JP2014532843A - Hydraulic pressure booster cylinder - Google Patents

Hydraulic pressure booster cylinder Download PDF

Info

Publication number
JP2014532843A
JP2014532843A JP2014536991A JP2014536991A JP2014532843A JP 2014532843 A JP2014532843 A JP 2014532843A JP 2014536991 A JP2014536991 A JP 2014536991A JP 2014536991 A JP2014536991 A JP 2014536991A JP 2014532843 A JP2014532843 A JP 2014532843A
Authority
JP
Japan
Prior art keywords
pressure
working chamber
pneumatic
increasing
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014536991A
Other languages
Japanese (ja)
Inventor
チュ,ダヨン
チュ,ジェセク
Original Assignee
チュ,ダヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チュ,ダヨン filed Critical チュ,ダヨン
Publication of JP2014532843A publication Critical patent/JP2014532843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/09Pistons; Trunk pistons; Plungers with means for guiding fluids

Abstract

空圧で作動油を制御及び増圧する油圧式増圧シリンダーにおいて、従来は1回だけ増圧することができたが、本発明では連続的に増圧して油圧式増圧シリンダーの増圧限界を解決した。【選択図】図1In the conventional hydraulic pressure booster cylinder, which controls and boosts hydraulic fluid with air pressure, it was possible to increase the pressure only once. However, in the present invention, the pressure increase is continuously increased to solve the pressure increase limit of the hydraulic pressure booster cylinder. did. [Selection] Figure 1

Description

本発明は油圧式増圧シリンダーの増圧ピストンをポンプのように連続的に増圧動作するように空圧制御回路を構成した油圧式増圧シリンダー技術に関する。   The present invention relates to a hydraulic pressure-increasing cylinder technology in which an air pressure control circuit is configured to continuously increase the pressure-increasing piston of a hydraulic pressure-increasing cylinder like a pump.

現在、空圧シリンダーと油圧シリンダーは大部分加圧用に用いられ、その中でも主にクランプ機構、圧縮機構、コッキング機構などに用いられる。このようなクランプ機構や圧縮機構は、作動開始時にはそれほど作動力が必要でないが、作動が終了される際に大きい作動力を必要とする場合が多い。従って、加圧用に用いられるシリンダーはピストンロッドの押出が終わる時点でより大きい作動力を出す必要がある。   At present, pneumatic cylinders and hydraulic cylinders are mostly used for pressurization, among which are mainly used for clamp mechanisms, compression mechanisms, cocking mechanisms, and the like. Such a clamp mechanism or compression mechanism does not require much operating force at the start of operation, but often requires a large operating force when the operation is completed. Therefore, the cylinder used for pressurization needs to exert a larger operating force when the piston rod is completely pushed out.

上記のような必要性から、シリンダーの大きさを決める時、押出が終わる時点で必要な作動力を得るために、直径及び重量が必要以上に大きいシリンダーを用いるしかなかった。しかし、このように、直径及び重量の大きいシリンダーを用いる場合、動作が相対的に遅くなって作業効率が低下され、また、大量の空圧または油圧油が必要となるため、エネルギーの損失はもちろん、経費がたくさんかかるという問題点が発生していた。   In view of the necessity as described above, when determining the size of the cylinder, in order to obtain the necessary operating force at the end of the extrusion, it was necessary to use a cylinder having a diameter and weight larger than necessary. However, when a cylinder with a large diameter and weight is used in this way, the operation is relatively slow and the working efficiency is lowered, and a large amount of pneumatic or hydraulic oil is required. There was a problem that it took a lot of money.

このような問題点を解決するために、シリンダーに油圧或は空圧を供給する管路にブースター装置を接続してピストンロッドの押出が終わる時点でより高い圧力を印加することによって、ピストンロッドの端部で作動力が増大されるように構成されたシリンダーが提案されたことがある。ところが、このようなシリンダーは構造が複雑であるだけでなく、4つ以上の電子バルブと可変ポンプ及び制御装置などを備える必要があるため、価格が高く、故障率が高いという問題点があった。   In order to solve such problems, a booster device is connected to a pipe for supplying hydraulic pressure or pneumatic pressure to the cylinder, and a higher pressure is applied at the time when the piston rod is pushed out. Cylinders have been proposed that are configured to increase the actuation force at the ends. However, such a cylinder not only has a complicated structure, but also requires four or more electronic valves, a variable pump, a control device, etc., and thus has a problem of high cost and high failure rate. .

このような従来のシリンダーの問題点を解決するために、大韓民国公開特許10−2004−0061763、大韓民国公開特許10−2005−0101646、大韓民国公開特許10−2011−0070951、大韓民国公開特許10−2011−0013097、大韓民国公開特許10−2011−0071926、大韓民国公開特許10−2005−0045086などに増圧シリンダー技術が提示されたことがある。   In order to solve such problems of the conventional cylinder, Korean Patent No. 10-2004-0061763, Korean Patent No. 10-2005-0101646, Korean Patent No. 10-2011-0070951, Korean Patent No. 10-2011-0013097 In some cases, the pressure-increasing cylinder technology has been presented in Korean Patent No. 10-2011-0071926, Korean Patent No. 10-2005-0045086, and the like.

しかし、既存の油圧式増圧シリンダーは1回だけ増圧する構造で、より多い流量を増圧するためには増圧シリンダーの直径を大きくしたりストロークを長くすると全長が長くなるという問題がある。   However, the existing hydraulic pressure increasing cylinder has a structure in which the pressure is increased only once. In order to increase the flow rate, the length of the pressure increasing cylinder becomes longer if the diameter of the pressure increasing cylinder is increased or the stroke is increased.

本発明は上述した従来の油圧式増圧シリンダーの問題点を解決するために案出されたもので、油圧式増圧シリンダーの増圧ピストンにマスターバルブと空圧制御回路を構成して増圧ピストンが連続(ポンピング)して往復運動するようにすることを目的とする。   The present invention has been devised to solve the above-described problems of the conventional hydraulic pressure booster cylinder. A master valve and a pneumatic control circuit are provided on the pressure booster piston of the hydraulic pressure booster cylinder to increase the pressure. The purpose is to make the piston reciprocate continuously (pumping).

上記目的を達するため本発明に係る油圧式増圧シリンダーは、本体内部に前方へ作動ピストン2が設置されて、前方の後進空圧作動室15に後進用空圧が空圧通路10を通じて供給され、後方の前進空圧作動室25に前進用空圧が空圧通路20を通じて供給され、作動ピストン2の前進空圧作動室25と別途に作動ピストン2の後方に増圧油圧作動室35が形成されて、スプリング11に支持された増圧ピストン4に作用される油圧作動室45と増圧油圧作動室35が口径の小さいボア12によって連通され、スプリング11に支持されるピストン3と、口径の小さいボア12と、作動ピストン2の内部に貫通される増圧ピストン4と、増圧ピストン4を制御するバルブスプール6と、スプリング33に支持され、増圧ピストン4と選択的に接触されるチェックスプール5と、空圧チェックバルブ8、9と、空圧回路とで構成され、増圧ピストン4の後進時、油圧作動室45から増圧油圧作動室35に作動油を補充するスプリング22に支持された油圧チェックバルブ7が増圧油圧作動室35と油圧作動室45との間に形成されることを特徴とする。   In order to achieve the above object, in the hydraulic pressure increasing cylinder according to the present invention, the working piston 2 is installed forward in the main body, and the backward air pressure is supplied to the forward backward pneumatic working chamber 15 through the pneumatic passage 10. The forward air pressure is supplied to the rear forward pneumatic working chamber 25 through the pneumatic passage 20, and the pressure increasing hydraulic working chamber 35 is formed at the rear of the working piston 2 separately from the forward pneumatic working chamber 25 of the working piston 2. Then, the hydraulic pressure working chamber 45 and the pressure boosting hydraulic pressure working chamber 35 acting on the pressure-increasing piston 4 supported by the spring 11 are communicated with each other by the bore 12 having a small diameter, and the piston 3 supported by the spring 11 and the diameter A small bore 12, a pressure-increasing piston 4 penetrating inside the working piston 2, a valve spool 6 that controls the pressure-increasing piston 4, and a spring 33 are supported by the pressure-increasing piston 4 and selectively. The check spool 5 to be touched, pneumatic check valves 8 and 9, and a pneumatic circuit are configured. When the pressure-increasing piston 4 moves backward, hydraulic oil is replenished from the hydraulic working chamber 45 to the pressure-increasing hydraulic working chamber 35. The hydraulic check valve 7 supported by the spring 22 is formed between the pressure increasing hydraulic working chamber 35 and the hydraulic working chamber 45.

本発明によれば、既存の油圧式増圧シリンダーより長さが顕著に短く、製造費用が低廉で、設置空間も少ないが、既存の油圧式増圧シリンダーは最大流量を基準に製作されるため、エネルギーの消耗量が多かった。これに対し、本発明は増圧ピストンの往復運動回数が流量に合わせて作動されるので、エネルギーの節減効果がある。   According to the present invention, the length is significantly shorter than the existing hydraulic booster cylinder, the manufacturing cost is lower, and the installation space is less. However, the existing hydraulic booster cylinder is manufactured based on the maximum flow rate. The amount of energy consumption was large. On the other hand, the present invention operates in accordance with the flow rate of the reciprocating motion of the boosting piston, so that there is an energy saving effect.

本発明の実施例による油圧式増圧シリンダーの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the hydraulic pressure | voltage increase cylinder by the Example of this invention. 上記油圧式増圧シリンダーの低負荷時の高速前進動作を示す縦断面図である。It is a longitudinal cross-sectional view which shows the high-speed advance operation | movement at the time of the low load of the said hydraulic pressure | voltage increase cylinder. 上記油圧式増圧シリンダーの高負荷時の一次前進動作を示す縦断面図である。It is a longitudinal cross-sectional view which shows the primary advance operation | movement at the time of high load of the said hydraulic pressure increase cylinder. 上記油圧式増圧シリンダーの増圧ピストンの前進端を示す縦断面図である。It is a longitudinal cross-sectional view which shows the advance end of the pressure increase piston of the said hydraulic pressure increase cylinder. 上記油圧式増圧シリンダーの増圧ピストンの後進を示す縦断面図である。It is a longitudinal cross-sectional view which shows the reverse drive of the pressure increase piston of the said hydraulic pressure increase cylinder. 上記油圧式増圧シリンダーの増圧ピストンの後進端を示す縦断面図である。It is a longitudinal cross-sectional view which shows the reverse end of the pressure increase piston of the said hydraulic pressure increase cylinder. 上記油圧式増圧シリンダーの増圧ピストンの2次前進を示す縦断面図である。It is a longitudinal cross-sectional view which shows the secondary advance of the pressure increase piston of the said hydraulic pressure increase cylinder. 上記油圧式増圧シリンダーの作動油補充用チェックバルブを本体外部に形成した場合を示す縦断面図である。It is a longitudinal cross-sectional view which shows the case where the check valve for hydraulic oil replenishment of the said hydraulic pressure increase cylinder is formed in the main body exterior.

1 本体
2 作動ピストン
3 ピストン
4 増圧ピストン
5 チェックスプール
6 バルブスプール
7 油圧チェックバルブ
8、9 空圧チェックバルブ
10、20、30、40、50、60、70 空圧通路
11、22、22a、33 スプリング
12 ボア
15 後進空圧作動室
25 前進空圧作動室
35 増圧油圧作動室
45 油圧作動室
55、65、75 空圧作動室
DESCRIPTION OF SYMBOLS 1 Main body 2 Actuating piston 3 Piston 4 Pressure increasing piston 5 Check spool 6 Valve spool 7 Hydraulic check valve 8, 9 Pneumatic check valve 10, 20, 30, 40, 50, 60, 70 Pneumatic passage 11, 22, 22a, 33 Spring 12 Bore 15 Reverse pneumatic working chamber 25 Forward pneumatic working chamber 35 Boosting hydraulic working chamber 45 Hydraulic working chamber 55, 65, 75 Pneumatic working chamber

図1〜図8は本発明の実施例による油圧式増圧シリンダーを示す図面で、これら図面を参照して本実施例による油圧式増圧シリンダーを説明する。   1 to 8 are views showing a hydraulic pressure boosting cylinder according to embodiments of the present invention. The hydraulic pressure boosting cylinder according to this embodiment will be described with reference to these drawings.

本発明による油圧式増圧シリンダーは、本体内部に前方へ作動ピストン2が設置されて、前方の後進空圧作動室15に後進用空圧が空圧通路10を通じて供給され、後方の前進空圧作動室25に前進用空圧が空圧通路20を通じて供給され、作動ピストン2の前進空圧作動室25と別途に作動ピストン2の後方に増圧油圧作動室35が形成され、スプリング11に支持された増圧ピストン4に作用される油圧作動室45と増圧油圧作動室35が口径の小さいボア12によって連通され、スプリング11に支持されるピストン3と、口径の小さいボア12と、作動ピストン2の内部に貫通される増圧ピストン4と、増圧ピストン4を制御するバルブスプール6と、スプリング33に支持され、増圧ピストン4と選択的に接触されるチェックスプール5と、空圧チェックバルブ8、9と、空圧回路と(以下、「マスターバルブ」と言う)が設置されている。一方、増圧ピストン4の後進時、油圧作動室45から増圧油圧作動室35に作動油を補充するスプリング22に支持された油圧チェックバルブ7が増圧油圧作動室35と油圧作動室45との間に形成される。   The hydraulic pressure boosting cylinder according to the present invention has a working piston 2 installed forward in the main body, and a backward air pressure is supplied to the forward backward pneumatic working chamber 15 through the pneumatic passage 10 so that the forward forward pneumatic pressure is increased. A forward air pressure is supplied to the working chamber 25 through the pneumatic passage 20, and a pressure increasing hydraulic working chamber 35 is formed behind the working piston 2 separately from the forward pneumatic working chamber 25 of the working piston 2, and is supported by the spring 11. The hydraulic pressure working chamber 45 and the pressure boosting hydraulic pressure working chamber 35 which are acted on the pressure-increasing piston 4 are communicated by the bore 12 having a small diameter, the piston 3 supported by the spring 11, the bore 12 having a small diameter, and the operating piston. 2 and a valve spool 6 for controlling the pressure-increasing piston 4, and a check sp supported by the spring 33 and selectively in contact with the pressure-increasing piston 4. And Le 5, the air pressure check valves 8 and 9, the pneumatic circuit (hereinafter, referred to as a "master valve") is installed. On the other hand, when the pressure increasing piston 4 moves backward, the hydraulic pressure check valve 7 supported by the spring 22 for replenishing the hydraulic pressure from the hydraulic pressure operating chamber 45 to the pressure increasing hydraulic pressure operating chamber 35 includes the pressure increasing hydraulic pressure operating chamber 35 and the hydraulic pressure operating chamber 45. Formed between.

図1は、油圧式増圧シリンダーの後進時の内部を示す縦断面図で、後進空圧が空圧通路10を通じて後進空圧作動室15から作動ピストン2に作用して作動ピストン2を後進させ、チェックバルブ9によって空圧通路50と空圧通路40を通じて後進空圧が空圧作動室75からバルブスプール6に作用する。この時、前進空圧作動室25の空圧は空圧通路20を通じて排気される。   FIG. 1 is a longitudinal sectional view showing the inside of a hydraulic pressure booster cylinder during reverse travel, and reverse air pressure acts on the working piston 2 from the backward pneumatic working chamber 15 through the pneumatic passage 10 to move the working piston 2 backward. Then, the reverse air pressure acts on the valve spool 6 from the air pressure working chamber 75 through the air pressure passage 50 and the air pressure passage 40 by the check valve 9. At this time, the pneumatic pressure in the forward pneumatic working chamber 25 is exhausted through the pneumatic passage 20.

図2は、油圧式増圧シリンダーの低負荷時の高速前進動作を示す縦断面図で、前進空圧が空圧通路20を通じて前進空圧作動室25から作動ピストン2に作用して作動ピストン2を前進させ、空圧通路60を通じて空圧作動室65からバルブスプール6に作用する。この時、空圧作動室75の空圧はチェックスプール5を通じて後進空圧作動室15の空圧とともに徐々に排気される。   FIG. 2 is a longitudinal sectional view showing a high-speed forward operation at low load of the hydraulic pressure intensifying cylinder. The forward air pressure acts on the working piston 2 from the forward pneumatic working chamber 25 through the pneumatic passage 20, and the working piston 2. , And acts on the valve spool 6 from the pneumatic working chamber 65 through the pneumatic passage 60. At this time, the air pressure in the air pressure working chamber 75 is gradually exhausted together with the air pressure in the reverse air pressure working chamber 15 through the check spool 5.

図3によれば、前進空圧作動室25の空圧によって作動ピストン2が前進された状態で、空圧作動室75の空圧はチェックスプール5を通じて徐々に排気されて、空圧作動室65の圧力(空圧X小さいスプール断面積)が空圧作動室75の圧力(空圧X大きいスプール断面積)より大きくなるとバルブスプール6は移動され、この時、空圧作動室55に空圧通路60を通じて空圧が流入され、空圧作動室55の作用によって増圧ピストン4がボア12を通じて増圧油圧作動室35に作用して増圧油圧作動室35の作動油の圧力が上昇して作動ピストン2に作用する。この時、チェックスプール5はスプリング33によって空圧通路40を遮断する。   According to FIG. 3, the pneumatic pressure in the pneumatic working chamber 75 is gradually exhausted through the check spool 5 in the state where the working piston 2 is advanced by the pneumatic pressure in the forward pneumatic working chamber 25, and the pneumatic working chamber 65 When the pressure (air pressure X small spool cross-sectional area) becomes larger than the pressure (pneumatic pressure X large spool cross-sectional area) of the pneumatic working chamber 75, the valve spool 6 is moved. Pneumatic pressure is introduced through 60, and the operation of the air pressure working chamber 55 is activated by the pressure-increasing piston 4 acting on the pressure-increasing hydraulic pressure working chamber 35 through the bore 12. Acts on the piston 2. At this time, the check spool 5 blocks the pneumatic passage 40 by the spring 33.

図4によれば、前進空圧作動室25の空圧によって作動ピストン2が前進された状態で、増圧ピストン4が続いて前進して、空圧作動室55と空圧通路30が連通されると、空圧が空圧通路30、空圧チェックバルブ8及び空圧通路50を通じて空圧作動室75に流入される。   According to FIG. 4, in the state where the working piston 2 is advanced by the air pressure of the forward pneumatic working chamber 25, the pressure increasing piston 4 continues to advance, and the pneumatic working chamber 55 and the pneumatic passage 30 are communicated with each other. Then, the air pressure flows into the air pressure working chamber 75 through the air pressure passage 30, the air pressure check valve 8 and the air pressure passage 50.

図5によれば、前進空圧作動室25の空圧によって作動ピストン2が前進された状態で、空圧チェックバルブ8と空圧通路50を通じて空圧作動室75に流入された空圧で、空圧作動室75の圧力(空圧X大きいスプール断面積)が空圧作動室65の圧力(空圧X小さいスプール断面積)より大きくなると、バルブスプール6は移動して、空圧作動室55の空圧は空圧通路70を通じて排気されて、増圧ピストン4はスプリング11の張力によって後進し、この時、増圧油圧作動室35の圧力が油圧作動室45の圧力より低下されると、油圧作動室45の作動油がチェックバルブ7を通じて増圧油圧作動室35に補充される。   According to FIG. 5, in the state in which the working piston 2 is advanced by the air pressure of the forward air pressure working chamber 25, the air pressure flowing into the air pressure working chamber 75 through the air pressure check valve 8 and the air pressure passage 50 is When the pressure of the pneumatic working chamber 75 (pneumatic pressure X large spool cross-sectional area) becomes larger than the pressure of the pneumatic working chamber 65 (pneumatic pressure X small spool cross-sectional area), the valve spool 6 moves and the pneumatic working chamber 55 is moved. The air pressure is exhausted through the air pressure passage 70, and the pressure-increasing piston 4 is moved backward by the tension of the spring 11. At this time, when the pressure in the pressure-increasing hydraulic pressure operating chamber 35 is lowered from the pressure in the hydraulic pressure operating chamber 45, The hydraulic oil in the hydraulic working chamber 45 is replenished to the pressure increasing hydraulic working chamber 35 through the check valve 7.

図6によれば、前進空圧作動室25の空圧によって作動ピストン2が前進された状態で、増圧ピストン4が後進してチェックスプール5に接触されると、空圧通路40と空圧作動室75が連通されて、空圧作動室75の空圧が空圧通路40を通じて排気される。   According to FIG. 6, when the pressure-increasing piston 4 moves backward and comes into contact with the check spool 5 in a state where the working piston 2 is moved forward by the air pressure in the forward pneumatic working chamber 25, the pneumatic passage 40 and the pneumatic pressure are increased. The working chamber 75 is communicated, and the pneumatic pressure in the pneumatic working chamber 75 is exhausted through the pneumatic passage 40.

図7によれば、前進空圧作動室25の空圧によって作動ピストン2が前進された状態で、空圧作動室75の空圧が空圧通路40を通じて排気されると、空圧作動室65の圧力でバルブスプール6が移動して、空圧通路60と空圧作動室65が連通して空圧通路60に流入された空圧が空圧作動室55に作用して増圧ピストン4は前進する。このように、作動ピストン2が最後まで前進するまで増圧ピストン4は続いて往復運動(ポンピング)をし、空圧チェックバルブ9は増圧ピストン4が前進する時、空圧通路40と空圧作動室が遮断されて、非常時に後進空圧を空圧作動室75に流入するために形成される。   According to FIG. 7, when the pneumatic pressure in the pneumatic working chamber 75 is exhausted through the pneumatic passage 40 in a state where the working piston 2 is advanced by the pneumatic pressure in the forward pneumatic working chamber 25, the pneumatic working chamber 65 The valve spool 6 is moved by the pressure of the air pressure, the air pressure passage 60 and the air pressure working chamber 65 communicate with each other, the air pressure flowing into the air pressure passage 60 acts on the air pressure working chamber 55, and the pressure increasing piston 4 Advance. In this way, the pressure-increasing piston 4 continues to reciprocate (pumping) until the working piston 2 advances to the end, and the pneumatic check valve 9 moves between the pneumatic passage 40 and the pneumatic pressure when the pressure-increasing piston 4 advances. It is formed so that the working chamber is shut off and reverse air pressure flows into the pneumatic working chamber 75 in an emergency.

図8によれば、増圧ピストン4の後進時、油圧作動室45から増圧油圧作動室35に作動油を補充するスプリング22aに支持された油圧チェックバルブ7aが本体1の外部に形成されて、増圧油圧作動室35と油圧作動室45に連通されるように形成される。   According to FIG. 8, a hydraulic check valve 7 a supported by a spring 22 a that replenishes hydraulic oil from the hydraulic working chamber 45 to the pressurized hydraulic working chamber 35 is formed outside the main body 1 when the boosting piston 4 moves backward. The pressure increasing hydraulic working chamber 35 and the hydraulic working chamber 45 are formed so as to communicate with each other.

Claims (6)

本体内部に前方へ作動ピストン(2)が設置されて、前方の後進空圧作動室(15)に後進用空圧が空圧通路(10)を通じて供給され、後方の前進空圧作動室(25)に前進用空圧が空圧通路(20)を通じて供給され、作動ピストン(2)の前進空圧作動室(25)と別途に作動ピストン(2)の後方に増圧油圧作動室(35)が形成されて、スプリング(11)に支持された増圧ピストン(4)に作用される油圧作動室(45)と増圧油圧作動室(35)が口径の小さいボア(12)を通じて連通され、スプリング(11)に支持されるピストン(3)と、口径の小さいボア(12)と、作動ピストン(2)の内部に貫通される増圧ピストン(4)と、増圧ピストン(4)を制御するバルブスプール(6)と、スプリング(33)に支持され、増圧ピストン(4)と選択的に接触されるチェックスプール(5)と、空圧チェックバルブ(8、9)と、空圧回路とが設置され、増圧ピストン(4)の後進時、油圧作動室(45)から増圧油圧作動室(35)に作動油を補充するスプリング(22)に支持された油圧チェックバルブ(7)が増圧油圧作動室(35)と油圧作動室(45)との間に形成されることを特徴とする油圧式増圧シリンダー。   A working piston (2) is installed forward in the main body, and a backward pneumatic pressure is supplied to the forward backward pneumatic working chamber (15) through the pneumatic passage (10). ) Is supplied through the air pressure passage (20), and the pressure increasing hydraulic pressure working chamber (35) is provided behind the working pneumatic pressure chamber (25) of the working piston (2) and separately from the working piston (2). Is formed, and the hydraulic pressure working chamber (45) and the pressure boosting hydraulic pressure working chamber (35), which are applied to the pressure increasing piston (4) supported by the spring (11), are communicated with each other through the small bore (12), The piston (3) supported by the spring (11), the small bore (12), the pressure-increasing piston (4) penetrating the inside of the working piston (2), and the pressure-increasing piston (4) are controlled. Supported by the valve spool (6) and the spring (33) A check spool (5) that is selectively brought into contact with the pressure-intensifying piston (4), a pneumatic pressure check valve (8, 9), and a pneumatic circuit are installed, and the pressure-increasing piston (4) is moved backward. The hydraulic pressure check valve (7) supported by the spring (22) for replenishing the hydraulic oil from the hydraulic pressure operating chamber (45) to the pressure increasing hydraulic pressure operating chamber (35) includes the pressure increasing hydraulic pressure operating chamber (35) and the hydraulic pressure operating chamber ( 45), and a hydraulic pressure increasing cylinder. 増圧ピストン(4)を制御するために、本体(1)の後方に空圧通路(60)と連通される空圧作動室(65)、空圧通路(40)と空圧作動室(75)との間に増圧ピストン(4)と選択的に接触されて、空圧通路を制御するスプリング(33)に支持されたチェックスプール(5)が形成され、空圧作動室(55)の空圧によって増圧ピストン(4)が移動するにつれて選択的に開閉される空圧通路(30)が空圧チェックバルブ(8)と空圧通路(50)を通じて空圧作動室(75)と連通し、空圧作動室(65)は小さい容積を有し、空圧作動室(75)は相対的に大きい容積を有し、空圧作動室(65、75)と選択的に連通される空圧通路(70)が形成されていることを特徴とする請求項1に記載の油圧式増圧シリンダー。   In order to control the pressure increasing piston (4), a pneumatic working chamber (65), a pneumatic passage (40) and a pneumatic working chamber (75) communicated with the pneumatic passage (60) behind the main body (1). ) Is selectively contacted with the pressure-increasing piston (4) to form a check spool (5) supported by a spring (33) that controls the pneumatic passage, and the pneumatic working chamber (55) An air pressure passage (30) that is selectively opened and closed as the pressure-increasing piston (4) moves by air pressure communicates with the air pressure working chamber (75) through the air pressure check valve (8) and the air pressure passage (50). The pneumatic working chamber (65) has a small volume, the pneumatic working chamber (75) has a relatively large volume, and is an air that is selectively communicated with the pneumatic working chamber (65, 75). The hydraulic pressure-increasing cylinder according to claim 1, wherein a pressure passage (70) is formed. 空圧作動室(55)に増圧ピストン(4)の位置によって選択的に開閉される空圧通路(30)が空圧チェックバルブ(8)と空圧通路(50)を通じてバルブスプール(6)の空圧作動室(75)と連通することを特徴とする請求項2に記載の油圧式増圧シリンダー。   An air pressure passage (30) selectively opened and closed in the air pressure working chamber (55) depending on the position of the pressure increasing piston (4) passes through the air pressure check valve (8) and the air pressure passage (50), and the valve spool (6). The hydraulic pressure intensifying cylinder according to claim 2, wherein the hydraulic pressure intensifying cylinder is in communication with a pneumatic working chamber (75). 増圧ピストン(4)の後進時、油圧作動室(45)から増圧油圧作動室(35)に作動油を補充するスプリング(22)に支持された油圧チェックバルブ(7)が増圧油圧作動室(35)と油圧作動室(45)との間に形成されることを特徴とする請求項1に記載の油圧式増圧シリンダー。   When the pressure-increasing piston (4) moves backward, a hydraulic pressure check valve (7) supported by a spring (22) that replenishes hydraulic oil from the hydraulic pressure operating chamber (45) to the pressure increasing hydraulic pressure operating chamber (35) is operated to increase the hydraulic pressure. The hydraulic pressure boosting cylinder according to claim 1, wherein the hydraulic pressure increasing cylinder is formed between the chamber (35) and the hydraulic working chamber (45). 増圧ピストン(4)の後進時、油圧作動室(45)から増圧油圧作動室(35)に作動油を補充するスプリング(22a)に支持された油圧チェックバルブ(7a)が本体(1)の外部に形成されて、増圧油圧作動室(35)と油圧作動室(45)に連通されるように形成されることを特徴とする請求項1に記載の油圧式増圧シリンダー。   The hydraulic pressure check valve (7a) supported by a spring (22a) for replenishing hydraulic oil from the hydraulic pressure working chamber (45) to the pressure rising hydraulic pressure working chamber (35) when the pressure increasing piston (4) moves backward is the main body (1). 2. The hydraulic pressure-increasing cylinder according to claim 1, wherein the hydraulic pressure-increasing cylinder is formed outside of the first pressure-increasing pressure chamber and communicates with the pressure-increasing hydraulic pressure working chamber (35) and the hydraulic pressure working chamber (45). 後進空圧作動室と、空圧作動室(75)と連通される空圧通路(50)との間に空圧チェックバルブ(9)が形成されて、非常停止時、後進空圧が空圧作動室(75)に流入されることを特徴とする請求項1に記載の油圧式増圧シリンダー。   An air pressure check valve (9) is formed between the reverse air pressure working chamber and the air pressure passage (50) communicating with the air pressure working chamber (75), and the reverse air pressure is air pressure during emergency stop. 2. The hydraulic pressure booster cylinder according to claim 1, wherein the hydraulic pressure booster cylinder flows into the working chamber (75).
JP2014536991A 2011-10-21 2012-10-19 Hydraulic pressure booster cylinder Pending JP2014532843A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110107762A KR101331764B1 (en) 2011-10-21 2011-10-21 Hydraulic Booster Cylinder
KR10-2011-0107762 2011-10-21
PCT/KR2012/008609 WO2013058602A2 (en) 2011-10-21 2012-10-19 Hydraulic pressure booster cylinder

Publications (1)

Publication Number Publication Date
JP2014532843A true JP2014532843A (en) 2014-12-08

Family

ID=48141556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014536991A Pending JP2014532843A (en) 2011-10-21 2012-10-19 Hydraulic pressure booster cylinder

Country Status (4)

Country Link
JP (1) JP2014532843A (en)
KR (1) KR101331764B1 (en)
CN (1) CN103958947A (en)
WO (1) WO2013058602A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982474B (en) * 2014-05-28 2016-05-11 苏州艾酷玛赫设备制造有限公司 Novel gas-liquid power cylinder
KR20160079217A (en) 2014-12-26 2016-07-06 주재석 Hydraulic Pressure Boosting Clinder
CN105003472B (en) * 2015-06-05 2017-05-03 武汉工程大学 Gas-liquid pressure cylinder
CN105033720A (en) * 2015-06-29 2015-11-11 沈阳海克机床有限公司 Automatic knife unloading device of rocker arm drill press spindle
CN105570207B (en) * 2016-03-14 2017-06-06 匡信机械(昆山)有限公司 A kind of continous way multi-stage booster method and its supercharging cylinder structure
CN108757598A (en) * 2018-07-02 2018-11-06 天津智威泰克成形技术有限公司 A kind of pressurized cylinder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102474A (en) * 1977-02-21 1978-09-06 Onodani Kikou Kk Booster
JPS56147901A (en) * 1980-04-14 1981-11-17 Oigen Ratsupu Pressure conversion hydraulic-pneumatic driver
JPS57182607U (en) * 1981-05-18 1982-11-19
JPS5977109A (en) * 1983-09-21 1984-05-02 Takahata Kenichi Air driving device
JPH06213202A (en) * 1992-07-02 1994-08-02 Tox Pressotechnik Gmbh Hydraulic intensifier

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288987A (en) * 1978-11-11 1981-09-15 Eugen Rapp Pneumo-hydraulic booster with rapid-traverse feature
CA2102762A1 (en) * 1993-11-09 1995-05-10 Viljo K. Valavaara Two-stage pressure cylinder
KR19990030918A (en) * 1997-10-02 1999-05-06 주재석 Co-operated reciprocating piston unit
KR100296178B1 (en) * 1998-11-04 2001-10-26 주재석 Hydraulic cylinder
KR100380121B1 (en) * 2000-03-15 2003-04-14 주재석 Hydraulic Pressure Booster Cylinder
CN2743588Y (en) * 2004-10-25 2005-11-30 蔡英泳 Gas liquid force increasing cylinder
KR100704958B1 (en) * 2006-04-12 2007-04-09 주영돈 Hydraulic pressure transformers
KR20110070951A (en) * 2009-12-19 2011-06-27 주재석 Fluid pressure cylinder with booster pump
KR20110074815A (en) * 2009-12-26 2011-07-04 주재석 Oil pressure generating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102474A (en) * 1977-02-21 1978-09-06 Onodani Kikou Kk Booster
JPS56147901A (en) * 1980-04-14 1981-11-17 Oigen Ratsupu Pressure conversion hydraulic-pneumatic driver
JPS57182607U (en) * 1981-05-18 1982-11-19
JPS5977109A (en) * 1983-09-21 1984-05-02 Takahata Kenichi Air driving device
JPH06213202A (en) * 1992-07-02 1994-08-02 Tox Pressotechnik Gmbh Hydraulic intensifier

Also Published As

Publication number Publication date
WO2013058602A3 (en) 2013-07-04
WO2013058602A2 (en) 2013-04-25
KR20130043712A (en) 2013-05-02
KR101331764B1 (en) 2013-11-20
CN103958947A (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP2014532843A (en) Hydraulic pressure booster cylinder
WO2015078249A1 (en) Integrated hydraulic valve unit, hydraulic driving system and concrete pump
US9796367B2 (en) Vehicle brake device
KR101655420B1 (en) Hydraulic Power Cylinder with Booser Pump Equipment
CN203532360U (en) Hydraulic pressurization system
TWI784173B (en) Fluid circuit for air cylinder
KR100704958B1 (en) Hydraulic pressure transformers
CN108679008B (en) Continuous output supercharger with changeable supercharging ratio and control method
CN105570208A (en) Noise-reducing dual-circuit oil pump
CN110454460B (en) Quick oil cylinder with pressurization function
CN108679025B (en) Power-assisted mode automatic switching valve and exoskeleton robot hydraulic transmission system
CN107575428B (en) Impact-free electro-hydraulic control one-way valve
CN104132020B (en) Hydraulic valve bank used by bridge of boats springboard hydraulic pressure turn-over device
KR20130034156A (en) Hydraulic power package
CN108561344B (en) Double-acting reciprocating hydraulic pressure booster
CN203082269U (en) Magnetic valve for shoe machine
CN108571479B (en) Single-plunger supercharger
KR101411234B1 (en) Reciprocatable double acting booster and Operating method thereof
KR100486847B1 (en) Pressure Intensifying Cylinder
CN204003737U (en) Bridge of boats springboard hydraulic pressure turn-over device hydraulic valve bank used
JP2006316800A (en) Jack device
CN213541471U (en) Electro-hydraulic power assembly of actuator
JP3874608B2 (en) Booster cylinder device
KR200152631Y1 (en) Pressure intensifying system
JP5688316B2 (en) Electric fluid pressure actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170324