JP2014227761A - Junction structure and method between new skeleton and existing skeleton - Google Patents

Junction structure and method between new skeleton and existing skeleton Download PDF

Info

Publication number
JP2014227761A
JP2014227761A JP2013109763A JP2013109763A JP2014227761A JP 2014227761 A JP2014227761 A JP 2014227761A JP 2013109763 A JP2013109763 A JP 2013109763A JP 2013109763 A JP2013109763 A JP 2013109763A JP 2014227761 A JP2014227761 A JP 2014227761A
Authority
JP
Japan
Prior art keywords
housing
existing
new
anchor
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013109763A
Other languages
Japanese (ja)
Inventor
栗田 康平
Kohei Kurita
康平 栗田
安彦 増田
Yasuhiko Masuda
安彦 増田
萩尾 浩也
Hiroya Hagio
浩也 萩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013109763A priority Critical patent/JP2014227761A/en
Publication of JP2014227761A publication Critical patent/JP2014227761A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure transmission performance for in-earthquake shearing force at a junction between a new skeleton and an existing skeleton, and to improve workability of an anchor at low cost.SOLUTION: There is provided a junction structure 10 of a new skeleton 1, having an anchor 20 embedded in a junction between the new skeleton 1 and an existing skeleton 2, and the existing skeleton 2, and the anchor 20 includes a pair of irregular-shape reinforcing bars (thin-diameter parts 22, 24) one of which is fixed to the new skeleton 1 and the other of which is fixed to the existing skeleton 2, and a thick-diameter part 26 which is a columnar steel material provided between the pair of irregular-shape reinforcing bars (thin-diameter parts 22, 24) over the new skeleton 1 and existing skeleton 2, and has a larger diameter than the pair of irregular-shape reinforcing bars (thin-diameter parts 22, 24) and also has a larger depth of embedding in the new skeleton 1 than in the existing skeleton 2.

Description

本発明は、新設躯体と既設躯体との接合構造及び方法に関する。   The present invention relates to a joining structure and method for a newly installed housing and an existing housing.

耐震改修等を目的として既設躯体の表面に新設躯体を構築してこれらを接合する場合、新設躯体と既設躯体との接合部で地震時のせん断力が伝達されるように、該接合部に鉄筋等によるアンカーを埋設することが行われている。また、これを改良する技術として提案された特許文献1、2に記載の新設躯体と既設躯体との接合構造では、外周部に凸部を有する円盤が、該凸部が既設躯体に埋設され、その他の部分が新設躯体に埋設されるように設けられ、その円盤の中心の孔にアンカーが挿通されている。   When a new frame is constructed on the surface of an existing frame for the purpose of seismic retrofit, etc., and these are joined, a rebar is applied to the joint so that the shearing force at the time of the earthquake is transmitted at the joint between the new frame and the existing frame. Embedding anchors by means such as In addition, in the joint structure of the new housing and the existing housing described in Patent Documents 1 and 2 proposed as a technique for improving this, a disk having a convex portion on the outer peripheral portion, the convex portion is embedded in the existing housing, The other part is provided so as to be embedded in the new housing, and an anchor is inserted through the hole in the center of the disk.

特許第4230533号公報Japanese Patent No. 4230533 特開2012−246641号公報JP 2012-246641 A

一般的なアンカーでは、界面にせん断力が作用して、ずれが生じたとき、界面付近の鉄筋とコンクリートとの小面積の接触部に応力が集中し、この局部的な応力によりコンクリートに支圧破壊が生じしまう。この支圧破壊が生じると、アンカーへの曲げ変形が生じ易くなり、アンカー筋の曲げ降伏で界面の耐力が低下する。特許文献1、2に記載の技術では、コンクリートの支圧破壊を防ぎ界面の耐力を向上させる技術として特許文献1,2が提案されている。しかしながら、特許文献1、2に記載の新設躯体と既設躯体との接合構造では、円盤の両躯体への埋込深さが少量であることから、地震時のせん断力で円盤の回転変形が生じる。そのため、この円盤の回転変形を抑えるために円盤を固定するアンカーが、せん断力と併せて界面で生じるであろう引張力に必要なアンカーとは別に必要となり、コスト増の要因となる。また、そのうえ、アンカーの固定と、円盤の裏面への樹脂の注入を含めた円盤の固定とを一度に行うことは難しく、施工手順が複雑になる。なお、アンカーの全体を、曲げ変形が生じない程に太くする方法も考えられるが、その方法では、既設躯体のコンクリートの切削量が増大すると共に、埋設物への衝突も懸念される。   In general anchors, when a shear force acts on the interface and a displacement occurs, stress concentrates on a small area of contact between the rebar near the interface and the concrete, and this local stress supports the concrete. Destruction will occur. When this bearing failure occurs, bending deformation to the anchor easily occurs, and the yield strength of the interface decreases due to the bending yield of the anchor bar. In the techniques described in Patent Documents 1 and 2, Patent Documents 1 and 2 are proposed as techniques for preventing fracture of bearing pressure of concrete and improving the yield strength of the interface. However, in the joint structure of the newly installed case and the existing case described in Patent Documents 1 and 2, since the embedding depth of the discs in both cases is small, rotational deformation of the disc occurs due to the shearing force during the earthquake. . Therefore, an anchor for fixing the disk in order to suppress the rotational deformation of the disk is required separately from the anchor necessary for the tensile force that will be generated at the interface together with the shearing force, which causes an increase in cost. In addition, it is difficult to fix the anchor and the disk including injection of the resin to the back surface of the disk at once, and the construction procedure becomes complicated. In addition, although the method of making the whole anchor so thick that bending deformation does not occur is considered, in this method, the amount of cutting of the concrete of the existing frame increases and there is a concern about collision with the embedded object.

本発明は、上記事情に鑑みてなされたものであり、新設躯体と既設躯体との接合部での地震時のせん断力の伝達性能を確保すると共に、アンカーの施工性を安価に向上させることを課題とするものである。   The present invention has been made in view of the above circumstances, and while ensuring the transmission performance of the shearing force at the time of an earthquake at the joint between the newly installed housing and the existing housing, it is possible to improve the workability of the anchor at a low cost. It is to be an issue.

上記課題を解決するために、本発明に係る新設躯体と既設躯体との接合構造は、新設躯体と既設躯体との接合部にアンカーが埋設された新設躯体と既設躯体との接合構造であって、前記アンカーは、一方が前記新設躯体に他方が前記既設躯体に定着した一対の異形鉄筋と、前記新設躯体と前記既設躯体とに跨るように前記一対の異形鉄筋の間に設けられた円柱状の鋼材であり、前記一対の異形鉄筋よりも太径であり、前記新設躯体への埋込深さが前記既設躯体への埋込深さよりも大きい太径部とを備える。   In order to solve the above-mentioned problem, the joint structure between the new housing and the existing housing according to the present invention is a joint structure between the new housing and the existing housing in which an anchor is embedded in the joint between the new housing and the existing housing. The anchor has a pair of deformed reinforcing bars, one of which is fixed to the new casing and the other of which is fixed to the existing casing, and a columnar shape provided between the pair of deformed reinforcing bars so as to straddle the new casing and the existing casing. The steel material has a larger diameter than the pair of deformed reinforcing bars, and a large-diameter portion in which the embedding depth in the new housing is larger than the embedding depth in the existing housing.

前記新設躯体と前記既設躯体との接合構造において、前記新設躯体のコンクリート強度が前記既設躯体のコンクリート強度のn(≧1)倍であって、前記太径部の前記新設躯体への埋込深さが、前記太径部の前記既設躯体への埋込深さの3/n倍以上であってもよい。   In the joint structure of the new housing and the existing housing, the concrete strength of the new housing is n (≧ 1) times the concrete strength of the existing housing, and the embedding depth of the large diameter portion in the new housing is However, 3 / n times or more of the embedding depth of the large diameter portion in the existing casing may be used.

また、本発明に係る新設躯体と既設躯体との接合方法は、新設躯体と既設躯体との接合部にアンカーを埋設する新設躯体と既設躯体との接合方法であって、前記アンカーは、一対の異形鉄筋と、前記一対の異形鉄筋の間に設けられた円柱状の鋼材であり、前記一対の異形鉄筋よりも太径の太径部とを備え、前記アンカーを、前記新設躯体と前記既設躯体とに跨り、前記太径部の前記新設躯体への埋込深さが前記既設躯体への埋込深さよりも大きくなるように埋設する。   Further, the joining method of the new housing and the existing housing according to the present invention is a joining method of the new housing and the existing housing in which an anchor is embedded in the joint portion between the new housing and the existing housing, and the anchor is a pair of A deformed reinforcing bar and a columnar steel material provided between the pair of deformed reinforcing bars, each having a larger diameter portion than that of the pair of deformed reinforcing bars, the anchor, the new frame and the existing frame Then, it is embedded so that the embedding depth of the large-diameter portion into the new housing is greater than the embedding depth of the existing housing.

本発明によれば、新設躯体と既設躯体との接合部での地震時のせん断力の伝達性能を確保すると共に、アンカーの施工性を安価に向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, while ensuring the transmission performance of the shear force at the time of an earthquake in the junction part of a newly installed frame and an existing frame, the workability of an anchor can be improved at low cost.

一実施形態に係る新設躯体と既設躯体との接合構造を示す断面図である。It is sectional drawing which shows the joining structure of the newly installed housing and existing housing which concern on one Embodiment. 太径部の新設躯体への埋込深さと既設躯体への埋込深さとの関係を説明するための図である。It is a figure for demonstrating the relationship between the embedding depth to the newly installed housing of a large diameter part, and the embedding depth to the existing housing. 太径部の新設躯体への埋込深さと既設躯体への埋込深さとの関係を説明するための図である。It is a figure for demonstrating the relationship between the embedding depth to the newly installed housing of a large diameter part, and the embedding depth to the existing housing.

以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、一実施形態に係る新設躯体1と既設躯体2との接合構造10を示す断面図である。この図に示すように、接合構造10は、既設のコンクリート構造体である既設躯体2と、その表面に接合された新設のコンクリート構造体である新設躯体1との接合構造であり、両者に跨るように埋設されたアンカー20を備えている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a joint structure 10 between a new housing 1 and an existing housing 2 according to an embodiment. As shown in this figure, the joining structure 10 is a joining structure of an existing casing 2 which is an existing concrete structure and a new casing 1 which is a new concrete structure bonded to the surface thereof, and straddles both. The anchor 20 is embedded.

アンカー20は、既設躯体2に埋設された細径部22と、新設躯体1に埋設された細径部24と、新設躯体1及び既設躯体2に跨るように両者に埋設された太径部26とを備えている。細径部22、24は、直径22mm(D22)以下の異形鉄筋であり、既設躯体2又は新設躯体1にこれらの接合界面に対して垂直に埋設されている。また、太径部26は、異形鉄筋22、24よりも太径(例えば、直径29mm(D29)〜直径51mm(D51))の円柱状の鋼材(例えば、異形鉄筋やボルトや丸鋼)である。細径部22、24と太径部26とは、ネジ固定もしくは溶接(例えば、摩擦圧接やスタッド溶接)により同軸に接合されている。   The anchor 20 includes a narrow-diameter portion 22 embedded in the existing housing 2, a small-diameter portion 24 embedded in the new housing 1, and a large-diameter portion 26 embedded in both the new housing 1 and the existing housing 2. And. The small-diameter portions 22 and 24 are deformed reinforcing bars having a diameter of 22 mm (D22) or less, and are embedded in the existing housing 2 or the new housing 1 perpendicularly to these joint interfaces. The large-diameter portion 26 is a columnar steel material (for example, deformed reinforcing bar, bolt, or round steel) having a larger diameter than the deformed reinforcing bars 22 and 24 (for example, a diameter of 29 mm (D29) to a diameter of 51 mm (D51)). . The small-diameter portions 22 and 24 and the large-diameter portion 26 are coaxially joined by screw fixation or welding (for example, friction welding or stud welding).

アンカー20は、接着系のあと施工アンカーであり、既設躯体2に穿孔された孔に充填された接着剤により、細径部22と太径部26の既設躯体2に埋め込まれた部分とが、既設躯体2に定着されている。また、細径部24と太径部26の新設躯体1に埋め込まれた部分とは、コンクリートと鋼材との付着力により、新設躯体1に定着されている。   The anchor 20 is a construction anchor after the adhesive system, and the portion embedded in the existing housing 2 of the small diameter portion 22 and the large diameter portion 26 by the adhesive filled in the hole drilled in the existing housing 2 Fixed to the existing housing 2. Moreover, the part embedded in the newly installed casing 1 of the small diameter part 24 and the large diameter part 26 is being fixed to the newly installed casing 1 by the adhesive force of concrete and steel materials.

ここで、太径部26の新設躯体1への埋込深さは、既設躯体2への埋込深さよりも大きくなっている。以下、太径部26の新設躯体1への埋込深さと既設躯体2への埋込深さとの関係について説明する。   Here, the embedding depth of the large-diameter portion 26 in the new housing 1 is larger than the embedding depth in the existing housing 2. Hereinafter, the relationship between the embedding depth of the large-diameter portion 26 in the new housing 1 and the embedding depth in the existing housing 2 will be described.

図2及び図3は、太径部26の新設躯体1への埋込深さと既設躯体2への埋込深さとの関係を説明するための図である。これらの図に示すように、太径部26の新設躯体1への埋込深さと既設躯体2への埋込深さとは、新設躯体1のコンクリート強度Fc1と既設躯体2のコンクリート強度Fc2との関係に応じて設定されている。   2 and 3 are diagrams for explaining the relationship between the embedding depth of the large-diameter portion 26 in the new housing 1 and the embedding depth in the existing housing 2. As shown in these figures, the embedding depth of the large-diameter portion 26 in the new housing 1 and the embedding depth in the existing housing 2 are the concrete strength Fc1 of the new housing 1 and the concrete strength Fc2 of the existing housing 2. It is set according to the relationship.

図2には、新設躯体1のコンクリート強度Fc1と既設躯体2のコンクリート強度Fc2とが同一(Fc1=Fc2)の場合の太径部26の新設躯体1への埋込深さと既設躯体2への埋込深さとの関係を示している。この図に示すように、新設躯体1のコンクリート強度Fc1と既設躯体2のコンクリート強度Fc2とが同一の場合には、太径部26の新設躯体1への埋込深さは、既設躯体2への埋込深さcの3倍以上に設定される。   In FIG. 2, when the concrete strength Fc1 of the new housing 1 and the concrete strength Fc2 of the existing housing 2 are the same (Fc1 = Fc2), the embedding depth of the large diameter portion 26 in the new housing 1 and the existing housing 2 The relationship with the embedding depth is shown. As shown in this figure, when the concrete strength Fc1 of the new housing 1 and the concrete strength Fc2 of the existing housing 2 are the same, the embedding depth of the large diameter portion 26 in the new housing 1 is the same as that of the existing housing 2. The embedding depth c is set to 3 times or more.

この条件において地震時のせん断力が新設躯体1と既設躯体2との接合部に図中右方向に作用した場合、当該接合部のアンカー26には図示するように支圧応力Qa、Qb、Qcが生じる。既設躯体2に埋込まれたアンカー26には支圧応力Qcが、既設躯体2の接合界面から太径部26の先端まで(接合界面から深さc)の範囲において、せん断力の作用方向と同じ向き(図中右向き)に作用する。アンカー26が回転しないためには、新設躯体1の接合界面から深さb(<3c)の範囲において、せん断力の作用方向とは逆向き(図中左向き)に作用する支圧応力Qbと、新設躯体1の深さbから太径部26の先端まで(深さbから深さb+a)の範囲において、せん断力の作用方向と同じ向き(図中右向き)に作用する支圧応力Qaがあればよい。   Under this condition, when a shearing force at the time of an earthquake acts on the joint portion between the new housing 1 and the existing housing 2 in the right direction in the figure, the anchoring stresses Qa, Qb, Qc are applied to the anchor 26 of the joint portion as shown in the figure. Occurs. The anchor 26 embedded in the existing housing 2 has a bearing stress Qc in the range from the joining interface of the existing housing 2 to the tip of the large-diameter portion 26 (the depth c from the joining interface). Acts in the same direction (rightward in the figure). In order for the anchor 26 not to rotate, in the range of depth b (<3c) from the joint interface of the new housing 1, the bearing stress Qb acting in the direction opposite to the acting direction of the shearing force (leftward in the figure), In the range from the depth b of the new housing 1 to the tip of the large-diameter portion 26 (depth b to depth b + a), there is a bearing stress Qa acting in the same direction as the direction of the shearing force (rightward in the figure). That's fine.

ここで、太径部26に界面に生じる鋼材の曲げ応力に対して十分に剛な断面を与えることで、アンカー20の降伏や支圧応力度の勾配は無いと仮定すると、支圧応力Qa、Qb、Qcと、これらが作用する深さ方向の長さa、b、cとは、Qa:Qb:Qc=a:b:cの関係になり、力のつり合い(Qa+Qc=Qb)から、長さa、b、cは、a+c=bの関係になる。そして、支圧応力Qcの作用点(接合界面から深さc/2の位置)の回りのモーメントのつり合い(Qb・(c/2+b/2)=Qa・(c/2+a/2))から、長さa、b、cは、a=c、b=2cの関係になる。   Here, assuming that there is no yield of the anchor 20 and no gradient of the bearing stress level by giving a sufficiently rigid cross section to the bending stress of the steel material generated at the interface in the large diameter portion 26, the bearing stress Qa, Qb, Qc and the lengths a, b, c in the depth direction in which they act are in a relationship of Qa: Qb: Qc = a: b: c, and from the balance of forces (Qa + Qc = Qb) Here, a, b, and c have a relationship of a + c = b. From the moment balance (Qb · (c / 2 + b / 2) = Qa · (c / 2 + a / 2)) around the point of application of the bearing stress Qc (position of depth c / 2 from the joint interface), The lengths a, b, and c have a relationship of a = c and b = 2c.

従って、長さa、b、cの関係を、a+b=3c、すなわち、太径部26の新設躯体1への埋込深さ(a+b)を、太径部26の既設躯体2への埋込深さcの3倍以上にすることによって、支圧応力Qcを十分に発揮させることができ、太径部26の固定度を確保できる。   Therefore, the relationship between the lengths a, b, and c is a + b = 3c, that is, the embedding depth (a + b) of the large-diameter portion 26 in the new housing 1 is set as the embedding depth of the large-diameter portion 26 in the existing housing 2. By setting the depth c to be three times or more, the bearing stress Qc can be sufficiently exhibited, and the fixing degree of the large diameter portion 26 can be secured.

同様に、図3には、新設躯体1のコンクリート強度Fc1が既設躯体2のコンクリート強度Fc2のn(>1)倍(Fc1=n・Fc2)の場合の太径部26の新設躯体1への埋込深さと既設躯体2への埋込深さとの関係を示している。この図に示すように、新設躯体1のコンクリート強度Fc1が既設躯体2のコンクリート強度Fc2のn倍の場合には、太径部26の新設躯体1への埋込深さは、既設躯体2への埋込深さcの3/n倍以上に設定すれば、太径部26の固定度を確保できる。   Similarly, in FIG. 3, when the concrete strength Fc1 of the new housing 1 is n (> 1) times the concrete strength Fc2 of the existing housing 2 (Fc1 = n · Fc2), The relationship between the embedding depth and the embedding depth to the existing housing 2 is shown. As shown in this figure, when the concrete strength Fc1 of the new housing 1 is n times the concrete strength Fc2 of the existing housing 2, the embedding depth of the large diameter portion 26 in the new housing 1 is the same as that of the existing housing 2. If the embedding depth c is set to 3 / n times or more, the fixing degree of the large-diameter portion 26 can be secured.

この条件において地震時のせん断力が新設躯体1と既設躯体2との接合部に図中右方向に作用した場合、当該接合部のアンカー26には図示するように支圧応力Qa、Qb、Qcが生じる。既設躯体2に埋込まれたアンカー26には支圧応力Qcが、既設躯体2の接合界面から太径部26の先端まで(接合界面から深さc)の範囲において、せん断力の作用方向と同じ向き(図中右向き)に作用する。アンカー26が回転しないためには、新設躯体1の接合界面から深さb(<3c/n)の範囲において、せん断力の作用方向とは逆向き(図中左向き)に作用する支圧応力Qbと、新設躯体1の深さbから太径部26の先端まで(深さbから深さb+a)の範囲において、せん断力の作用方向と同じ向き(図中右向き)に作用する支圧応力Qaがあればよい。   Under this condition, when a shearing force at the time of an earthquake acts on the joint portion between the new housing 1 and the existing housing 2 in the right direction in the figure, the anchoring stresses Qa, Qb, Qc are applied to the anchor 26 of the joint portion as shown in the figure. Occurs. The anchor 26 embedded in the existing housing 2 has a bearing stress Qc in the range from the joining interface of the existing housing 2 to the tip of the large-diameter portion 26 (the depth c from the joining interface). Acts in the same direction (rightward in the figure). In order to prevent the anchor 26 from rotating, the bearing stress Qb acting in the direction opposite to the acting direction of the shearing force (leftward in the figure) in the range of the depth b (<3 c / n) from the joint interface of the new housing 1. And the bearing stress Qa acting in the same direction as the direction of action of the shear force (rightward in the figure) in the range from the depth b of the new housing 1 to the tip of the large-diameter portion 26 (depth b to depth b + a). If there is.

ここで、太径部26に界面に生じる鋼材の曲げ応力に対して十分に剛な断面を与えることで、アンカー20の降伏や支圧応力度の勾配は無いと仮定すると、支圧応力Qa、Qb、Qcと、これらが作用する深さ方向の長さa、b、cとは、Qa:Qb:Qc=n・a:n・b:cの関係になり、力のつり合い(Qa+Qc=Qb)から、長さa、b、cは、n・(a+c)=n・bの関係になる。そして、支圧応力Qcの作用点(接合界面から深さc/2の位置)の回りのモーメントのつり合い(Qb・(c/2+b/2)=Qa・(c/2+a/2))から、長さa、b、cは、a=c/n、b=2c/nの関係になる。   Here, assuming that there is no yield of the anchor 20 and no gradient of the bearing stress level by giving a sufficiently rigid cross section to the bending stress of the steel material generated at the interface in the large diameter portion 26, the bearing stress Qa, Qb, Qc and the lengths a, b, c in the depth direction in which they act are in a relationship of Qa: Qb: Qc = n · a: n · b: c, and force balance (Qa + Qc = Qb ), The lengths a, b, and c have a relationship of n · (a + c) = n · b. From the moment balance (Qb · (c / 2 + b / 2) = Qa · (c / 2 + a / 2)) around the point of application of the bearing stress Qc (position of depth c / 2 from the joint interface), The lengths a, b, and c have a relationship of a = c / n and b = 2c / n.

従って、長さa、b、cの関係を、a+b=3c/n、すなわち、太径部26の新設躯体1への埋込深さ(a+b)を、太径部26の既設躯体2への埋込深さcの3/n倍以上にすることによって、支圧応力Qcを十分に発揮させることができ、太径部26の固定度を確保できる。   Therefore, the relationship between the lengths a, b, and c is a + b = 3c / n, that is, the embedding depth (a + b) of the large-diameter portion 26 in the new housing 1 is set to the existing housing 2 of the large-diameter portion 26. By setting the embedding depth c to 3 / n times or more, the bearing stress Qc can be sufficiently exerted, and the fixing degree of the large diameter portion 26 can be secured.

以上説明したように、本実施形態に係る新設躯体1と既設躯体2との接合構造10では、アンカー20が、一方が新設躯体1に他方が既設躯体2に定着した一対の異形鉄筋(細径部22、24)と、新設躯体1と既設躯体2とに跨るように一対の異形鉄筋(細径部22、24)の間に設けられた円柱状の鋼材であり、一対の異形鉄筋(細径部22、24)よりも太径であり、新設躯体1への埋込深さが既設躯体2への埋込深さよりも大きい太径部26とを備える。ここで、アンカー20の新設躯体1と既設躯体2とに跨る部分を一対の異形鉄筋(細径部22、24)よりも太径の太径部26として当該部分の曲げ剛性を高めたことにより、地震時のせん断力で当該部分に生じる曲げ変形を抑制でき、当該部分の曲げ変形によるコンクリートの破壊を抑制できる。また、太径部26の新設躯体1への埋込深さを既設躯体2への埋込深さよりも大きくしたことにより、地震時のせん断力による太径部26の固定度を確保でき、既設躯体2側の細径部22の有無にかかわらず、アンカー20によるせん断力の伝達性能を確保することが可能になる。ここで、界面には一般に、せん断力の他に引張等の面外応力も作用するため、その量に応じて細径部22、24を設ければよく、既設躯体2側の細径部22の長大化によらずに、アンカー20によるせん断力の伝達性能を確保できる。また、太径部26を含めたこれらの材料はいずれも既往の鉄筋等で構成されているため、すべてを合わせても安価に調達できる。アンカーの設置も、太径26と細径22は一体であり、樹脂等によって一度に行うことができる。   As described above, in the joint structure 10 of the new housing 1 and the existing housing 2 according to the present embodiment, the anchor 20 has a pair of deformed reinforcing bars (thin diameter) in which one is fixed to the new housing 1 and the other is fixed to the existing housing 2. Parts 22 and 24) and a pair of deformed reinforcing bars (thin diameter portions 22 and 24) so as to straddle the newly installed casing 1 and the existing casing 2, and a pair of deformed reinforcing bars (thin And a large-diameter portion 26 having a larger diameter than the diameter portions 22, 24) and having a depth embedded in the new housing 1 larger than a depth embedded in the existing housing 2. Here, the portion of the anchor 20 that straddles the newly installed housing 1 and the existing housing 2 is made to have a large-diameter portion 26 that is thicker than the pair of deformed reinforcing bars (small-diameter portions 22, 24), thereby increasing the bending rigidity of the portion. The bending deformation generated in the part by the shearing force at the time of the earthquake can be suppressed, and the destruction of the concrete due to the bending deformation of the part can be suppressed. Further, since the embedding depth of the large-diameter portion 26 in the new housing 1 is made larger than the embedding depth in the existing housing 2, the fixing degree of the large-diameter portion 26 due to the shearing force at the time of an earthquake can be secured. Regardless of the presence or absence of the small-diameter portion 22 on the housing 2 side, it is possible to ensure the transmission performance of the shearing force by the anchor 20. Here, since an out-of-plane stress such as a tensile force is generally applied to the interface in addition to the shearing force, the small-diameter portions 22 and 24 may be provided according to the amount, and the small-diameter portion 22 on the existing housing 2 side. The transmission performance of the shearing force by the anchor 20 can be ensured regardless of the increase in length. Moreover, since these materials including the large-diameter portion 26 are all composed of existing reinforcing bars and the like, they can be procured at a low cost even if they are all combined. The anchor is also installed with the large diameter 26 and the small diameter 22, and can be performed at once with a resin or the like.

アンカーの新設躯体1と既設躯体2とに跨る部分を円盤にした場合、既設躯体2の表面が脆弱だと健全な範囲まで掘らなければならず、その場合、円盤の全体が既設躯体2に埋め込まれてしまい、当該部分によるせん断力の伝達性能が発揮されない懸念がある。それに対して、当該部分を円柱状の太径部26とすることにより、既設躯体2を深く掘る場合でも、当該部分を新設躯体1と既設躯体2とに跨るように設けることができ、現場の状況に柔軟に対応できる。   If the part of the anchor straddling the new housing 1 and the existing housing 2 is a disk, if the surface of the existing housing 2 is weak, it must be dug to a healthy range. In that case, the entire disk is embedded in the existing housing 2 Therefore, there is a concern that the transmission performance of the shearing force by the part is not exhibited. On the other hand, by making the said part into the cylindrical large diameter part 26, even when digging the existing housing 2 deeply, the said part can be provided so that it may straddle the new housing 1 and the existing housing 2, Can respond flexibly to the situation.

また、本実施形態に係る新設躯体1と既設躯体2との接合構造10では、新設躯体1のコンクリート強度Fc1が既設躯体2のコンクリート強度Fc2のn(≧1)倍であり、太径部26の新設躯体1への埋込深さ(a+b)が、太径部26の既設躯体2への埋込深さcの3/n倍以上である。これによって、既設躯体2の接合界面から太径部26の先端までの範囲においてせん断力の作用方向と同じ向きに作用する支圧応力Qcを十分に発揮させることができ、太径部26が地震時のせん断力で回転しないようにすることができる。   Further, in the joint structure 10 of the new housing 1 and the existing housing 2 according to the present embodiment, the concrete strength Fc1 of the new housing 1 is n (≧ 1) times the concrete strength Fc2 of the existing housing 2, and the large-diameter portion 26 The embedded depth (a + b) in the newly installed casing 1 is not less than 3 / n times the embedded depth c of the large diameter portion 26 in the existing casing 2. As a result, the bearing stress Qc acting in the same direction as the acting direction of the shearing force can be sufficiently exerted in the range from the joining interface of the existing housing 2 to the tip of the large-diameter portion 26, and the large-diameter portion 26 can be It can be prevented from rotating by the shear force of time.

なお、上述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   In addition, the above-mentioned embodiment is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

1 新設躯体、2 既設躯体、10 接合構造、20 アンカー、22、24 細径部、26 太径部 1 Newly-built frame, 2 Existing frame, 10 Joint structure, 20 Anchor, 22, 24 Small diameter part, 26 Large diameter part

Claims (3)

新設躯体と既設躯体との接合部にアンカーが埋設された新設躯体と既設躯体との接合構造であって、
前記アンカーは、
一方が前記新設躯体に他方が前記既設躯体に定着した一対の異形鉄筋と、
前記新設躯体と前記既設躯体とに跨るように前記一対の異形鉄筋の間に設けられた円柱状の鋼材であり、前記一対の異形鉄筋よりも太径であり、前記新設躯体への埋込深さが前記既設躯体への埋込深さよりも大きい太径部と
を備える新設躯体と既設躯体との接合構造。
It is a joint structure between a new structure and an existing structure in which an anchor is embedded in a joint portion between the new structure and the existing structure,
The anchor is
A pair of deformed reinforcing bars, one fixed to the new housing and the other fixed to the existing housing;
It is a columnar steel material provided between the pair of deformed reinforcing bars so as to straddle the new casing and the existing casing, and has a larger diameter than the pair of deformed reinforcing bars, and is embedded in the new casing A joining structure of a new housing and an existing housing, which has a large-diameter portion whose length is larger than the depth of embedding in the existing housing.
前記新設躯体のコンクリート強度が前記既設躯体のコンクリート強度のn(≧1)倍であり、
前記太径部の前記新設躯体への埋込深さが、前記太径部の前記既設躯体への埋込深さの3/n倍以上である請求項1に記載の新設躯体と既設躯体との接合構造。
The concrete strength of the new frame is n (≧ 1) times the concrete strength of the existing frame,
The new housing and the existing housing according to claim 1, wherein an embedding depth of the large-diameter portion into the new housing is 3 / n times or more of an embedding depth of the large-diameter portion into the existing housing. Bonding structure.
新設躯体と既設躯体との接合部にアンカーを埋設する新設躯体と既設躯体との接合方法であって、
前記アンカーは、一対の異形鉄筋と、前記一対の異形鉄筋の間に設けられた円柱状の鋼材であり、前記一対の異形鉄筋よりも太径の太径部とを備え、
前記アンカーを、前記新設躯体と前記既設躯体とに跨り、前記太径部の前記新設躯体への埋込深さが前記既設躯体への埋込深さよりも大きくなるように埋設する新設躯体と既設躯体との接合方法。
It is a method of joining a new housing and an existing housing in which an anchor is embedded in a joint portion between the new housing and the existing housing,
The anchor is a pair of deformed reinforcing bars and a columnar steel material provided between the pair of deformed reinforcing bars, and includes a thicker portion having a diameter larger than that of the pair of deformed reinforcing bars,
A new installation body and an existing installation that embeds the anchor so as to straddle the new installation body and the existing installation body so that an embedding depth of the large-diameter portion in the new installation body is larger than an embedding depth of the existing housing. Bonding method with the housing.
JP2013109763A 2013-05-24 2013-05-24 Junction structure and method between new skeleton and existing skeleton Pending JP2014227761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109763A JP2014227761A (en) 2013-05-24 2013-05-24 Junction structure and method between new skeleton and existing skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109763A JP2014227761A (en) 2013-05-24 2013-05-24 Junction structure and method between new skeleton and existing skeleton

Publications (1)

Publication Number Publication Date
JP2014227761A true JP2014227761A (en) 2014-12-08

Family

ID=52127875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109763A Pending JP2014227761A (en) 2013-05-24 2013-05-24 Junction structure and method between new skeleton and existing skeleton

Country Status (1)

Country Link
JP (1) JP2014227761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102400A (en) * 2015-12-10 2016-06-02 五洋建設株式会社 Joint structure, joining method and anchor member
JP2018178364A (en) * 2017-04-03 2018-11-15 五洋建設株式会社 Earthquake reinforcement structure for building and construction method thereof
JP2018178363A (en) * 2017-04-03 2018-11-15 五洋建設株式会社 Skeleton joining structure and construction method thereof, and split prevention rebar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102400A (en) * 2015-12-10 2016-06-02 五洋建設株式会社 Joint structure, joining method and anchor member
JP2018178364A (en) * 2017-04-03 2018-11-15 五洋建設株式会社 Earthquake reinforcement structure for building and construction method thereof
JP2018178363A (en) * 2017-04-03 2018-11-15 五洋建設株式会社 Skeleton joining structure and construction method thereof, and split prevention rebar
JP7032865B2 (en) 2017-04-03 2022-03-09 五洋建設株式会社 Frame joint structure and its construction method, and split prevention muscle

Similar Documents

Publication Publication Date Title
JP4230533B1 (en) Bonding structure of structure and fixing member for shear force transmission used therefor
KR101413593B1 (en) Composite pile with end bearing capacity, friction capacity and construction method therefor
JP2008261219A (en) Member reinforcing structure and reinforcing method
JP2014227761A (en) Junction structure and method between new skeleton and existing skeleton
JP2015134984A (en) Structure and method for joining reinforced concrete beam and reinforced concrete-filled steel pipe column together
JP5926615B2 (en) Shaft wall structure and construction method
JP6991562B2 (en) How to install anchor bolts, adhesive anchors and adhesive anchors for adhesive anchors
JP2015148099A (en) Earth supporting material and end metal part used for the same
JP4628491B1 (en) Structure joining structure and fixing device for joining structures used therein
KR101773004B1 (en) Post-installed concrete anchor with shear reinforcement
JP6233752B2 (en) Pile head structure
JP2016102400A (en) Joint structure, joining method and anchor member
JP6210673B2 (en) Reinforced structure of perforated beams
JP4997354B1 (en) Fixing member for shear force transmission with fixing maintenance function
JP2011042975A (en) After-construction anchor and structure and method for aseismatic reinforcement using the same
JP4233105B2 (en) Seismic reinforcement method for existing pillars
KR20130099840A (en) Reinforcing bar connecting device and reinforcing bar connecting method
JP6368547B2 (en) Joint structure of precast concrete wall and beam
JP2016017396A (en) Hole-in anchor and connection structure
KR20100046582A (en) Ground anchor using steel strand and ground reinforcement method using the same
JP6902125B2 (en) Joint structure of structure
KR20190098517A (en) Cutting drill having protrusion bit for wedge groove and chemical anker mounting method of the same
JP2008007959A (en) Fixing structure of anchor for concrete, and mounting structure of flexible joint
JP5314203B1 (en) Structure connection structure
JP5763987B2 (en) Tip anchor structure