定される。   Artificial dental roots used for implant treatment are generally a two-piece type composed of a fixture embedded in the jawbone and an abutment attached to the fixture and functioning as an abutment for attaching a prosthesis, There is a one-piece type that combines char and abutment. In general, titanium or a titanium alloy having excellent bone healing properties is used for the artificial root. The artificial dental root is embedded in the alveolar bone, and is fixed to the alveolar bone by healing of the alveolar bone around the artificial dental root.

しかしながら、人工歯根と歯肉との隙間から菌が歯槽骨に侵入して感染する結果、人工歯根が動揺し、抜去する場合もある。しかし、人工歯根の抗菌対策については十分な検討がなされていないのが現状である。ただ、医療用デバイスの抗菌方法として、基材にチタン合金を用い、陰極アークプラズマ蒸着法を用いて銀等の抗菌金属の被膜を形成する方法が提案されている(特許文献1)。   However, as a result of bacteria entering the alveolar bone through the gap between the artificial tooth root and the gingiva and being infected, the artificial tooth root may be shaken and removed. However, the antibacterial measures for artificial tooth roots have not been fully studied. However, as an antibacterial method for medical devices, a method has been proposed in which a titanium alloy is used as a substrate and a coating of an antibacterial metal such as silver is formed using a cathodic arc plasma deposition method (Patent Document 1).

特開2009−524479号公報JP 2009-524479 A

しかしながら、仮に特許文献1の方法を用いて被膜を形成した人工歯根を用いたとしても、以下のような問題が生じる。
人工歯根は、製造所から出荷後、病院、診療所または歯科技工所などで、患者個人の生体的形状に適合させるために、削合されることが多い。すなわち、ワンピースタイプの場合フィクスチャーを、ツーピースタイプの場合はアバットメントを、歯科用研削バー等を用い削るため、抗菌性を有する被膜が削られる。また、歯冠を装着する際に、歯冠の咬合高さを調整するために、歯冠の装着・脱離を繰り返すと、歯冠と接触する人工歯根の側周面が削られ、被膜も削られる。これらの結果、抗菌作用が失われ人工歯根が感染しやすくなるという問題がある。また、近年では、術後に人工歯根周囲が感染した場合、感染を取り除くために、人工歯根を削る手技も用いられる。この場合も表面が削られることにより、人工歯根表面に期待される抗菌性や骨親和性が失われる。
However, even if an artificial tooth root having a film formed using the method of Patent Document 1 is used, the following problems occur.
Artificial dental roots are often ground after being shipped from the manufacturing site in order to adapt to the patient's individual biological shape in a hospital, clinic or dental laboratory. That is, the antibacterial coating is scraped because the fixture is scraped using a dental grinding bar or the like for the one-piece type and the abutment for the two-piece type. In addition, when attaching and removing the crown, repeated mounting and removal of the crown to adjust the occlusal height of the crown causes the side surface of the artificial tooth root that contacts the crown to be shaved and the coating to be removed. It is shaved. As a result, there is a problem that the antibacterial action is lost and the artificial tooth root is easily infected. Further, in recent years, a technique of cutting the artificial tooth root is also used to remove the infection when the surrounding of the artificial tooth root is infected after the operation. In this case as well, the antibacterial properties and bone affinity expected for the artificial tooth root surface are lost by cutting the surface.

また、人工頭蓋骨に適用した場合も、寸法合わせのために人工頭蓋骨の周囲を削った場合、被膜も削られる結果、抗菌作用が失われ人工頭蓋骨も感染しやすくなるという問題がある。   In addition, even when applied to an artificial skull, if the periphery of the artificial skull is shaved for size adjustment, the coating is also scraped, resulting in a problem that the antimicrobial action is lost and the artificial skull is easily infected.

また、被膜作製に陰極アークプラズマ蒸着法を用いる方法は、装置やプロセスが複雑であり高コストになるという問題もある。   In addition, the method of using the cathodic arc plasma deposition method for film production has a problem that the apparatus and process are complicated and the cost is high.

そこで、本発明は、上記の課題を解決し、機械加工によっても抗菌作用が失われることがなく、かつより低コストの生体インプラントを提供することを目的とした。   Therefore, the present invention has been made to solve the above-mentioned problems, and to provide a lower-cost living body implant that does not lose its antibacterial action even by machining.

上記課題を解決するため、本発明の生体インプラントは、銅、亜鉛、銀、およびそれらの塩および酸化物並びにリン酸カルシウム系材料からなる群から選択される少なくとも1種の無機抗菌材料を含有する樹脂を成形して成ることを特徴とする。   In order to solve the above problems, the biological implant of the present invention comprises a resin containing at least one inorganic antibacterial material selected from the group consisting of copper, zinc, silver, salts and oxides thereof, and calcium phosphate-based materials. It is formed by molding.

本発明によれば、機械加工によっても抗菌作用が低下することがなく、かつより低コストの生体インプラントを提供することが可能となる。   According to the present invention, it is possible to provide a lower-cost biological implant without reducing the antibacterial action even by machining.

以下、本発明の生体インプラントについて詳細に説明する。   Hereinafter, the biological implant of the present invention will be described in detail.

本発明に用いる樹脂には、熱可塑性樹脂または熱硬化性樹脂を用いることができるが、より成形加工性に優れた熱可塑性樹脂を用いることが好ましい。   As the resin used in the present invention, a thermoplastic resin or a thermosetting resin can be used, but it is preferable to use a thermoplastic resin having more excellent moldability.

(熱可塑性樹脂)
本発明に用いる熱可塑性樹脂は、医療用に使用可能で高強度な熱可塑性樹脂であれば特に制限されない。例えば、超高分子量ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリアミド、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、ポリイミド、ポリアミドイミド、アクリル樹脂、およびそれらポリマーを部分構造として含む共重合体を挙げることができる。好ましくはメタクリル樹脂またはPEEK、さらに好ましくはPEEKである。
(Thermoplastic resin)
The thermoplastic resin used in the present invention is not particularly limited as long as it is a high-strength thermoplastic resin that can be used for medical purposes. For example, ultra high molecular weight polyethylene, polypropylene, polytetrafluoroethylene, polyamide, polyacetal, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyethersulfone, liquid crystal polymer, polyetheretherketone (PEEK), polyimide, polyamideimide, Mention may be made of acrylic resins and copolymers containing these polymers as partial structures. A methacrylic resin or PEEK is preferable, and PEEK is more preferable.

(熱硬化性樹脂)
熱硬化性樹脂としては、例えば、ポリウレタン、フェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂等を挙げることができる。熱硬化性樹脂は1種または必要に応じて2種以上を混合して用いることもできる。
(Thermosetting resin)
Examples of the thermosetting resin include polyurethane, phenol resin, melamine resin, urea resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, fluorine resin, and epoxy resin. A thermosetting resin can also be used 1 type or in mixture of 2 or more types as needed.

(無機抗菌材料)
本発明に用いる無機抗菌材料は、銅、亜鉛、銀、およびそれらの塩および酸化物並びにリン酸カルシウム系材料からなる群から選択される少なくとも1種の無機抗菌材料である。これらの無機抗菌材料は、樹脂に分散して含有される。塩としては、銅、亜鉛および銀の炭酸塩、リン酸塩、シュウ酸塩等を挙げることができるが、炭酸塩が好ましい。無機抗菌材料は1種でも2種以上を混合して用いてよい。1種を用いる場合には、銀またはその塩またはその酸化物を用いることが好ましい。また2種以上を用いる場合、銀およびその塩、あるいは銀およびその酸化物を用いることが好ましい。またリン酸カルシウム系材料が、銅、亜鉛、銀、およびそれらの塩および酸化物からなる群から選択される少なくとも1種を含む複合材料を用いることもできる。さらに、好ましくは銀またはその塩またはその酸化物を含んだリン酸カルシウム系材料である。この複合材料には、湿式法、焼成法または溶射法により作製した複合粉末を用いることができる。この複合材料は、リン酸カルシウム系材料を含んでいるので、骨内に埋入した時に早期に骨形成が起こるので好ましい。
(Inorganic antibacterial material)
The inorganic antibacterial material used in the present invention is at least one inorganic antibacterial material selected from the group consisting of copper, zinc, silver, their salts and oxides, and calcium phosphate materials. These inorganic antibacterial materials are contained dispersed in a resin. Examples of the salt include carbonates, phosphates, and oxalates of copper, zinc, and silver, and carbonates are preferable. The inorganic antibacterial material may be used alone or in combination of two or more. When using 1 type, it is preferable to use silver, its salt, or its oxide. Moreover, when using 2 or more types, it is preferable to use silver and its salt, or silver and its oxide. In addition, a composite material in which the calcium phosphate material includes at least one selected from the group consisting of copper, zinc, silver, and salts and oxides thereof can also be used. Further, a calcium phosphate material containing silver or a salt thereof or an oxide thereof is preferable. As this composite material, a composite powder produced by a wet method, a firing method or a thermal spraying method can be used. Since this composite material contains a calcium phosphate-based material, it is preferable because bone formation occurs at an early stage when it is embedded in bone.

無機抗菌材料の大きさは、樹脂に分散可能な大きさであればよく、例えば平均粒径(D50)が200μm以下である。また、生体インプラント中の無機抗菌材料の含有量は、1〜70重量%である。例えば、AgOの場合、平均粒径は2〜200μm、好ましくは2〜100μmであり、含有量は2〜50重量%、好ましくは5〜20重量%である。平均粒径が200μmより大きくなり、または含有量が50重量%を超えると、樹脂表面が粗面となり好ましくない。 The size of the inorganic antibacterial material may be any size as long as it can be dispersed in the resin. For example, the average particle size (D 50 ) is 200 μm or less. Moreover, content of the inorganic antibacterial material in a biological implant is 1 to 70 weight%. For example, in the case of Ag 2 O, the average particle size is 2 to 200 μm, preferably 2 to 100 μm, and the content is 2 to 50% by weight, preferably 5 to 20% by weight. When the average particle diameter is larger than 200 μm or the content exceeds 50% by weight, the resin surface becomes rough, which is not preferable.

本発明の生体インプラントは、無機抗菌材料を樹脂に分散含有させることにより、機械加工等により表面が削られても、新たな無機抗菌材料が表面に現れるので、抗菌作用が失うことがない。また、含有される無機抗菌材料は徐々に溶出して、長期に亘る抗菌作用を示す。また、人工歯根に用いた場合、歯冠と接触する人工歯根の側周面を通して、口腔内からの感染を防ぐことができる。また、歯冠と接触する人工歯根の側周面を研削しても、機械的強度を低下させることなく、抗菌性を有するという効果も有する。また、人工頭蓋骨に用いた場合、寸法合わせのために人工頭蓋骨の周囲を削る時に、セラミッス製人工頭蓋骨と比べて、容易に削ることができ、抗菌性を有するという効果も有する。   In the living body implant of the present invention, an inorganic antibacterial material is dispersed and contained in a resin, so that even if the surface is shaved by machining or the like, a new inorganic antibacterial material appears on the surface, so that the antibacterial action is not lost. In addition, the contained inorganic antibacterial material gradually elutes and exhibits an antibacterial action over a long period of time. Moreover, when it uses for an artificial tooth root, the infection from an intraoral area can be prevented through the side peripheral surface of the artificial tooth root which contacts a crown. Moreover, even if the side peripheral surface of the artificial tooth root that contacts the crown is ground, it has an effect of having antibacterial properties without reducing the mechanical strength. Further, when used for an artificial skull, when the periphery of the artificial skull is cut for size adjustment, it can be easily cut and has antibacterial properties as compared with an artificial skull made of ceramics.

本発明の生体インプラントは、熱可塑性樹脂を用いた場合、押出成型、射出成型、カレンダー成型、ブロー成型、等の種々の成型方法を用いることができ、より低コストで製造することができる。また、3Dプリンター法を用いることもできる。   When the thermoplastic resin is used, the living body implant of the present invention can use various molding methods such as extrusion molding, injection molding, calendar molding, and blow molding, and can be manufactured at a lower cost. A 3D printer method can also be used.

本発明に用いる無機抗菌材料を、湿式法、焼成法または溶射法により製造してもよい。湿式法、焼成法または溶射法で製造するのに好ましい無機抗菌材料は、銀およびその酸化物、銀およびその炭酸塩、あるいは銀、その塩およびその酸化物から選択される少なくとも1種を含むリン酸カルシウム系材料である。リン酸カルシウム系材料には、ヒドロキシアパタイト、α−第3リン酸カルシウム、β−第3リン酸カルシウムおよび第4リン酸カルシウムから成る群から選択される1種または2種以上の混合物を用いることができる。好ましくは、ヒドロキシアパタイトである。リン酸カルシウム系材料は骨形成を促進する作用も有しており、また、リン酸カルシウム系材料を併用することにより、銀またはAgOの量を減らすことが可能となるので、より低コストで製造できる。 You may manufacture the inorganic antibacterial material used for this invention by the wet method, a baking method, or a thermal spraying method. A preferred inorganic antibacterial material for producing by a wet method, a firing method or a thermal spraying method is calcium phosphate containing at least one selected from silver and its oxide, silver and its carbonate, or silver, its salt and its oxide It is a system material. As the calcium phosphate material, one or a mixture of two or more selected from the group consisting of hydroxyapatite, α-tricalcium phosphate, β-tricalcium phosphate and quaternary calcium phosphate can be used. Preferably, it is hydroxyapatite. The calcium phosphate-based material also has an action of promoting bone formation, and by using the calcium phosphate-based material in combination, the amount of silver or Ag 2 O can be reduced, so that it can be manufactured at a lower cost.

(プラズマ溶射法による無機抗菌材料の製造)
溶射法としては、フレーム溶射法、高速フレーム溶射法、プラズマ溶射法およびコールドスプレー法を挙げることができるが、プラズマ溶射法が好ましい。プラズマ溶射条件は特に限定されないが、例えば、以下の文献に記載された方法を用いることができる。
「Mechanical,In VitroAntimicrobial and Biological Prooerties of Plasma SprayedSilver−Doped Hydroxyapatite Coating」Mangal Rpy等(ACS Appl Mater Interface 2012 March;4(3):1341−1349」
プラズマ溶射条件として、例えば、作動出力25kW、一次ガスAr、二次ガスAr−Hの混合ガス、溶射距離110mmで溶射を行うことができる。なお、本発明では、銀および/またはその塩またはその酸化物とリン酸カルシウム系材料との混合粉末をプラズマ溶射材料に用いる。冷却後、プラズマ溶射被膜を母材から剥離し、粉砕してプラズマ溶射複合粉末を得る。
(Manufacture of inorganic antibacterial materials by plasma spraying method)
Examples of the thermal spraying method include a flame spraying method, a high-speed flame spraying method, a plasma spraying method, and a cold spray method, but the plasma spraying method is preferable. Although the plasma spraying conditions are not particularly limited, for example, a method described in the following document can be used.
“Mechanical, In Vitro Antibiotic and Biological Prooferts of Plasma SprayedSilver-Doped Hydroxyapatite Coating”, Mangal Rpy et al. (ACS Appl.
As the plasma spraying conditions, for example, thermal spraying can be performed at an operating output of 25 kW, a mixed gas of primary gas Ar and secondary gas Ar—H, and a spraying distance of 110 mm. In the present invention, a mixed powder of silver and / or a salt thereof or an oxide thereof and a calcium phosphate material is used for the plasma spray material. After cooling, the plasma sprayed coating is peeled from the base material and pulverized to obtain a plasma sprayed composite powder.

プラズマ溶射複合粉末中の銀濃度は、プラズマ溶射材料となるリン酸カルシウム系材料に配合する銀原料の量を変化させることにより、調整することができる。プラズマ溶射複合粉末中の銀濃度は、0.05重量%〜3.00重量%、好ましくは0.05重量%〜2.50重量%、より好ましくは0.05重量%〜1.00重量%、さらに好ましくは0.1重量%〜1.00重量%である。0.05重量%より小さいと抗菌性が十分でないからである。また、3.00重量%より大きいと生体組織に毒性を示すようになるからである。   The silver concentration in the plasma sprayed composite powder can be adjusted by changing the amount of the silver raw material to be blended with the calcium phosphate material used as the plasma spray material. The silver concentration in the plasma sprayed composite powder is 0.05 wt% to 3.00 wt%, preferably 0.05 wt% to 2.50 wt%, more preferably 0.05 wt% to 1.00 wt%. More preferably, it is 0.1% by weight to 1.00% by weight. It is because antibacterial property is not enough when it is smaller than 0.05% by weight. Moreover, it is because it will show a toxicity to a biological tissue when larger than 3.00 weight%.

プラズマ溶射複合粉末の平均粒径は、10μm以下、好ましくは1〜7μmであり、生体インプラント中の含有量は2〜50重量%、好ましくは5〜20重量%である。   The average particle size of the plasma spray composite powder is 10 μm or less, preferably 1 to 7 μm, and the content in the biological implant is 2 to 50% by weight, preferably 5 to 20% by weight.

本発明の生体インプラントには、人工歯根や人工頭蓋骨だけでなく、腸骨スペーサー、人工椎体、人工椎体スペーサー、蕀間ブロック、人工関節等も含まれる。   The biological implant of the present invention includes not only an artificial tooth root and an artificial skull but also an iliac spacer, an artificial vertebral body, an artificial vertebral body spacer, an intercostal block, an artificial joint, and the like.

以下、実験例を用いて本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail using experimental examples.

実験例1.
(1)抗菌試験
(試験片作製)
無機抗菌材料には平均粒径の異なるAgO(メルク社製)を用い、熱可塑性樹脂には生体適合性(ISO10993)認証医療用PEEK(TECAPEEK CLASSIX製)を用いた。AgOは150℃で6時間乾燥したものを用いた。AgOの含有量が10重量%となるように、AgOとPEEKを予備混合した。次に、外側にヒーターを巻いた加熱金型内(断面が円柱)に混合した原料を投入し、金型の温度をPEEKの溶融温度(342℃)まで上げ、PEEKを溶融した。自然冷却後、金型から取り出し、円柱状成型体を取り出した。切削加工により、円柱状成型体から50mm×50mm×2mmの試験片を作製した。なお、用いたAgOの平均粒径(D50)は、島津製作所製レーザー回折式粒度分布測定装置を用いて測定した。
Experimental Example 1.
(1) Antibacterial test (test piece preparation)
Ag 2 O (manufactured by Merck) having a different average particle diameter was used as the inorganic antibacterial material, and biocompatible (ISO 10993) certified medical PEEK (manufactured by TECAPEEK CLASSIX) was used as the thermoplastic resin. Ag 2 O used was dried at 150 ° C. for 6 hours. The content of Ag 2 O is such that 10% by weight, were premixed Ag 2 O and PEEK. Next, the mixed raw material was put into a heating mold having a heater wound outside (the cross section was a cylinder), the temperature of the mold was raised to the melting temperature of PEEK (342 ° C.), and PEEK was melted. After natural cooling, the product was taken out from the mold, and a cylindrical molded body was taken out. A test piece of 50 mm × 50 mm × 2 mm was produced from the cylindrical molded body by cutting. Incidentally, Ag 2 average particle diameter (D 50) of the O used was measured using a Shimadzu laser diffraction particle size distribution measuring apparatus.

(試験方法)
JIS Z2801「抗菌加工製品−抗菌性試験方法・抗菌効果」に準拠して、MRSA(メチシリン耐性黄色ブドウ球菌)に対する抗菌性評価を行い、以下の抗菌活性値を求めた。ただし、本抗菌部材の生体内での使用を想定し、生体環境を模擬する目的で培地は1/500普通ブイヨン培地の代わりに牛血清を使用した。また、培養温度も35℃から37℃に変更した。培養は暗所にて24時間行った。
(Test method)
In accordance with JIS Z2801, “Antimicrobial processed product—antibacterial test method / antibacterial effect”, antibacterial evaluation against MRSA (methicillin-resistant Staphylococcus aureus) was performed, and the following antibacterial activity values were obtained. However, assuming that this antibacterial member is used in vivo, bovine serum was used instead of 1/500 normal broth medium for the purpose of simulating the biological environment. The culture temperature was also changed from 35 ° C to 37 ° C. Incubation was performed in the dark for 24 hours.

抗菌活性値(R)は、抗菌加工製品と無加工製品における細菌を接種培養後の生菌数の対数値の差を示す値であり、以下の式で定義される。
抗菌活性値=log[(無加工試験片の24時間後の生菌数の平均値)/(抗菌加工試験片の24時間後の生菌数の平均値)]
例えば、抗菌活性値Rが7とは細菌数が試験前の1/10になったことを示す。JIS規格では、抗菌活性値が2以上の場合、抗菌活性が有効であると判定する。
The antibacterial activity value (R) is a value indicating the difference in the logarithmic value of the number of viable bacteria after inoculating and culturing bacteria in the antibacterial processed product and the unprocessed product, and is defined by the following formula.
Antibacterial activity value = log [(average value of viable cell count after 24 hours of unprocessed test piece) / (average value of viable cell count after 24 hour of antibacterial processed test piece)]
For example, an antibacterial activity value R of 7 indicates that the number of bacteria has become 1/10 7 before the test. According to JIS standards, when the antibacterial activity value is 2 or more, it is determined that the antibacterial activity is effective.

(2)細胞付着試験
(試験片作製)
抗菌試験の試験片と同じように、AgO含有のPEEKの円柱状成型体を作製し、切削加工により、円柱状成型体からφ14mm×1mmの試験片を作製した。
(2) Cell adhesion test (preparation of test piece)
Similarly to the test piece of the antibacterial test, a PEEK cylindrical molded body containing Ag 2 O was prepared, and a φ14 mm × 1 mm test piece was prepared from the cylindrical molded body by cutting.

(試験方法)
マウス由来の骨芽細胞前駆細胞株MC3T3−E1を前培養した後、α−MEM+1
0%FBS中に浸漬した試験片上に播種した。5%CO、37℃にて2時間培養した後、細胞骨格および核を蛍光染色し、試験後の細胞径比率を求めた。試験後の細胞比率とは、PEEK単独(銀を含まない比較例)の細胞径に対する比率であり、写真撮影を行い、写真中の多数の細胞の径を計測し、平均したものである。細胞比率が小さくなればなるほど、銀に細胞に対する毒性が高いことを示している。本試験では、細胞比率90%以上を細胞毒性が低いものと判定した。
(Test method)
After pre-culturing the mouse-derived osteoblast precursor cell line MC3T3-E1, α-MEM + 1
Seeds were placed on test specimens immersed in 0% FBS. After culturing for 2 hours at 37 ° C. with 5% CO 2 , the cytoskeleton and nucleus were fluorescently stained, and the cell diameter ratio after the test was determined. The cell ratio after the test is the ratio of PEEK alone (comparative example not containing silver) to the cell diameter, which is obtained by taking a photograph, measuring the diameters of many cells in the photograph, and averaging them. The smaller the cell ratio, the higher the toxicity of silver to cells. In this test, a cell ratio of 90% or more was determined to be low in cytotoxicity.

(結果)
表1に抗菌試験と細胞付着試験の結果を示す。総合判定は、抗菌活性値が2以上で、かつ細胞比率が90%以上である場合を○とし、それ以外を×とした。AgOの平均粒径が2〜200μmの範囲では、優れた抗菌活性と低細胞毒性を示した。また、AgOの含有率が2〜50重量%では、優れた抗菌活性と低細胞毒性を示した。
(result)
Table 1 shows the results of the antibacterial test and cell adhesion test. In the comprehensive judgment, the case where the antibacterial activity value was 2 or more and the cell ratio was 90% or more was evaluated as ◯, and other cases were evaluated as ×. When the average particle size of Ag 2 O was in the range of 2 to 200 μm, excellent antibacterial activity and low cytotoxicity were exhibited. Further, when the content of Ag 2 O was 2 to 50% by weight, excellent antibacterial activity and low cytotoxicity were exhibited.

Figure 2015016231
Figure 2015016231

実験例2.
(1)抗菌試験
(試験片作製)
AgO粉末に代えてAg−ヒドロキシアパタイト(以下、ヒドロキシアパタイトをHAと略す)のプラズマ溶射複合粉末を用いた以外は、実施例1の場合と同様にして試験片を作製した。Ag(平均粒径10μm、メルク社製)とHA(メルク社製)を10/90(重量比)で混合した粉末を以下の方法で溶射を行った。
溶射条件は、作動出力25kW、一次ガスAr、二次ガスAr−Hの混合ガス、溶射距離110mmで行った。縦10cm、横10cm、厚さ0.5mmの純チタン板に溶射を行い、冷却後、プラズマ溶射被膜を純チタン板から剥離し、粉砕してプラズマ溶射複合粉末を得た。これにより、Agを10重量%含むAg−HA溶射複合粉末を作製した。
なお、抗菌試験は実験例1の場合と同様の方法で行った。
Experimental example 2.
(1) Antibacterial test (test piece preparation)
A test piece was prepared in the same manner as in Example 1 except that a plasma spray composite powder of Ag-hydroxyapatite (hereinafter, hydroxyapatite is abbreviated as HA) was used instead of the Ag 2 O powder. A powder obtained by mixing Ag (average particle size 10 μm, manufactured by Merck) and HA (made by Merck) at 10/90 (weight ratio) was sprayed by the following method.
The thermal spraying conditions were an operating output of 25 kW, a mixed gas of primary gas Ar and secondary gas Ar—H, and a spraying distance of 110 mm. Thermal spraying was performed on a pure titanium plate having a length of 10 cm, a width of 10 cm, and a thickness of 0.5 mm. After cooling, the plasma sprayed coating was peeled off from the pure titanium plate and pulverized to obtain a plasma sprayed composite powder. As a result, an Ag-HA sprayed composite powder containing 10% by weight of Ag was produced.
The antibacterial test was performed in the same manner as in Experimental Example 1.

(2)細胞付着試験
(試験片作製)
AgO粉末に代えてAg−HAの溶射複合粉末を用いた以外は、実験例1の場合と同様にして試験片を作製した。
なお、細胞付着試験は実験例1の場合と同様の方法で行った。
(2) Cell adhesion test (preparation of test piece)
A test piece was prepared in the same manner as in Experimental Example 1 except that a sprayed composite powder of Ag-HA was used instead of the Ag 2 O powder.
The cell adhesion test was performed in the same manner as in Experimental Example 1.

(結果)
表2に抗菌試験と細胞付着試験の結果を示す。Ag―HAの含有率が2〜50重量%では、優れた抗菌活性と低細胞毒性を示した。なお、Ag―HAの含有率が50重量%を超えると混合粉末の調製が困難であり、試験片を作製することができなかった。
(result)
Table 2 shows the results of the antibacterial test and cell adhesion test. When the content of Ag-HA was 2 to 50% by weight, excellent antibacterial activity and low cytotoxicity were exhibited. Note that when the content of Ag-HA exceeds 50% by weight, it is difficult to prepare a mixed powder, and a test piece cannot be produced.

Figure 2015016231
Figure 2015016231

実験例3.
(1)溶出試験
(試験片作製)
実験例1の抗菌試験用試験片作製の場合と同様に、AgO含有のPEEKの円柱状成型体を作製し、切削加工により、円柱状成型体からφ40mm×2mmの試験片を作製した。
Experimental Example 3.
(1) Dissolution test (test piece preparation)
In the same manner as in the preparation of the test piece for antibacterial test of Experimental Example 1, a PEEK cylindrical molded body containing Ag 2 O was manufactured, and a test piece of φ40 mm × 2 mm was manufactured from the cylindrical molded body by cutting.

(試験方法)
プラスチック製容器中にて、試験片1枚に対して100mlの牛胎児血清を加え、37℃で静置した。所定の時間(4時間、12時間、24時間、48時間)経過後、抽出液から1mlを採取し、1000rpmで15分間遠心分離及び0.22μmのフィルターで濾過後、ICP質量分析装置にて濾液中の銀イオン濃度を測定した。
(Test method)
In a plastic container, 100 ml of fetal bovine serum was added to one test piece and left at 37 ° C. After a predetermined time (4 hours, 12 hours, 24 hours, 48 hours), 1 ml is collected from the extract, centrifuged at 1000 rpm for 15 minutes and filtered through a 0.22 μm filter, and then filtrated with an ICP mass spectrometer. The silver ion concentration in the medium was measured.

なお、本実験例で作製した試験片についても実験例1の場合と同様の方法により抗菌試験と細胞付着試験を行った。   In addition, the antibacterial test and the cell adhesion test were performed on the test piece prepared in the present experimental example by the same method as in the first experimental example.

(結果)
銀イオン濃度の測定結果を表3に示す。銀が徐々に溶出すること、および試験片中の銀濃度が増加すると、溶出する銀も増加することを確認できた。
(result)
The measurement results of the silver ion concentration are shown in Table 3. It was confirmed that the silver elutes gradually and that when the silver concentration in the test piece increases, the eluted silver also increases.

Figure 2015016231
Figure 2015016231

Figure 2015016231
Figure 2015016231

実験例4.
(1)溶出試験
(試験片作製)
AgO粉末に代えてAg−HAの溶射複合粉末を用いた以外は、実験例3の場合と同様にして試験片を作製した。
Experimental Example 4.
(1) Dissolution test (test piece preparation)
A test piece was prepared in the same manner as in Experimental Example 3 except that a sprayed composite powder of Ag-HA was used instead of the Ag 2 O powder.

(試験方法)
溶出試験は、実験例3の場合と同様の方法で行った。
(Test method)
The dissolution test was performed in the same manner as in Experimental Example 3.

なお、本実験例で作製した試験片についても実験例1の場合と同様の方法により抗菌試験と細胞付着試験を行った。   In addition, the antibacterial test and the cell adhesion test were performed on the test piece prepared in the present experimental example by the same method as in the first experimental example.

(結果)
銀イオン濃度の測定結果を表5に示す。Ag−HA溶射複合粉末を用いた場合もAgOを用いた場合と同様に、銀が徐々に溶出すること、および試験片中の銀濃度が増加すると、溶出する銀も増加することを確認した。Ag−HA中のAgは10wt%であるので、試料25では試料中に含まれるAgは0.5wt%でも、試料23(AgO 20wt%)と比べて、銀の溶出量が同等のオーダーであり、銀の含有量が少なくても、抗菌効果があることが判る。
(result)
Table 5 shows the measurement results of the silver ion concentration. When Ag-HA spray composite powder is used, it is confirmed that silver is gradually eluted and that when the silver concentration in the test piece is increased, the eluted silver is also increased, as in the case of using Ag 2 O. did. Since Ag in Ag-HA is 10 wt%, the amount of silver elution in Sample 25 is equivalent to that in Sample 23 (Ag 2 O 20 wt%) even when Ag contained in the sample is 0.5 wt%. It can be seen that even if the silver content is small, it has an antibacterial effect.

Figure 2015016231
Figure 2015016231

Figure 2015016231
Figure 2015016231

本発明によれば、研削加工等により表面が削られても、抗菌性が低下することがなく、かつ低コストで製造可能な生体インプラントを提供できる。本発明の生体インプラントは、人工歯根に限定されることなく、人工頭蓋骨等の他の生体インプラントとしても広く使用できるものである。   ADVANTAGE OF THE INVENTION According to this invention, even if the surface is shaved by grinding etc., the biological implant which can be manufactured at low cost, without antibacterial property falling can be provided. The biological implant of the present invention is not limited to an artificial tooth root, and can be widely used as other biological implants such as an artificial skull.

Claims (7)

銅、亜鉛、銀、およびそれらの塩および酸化物並びにリン酸カルシウム系材料からなる群から選択される少なくとも1種の無機抗菌材料を含有する樹脂を成形して成る生体インプラント。   A biological implant formed by molding a resin containing at least one inorganic antibacterial material selected from the group consisting of copper, zinc, silver, salts and oxides thereof, and calcium phosphate materials. 上記の無機抗菌材料が、銀またはその塩またはその酸化物である請求項1記載の生体インプラント。   The biological implant according to claim 1, wherein the inorganic antibacterial material is silver or a salt thereof or an oxide thereof. 上記の無機抗菌材料が、銅、亜鉛、銀、およびそれらの塩および酸化物からなる群から選択される少なくとも1種を含むリン酸カルシウム系材料である請求項1記載の生体インプラント。   The biological implant according to claim 1, wherein the inorganic antibacterial material is a calcium phosphate material containing at least one selected from the group consisting of copper, zinc, silver, and salts and oxides thereof. 上記の無機抗菌材料が、銀またはその塩またはその酸化物とリン酸カルシウム系材料である請求項3記載の生体インプラント。   The biological implant according to claim 3, wherein the inorganic antibacterial material is silver or a salt thereof or an oxide thereof and a calcium phosphate material. 上記樹脂が熱可塑性樹脂である請求項1記載の生体インプラント。   The biological implant according to claim 1, wherein the resin is a thermoplastic resin. 上記熱可塑性樹脂がポリエーテルエーテルケトンである請求項5記載の生体インプラント。   The living body implant according to claim 5, wherein the thermoplastic resin is polyetheretherketone. 生体インプラントが人工歯根である請求項1から6のいずれか一つに記載の生体インプラント。   The biological implant according to any one of claims 1 to 6, wherein the biological implant is an artificial tooth root.
JP2013146676A 2013-07-12 2013-07-12 Biological implant Pending JP2015016231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146676A JP2015016231A (en) 2013-07-12 2013-07-12 Biological implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013146676A JP2015016231A (en) 2013-07-12 2013-07-12 Biological implant

Publications (1)

Publication Number Publication Date
JP2015016231A true JP2015016231A (en) 2015-01-29

Family

ID=52437855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146676A Pending JP2015016231A (en) 2013-07-12 2013-07-12 Biological implant

Country Status (1)

Country Link
JP (1) JP2015016231A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040194A (en) * 2010-08-19 2012-03-01 Saga Univ Biological implant
JP2013526885A (en) * 2009-07-24 2013-06-27 ウォーソー・オーソペディック・インコーポレーテッド Implantable screw and system for alveolar fossa preservation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526885A (en) * 2009-07-24 2013-06-27 ウォーソー・オーソペディック・インコーポレーテッド Implantable screw and system for alveolar fossa preservation
JP2012040194A (en) * 2010-08-19 2012-03-01 Saga Univ Biological implant

Similar Documents

Publication Publication Date Title
Eliaz et al. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications
Mokhtari et al. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties
Krishnan et al. Bioglass: A novel biocompatible innovation
Li et al. Enhanced osseointegration and antibacterial action of zinc‐loaded titania‐nanotube‐coated titanium substrates: In vitro and in vivo studies
Uskokovic et al. Effect of calcium phosphate particle shape and size on their antibacterial and osteogenic activity in the delivery of antibiotics in vitro
Qiao et al. Si, Sr, Ag co-doped hydroxyapatite/TiO 2 coating: enhancement of its antibacterial activity and osteoinductivity
Shimabukuro et al. Investigation of realizing both antibacterial property and osteogenic cell compatibility on titanium surface by simple electrochemical treatment
Zhang et al. Biological properties of an anti‐bacterial membrane for guided bone regeneration: an experimental study in rats
CN109135175B (en) Polyether ketone-based composite material, composition, restoration body, preparation method and application
Kaliaraj et al. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance–a review
Huang et al. Physicochemical, osteogenic and antimicrobial properties of graphene oxide reinforced silver/strontium-doped hydroxyapatite on titanium for potential orthopedic applications
WO2012023510A1 (en) Biological implant
JP6289708B2 (en) Biological implant
Hurt et al. Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration
Bapat et al. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry
Mehrvarz et al. Biocompatibility and antibacterial behavior of electrochemically deposited Hydroxyapatite/ZnO porous nanocomposite on NiTi biomedical alloy
CN102212717A (en) Copper-bearing antibacterial titanium alloy and preparation method thereof
Shimizu et al. Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting
CN102921042A (en) Hard tissue substitute material and preparation method thereof
Sharma et al. Nanohydroxyapatite-, gelatin-, and acrylic acid-based novel dental restorative material
US20190269830A1 (en) Implantable medical devices having coating layers with antimicrobial properties based on nanostructured hydroxyapatites
Inchingolo et al. Surface coatings of dental implants: a review
Heydariyan et al. A comprehensive review: Different approaches for encountering of bacterial infection of dental implants and improving their properties
Bozoğlu et al. Peek dental implants coated with boron-doped nano-hydroxyapatites: Investigation of in-vitro osteogenic activity
Hameed et al. Osteoblastic cell responses of copper nanoparticle coatings on Ti-6Al-7Nb alloy using electrophoretic deposition method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926