JP2015008102A - Olivine type lithium transition metal silicate compound, and method for manufacturing the same - Google Patents

Olivine type lithium transition metal silicate compound, and method for manufacturing the same Download PDF

Info

Publication number
JP2015008102A
JP2015008102A JP2013133379A JP2013133379A JP2015008102A JP 2015008102 A JP2015008102 A JP 2015008102A JP 2013133379 A JP2013133379 A JP 2013133379A JP 2013133379 A JP2013133379 A JP 2013133379A JP 2015008102 A JP2015008102 A JP 2015008102A
Authority
JP
Japan
Prior art keywords
transition metal
olivine
metal lithium
type
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013133379A
Other languages
Japanese (ja)
Other versions
JP6205895B2 (en
Inventor
拓哉 紅露
Takuya Koro
拓哉 紅露
永吾 計盛
Eigo Kazumori
永吾 計盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013133379A priority Critical patent/JP6205895B2/en
Publication of JP2015008102A publication Critical patent/JP2015008102A/en
Application granted granted Critical
Publication of JP6205895B2 publication Critical patent/JP6205895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an olivine type lithium transition metal silicate compound having excellent charge and discharge characteristics, and a method for manufacturing such an olivine type lithium transition metal silicate compound.SOLUTION: An olivine type lithium transition metal silicate compound comprises: a conductive material; and a compound expressed by the general formula, Li(MnM)SiO(where x satisfies the condition of 1.9<x<2.3, y meets the condition of 0≤y<1, and M represents at least one metal element selected from a group consisting of Fe, Co, Ni, Mg, Zn, Ti and V), provided that at least part of the surface of the compound is covered with the conductive material. The olivine type lithium transition metal silicate compound has a specific surface area of 35 m/g or larger.

Description

本発明は、リチウムを可逆的にドープ及び脱ドープ可能なオリビン型ケイ酸遷移金属リチウム化合物およびその製造方法に関する。   The present invention relates to an olivine-type transition metal lithium compound capable of reversibly doping and dedoping lithium and a method for producing the same.

非水電解質二次電池の正極活物質として用いられるリチウム遷移金属複合酸化物は、二次電池を構成したときの作用電圧が4Vと高く、また、大きな容量が得られることが知られている。そのため、リチウム遷移金属複合酸化物を正極活物質として利用したリチウムイオン二次電池は、携帯電話、ノート型パソコンおよびデジタルカメラ等の電子機器の電源として多く用いられている。また、近年、環境への配慮から、電気自動車、ハイブリッド自動車などに搭載される大型の二次電池の用途向けにリチウムイオン二次電池の要求が高くなっている。   It is known that a lithium transition metal composite oxide used as a positive electrode active material of a non-aqueous electrolyte secondary battery has a high working voltage of 4 V when a secondary battery is configured, and a large capacity can be obtained. For this reason, lithium ion secondary batteries using lithium transition metal composite oxides as positive electrode active materials are often used as power sources for electronic devices such as mobile phones, notebook computers, and digital cameras. In recent years, due to environmental considerations, there is an increasing demand for lithium ion secondary batteries for use with large secondary batteries mounted on electric vehicles, hybrid vehicles, and the like.

特に、遷移金属としてコバルトを利用したリチウム遷移金属複合酸化物(コバルト酸リチウム)と比較して安全で安価な正極活物質として、例えば、特許文献1に開示されるように、3.5V級の電圧をもつオリビン型リチウム鉄複合酸化物が注目されている。   In particular, as a positive active material that is safe and inexpensive compared to lithium transition metal composite oxide (lithium cobaltate) using cobalt as a transition metal, for example, as disclosed in Patent Document 1, 3.5V class An olivine-type lithium iron composite oxide having a voltage has attracted attention.

このオリビン型リチウム鉄複合酸化物は、リチウムイオン二次電池の正極活物質として、ポリアニオンを基本骨格とするオリビン型結晶構造を有し、例えば、組成式がLiFePOで表される化合物が知られている。これらの化合物は二次電池の正極活物質として使われる際、充放電に伴う結晶構造変化が少ないためサイクル特性に優れ、また結晶中の酸素原子がリンとの共有結合により安定して存在するため電池が高温環境下に晒された際にも酸素放出の可能性が小さく安全性に優れるというメリットがある。しかし、LiFePOの実容量は170mAh/gと理論容量に達しており、これ以上の高容量化は困難である。 This olivine-type lithium iron composite oxide has an olivine-type crystal structure having a polyanion as a basic skeleton as a positive electrode active material of a lithium ion secondary battery. For example, a compound represented by a composition formula of LiFePO 4 is known. ing. When these compounds are used as positive electrode active materials for secondary batteries, they have excellent cycle characteristics due to little change in the crystal structure that accompanies charge and discharge, and because oxygen atoms in the crystals exist stably due to covalent bonds with phosphorus. Even when the battery is exposed to a high temperature environment, there is an advantage that the possibility of oxygen release is small and the safety is excellent. However, the actual capacity of LiFePO 4 reaches 170 mAh / g, which is a theoretical capacity, and it is difficult to increase the capacity beyond this.

そこで、優れた安全性を維持して高容量化が期待される材料として、オリビン型ケイ酸遷移金属リチウム化合物、例えばLiMnSiOで表される化合物が提案されている。これらの化合物はLiFePOと比較して2倍のLiを組成中に含んでいることから、理論容量は330mAh/gに達する。 Therefore, an olivine type silicate transition metal lithium compound, for example, a compound represented by Li 2 MnSiO 4 has been proposed as a material that is expected to have a high capacity while maintaining excellent safety. Since these compounds contain twice as much Li in the composition as compared with LiFePO 4 , the theoretical capacity reaches 330 mAh / g.

特開2004−79276号公報JP 2004-79276 A

しかしながら、オリビン型ケイ酸遷移金属リチウム化合物は電子伝導性が低く、そのため、得られる非水電解質二次電池の容量は理論容量より大幅に低くなってしまう。   However, the olivine-type lithium transition metal silicate compound has low electronic conductivity, and therefore the capacity of the obtained non-aqueous electrolyte secondary battery is significantly lower than the theoretical capacity.

本発明は、かかる事情に鑑みてなされたものであり、優れた充放電特性を有するオリビン型ケイ酸遷移金属リチウム化合物およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide an olivine-type transition metal lithium silicate compound having excellent charge / discharge characteristics and a method for producing the same.

本発明者らは、表面の少なくとも一部が導電性材料で被覆された、特定の比表面積を有するオリビン型ケイ酸遷移金属リチウム化合物を用いることにより、優れた充放電容量を有する非水電解液二次電池を得ることができることを見出し、本願発明を完成させるに至った。   The present inventors have used a non-aqueous electrolyte having an excellent charge / discharge capacity by using an olivine-type transition metal lithium silicate compound having a specific specific surface area, at least part of which is coated with a conductive material. The present inventors have found that a secondary battery can be obtained and have completed the present invention.

本発明に係るオリビン型ケイ酸遷移金属リチウム化合物は、表面の少なくとも一部が導電性材料によって被覆された、一般式Li(Mn1−y)SiO(式中、xは1.9<x<2.3、yは0≦y<1、Mは、Fe、Co、Ni、Mg、Zn、TiおよびVからなる群より選択される少なくとも1種の金属元素)で表されるオリビン型ケイ酸遷移金属リチウム化合物であって、比表面積が35m/g以上である、オリビン型ケイ酸遷移金属リチウム化合物である。 The olivine-type silicate transition metal lithium compound according to the present invention has a general formula Li x (Mn 1-y M y ) SiO 4 (wherein x is 1. 9 <x <2.3, y is 0 ≦ y <1, and M is at least one metal element selected from the group consisting of Fe, Co, Ni, Mg, Zn, Ti, and V) It is an olivine type silicate transition metal lithium compound having a specific surface area of 35 m 2 / g or more.

本発明に係るオリビン型ケイ酸遷移金属リチウム化合物の製造方法は、表面の少なくとも一部が導電性材料で被覆された、一般式Li(Mn1−y)SiO(式中、xは1.9<x<2.3、yは0≦y<1、Mは、Fe、Co、Ni、Mg、Zn、TiおよびVからなる群より選択される少なくとも1種の金属元素)で表されるオリビン型ケイ酸遷移金属リチウム化合物の製造方法であって、
リチウム源、マンガン源、ケイ酸源、導電性材料源および必要に応じて金属元素M源の粒子、ならびに分散媒を含有するスラリーを調製することと、
前記スラリーを粉砕処理に付すことと、
前記粉砕処理に付したスラリーを噴霧乾燥して前駆体を得ることと
前記前駆体を焼成することと
を含む、方法である。
The method for producing an olivine-type lithium silicate transition metal compound according to the present invention has a general formula Li x (Mn 1-y M y ) SiO 4 (wherein x is coated with a conductive material). 1.9 <x <2.3, y is 0 ≦ y <1, M is at least one metal element selected from the group consisting of Fe, Co, Ni, Mg, Zn, Ti and V) A method for producing an olivine-type transition metal lithium silicate compound represented by:
Preparing a slurry containing a lithium source, a manganese source, a silicic acid source, a conductive material source and optionally metal element M source particles, and a dispersion medium;
Subjecting the slurry to a grinding process;
The method includes spray drying the slurry subjected to the pulverization treatment to obtain a precursor, and firing the precursor.

本発明に係るオリビン型ケイ酸遷移金属リチウム化合物は、表面の少なくとも一部が導電性材料で被覆されていることにより、良好な電子伝導性を有する。更に、本発明に係るオリビン型ケイ酸遷移金属リチウム化合物は、比表面積が大きいことにより、リチウムの挿入および脱離をスムーズに行うことができる。その結果、本発明のオリビン型ケイ酸遷移金属リチウム化合物を正極活物質として用いることにより、優れた充放電特性を有する非水電解液二次電池を得ることができる。   The olivine type silicate transition metal lithium compound according to the present invention has good electronic conductivity because at least a part of its surface is coated with a conductive material. Furthermore, since the olivine-type transition metal lithium compound according to the present invention has a large specific surface area, lithium can be smoothly inserted and removed. As a result, a nonaqueous electrolyte secondary battery having excellent charge / discharge characteristics can be obtained by using the olivine-type transition metal lithium compound of the present invention as a positive electrode active material.

また、本発明に係るオリビン型ケイ酸遷移金属リチウム化合物の製造方法は、スラリーを粉砕処理に付すことにより、スラリー中の原料を微粒子化することができ、その結果、得られるオリビン型ケイ酸遷移金属リチウム化合物の比表面積を大きくすることができる。更に、粉砕処理に付したスラリーを噴霧乾燥することにより、オリビン型ケイ酸遷移金属リチウム化合物の前駆体の表面を、導電性材料またはその前駆体で被覆することができ、その結果、得られるオリビン型ケイ酸遷移金属リチウム化合物の表面の少なくとも一部を、導電性材料で被覆することができる。本発明の方法により得られるオリビン型ケイ酸遷移金属リチウム化合物を正極活物質として用いることにより、優れた充放電特性を有する非水電解液二次電池を得ることができる。   In addition, the method for producing an olivine-type silicate transition metal lithium compound according to the present invention can finely pulverize the raw material in the slurry by subjecting the slurry to a pulverization treatment. As a result, the resulting olivine-type silicate transition is obtained. The specific surface area of the metal lithium compound can be increased. Furthermore, the surface of the precursor of the olivine-type transition metal lithium silicate compound can be coated with the conductive material or the precursor thereof by spray drying the slurry that has been subjected to the pulverization treatment, and as a result, the resulting olivine At least part of the surface of the lithium-type transition metal lithium compound can be coated with a conductive material. By using the olivine-type transition metal lithium silicate compound obtained by the method of the present invention as a positive electrode active material, a nonaqueous electrolyte secondary battery having excellent charge / discharge characteristics can be obtained.

以下、本発明に係るオリビン型ケイ酸遷移金属リチウム化合物およびその製造方法の一の実施形態について詳細に説明する。但し、以下に示す実施形態は、本発明の技術思想を具体化するために例示するものであり、本発明はこれらの実施形態に限定されるものではない。   Hereinafter, an embodiment of an olivine-type transition metal lithium silicate compound and a method for producing the same according to the present invention will be described in detail. However, the embodiments described below are illustrated to embody the technical idea of the present invention, and the present invention is not limited to these embodiments.

本発明の一の実施形態に係るオリビン型ケイ酸遷移金属リチウム化合物は、表面の少なくとも一部が導電性材料によって被覆された、一般式Li(Mn1−y)SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物である。式中、xは1.9<x<2.3であり、yは0≦y<1であり、Mは、Fe、Co、Ni、Mg、Zn、TiおよびVからなる群より選択される少なくとも1種の金属元素である。 The olivine-type transition metal lithium compound according to one embodiment of the present invention is represented by the general formula Li x (Mn 1-y M y ) SiO 4 in which at least a part of the surface is coated with a conductive material. The olivine-type transition metal lithium silicate compound. Where x is 1.9 <x <2.3, y is 0 ≦ y <1, and M is selected from the group consisting of Fe, Co, Ni, Mg, Zn, Ti and V At least one metal element.

xが1.9より大きいことにより、優れた理論容量の電池を得ることができる。xが2.3より小さいことにより、オリビン型ケイ酸遷移金属リチウム化合物中に含まれる不純物の量を低減することができ、その結果、優れた特性を有する電池を得ることができる。xのより好ましい範囲は、2.0<x<2.2である。   When x is larger than 1.9, a battery having an excellent theoretical capacity can be obtained. When x is smaller than 2.3, the amount of impurities contained in the olivine-type transition metal lithium silicate compound can be reduced, and as a result, a battery having excellent characteristics can be obtained. A more preferable range of x is 2.0 <x <2.2.

オリビン型ケイ酸遷移金属リチウム化合物は、Fe、Co、Ni、Mg、Zn、TiおよびVからなる群より選択される少なくとも1種の金属元素Mを含んでよい。金属元素Mを含むことにより、オリビン型ケイ酸遷移金属リチウム化合物の電子伝導性を向上させることができると考えられる。yが1未満であると、金属元素Mの単体等の、金属元素M含有不純物の生成を抑制することができるので、オリビン型ケイ酸遷移金属リチウム化合物の製造が容易になる。金属元素M含有不純物は、非水電解質二次電池の特性の低下を招き、またショートの原因となり得る。   The olivine type silicate transition metal lithium compound may contain at least one metal element M selected from the group consisting of Fe, Co, Ni, Mg, Zn, Ti and V. It is considered that the electronic conductivity of the olivine-type transition metal lithium silicate compound can be improved by including the metal element M. When y is less than 1, production of impurities containing the metal element M, such as a simple substance of the metal element M, can be suppressed, so that the olivine-type silicate transition metal lithium compound can be easily produced. The metal element M-containing impurities may cause deterioration of the characteristics of the nonaqueous electrolyte secondary battery and may cause a short circuit.

yの値は、0.05以上0.6以下であることが好ましい。yの値が上記範囲内であると、より良好な電子伝導性を得ることができ、且つ金属元素M含有不純物の生成をより抑制することができると考えられる。yの値は、より好ましくは0.2以上0.5以下である。yの値が上記範囲内であると、電池の充放電特性をより一層向上させることができる。   The value of y is preferably 0.05 or more and 0.6 or less. It is considered that when the value of y is within the above range, better electronic conductivity can be obtained and generation of impurities containing the metal element M can be further suppressed. The value of y is more preferably 0.2 or more and 0.5 or less. When the value of y is within the above range, the charge / discharge characteristics of the battery can be further improved.

金属元素MはFeであることが好ましい。金属元素MがFeであると、オリビン型ケイ酸遷移金属リチウム化合物の電子伝導性をより向上させることができる。   The metal element M is preferably Fe. When the metal element M is Fe, the electronic conductivity of the olivine-type lithium silicate transition metal lithium compound can be further improved.

オリビン型ケイ酸遷移金属リチウム化合物は、その表面の少なくとも一部が導電性材料によって被覆されている。「表面の少なくとも一部が導電性材料によって被覆されている」とは、オリビン型ケイ酸遷移金属リチウム化合物の粒子の表面の少なくとも一部に導電性材料が存在していることを意味する。例えば、オリビン型ケイ酸遷移金属リチウム化合物が、複数の一次粒子が凝集した二次粒子の形状を有する場合、「表面の少なくとも一部が導電性材料によって被覆されている」とは、オリビン型ケイ酸遷移金属リチウム化合物の一次粒子の表面の少なくとも一部に導電性材料が存在していることを意味する。この場合、導電性材料は、二次粒子の表面および内部に存在してよい。なお、オリビン型ケイ酸遷移金属リチウム化合物は、上述の形態に限定されるものではなく、一次粒子等の他の形状を有してもよい。導電性材料によるオリビン型ケイ酸遷移金属リチウム化合物の被覆の程度は、充放電特性向上の効果が得られる程度に導電性材料がオリビン型ケイ酸遷移金属リチウム化合物の表面に存在するようなものであれば十分である。導電性材料の好ましい重量割合については後述する。   At least a part of the surface of the olivine-type transition metal lithium silicate compound is covered with a conductive material. “At least a portion of the surface is covered with a conductive material” means that the conductive material is present on at least a portion of the surface of the olivine-type transition metal lithium silicate compound particle. For example, when the olivine-type transition metal lithium compound has a shape of a secondary particle in which a plurality of primary particles are aggregated, “at least a part of the surface is covered with a conductive material” means that It means that a conductive material is present on at least a part of the surface of the primary particles of the acid transition metal lithium compound. In this case, the conductive material may be present on the surface and inside of the secondary particles. In addition, the olivine-type silicate transition metal lithium compound is not limited to the above-described form, and may have other shapes such as primary particles. The degree of coating of the olivine-type transition metal lithium compound with the conductive material is such that the conductive material is present on the surface of the olivine-type transition metal lithium compound to the extent that the effect of improving the charge / discharge characteristics is obtained. If there is enough. A preferable weight ratio of the conductive material will be described later.

導電性材料は、特に限定されるものではないが、例えば、炭素を用いることができる。導電性材料として利用可能な炭素としては、例えば、アセチレンブラックおよびカーボンブラック等の炭素材料、ならびに有機化合物の分解により得られる炭素等が挙げられる。中でも、導電性材料が、原料に含まれる有機化合物(炭素源)が製造工程において分解することにより得られる炭素であると、オリビン型ケイ酸遷移金属リチウム化合物の表面において導電性材料(炭素)の均一な被膜を形成することができるので、好ましい。炭素源として用いることのできる有機化合物の例については後述する。   The conductive material is not particularly limited, and for example, carbon can be used. Examples of carbon that can be used as the conductive material include carbon materials such as acetylene black and carbon black, and carbon obtained by decomposition of an organic compound. In particular, when the conductive material is carbon obtained by decomposing an organic compound (carbon source) contained in the raw material in the manufacturing process, the conductive material (carbon) is formed on the surface of the olivine-type transition metal lithium metal silicate. Since a uniform film can be formed, it is preferable. Examples of organic compounds that can be used as the carbon source will be described later.

表面の少なくとも一部が導電性材料によって被覆されたオリビン型ケイ酸遷移金属リチウム化合物の重量に対する導電性材料の重量の割合(単に「導電性材料の重量割合」ともよぶ)は、好ましくは1.1重量%以上である。導電性材料の重量割合が1.1重量%以上であると、充放電特性の向上が顕著である。表面の少なくとも一部が導電性材料によって被覆されたオリビン型ケイ酸遷移金属リチウム化合物の重量に対する導電性材料の重量割合は、好ましくは2重量%以上5重量%以下である。導電性材料の重量割合が2重量%以上であると、オリビン型ケイ酸遷移金属リチウム化合物の電気抵抗を小さくすることができ、電子伝導性をより向上させることができる。導電性材料の重量割合が5重量%以下であると、オリビン型ケイ酸遷移金属リチウム化合物を非水電解液二次電池の正極活物質として用いる際に、重量当たりの充放電容量を大きくすることができる。導電性材料の重量割合は、より好ましくは2.5重量%以上3.5重量%以下である。導電性材料の重量割合が上記範囲内であると、充放電特性をより一層向上させることができる。   The ratio of the weight of the conductive material to the weight of the lithium olivine-type transition metal silicate compound at least a part of the surface of which is coated with the conductive material (also simply referred to as “weight ratio of the conductive material”) is preferably 1. 1% by weight or more. When the weight ratio of the conductive material is 1.1% by weight or more, the charge / discharge characteristics are significantly improved. The weight ratio of the conductive material to the weight of the olivine-type transition metal lithium silicate compound in which at least a part of the surface is coated with the conductive material is preferably 2% by weight or more and 5% by weight or less. When the weight ratio of the conductive material is 2% by weight or more, the electric resistance of the olivine-type transition metal lithium metal silicate can be reduced, and the electron conductivity can be further improved. When the weight ratio of the conductive material is 5% by weight or less, the charge / discharge capacity per weight is increased when the olivine-type transition metal lithium silicate compound is used as the positive electrode active material of the non-aqueous electrolyte secondary battery. Can do. The weight ratio of the conductive material is more preferably 2.5% by weight to 3.5% by weight. When the weight ratio of the conductive material is within the above range, the charge / discharge characteristics can be further improved.

本発明に係るオリビン型ケイ酸遷移金属リチウム化合物は、比表面積が35m/g以上である。比表面積が35m/g以上であることにより、オリビン型ケイ酸遷移金属リチウム化合物に対するリチウムの挿入および脱離をスムーズに行うことができ、その結果、優れた充放電特性を有する電池を得ることができる。オリビン型ケイ酸遷移金属リチウム化合物の比表面積は、好ましくは40m/g以上60m/g以下である。比表面積が40m/g以上であると、充放電特性をより一層向上させることができる。比表面積が60m/g以下であると、極板にした際の結着性が良好となる。なお、本発明において、「オリビン型ケイ酸遷移金属リチウム化合物の比表面積」は、表面の少なくとも一部が導電性材料で被覆された状態のオリビン型ケイ酸遷移金属リチウム化合物の比表面積を意味する。また、本発明において、「比表面積」は、BET法により測定される比表面積を意味する。 The olivine type silicate transition metal lithium compound according to the present invention has a specific surface area of 35 m 2 / g or more. When the specific surface area is 35 m 2 / g or more, lithium can be smoothly inserted into and extracted from the olivine-type transition metal lithium compound, and as a result, a battery having excellent charge / discharge characteristics can be obtained. Can do. The specific surface area of the olivine-type transition metal lithium compound is preferably 40 m 2 / g or more and 60 m 2 / g or less. When the specific surface area is 40 m 2 / g or more, the charge / discharge characteristics can be further improved. When the specific surface area is 60 m 2 / g or less, the binding property when the electrode plate is formed is good. In the present invention, the “specific surface area of the olivine-type transition metal lithium compound” means the specific surface area of the olivine-type transition metal lithium compound in which at least a part of the surface is coated with a conductive material. . In the present invention, the “specific surface area” means a specific surface area measured by the BET method.

オリビン型ケイ酸遷移金属リチウム化合物の平均粒子径は、3μm〜15μmであることが好ましい。平均粒子径が上記範囲内であると、極板にする際の充填性が良好である。なお、本明細書において、「オリビン型ケイ酸遷移金属リチウム化合物の平均粒子径」は、表面の少なくとも一部が導電性材料で被覆された状態のオリビン型ケイ酸遷移金属リチウム化合物の平均粒子径を意味する。また、本明細書において、「平均粒子径」は、レーザー回折法により測定されるメディアン径(d50)を意味する。   The average particle diameter of the olivine-type transition metal lithium compound is preferably 3 μm to 15 μm. When the average particle diameter is within the above range, the filling property when forming an electrode plate is good. In the present specification, the “average particle diameter of the olivine-type transition metal lithium compound” means the average particle diameter of the olivine-type transition metal lithium compound in which at least a part of the surface is coated with a conductive material. Means. In the present specification, “average particle diameter” means a median diameter (d50) measured by a laser diffraction method.

次に、本発明の一の実施形態に係るオリビン型ケイ酸遷移金属リチウム化合物の製造方法について説明する。   Next, the manufacturing method of the olivine type | mold transition metal lithium silicate compound which concerns on one Embodiment of this invention is demonstrated.

本発明の一の実施形態に係るオリビン型ケイ酸遷移金属リチウム化合物の製造方法は、表面の少なくとも一部が導電性材料で被覆された、一般式Li(Mn1−y)SiO(式中、xは1.9<x<2.3、yは0≦y<1、Mは、Fe、Co、Ni、Mg、Zn、TiおよびVからなる群より選択される少なくとも1種の金属元素)で表されるオリビン型ケイ酸遷移金属リチウム化合物の製造方法であって、
リチウム源、マンガン源、ケイ酸源、導電性材料源および必要に応じて金属元素M源の粒子、ならびに分散媒を含有するスラリーを調製することと、
前記スラリーを粉砕処理に付すことと、
前記粉砕処理に付したスラリーを噴霧乾燥して前駆体を得ることと
前記前駆体を焼成することと
を少なくとも含む。
In the method for producing an olivine-type transition metal lithium compound according to one embodiment of the present invention, a general formula Li x (Mn 1-y M y ) SiO 4 in which at least a part of the surface is coated with a conductive material. (Wherein x is 1.9 <x <2.3, y is 0 ≦ y <1, M is at least one selected from the group consisting of Fe, Co, Ni, Mg, Zn, Ti and V) A olivine-type transition metal lithium compound represented by a metal element),
Preparing a slurry containing a lithium source, a manganese source, a silicic acid source, a conductive material source and optionally metal element M source particles, and a dispersion medium;
Subjecting the slurry to a grinding process;
Spray drying the slurry subjected to the pulverization treatment to obtain a precursor, and firing the precursor.

(スラリーの調製)
まず、リチウム源、マンガン源、ケイ酸源、導電性材料源および必要に応じて金属元素M源の粒子、ならびに分散媒を含有するスラリーを調製する。以下、リチウム源、マンガン源、金属元素M源、ケイ酸源および導電性材料源を、原料ともよぶ。
(Preparation of slurry)
First, a slurry containing a lithium source, a manganese source, a silicic acid source, a conductive material source and, if necessary, particles of a metal element M source, and a dispersion medium is prepared. Hereinafter, the lithium source, the manganese source, the metal element M source, the silicate source, and the conductive material source are also referred to as raw materials.

リチウム源としては、リチウムを含有するものであれば如何なる材料でも使用することができる。例えば、ケイ酸リチウム、ケイ酸水素リチウム、炭酸リチウム、酢酸リチウムおよび水酸化リチウムならびにこれらの混合物を用いることができる。取り扱いが容易である点や環境への安全性を配慮すると、炭酸リチウムが好ましい。   As the lithium source, any material containing lithium can be used. For example, lithium silicate, lithium hydrogen silicate, lithium carbonate, lithium acetate and lithium hydroxide and mixtures thereof can be used. Lithium carbonate is preferable in view of easy handling and environmental safety.

マンガン源としては、特に限定されるものではなく、マンガンの酸化物や水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、カルボン酸塩および脂肪酸塩ならびにこれらの混合物を用いることができる。金属元素M源も同様に、特に限定されるものではなく、金属元素Mの酸化物や水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、カルボン酸塩および脂肪酸塩ならびにこれらの混合物を用いることができる。   The manganese source is not particularly limited, and manganese oxides, hydroxides, oxyhydroxides, carbonates, nitrates, carboxylates and fatty acid salts, and mixtures thereof can be used. Similarly, the source of the metal element M is not particularly limited, and the metal element M oxide, hydroxide, oxyhydroxide, carbonate, nitrate, carboxylate and fatty acid salt and mixtures thereof should be used. Can do.

ケイ酸源としては、特に限定されるものではなく、例えば、二酸化ケイ素、ケイ酸リチウムおよび単体のケイ素ならびにこれらの混合物を用いることができる。なかでも、後述の粉砕処理による微粒子化が容易であることから、水等の分散媒を含むコロイダルシリカが好ましい。   The silicate source is not particularly limited, and for example, silicon dioxide, lithium silicate and single silicon, and a mixture thereof can be used. Among these, colloidal silica containing a dispersion medium such as water is preferable because it can be easily formed into fine particles by a pulverization process described later.

導電性材料源としては、カーボンブラック、アセチレンブラックおよび有機化合物等の炭素源を用いることができる。炭素源として用いることのできる有機化合物としては、例えば、グルコース、ショ糖、ラクトース等の糖類、グリセリン、アスコルビン酸、クエン酸、ラウリン酸、ステアリン酸などが挙げられる。これらのうち、取り扱いが容易な点からショ糖が炭素源として好ましい。炭素源は、得られるオリビン型ケイ酸遷移金属リチウム化合物に導電性を付与するはたらきを有し、更に、原料中の金属元素を還元するはたらきも有する。炭素源を用いる場合、得られるオリビン型ケイ酸遷移金属リチウム化合物の表面の少なくとも一部は、炭素源に由来する炭素で被覆される。   As the conductive material source, carbon sources such as carbon black, acetylene black and organic compounds can be used. Examples of organic compounds that can be used as the carbon source include sugars such as glucose, sucrose, and lactose, glycerin, ascorbic acid, citric acid, lauric acid, and stearic acid. Of these, sucrose is preferable as a carbon source because it is easy to handle. The carbon source has a function of imparting conductivity to the obtained olivine-type transition metal lithium silicate compound, and further has a function of reducing a metal element in the raw material. When a carbon source is used, at least a part of the surface of the resulting olivine-type lithium transition metal silicate compound is coated with carbon derived from the carbon source.

上述の各原料は通常、粒子状の原料として供給される。各原料の平均粒子径は、特に限定されるものではないが、1μm以上100μm以下であることが好ましい。各原料の平均粒子径が上記範囲内であると、オリビン型ケイ酸遷移金属リチウム化合物の製造がより容易になる。但し、後述の分散媒に可溶な原料の平均粒子径は、上述の範囲内である必要はなく、特に限定されない。   Each above-mentioned raw material is normally supplied as a particulate raw material. The average particle diameter of each raw material is not particularly limited, but is preferably 1 μm or more and 100 μm or less. When the average particle diameter of each raw material is within the above range, the production of the olivine-type transition metal lithium silicate compound becomes easier. However, the average particle diameter of the raw material soluble in the dispersion medium described later is not particularly limited and is not particularly limited.

分散媒としては、水、アセトン、エタノールなどの有機溶媒を用いることができる。なかでも、取り扱いが容易であり、安価であることから、水が好ましい。   As the dispersion medium, an organic solvent such as water, acetone or ethanol can be used. Among these, water is preferable because it is easy to handle and inexpensive.

上述のリチウム源、マンガン源、金属元素M源およびケイ酸源を、目的とするオリビン型ケイ酸遷移金属リチウム化合物の組成の化学量論比となるように秤量し、導電性材料源および分散媒と混合してスラリーを調製する。   The above-described lithium source, manganese source, metal element M source, and silicate source are weighed so as to have a stoichiometric ratio of the composition of the target olivine-type transition metal lithium compound, and the conductive material source and the dispersion medium To prepare a slurry.

スラリー中の導電性材料源の含有量は、得られるオリビン型ケイ酸遷移金属リチウム化合物の表面の少なくとも一部を被覆する導電性材料の重量割合が所望の値になるように、適宜調節することができる。表面の少なくとも一部が導電性材料で被覆されたオリビン型ケイ酸遷移金属リチウム化合物における導電性材料の重量割合の好ましい範囲については上述した。   The content of the conductive material source in the slurry should be adjusted as appropriate so that the weight ratio of the conductive material covering at least a part of the surface of the obtained olivine-type transition metal lithium silicate compound becomes a desired value. Can do. The preferable range of the weight ratio of the conductive material in the olivine-type transition metal lithium silicate compound in which at least a part of the surface is coated with the conductive material has been described above.

(粉砕処理)
次に、上述のスラリーを粉砕処理に付す。粉砕処理の方法としては、湿式粉砕を用いる。湿式粉砕は、粉砕する目的物を、分散媒中で1mm前後のメディアを用いて撹拌することによる粉砕方法であり、乾式粉砕混合より細かく粉砕できることができる。メディアの撹拌方法は、特に限定されるものではないが、装置の汎用性を考慮するとボールミルもしくはビーズミルが好ましい。粉砕処理により、スラリー中の粒子状の原料を細かく粉砕して微粒子化することができる。その結果、得られるオリビン型ケイ酸遷移金属リチウム化合物を微細化することができ、その比表面積を大きくすることができる。
(Crushing process)
Next, the slurry is subjected to a pulverization process. As the pulverization method, wet pulverization is used. The wet pulverization is a pulverization method in which the object to be pulverized is stirred using a medium of about 1 mm in a dispersion medium, and can be pulverized more finely than dry pulverization and mixing. The method for stirring the media is not particularly limited, but considering the versatility of the apparatus, a ball mill or a bead mill is preferable. By the pulverization treatment, the particulate raw material in the slurry can be finely pulverized into fine particles. As a result, the obtained olivine-type transition metal lithium silicate compound can be miniaturized and the specific surface area can be increased.

粉砕処理後のスラリー中の粒子の平均粒子径は、好ましくは0.5μm以下であり、より好ましくは0.2μm以下である。また、粉砕処理後のスラリー中の粒子の平均粒子径は、0.02μm以上であることが好ましい。スラリー中の粒子の平均粒子径が上述の範囲内であると、得られるオリビン型ケイ酸遷移金属リチウム化合物の平均粒子径および比表面積を適切な値にすることができ、その結果、良好な充放電特性を得ることができる。   The average particle diameter of the particles in the slurry after pulverization is preferably 0.5 μm or less, more preferably 0.2 μm or less. Moreover, it is preferable that the average particle diameter of the particle | grains in the slurry after a grinding | pulverization process is 0.02 micrometer or more. When the average particle size of the particles in the slurry is within the above range, the average particle size and specific surface area of the obtained olivine-type transition metal lithium silicate compound can be set to appropriate values. Discharge characteristics can be obtained.

(噴霧乾燥)
次に、粉砕処理に付したスラリーを噴霧乾燥して前駆体を得る。噴霧乾燥は、スラリーをシャワー状に噴霧し、この噴霧されたスラリーに熱風を吹きつけて乾燥させることによって行う。噴霧乾燥は、二流体ノズル、三流体ノズルまたは四流体ノズルを備えた噴霧乾燥設備を用いて行うことができる。この噴霧乾燥により前駆体が形成される。前駆体は、一次粒子の集合体である略球状の二次粒子であることが好ましい。前駆体が略球状の二次粒子であると、得られるオリビン型ケイ酸遷移金属リチウム化合物の粒子の充填性を向上させることができる。更に、噴霧乾燥による前駆体の形成を行うことにより、導電性材料またはその前駆体を、オリビン型ケイ酸遷移金属リチウム化合物の前駆体の表面に均一に被覆させることができる。その結果、得られるオリビン型ケイ酸遷移金属リチウム化合物の表面の少なくとも一部を、導電性材料で均一に被覆することができる。前駆体の二次粒子の平均粒子径は、好ましくは3μm以上15μm以下であり、より好ましくは5μm以上10μm以下である。前駆体の平均粒子径が上述の範囲内であると、得られるオリビン型ケイ酸遷移金属リチウム化合物の平均粒子径および比表面積を適切な値にすることができ、その結果、良好な充放電特性を得ることができる。
(Spray drying)
Next, the slurry subjected to the pulverization treatment is spray-dried to obtain a precursor. Spray drying is performed by spraying the slurry in a shower shape and blowing the sprayed slurry with hot air to dry the slurry. Spray drying can be performed using a spray drying facility equipped with a two-fluid nozzle, a three-fluid nozzle or a four-fluid nozzle. A precursor is formed by this spray drying. The precursor is preferably substantially spherical secondary particles that are aggregates of primary particles. When the precursor is a substantially spherical secondary particle, the packing property of the resulting olivine-type transition metal lithium metal silicate compound can be improved. Further, by forming the precursor by spray drying, the surface of the precursor of the olivine-type transition metal lithium compound can be uniformly coated with the conductive material or the precursor thereof. As a result, at least a part of the surface of the obtained olivine-type transition metal lithium silicate compound can be uniformly coated with the conductive material. The average particle diameter of the secondary particles of the precursor is preferably 3 μm or more and 15 μm or less, and more preferably 5 μm or more and 10 μm or less. When the average particle size of the precursor is within the above-mentioned range, the average particle size and specific surface area of the obtained olivine-type transition metal lithium silicate compound can be set to appropriate values, and as a result, good charge / discharge characteristics. Can be obtained.

(焼成)
次に、上述の前駆体を焼成する。焼成は、窒素等の不活性雰囲気、または水素もしくはアンモニアを含む還元雰囲気の下で行うことが好ましく、水素および窒素を含む還元雰囲気の下で行うことがより好ましい。このような条件の下で焼成を行うことにより、前駆体に含まれる遷移金属元素の還元がより容易になる。焼成温度は、500℃以上であると、炭素源の炭化が促進され、その結果、得られるオリビン型ケイ酸遷移金属リチウム化合物の充放電特性をより向上させることができるので好ましい。焼成温度は、より好ましくは600℃以上である。また、焼成温度は、800℃以下であると、遷移金属元素源の還元が進行しすぎるのを防ぐことができるので好ましい。焼成温度は、より好ましくは700℃以下である。
(Baking)
Next, the above precursor is fired. The calcination is preferably performed in an inert atmosphere such as nitrogen or a reducing atmosphere containing hydrogen or ammonia, and more preferably in a reducing atmosphere containing hydrogen and nitrogen. By performing firing under such conditions, reduction of the transition metal element contained in the precursor becomes easier. The firing temperature is preferably 500 ° C. or higher because carbonization of the carbon source is promoted, and as a result, the charge / discharge characteristics of the obtained olivine-type transition metal lithium silicate compound can be further improved. The firing temperature is more preferably 600 ° C. or higher. Moreover, it is preferable for the firing temperature to be 800 ° C. or lower because the reduction of the transition metal element source can be prevented from proceeding excessively. The firing temperature is more preferably 700 ° C. or lower.

本発明の方法により得られるオリビン型ケイ酸遷移金属リチウム化合物は、表面の少なくとも一部が炭素で被覆されていることにより、良好な電子伝導性を有し、比表面積が大きいことにより、リチウムの挿入および脱離をスムーズに行うことができる。このため、本発明の方法により得られるオリビン型ケイ酸遷移金属リチウム化合物を正極活物質として用いることにより、良好な充放電特性を有する非水電解液二次電池を得ることができる。   The olivine-type transition metal lithium compound obtained by the method of the present invention has good electronic conductivity because at least a part of its surface is coated with carbon, and has a large specific surface area. Insertion and removal can be performed smoothly. For this reason, the non-aqueous-electrolyte secondary battery which has a favorable charging / discharging characteristic can be obtained by using the olivine type | mold transition metal lithium silicate compound obtained by the method of this invention as a positive electrode active material.

以下、本発明に係る実施例について説明する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described below. Needless to say, the present invention is not limited to the following examples.

マンガン源である酸化マンガン(Mn、平均粒子径11.5μm)112gと、リチウム源である炭酸リチウム(LiCO、平均粒子径5.80μm)116gと、ケイ酸源である20重量%コロイダルシリカ(SiO、平均粒子径0.04μm、日産化学工業製)446gと、炭素源であるショ糖32gと、分散媒である純水1600mlとを混合してスラリーを調製した。このとき、スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Mn:Si=2.05:1:1であった。スラリーを容量5000mlのボールミルに入れ、ジルコニアボールを用いて40時間粉砕処理に付した。粉砕処理後のスラリー中の粒子の平均粒子径は、0.17μmであった。 Manganese oxide (Mn 3 O 4 , average particle diameter 11.5 μm) 112 g as a manganese source, lithium carbonate (Li 2 CO 3 , average particle diameter 5.80 μm) 116 g as a lithium source, and silicic acid source 20 A slurry was prepared by mixing 446 g of wt% colloidal silica (SiO 2 , average particle size 0.04 μm, manufactured by Nissan Chemical Industries), 32 g of sucrose as a carbon source, and 1600 ml of pure water as a dispersion medium. At this time, the molar ratio of lithium, manganese and iron in the slurry was Li: Mn: Si = 2.05: 1: 1. The slurry was put into a ball mill having a capacity of 5000 ml and subjected to a grinding treatment for 40 hours using zirconia balls. The average particle size of the particles in the slurry after pulverization was 0.17 μm.

粉砕処理したスラリーを、噴霧乾燥機を用いて噴霧乾燥し、前駆体を得た。この前駆体を窒素ガス雰囲気下で700℃にて5時間焼成して焼成物を得た。これを実施例1のオリビン型ケイ酸遷移金属リチウム化合物とよぶ。   The pulverized slurry was spray dried using a spray dryer to obtain a precursor. This precursor was fired at 700 ° C. for 5 hours under a nitrogen gas atmosphere to obtain a fired product. This is referred to as the olivine-type transition metal lithium silicate compound of Example 1.

X線回折装置を用いて、得られた焼成物の相同定を行った。X線としてCuKα線(波長:λ=1.54nm)を用いて分析した結果、組成式Li2.05MnSiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。この焼成物の比表面積は44.8m/gであり、炭素含有量(オリビン型ケイ酸遷移金属リチウム化合物に対する炭素の重量割合)は2.7重量%であった。炭素含有量の測定は、TOC(Total Organic Carbon、全有機炭素)計により行った。 Using an X-ray diffractometer, phase identification of the obtained fired product was performed. As a result of analysis using CuKα ray (wavelength: λ = 1.54 nm) as X-ray, it was identified as an olivine-type transition metal lithium compound represented by a composition formula Li 2.05 MnSiO 4 . The calcined product had a specific surface area of 44.8 m 2 / g and a carbon content (weight ratio of carbon to olivine-type transition metal lithium compound) of 2.7% by weight. The carbon content was measured with a TOC (Total Organic Carbon, total organic carbon) meter.

酸化マンガン109gと、鉄源(金属元素M源)である酸化鉄(Fe、平均粒子径1.1μm)6gと、炭酸リチウム116gと、20重量%コロイダルシリカ446gと、ショ糖32gと、純水1600mlとを混合してスラリーを調製した以外は実施例1と同様の手順で実施例2のオリビン型ケイ酸遷移金属リチウム化合物を作製した。スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Mn:Fe:Si=2.05:0.95:0.05:1であった。粉砕処理後のスラリー中の粒子の平均粒子径は、0.17μmであった。得られた焼成物は、Li2.05Mn0.95Fe0.05SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は46.4m/gであり、炭素含有量は3.0重量%であった。 109 g of manganese oxide, 6 g of iron oxide (Fe 2 O 3 , average particle size 1.1 μm) which is an iron source (metal element M source), 116 g of lithium carbonate, 446 g of 20 wt% colloidal silica, and 32 g of sucrose The olivine type transition metal silicate lithium compound of Example 2 was prepared in the same procedure as in Example 1 except that 1600 ml of pure water was mixed to prepare a slurry. The molar ratio of lithium, manganese and iron in the slurry was Li: Mn: Fe: Si = 2.05: 0.95: 0.05: 1. The average particle size of the particles in the slurry after pulverization was 0.17 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.95 Fe 0.05 SiO 4 . The specific surface area of the fired product was 46.4 m 2 / g, and the carbon content was 3.0% by weight.

酸化マンガン103gと、酸化鉄12gと、炭酸リチウム116gと、20重量%コロイダルシリカ446gと、ショ糖32gと、純水1600mlとを混合してスラリーを調製した以外は実施例1と同様の手順で実施例3のオリビン型ケイ酸遷移金属リチウム化合物を作製した。スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Mn:Fe:Si=2.05:0.90:0.10:1であった。粉砕処理後のスラリー中の粒子の平均粒子径は、0.17μmであった。得られた焼成物は、Li2.05Mn0.90Fe0.10SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は46.7m/gであり、炭素含有量は2.8重量%であった。 The same procedure as in Example 1 except that 103 g of manganese oxide, 12 g of iron oxide, 116 g of lithium carbonate, 446 g of 20 wt% colloidal silica, 32 g of sucrose, and 1600 ml of pure water were mixed to prepare a slurry. The olivine-type transition metal lithium silicate compound of Example 3 was produced. The molar ratio of lithium, manganese and iron in the slurry was Li: Mn: Fe: Si = 2.05: 0.90: 0.10: 1. The average particle size of the particles in the slurry after pulverization was 0.17 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.90 Fe 0.10 SiO 4 . The specific surface area of the fired product was 46.7 m 2 / g, and the carbon content was 2.8% by weight.

酸化マンガン91gと、酸化鉄23gと、炭酸リチウム116gと、20重量%コロイダルシリカ446gと、ショ糖32gと、純水1600mlとを混合してスラリーを調製した以外は実施例1と同様の手順で実施例4のオリビン型ケイ酸遷移金属リチウム化合物を作製した。スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Mn:Fe:Si=2.05:0.80:0.20:1であった。粉砕処理後のスラリー中の粒子の平均粒子径は、0.17μmであった。得られた焼成物は、Li2.05Mn0.80Fe0.20SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は49.1m/gであり、炭素含有量は2.8重量%であった。 The same procedure as in Example 1 except that 91 g of manganese oxide, 23 g of iron oxide, 116 g of lithium carbonate, 446 g of 20 wt% colloidal silica, 32 g of sucrose, and 1600 ml of pure water were prepared to prepare a slurry. The olivine-type transition metal lithium silicate compound of Example 4 was produced. The molar ratio of lithium, manganese and iron in the slurry was Li: Mn: Fe: Si = 2.05: 0.80: 0.20: 1. The average particle size of the particles in the slurry after pulverization was 0.17 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.80 Fe 0.20 SiO 4 . The specific surface area of the fired product was 49.1 m 2 / g, and the carbon content was 2.8% by weight.

酸化マンガン80gと、酸化鉄35gと、炭酸リチウム116gと、20重量%コロイダルシリカ446gと、ショ糖32gと、純水1600mlとを混合してスラリーを調製した以外は実施例1と同様の手順で実施例5のオリビン型ケイ酸遷移金属リチウム化合物を作製した。スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Mn:Fe:Si=2.05:0.70:0.30:1であった。粉砕処理後のスラリー中の粒子の平均粒子径は、0.18μmであった。得られた焼成物は、Li2.05Mn0.70Fe0.30SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は44.0m/gであり、炭素含有量は2.7重量%であった。 Except for preparing slurry by mixing 80 g of manganese oxide, 35 g of iron oxide, 116 g of lithium carbonate, 446 g of 20% by weight colloidal silica, 32 g of sucrose, and 1600 ml of pure water, the same procedure as in Example 1 was performed. The olivine-type transition metal lithium silicate compound of Example 5 was produced. The molar ratio of lithium, manganese and iron in the slurry was Li: Mn: Fe: Si = 2.05: 0.70: 0.30: 1. The average particle size of the particles in the slurry after pulverization was 0.18 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.70 Fe 0.30 SiO 4 . The specific surface area of the fired product was 44.0 m 2 / g, and the carbon content was 2.7% by weight.

酸化マンガン68gと、酸化鉄47gと、炭酸リチウム116gと、20重量%コロイダルシリカ446gと、ショ糖32gと、純水1600mlとを混合してスラリーを調製した以外は実施例1と同様の手順で実施例6のオリビン型ケイ酸遷移金属リチウム化合物を作製した。スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Mn:Fe:Si=2.05:0.60:0.40:1であった。粉砕処理後のスラリー中の粒子の平均粒子径は、0.17μmであった。得られた焼成物は、Li2.05Mn0.60Fe0.40SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は44.9m/gであり、炭素含有量は2.9重量%であった。 The same procedure as in Example 1 was performed except that 68 g of manganese oxide, 47 g of iron oxide, 116 g of lithium carbonate, 446 g of 20 wt% colloidal silica, 32 g of sucrose, and 1600 ml of pure water were mixed to prepare a slurry. The olivine-type transition metal lithium silicate compound of Example 6 was produced. The molar ratio of lithium, manganese and iron in the slurry was Li: Mn: Fe: Si = 2.05: 0.60: 0.40: 1. The average particle size of the particles in the slurry after pulverization was 0.17 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.60 Fe 0.40 SiO 4 . The specific surface area of the fired product was 44.9 m 2 / g, and the carbon content was 2.9% by weight.

酸化マンガン57gと、酸化鉄58gと、炭酸リチウム116gと、20重量%コロイダルシリカ446gと、ショ糖32gと、純水1600mlとを混合してスラリーを調製した以外は実施例1と同様の手順で実施例7のオリビン型ケイ酸遷移金属リチウム化合物を作製した。スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Mn:Fe:Si=2.05:0.50:0.50:1であった。粉砕処理後のスラリー中の粒子の平均粒子径は、0.18μmであった。得られた焼成物は、Li2.05Mn0.50Fe0.50SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は42.7m/gであり、炭素含有量は2.9重量%であった。 The same procedure as in Example 1 was performed except that 57 g of manganese oxide, 58 g of iron oxide, 116 g of lithium carbonate, 446 g of 20 wt% colloidal silica, 32 g of sucrose, and 1600 ml of pure water were mixed to prepare a slurry. The olivine-type transition metal lithium silicate compound of Example 7 was produced. The molar ratio of lithium, manganese and iron in the slurry was Li: Mn: Fe: Si = 2.05: 0.50: 0.50: 1. The average particle size of the particles in the slurry after pulverization was 0.18 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.50 Fe 0.50 SiO 4 . The specific surface area of the fired product was 42.7 m 2 / g, and the carbon content was 2.9% by weight.

[比較例1]
酸化鉄114gと、炭酸リチウム116gと、20重量%コロイダルシリカ446gと、ショ糖32gと、純水1600mlとを混合してスラリーを調製した以外は実施例1と同様の手順で比較例1のオリビン型ケイ酸遷移金属リチウム化合物を作製した。スラリー中のリチウム、マンガンおよび鉄のモル比はLi:Fe:Si=2.05:1:1であった。粉砕処理後のスラリー中の粒子の平均粒子径は、0.17μmであった。得られた焼成物は、Li2.05FeSiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は32.3m/gであり、炭素含有量は2.8重量%であった。
[Comparative Example 1]
The olivine of Comparative Example 1 was prepared in the same manner as in Example 1 except that 114 g of iron oxide, 116 g of lithium carbonate, 446 g of 20% by weight colloidal silica, 32 g of sucrose, and 1600 ml of pure water were mixed to prepare a slurry. Type lithium transition metal silicate compounds were prepared. The molar ratio of lithium, manganese and iron in the slurry was Li: Fe: Si = 2.05: 1: 1. The average particle size of the particles in the slurry after pulverization was 0.17 μm. The obtained fired product was identified as an olivine-type transition metal silicate lithium compound represented by Li 2.05 FeSiO 4 . The specific surface area of the fired product was 32.3 m 2 / g, and the carbon content was 2.8% by weight.

スラリーの粉砕処理の時間を5時間とした以外は実施例5と同様の手順で実施例8のオリビン型ケイ酸遷移金属リチウム化合物を作製した。粉砕処理後のスラリー中の粒子の平均粒子径は、0.59μmであった。得られた焼成物は、Li2.05Mn0.70Fe0.30SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は37.4m/gであり、炭素含有量は2.8重量%であった。 The olivine type silicate transition metal lithium compound of Example 8 was produced in the same procedure as in Example 5 except that the time for pulverizing the slurry was 5 hours. The average particle size of the particles in the slurry after pulverization was 0.59 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.70 Fe 0.30 SiO 4 . The specific surface area of the fired product was 37.4 m 2 / g, and the carbon content was 2.8% by weight.

スラリーの粉砕処理の時間を20時間とした以外は実施例5と同様の手順で実施例9のオリビン型ケイ酸遷移金属リチウム化合物を作製した。粉砕処理後のスラリー中の粒子の平均粒子径は、0.18μmであった。得られた焼成物は、Li2.05Mn0.70Fe0.30SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は43.8m/gであり、炭素含有量は3.0重量%であった。 The olivine-type transition metal lithium silicate compound of Example 9 was prepared in the same procedure as in Example 5 except that the time for pulverizing the slurry was 20 hours. The average particle size of the particles in the slurry after pulverization was 0.18 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.70 Fe 0.30 SiO 4 . The specific surface area of the fired product was 43.8 m 2 / g, and the carbon content was 3.0% by weight.

スラリーの粉砕処理の時間を100時間とした以外は実施例5と同様の手順で実施例10のオリビン型ケイ酸遷移金属リチウム化合物を作製した。粉砕処理後のスラリー中の粒子の平均粒子径は、0.17μmであった。得られた焼成物は、Li2.05Mn0.70Fe0.30SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は44.6m/gであり、炭素含有量は2.8重量%であった。 The olivine-type transition metal lithium silicate compound of Example 10 was produced in the same procedure as in Example 5 except that the time for pulverizing the slurry was 100 hours. The average particle size of the particles in the slurry after pulverization was 0.17 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.70 Fe 0.30 SiO 4 . The specific surface area of the fired product was 44.6 m 2 / g, and the carbon content was 2.8% by weight.

スラリーの粉砕処理の時間を150時間とした以外は実施例5と同様の手順で実施例11のオリビン型ケイ酸遷移金属リチウム化合物を作製した。粉砕処理後のスラリー中の粒子の平均粒子径は、0.06μmであった。得られた焼成物は、Li2.05Mn0.70Fe0.30SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は42.1m/gであり、炭素含有量は2.9重量%であった。 The olivine-type silicate transition metal lithium compound of Example 11 was produced in the same procedure as Example 5 except that the time for the pulverization treatment of the slurry was 150 hours. The average particle size of the particles in the slurry after pulverization was 0.06 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.70 Fe 0.30 SiO 4 . The specific surface area of the fired product was 42.1 m 2 / g, and the carbon content was 2.9% by weight.

[比較例2]
ショ糖の量を16gとした以外は実施例5と同様の手順で比較例2のオリビン型ケイ酸遷移金属リチウム化合物を作製した。粉砕処理後のスラリー中の粒子の平均粒子径は、
0.18μmであった。得られた焼成物は、Li2.05Mn0.70Fe0.30SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は28.7m/gであり、炭素含有量は1.0重量%であった。
[Comparative Example 2]
The olivine type silicate transition metal lithium compound of Comparative Example 2 was prepared in the same procedure as in Example 5 except that the amount of sucrose was changed to 16 g. The average particle size of the particles in the slurry after pulverization is
It was 0.18 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.70 Fe 0.30 SiO 4 . The specific surface area of the fired product was 28.7 m 2 / g, and the carbon content was 1.0% by weight.

ショ糖の量を48gとした以外は実施例5と同様の手順で実施例12のオリビン型ケイ酸遷移金属リチウム化合物を作製した。粉砕処理後のスラリー中の粒子の平均粒子径は、
0.17μmであった。得られた焼成物は、Li2.05Mn0.70Fe0.30SiOで表されるオリビン型ケイ酸遷移金属リチウム化合物と同定された。焼成物の比表面積は55.0m/gであり、炭素含有量は4.0重量%であった。
The olivine-type transition metal lithium silicate compound of Example 12 was prepared in the same procedure as Example 5 except that the amount of sucrose was changed to 48 g. The average particle size of the particles in the slurry after pulverization is
It was 0.17 μm. The obtained fired product was identified as an olivine-type silicate transition metal lithium compound represented by Li 2.05 Mn 0.70 Fe 0.30 SiO 4 . The specific surface area of the fired product was 55.0 m 2 / g, and the carbon content was 4.0% by weight.

[電池の作製]
実施例1〜12ならびに比較例1および2のオリビン型ケイ酸遷移金属リチウム化合物を正極活物質として使用して、以下に示す手順で評価用電池を作製した。
[Production of battery]
Using the olivine-type transition metal lithium silicate compounds of Examples 1 to 12 and Comparative Examples 1 and 2 as the positive electrode active material, evaluation batteries were prepared according to the following procedure.

(正極の作製)
正極活物質9重量部と、導電剤であるアセチレンブラック0.5重量部と、結着剤であるポリフッ化ビニリデン0.5重量部とを、分散媒であるN−メチルピロリドンに分散させてスラリーを調製した。得られたスラリーを、集電体としてのアルミニウム箔の片面に塗布し、乾燥後プレス機で圧縮成形して正極極板を得た。この極板を、サイズが5cmとなるように裁断して正極を得た。正極活物質層の重量は、正極1枚当たり約0.33gであった。
(Preparation of positive electrode)
A slurry obtained by dispersing 9 parts by weight of a positive electrode active material, 0.5 parts by weight of acetylene black as a conductive agent, and 0.5 parts by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone as a dispersion medium. Was prepared. The obtained slurry was applied to one side of an aluminum foil as a current collector, dried, and then compression molded with a press to obtain a positive electrode plate. This electrode plate was cut to a size of 5 cm 2 to obtain a positive electrode. The weight of the positive electrode active material layer was about 0.33 g per positive electrode.

(電解液の調製)
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とを体積比率3:7で混合し、得られた混合溶媒に六フッ化リン酸リチウム(LiPF)を濃度1mol/Lになるように溶解させて、電解液を調製した。
(Preparation of electrolyte)
Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 3: 7, and lithium hexafluorophosphate (LiPF 6 ) is dissolved in the obtained mixed solvent to a concentration of 1 mol / L. Thus, an electrolytic solution was prepared.

(電池の組み立て)
負極としては、金属リチウム泊を使用した。上述の手順で作製した正極および負極の集電体に各々リード電極を取り付けたのち、正極と負極との間にセパレータを配し、袋状のラミネートパックにそれらを収納した。次いで、これを60℃で真空乾燥させて、各部材に吸着した水分を除去した。その後、アルゴン雰囲気下でラミネートパック内に電解液を注入し、封止した。こうして得られた電池を25℃の恒温槽に入れ、微弱電流でエージングを行った。
(Battery assembly)
As the negative electrode, metallic lithium was used. After attaching the lead electrode to the positive electrode and negative electrode current collectors prepared in the above-described procedure, a separator was placed between the positive electrode and the negative electrode, and they were housed in a bag-like laminate pack. Next, this was vacuum-dried at 60 ° C. to remove moisture adsorbed on each member. Then, electrolyte solution was inject | poured in the laminate pack under argon atmosphere, and it sealed. The battery thus obtained was placed in a constant temperature bath at 25 ° C. and aged with a weak current.

[充放電試験]
上述の手順で作製した電池を25℃に設定した恒温槽に接続し、充放電試験を行った。まず、充電電圧4.25V、充電負荷0.02C(1Cは1時間で放電が終了する電流負荷を意味する)で充電を行い、充電容量を測定した。次いで、放電電圧2.0V、放電負荷0.02Cにて放電を行い、放電容量を測定した。測定した充電容量に対する放電容量の比(百分率)を充放電効率とした。
[Charge / discharge test]
The battery produced by the above-mentioned procedure was connected to a thermostat set at 25 ° C., and a charge / discharge test was performed. First, charging was performed at a charging voltage of 4.25 V and a charging load of 0.02 C (1 C means a current load that completes discharging in one hour), and the charging capacity was measured. Next, discharge was performed at a discharge voltage of 2.0 V and a discharge load of 0.02 C, and the discharge capacity was measured. The ratio (percentage) of the discharge capacity to the measured charge capacity was defined as charge / discharge efficiency.

実施例1〜12ならびに比較例1および2のオリビン型ケイ酸遷移金属リチウム化合物の物性および充放電特性の測定結果を下記の表1に示す。   The measurement results of the physical properties and charge / discharge characteristics of the olivine-type transition metal lithium silicate compounds of Examples 1 to 12 and Comparative Examples 1 and 2 are shown in Table 1 below.

Figure 2015008102
Figure 2015008102

実施例1〜7の結果より、オリビン型ケイ酸遷移金属リチウム化合物中の鉄元素のモル比が大きいほど、即ちyの値が大きいほど、電池の充放電特性が向上する傾向にあることがわかる。しかし、比較例1の結果より、y=1の場合、即ちマンガンを含まない場合には、マンガンを含む実施例1〜7よりも充放電特性が低下することがわかる。これは、充放電時にMnがMn2+/Mn3+/Mn4+と価数変化してLiイオンを2個放出する又は取り込むのに対し、FeはFe2+/Fe3+と価数変化してLiイオンを1個放出する又は取り込むのみであり、そのため、yの値が大きくなると理論容量が低下する傾向にあることに起因すると考えられる。yの値が0.05以上0.6以下の場合に充放電特性がより向上する傾向にあり、yの値が0.2以上0.5以下の場合に充放電特性が特に向上した。また、実施例7および比較例1の結果より、yの値が大きいと、比表面積が小さくなる傾向にあることがわかる。これは、yの値が大きいほど、焼成時にオリビン型ケイ酸遷移金属リチウム化合物の焼結により一次粒子の寸法が大きくなりやすいことに起因するものであると考えられる。 From the results of Examples 1 to 7, it can be seen that the charge / discharge characteristics of the battery tend to improve as the molar ratio of the iron element in the olivine-type transition metal lithium metal compound increases, that is, as the value of y increases. . However, it can be seen from the results of Comparative Example 1 that when y = 1, that is, when manganese is not included, the charge / discharge characteristics are lower than those of Examples 1 to 7 containing manganese. This is because, during charge / discharge, Mn changes in valence to Mn 2+ / Mn 3+ / Mn 4+ and releases or incorporates two Li ions, whereas Fe changes in valence to Fe 2+ / Fe 3+ and Li ions It is thought that this is because the theoretical capacity tends to decrease as the value of y increases. When the value of y is 0.05 or more and 0.6 or less, the charge / discharge characteristics tend to be improved, and when the value of y is 0.2 or more and 0.5 or less, the charge / discharge characteristics are particularly improved. Further, from the results of Example 7 and Comparative Example 1, it can be seen that when the value of y is large, the specific surface area tends to be small. This is considered to be due to the fact that the larger the value of y, the larger the size of the primary particles due to sintering of the olivine-type transition metal lithium silicate compound during firing.

実施例5および8〜11の結果より、スラリーの粉砕処理の時間が長いほど、粉砕後のスラリー中の粒子の平均粒子径は小さくなったが、20時間以上ではほぼ一定の値になったことがわかる。得られるオリビン型ケイ酸遷移金属リチウム化合物の比表面積は、粉砕時間が長いほど大きくなる傾向にあるが、粉砕時間が40時間以上の場合にはほぼ一定の値になる。更に、表1より、オリビン型ケイ酸遷移金属リチウム化合物の比表面積が大きいほど、充放電特性が向上する傾向にあることがわかる。比表面積が35m/g以上である場合に充放電特性が向上する傾向にあり、比表面積が40m/g〜60m/gである場合に、充放電特性が特に向上した。 From the results of Examples 5 and 8 to 11, the longer the slurry pulverization time, the smaller the average particle size of the particles in the slurry after pulverization, but the value was almost constant over 20 hours. I understand. The specific surface area of the obtained olivine-type transition metal lithium compound has a tendency to increase as the pulverization time is longer. However, when the pulverization time is 40 hours or longer, the specific surface area becomes almost constant. Furthermore, it can be seen from Table 1 that the charge / discharge characteristics tend to improve as the specific surface area of the olivine-type transition metal lithium compound increases. Tend to specific surface charge and discharge characteristics are improved when it is 35m 2 / g or more and a specific surface area in the case of 40m 2 / g~60m 2 / g, the charge-discharge characteristics were particularly improved.

実施例7および12ならびに比較例2の結果より、炭素源の量が多いほど、得られるオリビン型ケイ酸遷移金属リチウム化合物に対する炭素の重量割合(炭素含有量)が増加し、また、比表面積が大きくなる傾向にあることがわかる。炭素源の量が多いほど比表面積が大きくなる理由は、表面に付着した炭素微粒子が増加することによると考えられる。実施例7および12ならびに比較例2の結果より、オリビン型ケイ酸遷移金属リチウム化合物に対する炭素の重量割合が大きいほど、充放電効率が向上する傾向にあることがわかる。一方、充電容量および放電容量は、炭素含有量が4.0重量%である実施例12よりも、炭素含有量が2.9重量%である実施例7の方が最も高い値となった。これは、炭素含有量が多くなると、正極活物質としてはたらくオリビン型ケイ酸遷移金属リチウム化合物の量が相対的に少なくなり、その結果、単位重量当たりの充放電容量が小さくなることに起因すると考えられる。   From the results of Examples 7 and 12 and Comparative Example 2, as the amount of the carbon source increases, the weight ratio (carbon content) of carbon to the obtained olivine-type transition metal lithium silicate compound increases, and the specific surface area increases. It turns out that it tends to become large. The reason why the specific surface area increases as the amount of carbon source increases is considered to be due to an increase in carbon fine particles attached to the surface. From the results of Examples 7 and 12 and Comparative Example 2, it can be seen that the charge / discharge efficiency tends to improve as the weight ratio of carbon to the olivine-type transition metal lithium metal compound increases. On the other hand, the charge capacity and discharge capacity were the highest in Example 7 with a carbon content of 2.9% by weight, compared with Example 12 with a carbon content of 4.0% by weight. This is considered to be because when the carbon content is increased, the amount of olivine-type transition metal lithium compound acting as a positive electrode active material is relatively reduced, and as a result, the charge / discharge capacity per unit weight is reduced. It is done.

本発明に係るオリビン型ケイ酸遷移金属リチウム化合物は、非水電解液二次電池の正極活物質として利用可能であり、例えば、携帯電話を含む各種携帯機器の他、電気自動車およびハイブリッド電気自動車等への利用が可能である。   The olivine-type silicate transition metal lithium compound according to the present invention can be used as a positive electrode active material for a non-aqueous electrolyte secondary battery. Can be used.

Claims (11)

表面の少なくとも一部が導電性材料によって被覆された、一般式Li(Mn1−y)SiO(式中、xは1.9<x<2.3、yは0≦y<1、Mは、Fe、Co、Ni、Mg、Zn、TiおよびVからなる群より選択される少なくとも1種の金属元素)で表されるオリビン型ケイ酸遷移金属リチウム化合物であって、比表面積が35m/g以上である、オリビン型ケイ酸遷移金属リチウム化合物。 The general formula Li x (Mn 1-y M y ) SiO 4 (wherein x is 1.9 <x <2.3 and y is 0 ≦ y <), wherein at least part of the surface is coated with a conductive material. 1, M is an olivine type silicate transition metal lithium compound represented by a specific surface area represented by at least one metal element selected from the group consisting of Fe, Co, Ni, Mg, Zn, Ti and V) Is an olivine-type transition metal lithium silicate compound having a mass of 35 m 2 / g or more. yの値が0.05以上0.6以下である、請求項1に記載のオリビン型ケイ酸遷移金属リチウム化合物。   The olivine-type transition metal lithium silicate compound according to claim 1, wherein a value of y is 0.05 or more and 0.6 or less. yの値が0.2以上0.5以下である、請求項2に記載のオリビン型ケイ酸遷移金属リチウム化合物。   The olivine-type transition metal lithium silicate compound according to claim 2, wherein the value of y is 0.2 or more and 0.5 or less. 金属元素MがFeである、請求項1〜3のいずれか1項に記載のオリビン型ケイ酸遷移金属リチウム化合物。   The olivine-type silicate transition metal lithium compound according to any one of claims 1 to 3, wherein the metal element M is Fe. 前記導電性材料が炭素であり、前記表面の少なくとも一部が炭素によって被覆されたオリビン型ケイ酸遷移金属リチウム化合物の重量に対する炭素の重量の割合が、1.1重量%以上である、請求項1〜4のいずれか1項に記載のオリビン型ケイ酸遷移金属リチウム化合物。   The conductive material is carbon, and the ratio of the weight of the carbon to the weight of the olivine-type transition metal lithium silicate compound in which at least a part of the surface is coated with carbon is 1.1% by weight or more. The olivine-type silicate transition metal lithium compound according to any one of 1 to 4. 前記表面の少なくとも一部が炭素によって被覆されたオリビン型ケイ酸遷移金属リチウム化合物の重量に対する炭素の重量の割合が、2重量%〜5重量%である、請求項5に記載のオリビン型ケイ酸遷移金属リチウム化合物。   The olivine-type silicic acid according to claim 5, wherein the ratio of the weight of carbon to the weight of the olivine-type transition metal lithium silicate compound in which at least a part of the surface is coated with carbon is 2 wt% to 5 wt%. Transition metal lithium compounds. 前記表面の少なくとも一部が炭素によって被覆されたオリビン型ケイ酸遷移金属リチウム化合物の重量に対する炭素の重量の割合が、2.5重量%〜3.5重量%である、請求項6に記載のオリビン型ケイ酸遷移金属リチウム化合物。   The ratio of the weight of carbon with respect to the weight of the olivine-type transition metal lithium silicate compound in which at least a part of the surface is coated with carbon is 2.5% by weight to 3.5% by weight. Olivine-type silicate transition metal lithium compound. 比表面積が40m/g〜60m/gである、請求項1〜7のいずれか1項に記載のオリビン型ケイ酸遷移金属リチウム化合物。 A specific surface area of 40m 2 / g~60m 2 / g, the olivine-type silicate transition metal lithium compound according to any one of claims 1 to 7. 表面の少なくとも一部が導電性材料で被覆された、一般式Li(Mn1−y)SiO(式中、xは1.9<x<2.3、yは0≦y<1、Mは、Fe、Co、Ni、Mg、Zn、TiおよびVからなる群より選択される少なくとも1種の金属元素)で表されるオリビン型ケイ酸遷移金属リチウム化合物の製造方法であって、
リチウム源、マンガン源、ケイ酸源、導電性材料源および必要に応じて金属元素M源の粒子、ならびに分散媒を含有するスラリーを調製することと、
前記スラリーを粉砕処理に付すことと、
前記粉砕処理に付したスラリーを噴霧乾燥して前駆体を得ることと
前記前駆体を焼成することと
を含む、方法。
A general formula Li x (Mn 1-y M y ) SiO 4 (wherein x is 1.9 <x <2.3 and y is 0 ≦ y <), wherein at least a part of the surface is coated with a conductive material. 1, M is a method for producing an olivine-type transition metal lithium compound represented by the following formula: at least one metal element selected from the group consisting of Fe, Co, Ni, Mg, Zn, Ti and V) ,
Preparing a slurry containing a lithium source, a manganese source, a silicic acid source, a conductive material source and optionally metal element M source particles, and a dispersion medium;
Subjecting the slurry to a grinding process;
Spray drying the slurry subjected to the pulverization treatment to obtain a precursor, and firing the precursor.
前記焼成における焼成温度が500℃〜800℃である、請求項9に記載の方法。   The method of Claim 9 whose calcination temperature in the said calcination is 500 to 800 degreeC. 前記粉砕処理により、スラリー中の粒子の平均粒子径を0.5μm以下とする、請求項9または10に記載の方法。   The method according to claim 9 or 10, wherein an average particle size of particles in the slurry is set to 0.5 µm or less by the pulverization treatment.
JP2013133379A 2013-06-26 2013-06-26 Olivine-type transition metal lithium silicate compound and method for producing the same Active JP6205895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133379A JP6205895B2 (en) 2013-06-26 2013-06-26 Olivine-type transition metal lithium silicate compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133379A JP6205895B2 (en) 2013-06-26 2013-06-26 Olivine-type transition metal lithium silicate compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015008102A true JP2015008102A (en) 2015-01-15
JP6205895B2 JP6205895B2 (en) 2017-10-04

Family

ID=52338246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133379A Active JP6205895B2 (en) 2013-06-26 2013-06-26 Olivine-type transition metal lithium silicate compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP6205895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190750A (en) * 2015-03-31 2016-11-10 国立大学法人 熊本大学 Method for synthesizing polyanion-based compound
CN112563474A (en) * 2021-02-22 2021-03-26 湖南长远锂科股份有限公司 In-situ coated composite NCMA quaternary positive electrode material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133584A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012133581A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2013005705A1 (en) * 2011-07-04 2013-01-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member, lithium ion secondary battery, and production method for said positive electrode material
JP2013020899A (en) * 2011-07-14 2013-01-31 Asahi Glass Co Ltd Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for manufacturing secondary battery
JP2013032257A (en) * 2011-06-28 2013-02-14 Nichia Corp Olivine type lithium transition metal oxide and method for producing the same
JP2013077377A (en) * 2011-09-29 2013-04-25 Fuji Heavy Ind Ltd Modified phosphoric acid vanadium lithium carbon complex, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
WO2013128936A1 (en) * 2012-02-28 2013-09-06 株式会社豊田自動織機 Active material composite, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaquoeus electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133584A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
WO2012133581A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
JP2013032257A (en) * 2011-06-28 2013-02-14 Nichia Corp Olivine type lithium transition metal oxide and method for producing the same
WO2013005705A1 (en) * 2011-07-04 2013-01-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member, lithium ion secondary battery, and production method for said positive electrode material
JP2013020899A (en) * 2011-07-14 2013-01-31 Asahi Glass Co Ltd Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for manufacturing secondary battery
JP2013077377A (en) * 2011-09-29 2013-04-25 Fuji Heavy Ind Ltd Modified phosphoric acid vanadium lithium carbon complex, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
WO2013128936A1 (en) * 2012-02-28 2013-09-06 株式会社豊田自動織機 Active material composite, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaquoeus electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190750A (en) * 2015-03-31 2016-11-10 国立大学法人 熊本大学 Method for synthesizing polyanion-based compound
CN112563474A (en) * 2021-02-22 2021-03-26 湖南长远锂科股份有限公司 In-situ coated composite NCMA quaternary positive electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP6205895B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6256337B2 (en) Positive electrode active material-graphene composite particles, positive electrode material for lithium ion battery, and method for producing positive electrode active material-graphene composite particles
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
KR101403828B1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
CN101693532B (en) Method for preparing lithium ferrous phosphate
KR101589294B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
WO2014077277A1 (en) Lithium composite oxide, method for producing same, positive electrode active material for secondary batteries containing said lithium composite oxide, positive electrode for secondary batteries containing said positive electrode active material, and lithium ion secondary battery using said positive electrode
JP5165515B2 (en) Lithium ion secondary battery
Xiang et al. Improved electrochemical performance of Li1. 2Ni0. 2Mn0. 6O2 cathode material for lithium ion batteries synthesized by the polyvinyl alcohol assisted sol-gel method
JP5888762B2 (en) COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD, POSITIVE ACTIVE MATERIAL, POSITIVE ELECTRODE AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5820521B1 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6008024B2 (en) Method for producing olivine type lithium transition metal oxide
JP6020204B2 (en) Nonaqueous electrolyte secondary battery
JP6231966B2 (en) Electrode material and manufacturing method thereof, electrode, and lithium ion battery
JP2014118335A (en) Lithium multiple oxide and method for manufacturing the same, anode active material for a secondary battery including the lithium multiple oxide, anode for a secondary battery including the same, and lithium ion secondary battery using the same as an anode
JP2014007090A (en) Method for producing secondary battery positive electrode active material
JP7108504B2 (en) Olivine-type lithium-based oxide primary particles for mixed positive electrode active material and method for producing the same
JP5765644B2 (en) Method for the preparation of a high voltage nanocomposite cathode (4.9V) for lithium ion batteries
JP5811695B2 (en) Olivine-type lithium transition metal oxide and method for producing the same
JP6205895B2 (en) Olivine-type transition metal lithium silicate compound and method for producing the same
TW201803803A (en) Method for manufacturing vanadium lithium phosphate
JP5831296B2 (en) Olivine-type lithium transition metal oxide and method for producing the same
JP6394391B2 (en) Method for producing polyanionic positive electrode active material composite particles
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2014044897A (en) Lithium composite oxide and method for producing the same, positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6205895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250