JP2015015435A - Light-emitting body and light-emitting device including the same - Google Patents

Light-emitting body and light-emitting device including the same Download PDF

Info

Publication number
JP2015015435A
JP2015015435A JP2013142683A JP2013142683A JP2015015435A JP 2015015435 A JP2015015435 A JP 2015015435A JP 2013142683 A JP2013142683 A JP 2013142683A JP 2013142683 A JP2013142683 A JP 2013142683A JP 2015015435 A JP2015015435 A JP 2015015435A
Authority
JP
Japan
Prior art keywords
light
chromaticity
resin member
phosphors
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013142683A
Other languages
Japanese (ja)
Inventor
清 武井
Kiyoshi Takei
清 武井
恵一 江高
Keiichi Etaka
恵一 江高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP2013142683A priority Critical patent/JP2015015435A/en
Publication of JP2015015435A publication Critical patent/JP2015015435A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element that suppresses generation of errors in chromaticity among light-emitting devices and to provide a light-emitting device including the light-emitting element.SOLUTION: A light-emitting device 1 includes a resin member 10 containing two phosphors 11, 12 which are excited by excitation light to emit light. In an xy-chromaticity diagram, a line segment connecting chromaticity points of the two phosphors passes a chromaticity point of desired white light defined on a blackbody locus. An absorption coefficient α for light of the resin member and a thickness T of the resin member satisfy EXP(-α×T)≤0.01.

Description

本発明は、所望の白色光を発光する発光体及びこれを備える発光装置に関する。   The present invention relates to a light emitter that emits desired white light and a light emitting device including the light emitter.

従来より、発光する半導体ダイオード等の半導体発光素子を励起光源として用いて、励起光源から生じた励起光を蛍光体を含む発光体に照射することで所望の白色光を発光する発光装置が提供されている。   Conventionally, there has been provided a light emitting device that emits desired white light by using a semiconductor light emitting element such as a semiconductor diode that emits light as an excitation light source and irradiating a light emitting body including a phosphor with excitation light generated from the excitation light source. ing.

例えば特許文献1の半導体発光装置は励起光源として青色光を発する半導体発光素子と赤色蛍光体及び緑色蛍光体とを備えている。そして、半導体発光素子から発せられる青色光と励起光に励起されて各蛍光体から発せられる赤色光及び緑色光とが混合されて白色光が実現される。   For example, the semiconductor light emitting device of Patent Document 1 includes a semiconductor light emitting element that emits blue light as an excitation light source, a red phosphor, and a green phosphor. Then, the blue light emitted from the semiconductor light emitting element and the red light and green light emitted from each phosphor when excited by the excitation light are mixed to realize white light.

特開2010−141033号公報JP 2010-141033 A

ところで使用する発光素子や複数の蛍光体の分量比は実現したい白色光の色度(色温度)に基づいて適宜設定される。しかしながら発光素子から発せられる光の波長は製造誤差等によりばらつきが発生することがあり、また、蛍光体の分量比も製造過程においてばらつきが生じるなど多くの要因によって発光装置間における色度誤差が生じうる。   By the way, the quantity ratio of the light emitting element to be used and the plurality of phosphors is appropriately set based on the chromaticity (color temperature) of white light to be realized. However, the wavelength of the light emitted from the light emitting element may vary due to manufacturing errors, etc., and the chromaticity error between the light emitting devices may occur due to many factors such as variations in the phosphor ratio in the manufacturing process. sell.

本発明は上述した問題点に鑑み、発光装置間における色度誤差の発生を抑制する発光素子及びこれを備える発光装置を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a light emitting element that suppresses occurrence of chromaticity errors between light emitting devices and a light emitting device including the light emitting element.

上記目的を達成するために本発明の発光体は、励起光によって励起されて発光する2種類の蛍光体を含有する樹脂部材を備え、xy色度図における前記2種類の蛍光体の色度点を結んだ線分が黒体軌跡上で規定した所望の白色光の色度点を通り、前記樹脂部材の光の吸収係数をα、前記樹脂部材の厚さをTとしたときにEXP(−α×T)≦0.01を満たすことを特徴としている。   In order to achieve the above object, the phosphor of the present invention includes a resin member containing two types of phosphors that emit light when excited by excitation light, and the chromaticity points of the two types of phosphors in the xy chromaticity diagram. The line segment connecting the two passes through the desired chromaticity point of the white light defined on the black body locus, and when the light absorption coefficient of the resin member is α and the thickness of the resin member is T, EXP (− α × T) ≦ 0.01 is satisfied.

また上記構成の発光体において、前記線分は色度分類規格によって定められる色温度の規格範囲の内、3種類以上の色温度の規格範囲を通ることが望ましい。   Further, in the light emitter configured as described above, it is desirable that the line segment pass through three or more types of color temperature standard ranges within the color temperature standard range defined by the chromaticity classification standard.

また上記構成の発光体において、前記線分は黒体軌跡上で規定した所望の白色光の色度点の接線であることが望ましい。   In the light emitter configured as described above, it is desirable that the line segment is a tangent to a desired chromaticity point of white light defined on a black body locus.

また上記構成の発光体において、前記2種類の蛍光体の少なくとも一方はナノ粒子蛍光体であることが望ましい。   In the light emitter having the above structure, it is desirable that at least one of the two kinds of phosphors is a nanoparticle phosphor.

上記目的を達成するために本発明の発光装置は、上記いずれかに記載の発光体と、前記発光体に励起光を照射する励起光源と、を備えることを特徴としている。   In order to achieve the above object, a light emitting device of the present invention includes any one of the light emitters described above and an excitation light source that irradiates the light emitter with excitation light.

本発明によれば、樹脂部材に2種類の蛍光体が含有される。そして樹脂部材の光の吸収係数をα、前記樹脂部材の厚さをTとしたときにEXP(−α×T)≦0.01を満たすことにより、励起光は樹脂部材で全て波長変換若しくは吸収される。従って励起光の波長のばらつきは得られる光の色度に影響を与えない。また、得られる光は励起光によって励起されて発光する2種類の蛍光体から発せられる光を混合した光であり、2種類の蛍光体の色度点を結んだ線分が黒体軌跡上で規定した所望の白色光の色度点を通るので所望の白色光となる。   According to the present invention, the resin member contains two types of phosphors. When the light absorption coefficient of the resin member is α and the thickness of the resin member is T, EXP (−α × T) ≦ 0.01 is satisfied, so that all the excitation light is wavelength converted or absorbed by the resin member. Is done. Therefore, variations in the wavelength of the excitation light do not affect the chromaticity of the obtained light. The obtained light is a mixture of light emitted from two types of phosphors that are excited by excitation light to emit light, and a line segment connecting the chromaticity points of the two types of phosphors on the black body locus. Since the desired chromaticity point of the desired white light is passed, the desired white light is obtained.

一実施形態における発光装置を示す断面図Sectional drawing which shows the light-emitting device in one Embodiment 2種類の蛍光体の色度点を結んだ線分と黒体軌跡を示すxy色度図An xy chromaticity diagram showing a line segment connecting the chromaticity points of two types of phosphors and a black body locus. 2種類の蛍光体の色度点を結んだ線分と黒体軌跡を示す他のxy色度図Another xy chromaticity diagram showing the line segment connecting the chromaticity points of two types of phosphors and the black body locus 2種類の蛍光体の色度点を結んだ線分と黒体軌跡を示すさらに他のxy色度図Still another xy chromaticity diagram showing a line segment connecting the chromaticity points of two types of phosphors and a black body locus ANSI規格による色温度の規格範囲を示す図The figure which shows the standard range of color temperature by ANSI standard

<第1実施形態>
以下に本発明の発光装置について図面を参照して説明する。なお、本実施形態及び以降の実施形態は、本発明の技術的思想を具体化するために発光装置の一例を示すものであって、本発明をこれら発光装置に特定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態の発光装置にも等しく適応し得るものである。
<First Embodiment>
The light emitting device of the present invention will be described below with reference to the drawings. In addition, this embodiment and subsequent embodiment show an example of a light-emitting device in order to embody the technical idea of this invention, Comprising: This invention is not intended to identify these light-emitting devices. However, the present invention can be equally applied to the light emitting devices of other embodiments included in the scope of claims.

図1は本実施形態の発光装置を示す断面図である。発光装置1は基板2を備え、基板2の表面にはポリイミドやエポキシ系などの熱伝導性絶縁樹脂層3が設けられる。熱伝導性絶縁樹脂層3の表面には光反射性を有する配線パターン(銅パターン)4が設けられる。配線パターン4は例えば後述するLEDチップ6に駆動電流を供給するためのカソード電極4a及びアノード電極4bを備える。   FIG. 1 is a cross-sectional view showing the light emitting device of this embodiment. The light emitting device 1 includes a substrate 2, and a thermally conductive insulating resin layer 3 such as polyimide or epoxy is provided on the surface of the substrate 2. A light-reflecting wiring pattern (copper pattern) 4 is provided on the surface of the heat conductive insulating resin layer 3. The wiring pattern 4 includes, for example, a cathode electrode 4a and an anode electrode 4b for supplying a driving current to an LED chip 6 described later.

配線パターン4の一部はレジスト層(ソルダーレジスト)5に覆われて保護される。レジスト層5としてはLEDチップの出射光の反射光率及び拡散効率を高めることを目的として白色のレジスト層とすることが望ましい。   A part of the wiring pattern 4 is covered and protected by a resist layer (solder resist) 5. The resist layer 5 is preferably a white resist layer for the purpose of increasing the reflectance of light emitted from the LED chip and the diffusion efficiency.

LEDチップ6は後述する蛍光体11、12から発せられる光の波長よりも短波長の光(青色光、紫色光、紫外光)を出射する発光素子であればよい(蛍光体11又は12が青色蛍光体であれば紫色光又は紫外光となる)。LEDチップ6の大きさとしては例えば長辺600μm、短辺200μm、高さ100μmのものが使用される。LEDチップ6はダイボンド等の固定材料7によってレジスト層5上に固定される。LEDチップ6とカソード電極4a及びアノード電極4bとは夫々ワイヤ等の接続部材8a、8bによって接続される。   The LED chip 6 may be any light-emitting element that emits light (blue light, violet light, ultraviolet light) having a wavelength shorter than the wavelength of light emitted from phosphors 11 and 12 described later (the phosphor 11 or 12 is blue). If it is a phosphor, it becomes purple light or ultraviolet light). For example, the LED chip 6 having a long side of 600 μm, a short side of 200 μm, and a height of 100 μm is used. The LED chip 6 is fixed on the resist layer 5 by a fixing material 7 such as die bond. The LED chip 6 is connected to the cathode electrode 4a and the anode electrode 4b by connecting members 8a and 8b such as wires.

また、レジスト層5上にはLEDチップ6の周囲を囲むようにダム材9が設けられ、ダム材9の内側(ダム材9で囲まれた部分)には樹脂部材10が配されてLEDチップ6が封止される。樹脂部材10はLEDチップ6の出射光(励起光)に励起されて所定の蛍光を出射する2種類の蛍光体11、12とシリコーン等の封止樹脂13と沈降防止剤(不図示)を混合してドーム状に形成される。なお、本明細書及び特許請求の範囲では樹脂部材10を備える構成を発光体(励起光の照射対象物)とも称する。   Further, a dam material 9 is provided on the resist layer 5 so as to surround the LED chip 6, and a resin member 10 is disposed on the inner side of the dam material 9 (a portion surrounded by the dam material 9). 6 is sealed. The resin member 10 is a mixture of two types of phosphors 11 and 12 that are excited by the emitted light (excitation light) of the LED chip 6 and emit predetermined fluorescence, a sealing resin 13 such as silicone, and an anti-settling agent (not shown). And formed into a dome shape. In the present specification and claims, the configuration including the resin member 10 is also referred to as a light emitter (an object to be irradiated with excitation light).

以下、樹脂部材10及び2種類の蛍光体11、12に関して図2を参照して説明する。図2は2種類の蛍光体の色度点を結んだ線分と黒体軌跡を示すxy色度図(CIE1931色度図)である。   Hereinafter, the resin member 10 and the two types of phosphors 11 and 12 will be described with reference to FIG. FIG. 2 is an xy chromaticity diagram (CIE1931 chromaticity diagram) showing a line segment connecting the chromaticity points of two types of phosphors and a black body locus.

本実施形態では2種類の蛍光体11、12として、LEDチップ6の出射光に励起されてピーク波長が500nmの光を発光する青緑色蛍光体(例えばCe賦活αサイアロン蛍光体)11とLEDチップ6の出射光に励起されてピーク波長が625nmの光を発光する赤色蛍光体(例えばEu賦活CaAlSiN3蛍光体)12を使用する。青緑色蛍光体11と赤色蛍光体12は重量%で1.06:1の割合で樹脂部材10に含有される。 In this embodiment, as two types of phosphors 11 and 12, a blue-green phosphor (for example, Ce activated α sialon phosphor) 11 that emits light having a peak wavelength of 500 nm when excited by the emitted light of the LED chip 6 and the LED chip. A red phosphor (for example, Eu-activated CaAlSiN 3 phosphor) 12 that emits light having a peak wavelength of 625 nm when excited by the emitted light 6 is used. The blue-green phosphor 11 and the red phosphor 12 are contained in the resin member 10 at a ratio of 1.06: 1 by weight.

樹脂部材10には青緑色蛍光体11及び赤色蛍光体12の合計重量は2mgに対して封止樹脂13は5mgが含まれる。   The resin member 10 includes 5 mg of the sealing resin 13 while the total weight of the blue-green phosphor 11 and the red phosphor 12 is 2 mg.

xy色度図において各蛍光体11、12から発せられる光の色度点は夫々(0.25,0.45)、(0.63、0.36)であり、両点を結ぶ線分L1と黒体軌跡との交点は白色光の色度点を通る。本実施形態では線分L1と黒体軌跡との交点が色温度3000Kの白色光となるように、樹脂部材10が青緑色蛍光体11と赤色蛍光体12を含有する。   In the xy chromaticity diagram, the chromaticity points of light emitted from the phosphors 11 and 12 are (0.25, 0.45) and (0.63, 0.36), respectively, and a line segment L1 connecting the two points. And the black body locus pass through the chromaticity point of white light. In the present embodiment, the resin member 10 contains the blue-green phosphor 11 and the red phosphor 12 so that the intersection of the line segment L1 and the black locus is white light with a color temperature of 3000K.

なお、白色光として好適に使用される色温度は3000Kに限られるものではなく2000Kから10000Kの間の所望の白色光が得られるように適切な蛍光体を樹脂部材10に含有させることすればよい。例えば、色温度2500Kの暖光色や6000Kの昼光色を実現することができる。   In addition, the color temperature used suitably as white light is not restricted to 3000K, What is necessary is just to make the resin member 10 contain suitable fluorescent substance so that desired white light between 2000K and 10000K may be obtained. . For example, a warm color with a color temperature of 2500K and a daylight color of 6000K can be realized.

仮に、このような樹脂部材10に対してLEDチップ6の出射光を照射した場合に、その一部が樹脂部材10を透過し、青緑色蛍光体11から発せられる光及び赤色蛍光体12から発せられる光と合成されて白色光を得ると、LEDチップ6の出射光の波長及び各光の強度差によって得られる白色光の色温度にばらつきが生じる。   If such resin member 10 is irradiated with light emitted from the LED chip 6, part of the resin member 10 is transmitted through the resin member 10 and emitted from the blue-green phosphor 11 and the red phosphor 12. When white light is obtained by being combined with the generated light, the color temperature of the white light obtained due to the wavelength of the emitted light from the LED chip 6 and the intensity difference of each light varies.

図2における線分L2及びL3を参照して説明する。線分L2はLEDチップ6の出射光のピーク波長が450nm、色度が(0.17、0.05)である場合に得られる光の範囲を示す線分である。また、線分L2において点P1は、青緑色蛍光体11から発せられる光及び赤色蛍光体12から発せられる光の合成光(以下、蛍光体の合成光とも称する。)と樹脂部材10を透過したLEDチップ6の出射光の光強度の比が5:1である場合に得られる白色光である。   This will be described with reference to line segments L2 and L3 in FIG. The line segment L2 is a line segment indicating the range of light obtained when the peak wavelength of the emitted light from the LED chip 6 is 450 nm and the chromaticity is (0.17, 0.05). Further, in the line segment L2, the point P1 passes through the resin member 10 and the combined light of the light emitted from the blue-green phosphor 11 and the light emitted from the red phosphor 12 (hereinafter also referred to as the synthesized light of the phosphor). This is white light obtained when the ratio of the light intensity of the emitted light from the LED chip 6 is 5: 1.

これに対して線分L3はLEDチップ6の出射光のピーク波長が460nm、色度が(0.12、0.03)である場合に得られる光の範囲を示す線分である。また、線分L3において点P2は、蛍光体の合成光と樹脂部材10を透過したLEDチップ6の出射光の光強度の比が5:1である場合に得られる白色光である。   On the other hand, the line segment L3 is a line segment indicating the range of light obtained when the peak wavelength of the emitted light from the LED chip 6 is 460 nm and the chromaticity is (0.12, 0.03). Further, in the line segment L3, the point P2 is white light obtained when the ratio of the light intensity of the synthesized light of the phosphor and the emitted light of the LED chip 6 transmitted through the resin member 10 is 5: 1.

つまりLEDチップ6の出射光の色度(出射光の波長)にばらつきが生じると蛍光体の合成光に合成されて得られる白色光の色温度が点P1から点P2に変化してしまう。そこで本実施形態ではLEDチップ6の出射光が樹脂部材10を透過しないように構成することで、得られる白色光の色度がLEDチップ6の出射光の波長のばらつきに起因してばらつかないようにする。   In other words, when the chromaticity (wavelength of the emitted light) of the emitted light from the LED chip 6 varies, the color temperature of the white light obtained by being synthesized with the synthesized light of the phosphor changes from the point P1 to the point P2. Therefore, in the present embodiment, by configuring the emitted light of the LED chip 6 so as not to pass through the resin member 10, the chromaticity of the obtained white light does not vary due to the variation in the wavelength of the emitted light of the LED chip 6. Like that.

LEDチップ6の出射光が得られる白色光の一部を構成しないようにするためには、LEDチップ6の出射光の全てが樹脂部材10に吸収され、或いは変換されればよい。樹脂部材10がLEDチップ6の出射光の全てを吸収或いは変換するか否かは樹脂部材10の吸収係数及び樹脂部材10の厚さによって定まる。樹脂部材10の吸収係数は含有する蛍光体11、12と封止樹脂13の重量%及び全重量に応じて定まる。   In order not to constitute part of the white light from which the emitted light from the LED chip 6 is obtained, all of the emitted light from the LED chip 6 may be absorbed or converted by the resin member 10. Whether or not the resin member 10 absorbs or converts all of the emitted light from the LED chip 6 depends on the absorption coefficient of the resin member 10 and the thickness of the resin member 10. The absorption coefficient of the resin member 10 is determined according to the weight% and the total weight of the phosphors 11 and 12 and the sealing resin 13 contained therein.

樹脂部材10の厚さとはLEDチップ6と樹脂部材10の光出射面までの距離であり、本実施形態のように樹脂部材10がドーム状に形成される場合にはLEDチップ6を中心とした各方向への距離である。なお、樹脂部材10はドーム状に形成しなくてもよく、例えば直方体状に形成される場合には、LEDチップと樹脂部材10との距離のうち、最も距離が近い距離を基準とする。   The thickness of the resin member 10 is the distance from the LED chip 6 to the light emitting surface of the resin member 10. When the resin member 10 is formed in a dome shape as in this embodiment, the LED chip 6 is the center. Distance in each direction. The resin member 10 does not have to be formed in a dome shape. For example, when the resin member 10 is formed in a rectangular parallelepiped shape, the distance between the LED chip and the resin member 10 that is closest is used as a reference.

ここで樹脂部材10の吸収係数をα、樹脂部材10の厚さをTとすると、次式(1)を満たすことでLEDチップ6の出射光は樹脂部材10によって全て吸収或いは変換される。
EXP(−α×T)≦0.01・・・(1)
Here, when the absorption coefficient of the resin member 10 is α and the thickness of the resin member 10 is T, all the emitted light of the LED chip 6 is absorbed or converted by the resin member 10 by satisfying the following expression (1).
EXP (−α × T) ≦ 0.01 (1)

なお、青緑色蛍光体11及び赤色蛍光体12としては上述したものに限られるものではない。青緑色蛍光体11としてはハロ燐酸塩蛍光体、Ce賦活M2Si58蛍光体等が使用可能である。赤色蛍光体12としてはEu賦活Ca2Si58蛍光体等が使用可能である。 The blue-green phosphor 11 and the red phosphor 12 are not limited to those described above. As the blue-green phosphor 11, a halophosphate phosphor, a Ce-activated M 2 Si 5 N 8 phosphor, or the like can be used. As the red phosphor 12, Eu activated Ca 2 Si 5 N 8 phosphor or the like can be used.

また、その他の蛍光体として、ナノ粒子蛍光体を使用することも可能である。ナノ粒子蛍光体は、耐熱性に優れ、粒子径が可視光の波長の10分の1程度まで小さくなった蛍光体であり、光散乱の影響を無視出来るほど低減することが可能となる。ナノ粒子蛍光体の使用で蛍光体内部での光の吸収率が大きく低減されるため、LEDチップ6の出射光の全てを樹脂部材10で変換もしくは吸収する発光体の構成には極めて効果的である。   Moreover, it is also possible to use a nanoparticle fluorescent substance as another fluorescent substance. The nanoparticle phosphor is excellent in heat resistance and has a particle diameter reduced to about one-tenth of the wavelength of visible light, and can be reduced to such an extent that the influence of light scattering can be ignored. Since the absorption rate of light inside the phosphor is greatly reduced by using the nanoparticle phosphor, it is extremely effective for the configuration of a light emitting body that converts or absorbs all the emitted light of the LED chip 6 by the resin member 10. is there.

本実施形態によれば、樹脂部材の光の吸収係数をα、樹脂部材の厚さをTとしたときにEXP(−α×T)≦0.01を満たすことにより、励起光は樹脂部材で全て波長変換若しくは吸収される。従って励起光の波長のばらつきは得られる光の色度に影響を与えない。また、得られる光は励起光によって励起されて発光する2種類の蛍光体から発せられる光を混合した光であり、2種類の蛍光体の色度点を結んだ線分が黒体軌跡上で規定した所望の白色光の色度点を通るので所望の白色光となる。   According to the present embodiment, when the light absorption coefficient of the resin member is α and the thickness of the resin member is T, EXP (−α × T) ≦ 0.01 is satisfied. All are wavelength converted or absorbed. Therefore, variations in the wavelength of the excitation light do not affect the chromaticity of the obtained light. The obtained light is a mixture of light emitted from two types of phosphors that are excited by excitation light to emit light, and a line segment connecting the chromaticity points of the two types of phosphors on the black body locus. Since the desired chromaticity point of the desired white light is passed, the desired white light is obtained.

また、2種類の蛍光体の少なくとも一方はナノ粒子蛍光体であるのでLEDチップ6の出射光の全てを樹脂部材10で変換もしくは吸収する発光体の構成には極めて効果的である。   In addition, since at least one of the two types of phosphors is a nanoparticle phosphor, it is extremely effective in the configuration of a light emitter that converts or absorbs all of the emitted light from the LED chip 6 by the resin member 10.

<第2実施形態>
上記第1実施形態の発光装置1は比較的入手が容易な青緑色蛍光体と赤色蛍光体を使用して白色光を得ることとした。第1実施形態の構成ではLEDチップ6の出射光の全てが吸収或いは変換されるので、LEDチップ6の出射光の波長のばらつきに起因する白色光の色度のばらつきは発生しない。一方で、黒体軌跡において所望の白色光の色温度(第1実施形態では3000K)の点における接線L4と線分L1とは傾きが大きく異なり、接線L4と線分L1のなす角が大きい。
Second Embodiment
The light emitting device 1 of the first embodiment obtains white light by using a blue-green phosphor and a red phosphor that are relatively easily available. In the configuration of the first embodiment, since all of the emitted light from the LED chip 6 is absorbed or converted, the chromaticity variation of the white light due to the variation in the wavelength of the emitted light from the LED chip 6 does not occur. On the other hand, the tangent line L4 and the line segment L1 at the point of the desired white light color temperature (3000K in the first embodiment) in the black body locus are greatly different in inclination, and the angle formed between the tangent line L4 and the line segment L1 is large.

従って蛍光体自体のばらつきや分量比のばらつきにより、得られる白色光の色温度が黒体軌跡に対して大きくずれてしまう可能性がある。そこで本実施形態では蛍光体自体のばらつきや分量比のばらつきに起因する白色光の色温度の黒体軌跡に対するずれを抑制する構成とする。   Accordingly, there is a possibility that the color temperature of the obtained white light is largely deviated from the black body locus due to the variation of the phosphor itself and the variation of the quantity ratio. Therefore, in the present embodiment, it is configured to suppress the deviation of the color temperature of the white light with respect to the black body locus caused by the variation of the phosphor itself and the variation of the ratio of the amounts of light.

具体的には線分L1と接線L4の傾きを略同一にする、すなわち、線分L1が所望の白色光の色温度の点における接線となるように蛍光体11及び蛍光体12をの種類及び重量%を定める。本実施形態では蛍光体11、12としてLEDチップ6の出射光に励起されてピーク波長が586nmの光を発光する橙色蛍光体(例えばEu賦活αサイアロン蛍光体)11とLEDチップ6の出射光に励起されてピーク波長が490nmの光を発光する青緑色蛍光体(例えばAIN蛍光体やJEM蛍光体)12を使用する。橙色蛍光体11と青緑色蛍光体12は重量%で1:2の割合で樹脂部材10に含有される。   Specifically, the slopes of the line segment L1 and the tangent line L4 are made substantially the same, that is, the types of phosphors 11 and phosphors 12 are set so that the line segment L1 becomes a tangent line at the point of the color temperature of the desired white light. Define weight percent. In this embodiment, the phosphors 11 and 12 are excited by the light emitted from the LED chip 6 and are emitted from the LED chip 6 and the orange phosphor (for example, Eu-activated α sialon phosphor) 11 that emits light having a peak wavelength of 586 nm. A blue-green phosphor (for example, AIN phosphor or JEM phosphor) 12 that emits light having a peak wavelength of 490 nm when excited is used. The orange phosphor 11 and the blue-green phosphor 12 are contained in the resin member 10 in a weight ratio of 1: 2.

図3を参照して、xy色度図において各蛍光体11、12から発せられる光の色度点は夫々(0.55,0.44)、(0.23、0.34)であり、両点を結ぶ線分L5と黒体軌跡との交点は色温度3000Kの白色光の色度点を通り、且つ、当該色度点における接線である。   Referring to FIG. 3, the chromaticity points of light emitted from the respective phosphors 11 and 12 in the xy chromaticity diagram are (0.55, 0.44) and (0.23, 0.34), respectively. The intersection of the line segment L5 connecting the two points and the black body locus passes through the chromaticity point of white light having a color temperature of 3000K and is a tangent line at the chromaticity point.

本実施形態によれば第1実施形態と同様の効果を奏する。加えて、蛍光体の色度点を結ぶ線分が所望の白色光の色度点の接線であることにより、蛍光体の発光色のばらつきや蛍光体の分量比のばらつきに起因する白色光のばらつきが黒体軌跡に沿って生じるため得られる白色光の色温度の黒体軌跡に対するずれを抑制することができる。   According to the present embodiment, the same effects as those of the first embodiment can be obtained. In addition, since the line connecting the chromaticity points of the phosphor is a tangent to the desired chromaticity point of white light, white light caused by variations in phosphor emission color and phosphor ratios Since the variation occurs along the black body locus, the deviation of the color temperature of the white light obtained from the black body locus can be suppressed.

<第3実施形態>
上記第2実施形態の発光装置1は蛍光体自体のばらつきや分量比のばらつきに起因する得られる白色光の色温度の黒体軌跡に対するずれを抑制する構成とするために、各蛍光体11、12から発せられる光の色度点同士を結んだ線分が黒体軌跡における所望の白色光の色温度の点における接線となるようにした。本実施形態では、さらに、蛍光体自体のばらつきや分量比のばらつきに起因して白色光の色度にばらつきが発生しても他の照明装置用発光体として使用可能とする構成を示す。
<Third Embodiment>
The light emitting device 1 of the second embodiment is configured to suppress the deviation of the color temperature of the white light obtained from the black body locus due to the variation of the phosphor itself and the variation of the ratio of the amounts of the phosphors 11, The line segment connecting the chromaticity points of the light emitted from 12 is a tangent line at the point of the color temperature of the desired white light in the black body locus. In the present embodiment, there is further shown a configuration that can be used as another light emitter for a lighting device even when variation in chromaticity of white light occurs due to variations in phosphors themselves or variations in the quantity ratio.

米国において照明光(2700K〜6500Kの白色光)はANSI規格により8色の色温度の規格範囲が定められている。図5は図2〜図4に示したCIE1931色度図の黒体軌跡の一部の拡大図である。図5に示すように白色光は色温度に応じて8種類の色温度に規定され、図5において黒体軌跡上の×印は各色温度の中心点である。各色温度における規格範囲は図5において黒体軌跡に沿って各色温度を囲む四角形(菱形)の範囲であり、当該範囲内の色温度の白色光はANSI規格内の照明装置用発光体として使用できる。   In the United States, illumination light (white light of 2700K to 6500K) has a standard range of eight color temperatures according to the ANSI standard. FIG. 5 is an enlarged view of a part of the black body locus of the CIE 1931 chromaticity diagram shown in FIGS. As shown in FIG. 5, white light is defined as eight types of color temperatures according to the color temperature, and in FIG. 5, the x mark on the black body locus is the center point of each color temperature. The standard range at each color temperature is a quadrangular (diamond) range surrounding each color temperature along the black body locus in FIG. 5, and white light having a color temperature within the range can be used as a light emitter for an illuminating device within the ANSI standard. .

従って各蛍光体11、12から発せられる光の色度点を結ぶ線分がANSI規格による8種類の色温度の規格範囲のうち、3種類以上の色温度の規格範囲を通ることとすれば、白色光の色度にばらつきが発生してもANSI規格内の白色光となる可能性が高く、その場合は異なる色温度の他の照明装置用発光体として使用可能である。   Therefore, if the line segment connecting the chromaticity points of the light emitted from each of the phosphors 11 and 12 passes through three or more color temperature standard ranges among the eight color temperature standard ranges according to the ANSI standard, Even if the chromaticity of white light varies, there is a high possibility that the light will be white light within the ANSI standard, and in that case, it can be used as another light emitter for a lighting device having a different color temperature.

また、より望ましくは図5に示すように全ての色温度の規格範囲を通ることとすればよく、本実施形態では蛍光体11、12としてLEDチップ6の出射光に励起されてピーク波長が465nmの光を発光する青緑色蛍光体(例えば(Sr,Ba)10(PO4612:EU(ハロリン酸塩蛍光体))11と、LEDチップ6の出射光に励起されてピーク波長が583nmの光を発光する橙色蛍光体(例えば(Sr3SiO5:Eu,Yb(シリケート蛍光体))12を使用する。 More preferably, it is sufficient to pass through the standard range of all color temperatures as shown in FIG. 5. In this embodiment, the phosphors 11 and 12 are excited by the light emitted from the LED chip 6 and have a peak wavelength of 465 nm. The peak wavelength is excited by the blue-green phosphor (e.g., (Sr, Ba) 10 (PO 4 ) 6 C 12 : EU (halophosphate phosphor)) 11 and the light emitted from the LED chip 6. An orange phosphor (for example, (Sr 3 SiO 5 : Eu, Yb (silicate phosphor)) 12 that emits light of 583 nm is used.

xy色度図において各蛍光体11、12から発せられる光の色度点は夫々(0.15,0.22)、(0.53、0.47)であり、両点を結ぶ線分L6と黒体軌跡との交点は白色光の色度点を通る(図4参照)。本実施形態では線分L6と黒体軌跡との交点が色温度5000Kの白色光となるように、樹脂部材10が青緑色蛍光体11と橙色蛍光体12を含有する。樹脂部材10内における封止樹脂13、青緑色蛍光体11、橙色蛍光体12の重量%は88:6:6である。   In the xy chromaticity diagram, the chromaticity points of light emitted from the phosphors 11 and 12 are (0.15, 0.22) and (0.53, 0.47), respectively, and a line segment L6 connecting the two points. And the black body locus pass through the chromaticity point of white light (see FIG. 4). In the present embodiment, the resin member 10 contains the blue-green phosphor 11 and the orange phosphor 12 so that the intersection of the line segment L6 and the black body locus becomes white light having a color temperature of 5000K. The weight% of the sealing resin 13, the blue-green phosphor 11, and the orange phosphor 12 in the resin member 10 is 88: 6: 6.

本実施形態によれば第1実施形態と同様の効果を奏する。加えて、蛍光体自体のばらつきや分量比のばらつきに起因して白色光の色度にばらつきが発生しても、ANSI規格外れになりにくく、異なる色温度の他の照明装置用発光体として使用可能である。従ってANSI規格外れによる製品不良を劇的に低減することができる。   According to the present embodiment, the same effects as those of the first embodiment can be obtained. In addition, even if the chromaticity of white light varies due to variations in the phosphor itself or the ratio of the amount of light, it is unlikely to be out of ANSI standard and used as a light emitter for other lighting devices with different color temperatures. Is possible. Therefore, product defects due to non-ANSI standards can be dramatically reduced.

なお、本実施形態では色度分類規格としてANSI規格を用いて説明したが、色度分類規格はこれに限られるものではない。例えば日本国において照明光について5色の色温度の規格範囲を定めるJIS規格であってもよい。また、ANSI規格やJIS規格に基づいて独自に色温度の規格範囲を定めた(一般的に独自に定める場合はANSI規格やJIS規格よりも厳しい規格範囲とする)ものであってもよい。その場合にも線分L6が3種類以上の色温度の規格範囲を通ることで同様の効果を奏する。   In this embodiment, the ANSI standard is described as the chromaticity classification standard, but the chromaticity classification standard is not limited to this. For example, it may be a JIS standard that defines a standard range of five color temperatures for illumination light in Japan. Alternatively, the color temperature standard range may be uniquely determined based on the ANSI standard or JIS standard (in general, the standard range is set to be stricter than the ANSI standard or JIS standard). Even in this case, the same effect can be obtained when the line segment L6 passes the standard range of three or more color temperatures.

また、第2実施形態と第3実施形態は組み合わせることが可能である。すなわち、蛍光体11、12の色度点を結ぶ線分が、黒体軌跡における所望の白色光の色度点の接線であり、且つ、色度分類規格における3種類以上の色温度の規格範囲を通ることとすればよい。   Further, the second embodiment and the third embodiment can be combined. That is, the line segment connecting the chromaticity points of the phosphors 11 and 12 is the tangent line of the chromaticity point of the desired white light in the black body locus, and the standard range of three or more color temperatures in the chromaticity classification standard You can go through.

1 発光装置
2 基板
3 熱伝導性絶縁樹脂層
4 配線パターン
5 レジスト層
6 LEDチップ
7 固定材料
8 接続部材
9 ダム材
10 樹脂部材
11、12 蛍光体
13 封止樹脂
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Board | substrate 3 Thermal conductive insulating resin layer 4 Wiring pattern 5 Resist layer 6 LED chip 7 Fixing material 8 Connection member 9 Dam material 10 Resin member 11,12 Phosphor 13 Sealing resin

Claims (5)

励起光によって励起されて発光する2種類の蛍光体を含有する樹脂部材を備え、
xy色度図における前記2種類の蛍光体の色度点を結んだ線分が黒体軌跡上で規定した所望の白色光の色度点を通り、前記樹脂部材の光の吸収係数をα、前記樹脂部材の厚さをTとしたときにEXP(−α×T)≦0.01を満たす発光体。
A resin member containing two types of phosphors that emit light when excited by excitation light,
The line segment connecting the chromaticity points of the two types of phosphors in the xy chromaticity diagram passes through the desired chromaticity point of white light defined on the black body locus, and the light absorption coefficient of the resin member is α, A light-emitting body that satisfies EXP (−α × T) ≦ 0.01, where T is the thickness of the resin member.
前記線分は色度分類規格によって定められる色温度の規格範囲の内、3種類以上の色温度の規格範囲を通る請求項1に記載の発光体。   The illuminant according to claim 1, wherein the line segment passes through a standard range of three or more color temperatures in a standard range of color temperatures determined by a chromaticity classification standard. 前記線分は黒体軌跡上で規定した所望の白色光の色度点の接線である請求項1又は請求項2に記載の発光体。   The light emitting body according to claim 1, wherein the line segment is a tangent line of a chromaticity point of desired white light defined on a black body locus. 前記2種類の蛍光体の少なくとも一方はナノ粒子蛍光体である請求項1〜請求項3のいずれか1項に記載の発光体。   The light emitter according to any one of claims 1 to 3, wherein at least one of the two kinds of phosphors is a nanoparticle phosphor. 請求項1〜請求項4のいずれか1項に記載の発光体と、
前記発光体に励起光を照射する励起光源と、
を備える発光装置。
The light emitter according to any one of claims 1 to 4,
An excitation light source for irradiating the light emitter with excitation light;
A light emitting device comprising:
JP2013142683A 2013-07-08 2013-07-08 Light-emitting body and light-emitting device including the same Pending JP2015015435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013142683A JP2015015435A (en) 2013-07-08 2013-07-08 Light-emitting body and light-emitting device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142683A JP2015015435A (en) 2013-07-08 2013-07-08 Light-emitting body and light-emitting device including the same

Publications (1)

Publication Number Publication Date
JP2015015435A true JP2015015435A (en) 2015-01-22

Family

ID=52436945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142683A Pending JP2015015435A (en) 2013-07-08 2013-07-08 Light-emitting body and light-emitting device including the same

Country Status (1)

Country Link
JP (1) JP2015015435A (en)

Similar Documents

Publication Publication Date Title
US9647181B2 (en) Light emitting device with phosphors
JP5410342B2 (en) Light emitting device
JP5181505B2 (en) Light emitting device
JP6365159B2 (en) Light emitting device
JP6275829B2 (en) Light emitting device
JP2008218486A (en) Light emitting device
JP2005020010A (en) White light emitting device
WO2012035729A1 (en) Led light bulb
CN107431112B (en) Light emitting device
JP2008071806A (en) Light emitting device
JP2008270781A (en) Light-emitting device
JPWO2012029305A1 (en) LED bulb
JP2011114097A (en) Illuminator
JP2011159809A (en) White light-emitting device
JP2007059898A (en) Semiconductor light-emitting device
JP2007116117A (en) Light emitting device
JP2009111273A (en) Light-emitting device
JP2008218998A (en) Light emitting device
JP6106307B2 (en) LIGHT EMITTING DEVICE, AND LIGHTING APPARATUS AND DISPLAY DEVICE USING THE LIGHT EMITTING DEVICE
JP5918827B2 (en) Light emitting device
JP6405738B2 (en) Light emitting device
WO2016158082A1 (en) Light-emitting device
JP5559338B2 (en) Light emitting device and LED bulb
JP2009260319A (en) Lighting device
JP2008244468A (en) Light-emitting device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150529