JP2014238363A - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
JP2014238363A
JP2014238363A JP2013121709A JP2013121709A JP2014238363A JP 2014238363 A JP2014238363 A JP 2014238363A JP 2013121709 A JP2013121709 A JP 2013121709A JP 2013121709 A JP2013121709 A JP 2013121709A JP 2014238363 A JP2014238363 A JP 2014238363A
Authority
JP
Japan
Prior art keywords
magnetic field
pulse
detection elements
magnetic detection
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013121709A
Other languages
Japanese (ja)
Other versions
JP6003816B2 (en
Inventor
池田 幸雄
Yukio Ikeda
幸雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013121709A priority Critical patent/JP6003816B2/en
Publication of JP2014238363A publication Critical patent/JP2014238363A/en
Application granted granted Critical
Publication of JP6003816B2 publication Critical patent/JP6003816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a torque sensor capable of, even while reducing the number of magnetic detection elements in use, obtaining as high reliability as a conventional one.SOLUTION: A torque sensor includes a torque magnetic field generation unit 3 for generating a torque magnetic field in response to torque received by a coupling shaft 2; a pulse magnetic field generation unit 11 for generating a pulse magnetic field; two magnetic detection elements 4a and 4b for detecting a superimposed magnetic field which is generated by a superimposing of the torque magnetic field and the pulse magnetic field; a pulse magnetic field intensity determination unit 13 for determining whether a variation between outputs by the pulse magnetic field extracted from an output of both the magnetic detection elements 4a and 4b is within a threshold range for intensity of the pulse magnetic field; a failure determination unit 14 for determining a failure of both the magnetic detection elements 4a and 4b and the pulse magnetic field generation unit 11 on the basis of determination of the pulse magnetic field intensity determination unit 13; and a torque calculation unit 15 for calculating the torque received by the coupling shaft 2 by using the output of the magnetic detection elements 4a and 4b which are not determined to be in failure on the basis of determination of the failure determination unit 14.

Description

本発明は、車両の電動パワーステアリング装置などに用いられるトルクセンサに関するものである。   The present invention relates to a torque sensor used in an electric power steering device for a vehicle.

電動モータを駆動して操舵補助を行い、運転者の負担を軽減する電動パワーステアリング装置が知られている。   2. Description of the Related Art There is known an electric power steering device that drives an electric motor to assist steering and reduce a burden on a driver.

電動パワーステアリング装置では、操舵部材(ステアリングホイール、ハンドル)に繋がる入力軸と、ピニオンおよびラックなどにより走行車輪につながる出力軸とを連結する連結軸に生じるねじれを検出することにより、入力された操舵トルクを検出するトルクセンサが備えられている。電動パワーステアリング装置では、このトルクセンサで検出した操舵トルク値に基づき、出力軸に連動する操舵補助用の電動モータの駆動制御を行っている。   In an electric power steering apparatus, an input steering is detected by detecting a twist generated in a connecting shaft that connects an input shaft connected to a steering member (steering wheel, steering wheel) and an output shaft connected to a traveling wheel by a pinion, a rack, or the like. A torque sensor for detecting torque is provided. In the electric power steering apparatus, drive control of an electric motor for steering assistance linked to the output shaft is performed based on the steering torque value detected by the torque sensor.

従来のトルクセンサとして、特許文献1には、入力軸に固定されたリング状の多極の永久磁石と、出力軸に固定され永久磁石の磁界内に配置されて磁気回路を形成する磁気ヨークと、磁気ヨークに磁気連結され磁束を誘導する2つの集磁リングと、集磁リングが誘導した磁束を検出する2つの磁気検出素子と、を備え、2つの磁気検出素子の出力に基づき、入力軸に加えられたトルクを検出するものが提案されている。   As a conventional torque sensor, Patent Document 1 discloses a ring-shaped multipolar permanent magnet fixed to an input shaft, and a magnetic yoke that is fixed to an output shaft and disposed in the magnetic field of the permanent magnet to form a magnetic circuit. And two magnetic flux collecting rings that are magnetically coupled to the magnetic yoke and induce magnetic flux, and two magnetic sensing elements that detect the magnetic flux induced by the magnetic flux collecting ring, and based on the outputs of the two magnetic sensing elements, an input shaft Some have been proposed that detect the torque applied to.

特許文献1のトルクセンサでは、2つの磁気検出素子を備えているため、両磁気検出素子の出力を比較することで、磁気検出素子の故障を検知することが可能である。しかし、2つの磁気検出素子の出力を比較するだけでは、2つの磁気検出素子のどちらが故障しているかは判別できないため、2つの磁気検出素子のいずれかの故障を検知すると、トルクセンサを使用できなくなり、電動パワーステアリング装置も使用不可となり操舵補助を継続できなくなってしまう。   Since the torque sensor of Patent Literature 1 includes two magnetic detection elements, it is possible to detect a failure of the magnetic detection element by comparing the outputs of both magnetic detection elements. However, it is not possible to determine which of the two magnetic detection elements has failed by simply comparing the outputs of the two magnetic detection elements. Therefore, if one of the two magnetic detection elements is detected, the torque sensor can be used. As a result, the electric power steering apparatus cannot be used, and the steering assist cannot be continued.

特許文献2では、磁気検出素子を3つ備えたトルクセンサが提案されている。特許文献2のトルクセンサでは、例えば、他の磁気検出素子と比較して一の磁気検出素子のみ出力が大きく変化した場合(他との乖離が大きくなった場合)に、当該磁気検出素子が故障したと判断することができ、3つの磁気検出素子の出力を比較することで故障した磁気検出素子を特定することができる。よって、特許文献2のトルクセンサでは、磁気検出素子が1つ故障した場合でも、故障していない磁気検出素子の出力を用いて操舵補助を継続することが可能であり、高い信頼性を実現できる。   Patent Document 2 proposes a torque sensor including three magnetic detection elements. In the torque sensor disclosed in Patent Document 2, for example, when the output of only one magnetic detection element greatly changes compared to other magnetic detection elements (when the deviation from the other becomes large), the magnetic detection element fails. It is possible to determine that the magnetic detection element has failed, and by comparing the outputs of the three magnetic detection elements. Therefore, in the torque sensor disclosed in Patent Document 2, even when one of the magnetic detection elements fails, it is possible to continue the steering assistance using the output of the magnetic detection element that has not failed, and high reliability can be realized. .

特許第4073384号公報Japanese Patent No. 4073384 特開2010−203960号公報JP 2010-203960 A

しかしながら、上述のように故障した磁気検出素子を特定するためには、磁気検出素子を少なくとも3つ備える必要があるため高コストである。また、3つの磁気検出素子で精度よく磁気を検出させるためには、3つの磁気検出素子を所定の位置に正確に配置する必要があり、製造公差の範囲が狭く、製造し難いという問題もある。   However, in order to identify a failed magnetic detection element as described above, it is necessary to provide at least three magnetic detection elements, which is expensive. In addition, in order to detect the magnetism with high accuracy by the three magnetic detection elements, it is necessary to accurately arrange the three magnetic detection elements at predetermined positions, and there is a problem that the manufacturing tolerance range is narrow and the manufacturing is difficult. .

コストを削減し、製造を容易とするためには、磁気検出素子の数をできるだけ減らすことが望ましく、使用する磁気検出素子の数を減らしつつも、従来と同等の高い信頼性を得ることができるトルクセンサが望まれる。   In order to reduce costs and facilitate manufacture, it is desirable to reduce the number of magnetic detection elements as much as possible, and while reducing the number of magnetic detection elements to be used, high reliability equivalent to the conventional one can be obtained. A torque sensor is desired.

本発明は上記事情に鑑み為されたものであり、使用する磁気検出素子の数を減らしつつも、従来と同等の高い信頼性を得ることが可能なトルクセンサを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a torque sensor that can obtain the same high reliability as the conventional one while reducing the number of magnetic detection elements to be used.

本発明は上記目的を達成するために創案されたものであり、入力軸と出力軸とを連結する連結軸がねじれ変形した際に、該連結軸が受けたトルクに応じた磁界であるトルク磁界を発生するトルク磁界発生部と、所定のパルス磁界を発生するコイルを有するパルス磁界発生部と、前記トルク磁界と前記パルス磁界が重畳した磁界である重畳磁界を検出する2つの磁気検出素子と、前記両磁気検出素子の出力より前記パルス磁界による変動分をそれぞれ抽出すると共に、当該パルス磁界による出力の変動分が予め設定したパルス磁界強度用閾値範囲内であるかをそれぞれ判定するパルス磁界強度判定部と、前記パルス磁界強度判定部の判定に基づき、前記両磁気検出素子および前記パルス磁界発生部の故障を判定する故障判定部と、前記故障判定部の判定に基づき、故障と判定されていない前記磁気検出素子の出力を用いて前記連結軸が受けたトルクを演算するトルク演算部と、を備えたトルクセンサである。   The present invention was devised to achieve the above object, and a torque magnetic field which is a magnetic field according to the torque received by the connecting shaft when the connecting shaft connecting the input shaft and the output shaft is torsionally deformed. A torque magnetic field generation unit that generates a magnetic field, a pulse magnetic field generation unit having a coil that generates a predetermined pulse magnetic field, two magnetic detection elements that detect a superimposed magnetic field that is a magnetic field in which the torque magnetic field and the pulse magnetic field are superimposed, Pulse magnetic field strength determination for extracting fluctuations due to the pulse magnetic field from the outputs of the both magnetic detection elements and determining whether the fluctuations in the output due to the pulse magnetic field are within a preset threshold range for pulse magnetic field strength A failure determination unit that determines a failure of both the magnetic detection elements and the pulse magnetic field generation unit based on the determination of the pulse magnetic field strength determination unit, and the failure determination Based on the determination of a torque sensor and a torque calculation unit for calculating a torque which the connecting shaft is received by using an output of the magnetic sensor is not determined malfunction.

前記パルス磁界強度判定部は、前記パルス磁界による出力の変動量が予め設定したパルス磁界強度用閾値範囲内であるときに正常、範囲外であるときに異常と判定し、前記故障判定部は、前記パルス磁界強度判定部にて、前記両磁気検出素子が正常と判定されたとき、前記両磁気検出素子と前記パルス磁界発生部が正常であると判定し、前記一方の前記磁気検出素子が正常で他方の前記磁気検出素子が異常と判定されたとき、一方の前記磁気検出素子と前記パルス磁界発生部が正常であり、他方の前記磁気検出素子に故障が発生したと判定し、前記両磁気検出素子が異常と判定され、かつ、前記両磁気検出素子の出力の差分の絶対値が予め設定した出力用閾値範囲内であるとき、前記パルス磁界発生部に故障が発生したと判定し、前記両磁気検出素子が異常と判定され、かつ、前記両磁気検出素子の出力の差分の絶対値が前記出力用閾値範囲外であるとき、システム故障と判定するように構成されてもよい。   The pulse magnetic field strength determination unit determines that the output fluctuation amount due to the pulse magnetic field is normal when it is within a preset pulse magnetic field strength threshold range, and abnormal when it is out of range, and the failure determination unit includes: When the two magnetic detection elements are determined to be normal by the pulse magnetic field strength determination unit, it is determined that the two magnetic detection elements and the pulse magnetic field generation unit are normal, and the one magnetic detection element is normal. When it is determined that the other magnetic detection element is abnormal, it is determined that one of the magnetic detection elements and the pulse magnetic field generation unit are normal and that the other magnetic detection element has failed, When the detection element is determined to be abnormal, and the absolute value of the difference between the outputs of the two magnetic detection elements is within a preset output threshold range, it is determined that a failure has occurred in the pulse magnetic field generation unit, Both magnetism Is determined detecting element is abnormal and, when the an absolute value of the threshold range for the output of the difference of the outputs of the magnetic sensor may be configured to determine that a system failure.

前記故障判定部がシステム故障と判定したとき、強制的に動作を停止する強制動作停止部をさらに備えてもよい。   You may further provide the forced operation | movement stop part which stops operation | movement forcibly when the said failure determination part determines with a system failure.

前記故障判定部が、前記磁気検出素子あるいは前記パルス磁界発生部に故障が発生したと判定したとき、故障信号を発信する故障信号発信部をさらに備えてもよい。   When the failure determination unit determines that a failure has occurred in the magnetic detection element or the pulse magnetic field generation unit, the failure determination unit may further include a failure signal transmission unit that transmits a failure signal.

本発明によれば、使用する磁気検出素子の数を減らしつつも、従来と同等の高い信頼性を得ることが可能なトルクセンサを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the torque sensor which can acquire the high reliability equivalent to the past can be provided, reducing the number of the magnetic detection elements to be used.

本発明の一実施の形態に係るトルクセンサを示す図であり、(a)は分解斜視図と要部拡大図、(b)はブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the torque sensor which concerns on one embodiment of this invention, (a) is a disassembled perspective view and the principal part enlarged view, (b) is a block diagram. (a),(b)は、図1のトルクセンサに用いるトルク磁界発生部の動作を説明する図である。(A), (b) is a figure explaining operation | movement of the torque magnetic field generation part used for the torque sensor of FIG. (a)は第2の磁気検出素子が故障したとき、(b)はパルス磁界発生部が故障したときの両磁気検出素子の出力を示すグラフ図である。(A) is a graph which shows the output of both magnetic detection elements when a 2nd magnetic detection element fails, (b) when a pulse magnetic field generation | occurrence | production part fails. 図1のトルクセンサの制御フローを示すフロー図である。It is a flowchart which shows the control flow of the torque sensor of FIG.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本実施の形態に係るトルクセンサを示す図であり、(a)は分解斜視図と要部拡大図、(b)はブロック図である。   1A and 1B are diagrams showing a torque sensor according to the present embodiment, where FIG. 1A is an exploded perspective view and an enlarged view of a main part, and FIG. 1B is a block diagram.

図1(a),(b)に示すように、トルクセンサ1は、入力軸と出力軸とを連結する連結軸2がねじれ変形した際に、連結軸2が受けたトルクに応じた磁界であるトルク磁界を発生するトルク磁界発生部3と、ホールICなどからなる2つの磁気検出素子4a,4b(第1の磁気検出素子4aと第2の磁気検出素子4b)と、を備えている。   As shown in FIGS. 1A and 1B, the torque sensor 1 is a magnetic field corresponding to the torque received by the connecting shaft 2 when the connecting shaft 2 connecting the input shaft and the output shaft is torsionally deformed. A torque magnetic field generator 3 that generates a certain torque magnetic field and two magnetic detection elements 4a and 4b (first magnetic detection element 4a and second magnetic detection element 4b) made of a Hall IC or the like are provided.

入力軸は、例えば、ステアリングホイール等の操舵部材の操舵により回転するものである。出力軸は、例えば、ピニオンやラック等の車輪の向きの操作を担う部材に接続されるものである。連結軸2は、これら入力軸と出力軸を連結するものであり、入力軸と出力軸との相対変位により生じるトルクを受けてねじれ変形する。本実施の形態では、連結軸2としてトーションバーを用いている。   The input shaft is rotated by steering of a steering member such as a steering wheel. The output shaft is connected to a member responsible for the operation of the direction of the wheel, such as a pinion or a rack. The connecting shaft 2 connects the input shaft and the output shaft, and receives the torque generated by the relative displacement between the input shaft and the output shaft and is torsionally deformed. In the present embodiment, a torsion bar is used as the connecting shaft 2.

トルク磁界発生部3は、入力軸に固定され周方向に沿ってN極とS極が交互に配置された多極の永久磁石5と、出力軸に固定され永久磁石5の外周に非接触に設けられると共に、軸方向に対向して設けられる円管状の2つの磁気ヨーク6a,6bと、を備えている。   The torque magnetic field generator 3 is fixed to the input shaft and has a multipolar permanent magnet 5 in which N poles and S poles are alternately arranged along the circumferential direction, and is fixed to the output shaft and is not in contact with the outer periphery of the permanent magnet 5. And two cylindrical magnetic yokes 6a and 6b provided to face each other in the axial direction.

磁気ヨーク6a,6bは、永久磁石5を非接触に囲む円管部7a,7bと、円管部7a,7bの内側の周縁から対向する磁気ヨーク6b,6aに向けて軸方向に突出する二等辺三角形状の爪部8a,8bと、からなる。爪部8a,8bは、円管部7a,7bの内側の周縁に沿って、永久磁石5の同一磁極(N極またはS極)の配置ピッチと等しいピッチで周期的に形成されている。両磁気ヨーク6a,6bは、永久磁石5の同一磁極の配置ピッチに対して半分のピッチで両爪部8a,8bが交互に向かい合うように配置されている。   The magnetic yokes 6a and 6b are two protruding in the axial direction toward the opposing magnetic yokes 6b and 6a from the inner periphery of the circular tube portions 7a and 7b and the circular tube portions 7a and 7b surrounding the permanent magnet 5 in a non-contact manner. It consists of claw portions 8a and 8b having an equilateral triangle shape. The claw portions 8a and 8b are periodically formed at a pitch equal to the arrangement pitch of the same magnetic pole (N pole or S pole) of the permanent magnet 5 along the inner periphery of the circular pipe portions 7a and 7b. Both the magnetic yokes 6a and 6b are arranged such that both the claw portions 8a and 8b face each other at a half pitch with respect to the arrangement pitch of the same magnetic poles of the permanent magnet 5.

図2(a)に示すように、連結軸2がトルクを受けていない中立状態では、磁気ヨーク6a,6bの爪部8a,8bの先端が、永久磁石5のN極とS極の境界に位置するようになっている。このとき、爪部8a,8bにおけるN極に対向する面積とS極に対向する面積とが等しくなるため、両磁気ヨーク6a,6bでN極から入る磁束とS極へ出る磁束が等しくなり、両磁気ヨーク6a,6b間に磁気の極性の差異は生じない。   As shown in FIG. 2A, in the neutral state where the connecting shaft 2 is not receiving torque, the tips of the claw portions 8a and 8b of the magnetic yokes 6a and 6b are at the boundary between the N pole and the S pole of the permanent magnet 5. It is supposed to be located. At this time, since the area facing the N pole and the area facing the S pole in the claw portions 8a and 8b are equal, the magnetic flux entering from the N pole and the magnetic flux exiting to the S pole are equal in both magnetic yokes 6a and 6b. There is no difference in magnetic polarity between the magnetic yokes 6a and 6b.

他方、連結軸2がトルクを受けてねじれた状態では、図2(b)に示すように、爪部8a,8bにおけるN極に対向する面積とS極に対向する面積とが異なってくる。図2(b)の例では、磁気ヨーク6aの爪部8aではS極に対向する面積が大きくなり、磁気ヨーク6bの爪部8bではN極に対向する面積が大きくなる。その結果、両磁気ヨーク6a,6b間に磁気の極性の差異が発生し磁界が発生する。   On the other hand, when the connecting shaft 2 is twisted by receiving torque, the area facing the N pole and the area facing the S pole in the claw portions 8a and 8b are different as shown in FIG. In the example of FIG. 2B, the area facing the south pole is large in the claw portion 8a of the magnetic yoke 6a, and the area facing the north pole is large in the claw portion 8b of the magnetic yoke 6b. As a result, a magnetic polarity difference occurs between the magnetic yokes 6a and 6b, and a magnetic field is generated.

本実施の形態では、磁気ヨーク6a,6bからの磁界を、磁気ヨーク6a,6bの外周に非接触に設けられた円管状の外側ヨーク9a,9bと、外側ヨーク9a,9bの対向する位置に、互いに近接する方向に突出して設けられた近接ヨーク10a,10bにより、2つの磁気検出素子4a,4bに導くようにトルク磁界発生部3を構成している。これら外側ヨーク9a,9b、近接ヨーク10a,10b、磁気検出素子4a,4bは、入力軸や出力軸の周囲の固定体に支持されている。各ヨーク6a,6b,9a,9b,10a,10bは、軟磁性体からなる。   In the present embodiment, the magnetic fields from the magnetic yokes 6a and 6b are applied to the positions where the outer yokes 9a and 9b, which are provided in a non-contact manner on the outer periphery of the magnetic yokes 6a and 6b, and the outer yokes 9a and 9b face each other. The torque magnetic field generation unit 3 is configured to be guided to the two magnetic detection elements 4a and 4b by the proximity yokes 10a and 10b provided so as to protrude in the directions close to each other. These outer yokes 9a and 9b, proximity yokes 10a and 10b, and magnetic detection elements 4a and 4b are supported by a fixed body around the input shaft and the output shaft. Each yoke 6a, 6b, 9a, 9b, 10a, 10b is made of a soft magnetic material.

なお、ここで説明したトルク磁界発生部3はあくまで一例であり、トルク磁界発生部3の構成はこれに限定されるものではない。つまり、トルク磁界発生部3は、連結軸2が受けたトルクに応じたトルク磁界を発生するものであれば、どのような構成であってもよい。   The torque magnetic field generation unit 3 described here is merely an example, and the configuration of the torque magnetic field generation unit 3 is not limited to this. That is, the torque magnetic field generator 3 may have any configuration as long as it generates a torque magnetic field according to the torque received by the connecting shaft 2.

さて、本実施の形態に係るトルクセンサ1は、パルス磁界発生部11と、パルス磁界強度判定部13と、故障判定部14と、トルク演算部15と、をさらに備えている。   Now, the torque sensor 1 according to the present embodiment further includes a pulse magnetic field generation unit 11, a pulse magnetic field strength determination unit 13, a failure determination unit 14, and a torque calculation unit 15.

パルス磁界発生部11は、所定のパルス磁界を発生するものであり、コイル16と、コイル16に励磁電流を供給するコイル用電源部17と、コイル用電源部17に指示信号を出力し、コイル用電源部17を所定の周期でオンオフ制御する指示部18と、を備えている。   The pulse magnetic field generation unit 11 generates a predetermined pulse magnetic field, and outputs an instruction signal to the coil 16, the coil power supply unit 17 that supplies an excitation current to the coil 16, and the coil power supply unit 17. And an instruction unit 18 that performs on / off control of the power supply unit 17 at a predetermined cycle.

磁気検出素子4a,4bは、トルク磁界発生部3が発生するトルク磁界と、パルス磁界発生部11のコイル16が発生するパルス磁界が重畳した磁界である重畳磁界を検出するようにされる。本実施の形態では、磁気検出素子4a,4bを近接ヨーク10a,10bの間に配置すると共に、両磁気検出素子4a,4bの間にコイル16を配置した。   The magnetic detection elements 4a and 4b are configured to detect a superimposed magnetic field that is a magnetic field in which the torque magnetic field generated by the torque magnetic field generation unit 3 and the pulse magnetic field generated by the coil 16 of the pulse magnetic field generation unit 11 are superimposed. In the present embodiment, the magnetic detection elements 4a and 4b are disposed between the proximity yokes 10a and 10b, and the coil 16 is disposed between the magnetic detection elements 4a and 4b.

なお、両磁気検出素子4a,4bは、トルク磁界とパルス磁界の両方(つまり重畳磁界)を検出できる位置であれば、どこに設置してもよい。ただし、本実施の形態に係るトルクセンサ1のように、両磁気検出素子4a,4bでコイル16を挟み込む配置とすることで、両磁気検出素子4a,4bで検出するパルス磁界の強度を同程度にでき、さらに、コイル16で発生するパルス磁界を精度よく検出可能となり、コイル16を小型としたり励磁電流を小さくできる、というメリットがある。   Both the magnetic detection elements 4a and 4b may be installed anywhere as long as both the torque magnetic field and the pulse magnetic field (that is, the superimposed magnetic field) can be detected. However, as in the torque sensor 1 according to the present embodiment, by arranging the coil 16 between the two magnetic detection elements 4a and 4b, the intensity of the pulse magnetic field detected by the two magnetic detection elements 4a and 4b is approximately the same. Further, the pulse magnetic field generated in the coil 16 can be detected with high accuracy, and there is an advantage that the coil 16 can be downsized and the excitation current can be reduced.

パルス磁界強度判定部13は、両磁気検出素子4a,4bの出力(磁気信号)よりパルス磁界による変動分をそれぞれ抽出すると共に、当該パルス磁界による出力の変動分が予め設定したパルス磁界強度用閾値範囲内であるかをそれぞれ判定するものである。   The pulse magnetic field strength determination unit 13 extracts fluctuations due to the pulse magnetic field from the outputs (magnetic signals) of the both magnetic detection elements 4a and 4b, and the pulse magnetic field strength threshold value for which the fluctuation of the output due to the pulse magnetic field is set in advance. Each is determined whether it is within the range.

具体的には、パルス磁界強度判定部13は、所定の周期(パルス磁界の周期と同程度の周期)における磁気検出素子4a,4bの出力の最大値と最小値を求め、求めた最大値から最小値を減じた値をパルス磁界による出力の変動分として求め、求めたパルス磁界による出力の変動分が、予め設定したパルス磁界強度用閾値範囲内であるかを判定する。   Specifically, the pulse magnetic field strength determination unit 13 obtains the maximum value and the minimum value of the outputs of the magnetic detection elements 4a and 4b in a predetermined period (a period similar to the period of the pulse magnetic field), and calculates the maximum value from the obtained maximum value. A value obtained by subtracting the minimum value is obtained as an output fluctuation due to the pulse magnetic field, and it is determined whether the obtained output fluctuation due to the pulse magnetic field is within a preset pulse magnetic field strength threshold range.

つまり、パルス磁界強度判定部13は、磁気検出素子4a,4bがコイル16で発生したパルス磁界を正確に検出できているかを判定するものである。ここでは、便宜上、パルス磁界強度判定部13が、パルス磁界による出力の変動量が予め設定したパルス磁界強度用閾値範囲内であるときに正常、範囲外であるときに異常と判定するものとする(なお、ここでいう正常や異常はパルス磁界の検出の状態を便宜的に表すものであり、故障の有無を表すものではない)。判定基準となるパルス磁界強度用閾値範囲は、コイル16で発生する磁界強度、磁気検出素子4a,4bとコイル16の位置関係等を考慮して決定される。   That is, the pulse magnetic field strength determination unit 13 determines whether the magnetic detection elements 4a and 4b can accurately detect the pulse magnetic field generated in the coil 16. Here, for convenience, it is assumed that the pulse magnetic field strength determination unit 13 determines that the output fluctuation amount due to the pulse magnetic field is normal when the amount of fluctuation in the pulse magnetic field is within a preset threshold range for pulse magnetic field strength, and abnormal when it is out of the range. (Normal or abnormal here indicates the state of detection of the pulse magnetic field for the sake of convenience, and does not indicate the presence or absence of a failure). The threshold range for the pulse magnetic field strength that is the determination criterion is determined in consideration of the magnetic field strength generated in the coil 16, the positional relationship between the magnetic detection elements 4a and 4b and the coil 16, and the like.

故障判定部14は、パルス磁界強度判定部13の判定に基づき、両磁気検出素子4a,4bおよびパルス磁界発生部11の故障を判定するものである。   The failure determination unit 14 determines a failure of both the magnetic detection elements 4 a and 4 b and the pulse magnetic field generation unit 11 based on the determination of the pulse magnetic field strength determination unit 13.

具体的には、故障判定部14は、パルス磁界強度判定部13にて両磁気検出素子4a,4bが正常と判定されたとき、両磁気検出素子4a,4bとパルス磁界発生部11が正常(システム健全)であると判定する。   Specifically, the failure determination unit 14 determines that both the magnetic detection elements 4a and 4b and the pulse magnetic field generation unit 11 are normal when the pulse magnetic field strength determination unit 13 determines that both the magnetic detection elements 4a and 4b are normal ( It is determined that the system is healthy.

また、故障判定部14は、パルス磁界強度判定部13にて一方の磁気検出素子4a(または4b)が正常で他方の磁気検出素子4b(または4a)が異常と判定されたとき、一方の磁気検出素子4a(または4b)とパルス磁界発生部11が正常であり、他方の磁気検出素子4b(または4a)に故障が発生したと判定する。   The failure determination unit 14 determines that one of the magnetic detection elements 4a (or 4b) is normal and the other magnetic detection element 4b (or 4a) is abnormal when the pulse magnetic field strength determination unit 13 determines that one of the magnetic detection elements 4a (or 4b) is abnormal. It is determined that the detection element 4a (or 4b) and the pulse magnetic field generator 11 are normal, and a failure has occurred in the other magnetic detection element 4b (or 4a).

図3(a)に、経過時間t1で第2の磁気検出素子4bに故障が発生した場合の各磁気検出素子4a,4bの出力の一例を示す。なお、ここでは両磁気検出素子4a,4bで等しいパルス磁界を検出する場合を示しており、図示細線実線は両磁気検出素子4a,4bでパルス磁界のみを検出したときの出力を表している。 In FIG. 3 (a), an example of outputs of the magnetic detection elements 4a, 4b in the case where a failure by the elapsed time t 1 to the second magnetic detection element 4b has occurred. Here, a case is shown in which both magnetic detection elements 4a and 4b detect the same pulse magnetic field, and the thin solid line in the figure represents the output when only the magnetic field is detected by both magnetic detection elements 4a and 4b.

図3(a)の場合、経過時間t1以降では、第2の磁気検出素子4bにおけるパルス磁界による出力の変動量が0となるので、パルス磁界強度判定部13にて第2の磁気検出素子4bが異常と判定されることになる。他方、第1の磁気検出素子4aについては、経過時間t1以降でもパルス磁界による出力の変動量に変化がないので、パルス磁界強度判定部13にて正常と判定されることになる。第1の磁気検出素子4aが正常と判定されているということは、つまりパルス磁界発生部11が所定のパルス磁界を発生しているということであり、パルス磁界発生部11も正常であると判断できる。よって、この場合、故障判定部14にて、第1の磁気検出素子4aとパルス磁界発生部11が正常であり、第2の磁気検出素子4bのみに故障が発生したと判定されることになる。 In the case of FIG. 3A, after the elapsed time t 1 , the fluctuation amount of the output due to the pulse magnetic field in the second magnetic detection element 4b becomes 0, so that the second magnetic detection element is determined by the pulse magnetic field strength determination unit 13. 4b is determined to be abnormal. On the other hand, for the first magnetic detecting element 4a, there is no change in the output variation by the pulse magnetic field even elapsed time t 1 later, it will be determined to be normal at the pulse magnetic field intensity determination section 13. The fact that the first magnetic detection element 4a is determined to be normal means that the pulse magnetic field generator 11 is generating a predetermined pulse magnetic field, and it is determined that the pulse magnetic field generator 11 is also normal. it can. Therefore, in this case, the failure determination unit 14 determines that the first magnetic detection element 4a and the pulse magnetic field generation unit 11 are normal, and only the second magnetic detection element 4b has failed. .

パルス磁界強度判定部13にて両磁気検出素子4a,4bが異常と判定された場合、パルス磁界発生部11が故障している場合と、両磁気検出素子4a,4bとパルス磁界発生部11のうち少なくとも2つ以上が故障している場合が考えられる。後者の両磁気検出素子4a,4bとパルス磁界発生部11のうち少なくとも2つ以上が故障している場合には使用不可(システム故障)とするしかないが、前者のパルス磁界発生部11が故障している場合であれば、両磁気検出素子4a,4bは正しい出力となっており、継続して使用可能である。   When the pulse magnetic field strength determination unit 13 determines that both the magnetic detection elements 4a and 4b are abnormal, the pulse magnetic field generation unit 11 is out of order, and both the magnetic detection elements 4a and 4b and the pulse magnetic field generation unit 11 A case where at least two or more of them have failed can be considered. If at least two of the latter magnetic detection elements 4a and 4b and the pulse magnetic field generation unit 11 are out of order, they cannot be used (system failure), but the former pulse magnetic field generation unit 11 fails. If so, both magnetic detection elements 4a and 4b have the correct output and can be used continuously.

そこで、故障判定部14では、両磁気検出素子4a,4bが異常と判定された場合については、さらに両磁気検出素子4a,4bの出力を比較して、磁気検出素子4a,4bの出力が正しいか否かを判定するようにした。   Therefore, when the failure determination unit 14 determines that both the magnetic detection elements 4a and 4b are abnormal, the outputs of both the magnetic detection elements 4a and 4b are further compared, and the outputs of the magnetic detection elements 4a and 4b are correct. Judgment whether or not.

すなわち、故障判定部14は、パルス磁界強度判定部13にて両磁気検出素子4a,4bが異常と判定され、かつ、両磁気検出素子4a,4bの出力の差分の絶対値が予め設定した出力用閾値範囲内であるとき、パルス磁界発生部11に故障が発生したと判定する。   That is, the failure determination unit 14 determines that the pulse magnetic field strength determination unit 13 determines that both the magnetic detection elements 4a and 4b are abnormal, and outputs the absolute value of the difference between the outputs of the two magnetic detection elements 4a and 4b in advance. When it is within the threshold value range, it is determined that a failure has occurred in the pulse magnetic field generator 11.

さらにまた、故障判定部14は、パルス磁界強度判定部13にて両磁気検出素子4a,4bが異常と判定され、かつ、両磁気検出素子4a,4bの出力の差分の絶対値が出力用閾値範囲外であるとき、システム故障と判定するように構成される。   Furthermore, the failure determination unit 14 determines that the both magnetic detection elements 4a and 4b are abnormal in the pulse magnetic field strength determination unit 13, and the absolute value of the difference between the outputs of the both magnetic detection elements 4a and 4b is the output threshold value. When it is out of range, it is configured to determine a system failure.

図3(b)に、経過時間t1でパルス磁界発生部11に故障が発生しパルス磁界が発生しなくなった場合の各磁気検出素子4a,4bの出力の一例を示す。この場合、経過時間t1以降では、パルス磁界による出力の変動分が両磁気検出素子4a,4bで0になるので、パルス磁界強度判定部13にて両磁気検出素子4a,4bとも異常と判定されることになる。 FIG. 3B shows an example of the output of each of the magnetic detection elements 4a and 4b when the pulse magnetic field generator 11 fails at the elapsed time t 1 and no pulse magnetic field is generated. In this case, after the elapsed time t 1 , the output fluctuation due to the pulse magnetic field becomes 0 in both the magnetic detection elements 4a and 4b, and therefore, both the magnetic detection elements 4a and 4b are determined to be abnormal by the pulse magnetic field strength determination unit 13. Will be.

一方で、図3(b)に示すように、両磁気検出素子4a,4bが正常に動作していれば、パルス磁界発生部11の故障の有無にかかわらず、両磁気検出素子4a,4bの出力の差分はほぼ一定の値となる。よって、パルス磁界強度判定部13にて両磁気検出素子4a,4bが異常と判定された場合であっても、両磁気検出素子4a,4bの出力の差分の絶対値が出力用閾値範囲内であれば、両磁気検出素子4a,4bは正常であると判定できる。   On the other hand, as shown in FIG. 3B, if both the magnetic detection elements 4a and 4b are operating normally, regardless of whether or not the pulse magnetic field generation unit 11 has failed, both magnetic detection elements 4a and 4b The output difference is a substantially constant value. Therefore, even when both magnetic detection elements 4a and 4b are determined to be abnormal by the pulse magnetic field strength determination unit 13, the absolute value of the difference between the outputs of both magnetic detection elements 4a and 4b is within the output threshold range. If there is, it can be determined that both magnetic detection elements 4a and 4b are normal.

トルク演算部15は、磁気検出素子4a,4bの出力を基に連結軸2が受けたトルクを演算するものである。トルク演算部15は、磁気検出素子4a,4bの出力から、上述のパルス磁界による変動分を除いた出力値を用いて、連結軸2が受けたトルクを演算する。演算したトルクは、トルク値信号としてアシストモータ19に出力される。   The torque calculator 15 calculates the torque received by the connecting shaft 2 based on the outputs of the magnetic detection elements 4a and 4b. The torque calculation unit 15 calculates the torque received by the connecting shaft 2 using an output value obtained by removing the fluctuation due to the above-described pulse magnetic field from the outputs of the magnetic detection elements 4a and 4b. The calculated torque is output to the assist motor 19 as a torque value signal.

本実施の形態では、トルク演算部15は、故障判定部14の判定に基づき、故障と判定されていない磁気検出素子4a,4bの出力を用いて連結軸2が受けたトルクを演算することになる。両磁気検出素子4a,4bが共に故障と判定されていない場合、両方の出力を用いて演算したトルク値を平均するなどしてトルクを演算してもよいし、どちらか一方の出力のみを用いてトルクを演算してもよい。   In the present embodiment, the torque calculation unit 15 calculates the torque received by the connecting shaft 2 using the outputs of the magnetic detection elements 4a and 4b that are not determined to be failure based on the determination of the failure determination unit 14. Become. When both the magnetic detection elements 4a and 4b are not determined to be in failure, the torque may be calculated by averaging the torque values calculated using both outputs, or only one of the outputs is used. Thus, the torque may be calculated.

また、トルクセンサ1は、故障判定部14がシステム故障と判定したとき、強制的にトルクセンサ1の動作を停止する強制動作停止部20と、故障判定部14が磁気検出素子4a,4bあるいはパルス磁界発生部11に故障が発生したと判定したとき(システム故障と判定したときを含めてもよい)、故障表示・記憶部22(故障表示ランプなど)に故障信号を発信する故障信号発信部21をさらに備えている。   The torque sensor 1 includes a forced operation stop unit 20 that forcibly stops the operation of the torque sensor 1 when the failure determination unit 14 determines a system failure, and the failure determination unit 14 detects the magnetic detection elements 4a and 4b or pulses. When it is determined that a failure has occurred in the magnetic field generator 11 (including when it is determined that the system has failed), a failure signal transmitter 21 that transmits a failure signal to the failure display / storage unit 22 (such as a failure display lamp). Is further provided.

パルス磁界強度判定部13、故障判定部14、トルク演算部15、強制動作停止部20、故障信号発信部21、および指示部18は、車両の電子制御ユニット(ECU)23内の制御基板24に搭載され、ROM、RAMなどのメモリ、CPU、I/Oインターフェイス、ソフトウェア等を適宜組み合わせて実現される。   The pulse magnetic field strength determination unit 13, the failure determination unit 14, the torque calculation unit 15, the forced operation stop unit 20, the failure signal transmission unit 21, and the instruction unit 18 are provided on the control board 24 in the electronic control unit (ECU) 23 of the vehicle. It is mounted and realized by appropriately combining memories such as ROM and RAM, CPU, I / O interface, software, and the like.

次に、トルクセンサ1の制御フローを図4を用いて説明する。トルクセンサ1は、図4の制御フローを繰り返し実行するようにされる。   Next, the control flow of the torque sensor 1 will be described with reference to FIG. The torque sensor 1 is configured to repeatedly execute the control flow of FIG.

まず、ステップS1にて、パルス磁界強度判定部13が、第1の磁気検出素子4aのパルス磁界による出力の変動分ΔV1と、第2の磁気検出素子4bのパルス磁界による出力の変動分ΔV2を検出する。 First, in step S1, the pulse magnetic field strength determination unit 13 causes the output variation ΔV 1 due to the pulse magnetic field of the first magnetic detection element 4a and the output variation ΔV 1 due to the pulse magnetic field of the second magnetic detection element 4b. Detect 2

その後、ステップS2にて、パルス磁界強度判定部13が、第1の磁気検出素子4aのパルス磁界による出力の変動分ΔV1が、予め設定したパルス磁界用閾値範囲内であるか判定する。ステップS2でYESと判定された場合ステップS3へ、NOと判定された場合ステップS4に進む。 After that, in step S2, the pulse magnetic field strength determination unit 13 determines whether the output fluctuation ΔV 1 due to the pulse magnetic field of the first magnetic detection element 4a is within a preset pulse magnetic field threshold range. If YES is determined in step S2, the process proceeds to step S3. If NO is determined, the process proceeds to step S4.

ステップS3では、パルス磁界強度判定部13が、第2の磁気検出素子4bのパルス磁界による出力の変動分ΔV2が、予め設定したパルス磁界用閾値範囲内であるか判定する。ステップS3でYESと判定された場合ステップS5へ、NOと判定された場合ステップS6に進む。 In step S3, the pulse magnetic field strength determination unit 13 determines whether the output variation ΔV 2 due to the pulse magnetic field of the second magnetic detection element 4b is within a preset pulse magnetic field threshold range. If YES is determined in step S3, the process proceeds to step S5. If NO is determined, the process proceeds to step S6.

ステップS5では、ΔV1とΔV2が共にパルス磁界用閾値範囲内(つまり、両磁気検出素子4a,4bが正常)と判定されているため、故障判定部14がシステム健全と判定し、ステップS15に進む。 In step S5, since it is determined that both ΔV 1 and ΔV 2 are within the pulse magnetic field threshold range (that is, both magnetic detection elements 4a and 4b are normal), the failure determination unit 14 determines that the system is healthy, and step S15. Proceed to

ステップS6では、ΔV1がパルス磁界用閾値範囲内でΔV2がパルス磁界用閾値範囲外(つまり、第1の磁気検出素子4aが正常で第2の磁気検出素子4bが異常)と判定されているため、故障判定部14が第2の磁気検出素子4bが故障と判定し、ステップS7にて故障信号発信部21が故障信号を発信した後、ステップS15に進む。 In step S6, it is determined that ΔV 1 is within the pulse magnetic field threshold range and ΔV 2 is out of the pulse magnetic field threshold range (that is, the first magnetic detection element 4a is normal and the second magnetic detection element 4b is abnormal). Therefore, the failure determination unit 14 determines that the second magnetic detection element 4b is defective, and the failure signal transmission unit 21 transmits a failure signal in step S7, and then the process proceeds to step S15.

ステップS4では、ステップS3と同様に、第2の磁気検出素子4bのパルス磁界による出力の変動分ΔV2が、予め設定したパルス磁界用閾値範囲内であるか判定する。ステップS4でYESと判定された場合ステップS8へ、NOと判定された場合ステップS10に進む。 In step S4, as in step S3, it is determined whether the output fluctuation ΔV 2 due to the pulse magnetic field of the second magnetic detection element 4b is within a preset pulse magnetic field threshold range. If YES is determined in step S4, the process proceeds to step S8. If NO is determined, the process proceeds to step S10.

ステップS8では、ΔV1がパルス磁界用閾値範囲外でΔV2がパルス磁界用閾値範囲内(つまり、第1の磁気検出素子4aが異常で第2の磁気検出素子4bが正常)と判定されているため、故障判定部14が第1の磁気検出素子4aが故障と判定し、ステップS9にて故障信号発信部21が故障信号を発信した後、ステップS15に進む。 In step S8, it is determined that ΔV 1 is outside the pulse magnetic field threshold range and ΔV 2 is within the pulse magnetic field threshold range (that is, the first magnetic detection element 4a is abnormal and the second magnetic detection element 4b is normal). Therefore, the failure determination unit 14 determines that the first magnetic detection element 4a has failed, and after the failure signal transmission unit 21 transmits a failure signal in step S9, the process proceeds to step S15.

ステップS10では、ΔV1とΔV2が共にパルス磁界用閾値範囲外(つまり、両磁気検出素子4a,4bが異常)と判定されているため、両磁気検出素子4a,4bの出力を比較して両磁気検出素子4a,4bが健全であるかを判定する。 In step S10, since both ΔV 1 and ΔV 2 are determined to be outside the pulse magnetic field threshold range (that is, both magnetic detection elements 4a and 4b are abnormal), the outputs of both magnetic detection elements 4a and 4b are compared. It is determined whether both magnetic detection elements 4a and 4b are healthy.

つまり、ステップS10では、磁気検出素子4a,4bの出力の差分の絶対値が予め設定した出力用閾値範囲内であるかを判定する。ステップS10でYESと判定された場合ステップS11に進み、NOと判定された場合ステップS13に進む。   That is, in step S10, it is determined whether or not the absolute value of the difference between the outputs of the magnetic detection elements 4a and 4b is within a preset output threshold range. If YES is determined in step S10, the process proceeds to step S11. If NO is determined, the process proceeds to step S13.

ステップS11では、ΔV1とΔV2が共にパルス磁界用閾値範囲外(つまり、両磁気検出素子4a,4bが異常)で、かつ、両磁気検出素子4a,4bの出力の差分の絶対値が出力用閾値範囲内である(つまり両磁気検出素子4a,4bが健全である)から、故障判定部14がパルス磁界発生部11が故障と判定し、ステップS12にて故障信号発信部21が故障信号を発信した後、ステップS15に進む。 In step S11, ΔV 1 and ΔV 2 are both outside the pulse magnetic field threshold range (that is, both magnetic detection elements 4a and 4b are abnormal), and the absolute value of the difference between the outputs of both magnetic detection elements 4a and 4b is output. Failure determination unit 14 determines that the pulse magnetic field generation unit 11 is in failure, and the failure signal transmission unit 21 detects a failure signal in step S12. Is sent to step S15.

ステップS13では、ΔV1とΔV2が共にパルス磁界用閾値範囲外(つまり、両磁気検出素子4a,4bが異常)で、かつ、両磁気検出素子4a,4bの出力の差分の絶対値が出力用閾値範囲外である(つまり磁気検出素子4a,4bの一方または両方が故障している)から、故障判定部14がシステム故障と判定し、ステップS14にて強制動作停止部20がトルクセンサ1の動作を強制停止する。 In step S13, ΔV 1 and ΔV 2 are both outside the pulse magnetic field threshold range (that is, both magnetic detection elements 4a and 4b are abnormal), and the absolute value of the difference between the outputs of both magnetic detection elements 4a and 4b is output. Is out of the threshold range for use (that is, one or both of the magnetic detection elements 4a and 4b have failed), the failure determination unit 14 determines that the system has failed, and in step S14, the forced operation stop unit 20 determines that the torque sensor 1 Forcibly stop the operation.

ステップS15では、トルク演算部15が、故障と判定されていない磁気検出素子4a,4bを用いて連結軸2が受けたトルクを演算し、演算結果をトルク値信号として出力し、処理を終了する。   In step S15, the torque calculation unit 15 calculates the torque received by the connecting shaft 2 using the magnetic detection elements 4a and 4b that are not determined to be faulty, outputs the calculation result as a torque value signal, and ends the process. .

本実施の形態の作用を説明する。   The operation of the present embodiment will be described.

本実施の形態に係るトルクセンサ1では、連結軸2が受けたトルクに応じたトルク磁界を発生するトルク磁界発生部3と、パルス磁界を発生するコイル16を有するパルス磁界発生部11と、トルク磁界とパルス磁界が重畳した重畳磁界を検出する2つの磁気検出素子4a,4bと、両磁気検出素子4a,4bの出力より抽出したパルス磁界による出力の変動分がパルス磁界強度用閾値範囲内であるか判定するパルス磁界強度判定部13と、パルス磁界強度判定部13の判定に基づき、両磁気検出素子4a,4bおよびパルス磁界発生部11の故障を判定する故障判定部14と、故障判定部14の判定に基づき、故障と判定されていない磁気検出素子4a,4bの出力を用いて連結軸2が受けたトルクを演算するトルク演算部15と、を備えている。   In the torque sensor 1 according to the present embodiment, a torque magnetic field generator 3 that generates a torque magnetic field according to the torque received by the connecting shaft 2, a pulse magnetic field generator 11 having a coil 16 that generates a pulse magnetic field, and torque Two magnetic detection elements 4a and 4b that detect a superimposed magnetic field in which a magnetic field and a pulse magnetic field are superimposed, and the fluctuation in output due to the pulse magnetic field extracted from the outputs of both magnetic detection elements 4a and 4b are within the pulse magnetic field intensity threshold range. A pulse magnetic field strength determination unit 13 that determines whether there is a failure, a failure determination unit 14 that determines a failure of both the magnetic detection elements 4a and 4b and the pulse magnetic field generation unit 11 based on the determination of the pulse magnetic field strength determination unit 13, and a failure determination unit A torque calculation unit 15 that calculates the torque received by the connecting shaft 2 using the outputs of the magnetic detection elements 4a and 4b that are not determined to be faulty based on the determination of No. 14; There.

このように構成することで、2つの磁気検出素子4a,4bとパルス磁界発生部11のうち1つが破損するなど故障した場合であっても、故障した部材を特定することが可能となり、健全な部材を用いてトルクの検出を継続することが可能になる。   With this configuration, even when one of the two magnetic detection elements 4a and 4b and the pulse magnetic field generation unit 11 is damaged, it is possible to identify the failed member, which is healthy. Torque detection can be continued using the member.

本実施の形態では、磁気検出素子4a,4bを2つのみ使用しており、使用する磁気検出素子4a,4bの数を減らしつつも、磁気検出素子を3つ用いた従来のトルクセンサと同等の高い信頼性を得ることが可能になる。トルクセンサ1は、使用する磁気検出素子4a,4bの数が少ないため、コストを削減でき、また製造を容易とすることが可能になる。   In the present embodiment, only two magnetic detection elements 4a and 4b are used, and the number of magnetic detection elements 4a and 4b to be used is reduced, but it is equivalent to a conventional torque sensor using three magnetic detection elements. High reliability can be obtained. Since the torque sensor 1 uses a small number of magnetic detection elements 4a and 4b, the cost can be reduced and the manufacturing can be facilitated.

トルクセンサ1は、例えば、電動ステアリング装置に用いることができる。電動ステアリング装置では高い信頼性が要求されるため、本発明のトルクセンサ1を特に好適に用いることができる。   The torque sensor 1 can be used for an electric steering device, for example. Since the electric steering device requires high reliability, the torque sensor 1 of the present invention can be used particularly preferably.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

1 トルクセンサ
2 連結軸
3 トルク磁界発生部
4a,4b 磁気検出素子
11 パルス磁界発生部
13 パルス磁界強度判定部
14 故障判定部
15 トルク演算部
16 コイル
DESCRIPTION OF SYMBOLS 1 Torque sensor 2 Connecting shaft 3 Torque magnetic field generation part 4a, 4b Magnetic detection element 11 Pulse magnetic field generation part 13 Pulse magnetic field strength determination part 14 Failure determination part 15 Torque calculation part 16 Coil

Claims (4)

入力軸と出力軸とを連結する連結軸がねじれ変形した際に、該連結軸が受けたトルクに応じた磁界であるトルク磁界を発生するトルク磁界発生部と、
所定のパルス磁界を発生するコイルを有するパルス磁界発生部と、
前記トルク磁界と前記パルス磁界が重畳した磁界である重畳磁界を検出する2つの磁気検出素子と、
前記両磁気検出素子の出力より前記パルス磁界による変動分をそれぞれ抽出すると共に、当該パルス磁界による出力の変動分が予め設定したパルス磁界強度用閾値範囲内であるかをそれぞれ判定するパルス磁界強度判定部と、
前記パルス磁界強度判定部の判定に基づき、前記両磁気検出素子および前記パルス磁界発生部の故障を判定する故障判定部と、
前記故障判定部の判定に基づき、故障と判定されていない前記磁気検出素子の出力を用いて前記連結軸が受けたトルクを演算するトルク演算部と、
を備えたことを特徴とするトルクセンサ。
A torque magnetic field generator that generates a torque magnetic field that is a magnetic field according to the torque received by the connecting shaft when the connecting shaft that connects the input shaft and the output shaft is torsionally deformed;
A pulse magnetic field generator having a coil for generating a predetermined pulse magnetic field;
Two magnetic detection elements for detecting a superimposed magnetic field that is a magnetic field in which the torque magnetic field and the pulse magnetic field are superimposed;
Pulse magnetic field strength determination for extracting fluctuations due to the pulse magnetic field from the outputs of the both magnetic detection elements and determining whether the fluctuations in the output due to the pulse magnetic field are within a preset threshold range for pulse magnetic field strength And
Based on the determination of the pulse magnetic field strength determination unit, a failure determination unit that determines a failure of both the magnetic detection elements and the pulse magnetic field generation unit;
Based on the determination of the failure determination unit, a torque calculation unit that calculates the torque received by the connecting shaft using the output of the magnetic detection element that is not determined to be a failure;
A torque sensor comprising:
前記パルス磁界強度判定部は、前記パルス磁界による出力の変動量が予め設定したパルス磁界強度用閾値範囲内であるときに正常、範囲外であるときに異常と判定し、
前記故障判定部は、
前記パルス磁界強度判定部にて、前記両磁気検出素子が正常と判定されたとき、前記両磁気検出素子と前記パルス磁界発生部が正常であると判定し、
前記一方の前記磁気検出素子が正常で他方の前記磁気検出素子が異常と判定されたとき、一方の前記磁気検出素子と前記パルス磁界発生部が正常であり、他方の前記磁気検出素子に故障が発生したと判定し、
前記両磁気検出素子が異常と判定され、かつ、前記両磁気検出素子の出力の差分の絶対値が予め設定した出力用閾値範囲内であるとき、前記パルス磁界発生部に故障が発生したと判定し、
前記両磁気検出素子が異常と判定され、かつ、前記両磁気検出素子の出力の差分の絶対値が前記出力用閾値範囲外であるとき、システム故障と判定するように構成される
請求項1記載のトルクセンサ。
The pulse magnetic field strength determination unit determines that the output fluctuation amount due to the pulse magnetic field is normal when it is within a preset pulse magnetic field strength threshold range, and abnormal when it is out of range,
The failure determination unit
When the pulse magnetic field strength determination unit determines that both the magnetic detection elements are normal, it is determined that the both magnetic detection elements and the pulse magnetic field generation unit are normal,
When it is determined that the one magnetic detection element is normal and the other magnetic detection element is abnormal, the one magnetic detection element and the pulse magnetic field generation unit are normal, and the other magnetic detection element has a failure. Determine that it occurred,
When it is determined that both the magnetic detection elements are abnormal and the absolute value of the difference between the outputs of the two magnetic detection elements is within a preset output threshold range, it is determined that a failure has occurred in the pulse magnetic field generation unit. And
The system is configured to determine that a system failure has occurred when both the magnetic detection elements are determined to be abnormal and an absolute value of a difference between outputs of the two magnetic detection elements is outside the output threshold range. Torque sensor.
前記故障判定部がシステム故障と判定したとき、強制的に動作を停止する強制動作停止部をさらに備える
請求項2記載のトルクセンサ。
The torque sensor according to claim 2, further comprising a forcible operation stop unit that forcibly stops the operation when the failure determination unit determines that a system failure has occurred.
前記故障判定部が、前記磁気検出素子あるいは前記パルス磁界発生部に故障が発生したと判定したとき、故障信号を発信する故障信号発信部をさらに備える
請求項1〜3いずれかに記載のトルクセンサ。
The torque sensor according to any one of claims 1 to 3, further comprising a failure signal transmission unit that transmits a failure signal when the failure determination unit determines that a failure has occurred in the magnetic detection element or the pulse magnetic field generation unit. .
JP2013121709A 2013-06-10 2013-06-10 Torque sensor Active JP6003816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121709A JP6003816B2 (en) 2013-06-10 2013-06-10 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121709A JP6003816B2 (en) 2013-06-10 2013-06-10 Torque sensor

Publications (2)

Publication Number Publication Date
JP2014238363A true JP2014238363A (en) 2014-12-18
JP6003816B2 JP6003816B2 (en) 2016-10-05

Family

ID=52135614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121709A Active JP6003816B2 (en) 2013-06-10 2013-06-10 Torque sensor

Country Status (1)

Country Link
JP (1) JP6003816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107719463A (en) * 2017-09-11 2018-02-23 江苏大学 A kind of wire-controlled steering system abating protection device
CN114932946A (en) * 2022-06-28 2022-08-23 南京航空航天大学 Steer-by-wire system with fail safe function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898626B2 (en) * 2002-11-21 2007-03-28 株式会社日立製作所 Signal processor with fault diagnosis function
US20100139419A1 (en) * 2006-12-07 2010-06-10 Continental Teves Ag & Co. Ohg Torque Sensor Arrangement
JP2011203091A (en) * 2010-03-25 2011-10-13 Jtekt Corp Torque detector and electric power steering system
JP5205891B2 (en) * 2007-09-19 2013-06-05 株式会社ジェイテクト Torque detection device
JP5599112B2 (en) * 2008-04-02 2014-10-01 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Diagnosable hall sensor
JP5620989B2 (en) * 2009-07-22 2014-11-05 アレグロ・マイクロシステムズ・エルエルシー Circuit and method for generating a diagnostic operating mode of a magnetic field sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898626B2 (en) * 2002-11-21 2007-03-28 株式会社日立製作所 Signal processor with fault diagnosis function
US20100139419A1 (en) * 2006-12-07 2010-06-10 Continental Teves Ag & Co. Ohg Torque Sensor Arrangement
JP5205891B2 (en) * 2007-09-19 2013-06-05 株式会社ジェイテクト Torque detection device
JP5599112B2 (en) * 2008-04-02 2014-10-01 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Diagnosable hall sensor
JP5620989B2 (en) * 2009-07-22 2014-11-05 アレグロ・マイクロシステムズ・エルエルシー Circuit and method for generating a diagnostic operating mode of a magnetic field sensor
JP2011203091A (en) * 2010-03-25 2011-10-13 Jtekt Corp Torque detector and electric power steering system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107719463A (en) * 2017-09-11 2018-02-23 江苏大学 A kind of wire-controlled steering system abating protection device
CN107719463B (en) * 2017-09-11 2021-01-15 江苏大学 Failure protection device for wire-controlled steering system
CN114932946A (en) * 2022-06-28 2022-08-23 南京航空航天大学 Steer-by-wire system with fail safe function
CN114932946B (en) * 2022-06-28 2023-12-19 南京航空航天大学 Drive-by-wire steering system with failure protection function

Also Published As

Publication number Publication date
JP6003816B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5056310B2 (en) Torque detection device
US9970834B2 (en) Torque sensor and electric power steering system
US9540041B2 (en) Power steering apparatus and method for assembling power steering apparatus
KR101527828B1 (en) Torque sensor
US9689762B2 (en) Magnetic detection device and torque sensor including the same
JP5041139B2 (en) Torque sensor and electric power steering device
US20130319100A1 (en) Sensor device
WO2015125235A1 (en) Motor rotation angle detection apparatus and electric power steering apparatus using same
EP3566929B1 (en) Angle computing device and computing device
EP2369317A1 (en) Torque detector and electric power steering system
CN105841719B (en) Rotation angle detection device
JP6317027B2 (en) Power steering device
US20230093616A1 (en) Rotation angle detection device
JP2007263943A (en) Resolver/digital converter and control system using resolver/digital converter
JP5205891B2 (en) Torque detection device
US20150330849A1 (en) Torque sensor and electric power steering system
JP7342729B2 (en) Control device
JP6932874B2 (en) Torque detector, electric power steering device
JP6003816B2 (en) Torque sensor
JP2018179644A (en) Revolution angle detector for electrically-driven power steering device, torque angle sensor therefor, torque sensor therefor, and motor actuation control device, electrically-driven power steering device, and vehicle
JP6868632B2 (en) Sensor device
US9725111B2 (en) Electric power steering device and adjusting device and adjusting method of electric power steering device
US11543311B2 (en) Integrated torque and angle sensor for steering column monitoring with improved performance
JP2010280332A (en) Electric power steering apparatus
JP2016091198A (en) Sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350