JP2014196714A - 多気筒ロータリ圧縮機 - Google Patents

多気筒ロータリ圧縮機 Download PDF

Info

Publication number
JP2014196714A
JP2014196714A JP2013073093A JP2013073093A JP2014196714A JP 2014196714 A JP2014196714 A JP 2014196714A JP 2013073093 A JP2013073093 A JP 2013073093A JP 2013073093 A JP2013073093 A JP 2013073093A JP 2014196714 A JP2014196714 A JP 2014196714A
Authority
JP
Japan
Prior art keywords
cylinder
rotary compressor
motor
partition plate
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013073093A
Other languages
English (en)
Inventor
郁男 江崎
Ikuo Ezaki
郁男 江崎
茂樹 三浦
Shigeki Miura
茂樹 三浦
小川 真
Makoto Ogawa
真 小川
将成 宇野
Masanari Uno
将成 宇野
章浩 野口
Akihiro Noguchi
章浩 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013073093A priority Critical patent/JP2014196714A/ja
Priority to PCT/JP2014/056650 priority patent/WO2014156679A1/ja
Priority to EP14774791.9A priority patent/EP2947321A4/en
Priority to CN201480008720.0A priority patent/CN105008722A/zh
Publication of JP2014196714A publication Critical patent/JP2014196714A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry

Abstract

【課題】モータコア径を大きくすることなく、既存のモータコア径のままでシリンダ内径を大きくして大容量化しても、メカ負荷を抑えて1ランク上の押し退け量を持つ圧縮機を製造できる密閉型の多気筒ロータリ圧縮機を提供することを目的とする。
【解決手段】密閉容器内にモータと、モータにより駆動される圧縮機構とが設けられ、圧縮機構が複数のシリンダ17,18と、複数のシリンダ17,18間を仕切る仕切板21と、シリンダ17,18内を吸入側と吐出側とに仕切るブレードと、シリンダ17,18内を回動するロータ24,25とを備えたロータリ圧縮機構6A,6Bとされている多気筒ロータリ圧縮機であって、モータのコア径をΦMo、各シリンダ17,18の内径をΦDc、各シリンダ17,18の幅をHc、仕切板21の幅をHsとしたとき、ΦDc/ΦMo≧0.49の条件下において、Hs/Hc≦0.35を満たしている。
【選択図】図3

Description

本発明は、モータコア径を大きくすることなく、圧縮機を大容量化(押し退け量UP)することができる密閉型の多気筒ロータリ圧縮機に関するものである。
密閉型のロータリ圧縮機を大容量化する場合、通常は単純に軸受面圧やブレードサイド面圧等のメカ負荷が大きくなることから、比例設計によりモータコア径(胴径)やジャーナル径を1ランクアップすることにより対応している。しかし、モータコア径(胴径)やジャーナル径のアップは、製造設備による制約を受けるため、限られたラインナップから選んで設計することになるが、1ランク上のモータコア径(胴径)を有する圧縮機を持っていない場合、大きな設備投資が必要になる。
そこで、モータコア径を変えずに、云い換えると、圧縮機の外形寸法を変えずに、圧縮機の押し退け量(容量)を大容量化可能としたものが、特許文献1に開示されている。これは、密閉型の多気筒ロータリ圧縮機において、クランク軸を複数連結構造となすことにより、複数のシリンダ間を仕切る仕切板に設けられている開口を小さくし、該開口部に連結部を支持するための軸受を設け、これによって、シリンダ内を回動するロータの外径を小さくし、偏心軸部の偏心量を大きく(ブレードストロークをロングストローク化)してシリンダ内の有効容量(押し退け量)を増大させ、大容量化したものである。
特許第4365729号公報
しかしながら、上記の特許文献1に開示されたものは、クランク軸を複数に分割して組み立てる構造としなければならないため、部品数が増加して加工工数や組み立て工数が増加し、構成の複雑化や高コスト化が避けられない等の課題があった。
一方、モータコア径を変更せずに、大容量化(押し退け量UP)する方法として、シリンダの内径を大きくすることにより、ブレードストロークをロングストローク化し、1ランク上の押し退け量の圧縮機を製造することが考えられるが、この場合、上記の如く、軸受面圧やブレードサイド面圧等のメカ負荷が大きくなることから、それを抑える対策が必須となる等の技術的課題があった。
本発明は、このような事情に鑑みてなされたものであって、モータコア径を大きくすることなく、既存のモータコア径のままでシリンダ内径を大きくして大容量化しても、メカ負荷を抑えて1ランク上の押し退け量を持つ圧縮機を製造できる密閉型の多気筒ロータリ圧縮機を提供することを目的とする。
上記した課題を解決するために、本発明の多気筒ロータリ圧縮機は、以下の手段を採用する。
すなわち、本発明にかかる多気筒ロータリ圧縮機は、密閉容器内にモータと、該モータにより駆動される圧縮機構とが設けられ、該圧縮機構が複数のシリンダと、該複数のシリンダ間を仕切る仕切板と、前記各シリンダ内を吸入側と吐出側とに仕切るブレードと、前記各シリンダ内を回動するロータとを備えたロータリ圧縮機構とされている多気筒ロータリ圧縮機であって、前記モータのコア径をΦMo、前記各シリンダの内径をΦDc、前記各シリンダの幅をHc、前記仕切板の幅をHsとしたとき、
ΦDc/ΦMo≧0.49の条件下において、
Hs/Hc≦0.35を満たしていることを特徴とする。
本発明によれば、密閉型の多気筒ロータリ圧縮機にあって、モータのコア径ΦMoに対する各シリンダの内径ΦDcの比を、0.49以上とした条件下で、各シリンダの幅Hcに対する仕切板の幅Hsの比を、0.35以下とすることにより、モータコア径ΦMoを変更せずに、ガス負荷(圧縮負荷)を左程大きくすることなく、ブレードストロークをロングストローク化して、圧縮機の押し退け量を大容量化(押し退け量UP)することができるとともに、シリンダ幅Hcに対する仕切板の幅Hsを極力小さくし、上部軸受および下部軸受の支持点間距離を小さくすることにより、軸受面圧の上昇を抑制することができる。従って、既存のモータコア径のままで、1ランク上の押し退け量を持つ密閉型の多気筒ロータリ圧縮機を製造でき、大きな設備投資を行うことなく、製品ラインナップの拡充を図ることができる。
さらに、本発明の多気筒ロータリ圧縮機は、上記の多気筒ロータリ圧縮機において、前記仕切板は、ヤング率160[GPa]以上の素材で構成されていることを特徴とする。
本発明によれば、仕切板が、ヤング率160[GPa]以上の素材で構成されているため、仕切板の幅Hsをシリンダ幅Hcの0.35以下に薄幅化したとしても、ヤング率が160[GPa]以下の焼結合金や鋳鉄に比べて高い、160[GPa]以上の素材を用いることによって、その変形を抑えながら、軸受の支持点間距離を小さくすることができる。従って、軸受面圧等のメカ負荷の増大を抑制し、モータコア径を変えずに、簡易に圧縮機の押し退け量を1ランク上の容量に大容量化することができる。
さらに、本発明の多気筒ロータリ圧縮機は、上記の多気筒ロータリ圧縮機において、前記仕切板は、炭素鋼もしくは合金鋼とされていることを特徴とする。
本発明によれば、仕切板が、ヤング率160[GPa]以上の炭素鋼もしくは合金鋼とされているため、焼結合金や鋳鉄に比べ剛性が高い炭素鋼や合金鋼を用いることにより、160[GPa]以上のヤング率を確保し、適正な材料の選択のみで仕切板を薄幅化しながら変形を抑えることができる。従って、軸受面圧等のメカ負荷の増大を抑制し、モータコア径を変えずに、簡易に圧縮機の押し退け量を1ランク上の容量に大容量化することができる。
さらに、本発明の多気筒ロータリ圧縮機は、上述のいずれかの多気筒ロータリ圧縮機において、前記ブレードは、表面にCrN系等のPVD膜もしくはDLC膜等の硬質被膜が施されたブレードとされていることを特徴とする。
本発明によれば、ブレードが、表面にCrN系等のPVD膜もしくはDLC膜等の硬質被膜が施されたブレードとされているため、ブレードストロークのロングストローク化によりブレードサイド面圧が上昇するが、ブレード表面に硬質被膜を施すことにより、面圧上昇による異常摩耗等にも十分対応することができる。従って、モータコア径を変えずにシリンダ内径を大きくし、設備投資を行わずに、簡易に圧縮機の押し退け量を1ランク上の容量に大容量化することができる。
さらに、本発明の多気筒ロータリ圧縮機は、上述のいずれかの多気筒ロータリ圧縮機において、前記密閉容器内の底部に充填される冷凍機油は、極圧剤を添加した冷凍機油とされていることを特徴とする。
本発明によれば、密閉容器内の底部に充填される冷凍機油が、極圧剤を添加した冷凍機油とされているため、圧縮機の大容量化に伴って、軸受面圧やブレードサイド面圧等のメカ負荷が多少増大することは避けられず、それらの摺動部分において極圧潤滑状態が発生し易くなるものの、高荷重下で有効な極圧剤を冷凍機油に添加しておくことにより、摺動面での高潤滑性を維持し、焼き付きや摩耗、スカッフィングを防止することができる。従って、圧縮機の大容量化の伴うメカ負荷の増大にも有効に対応することができる。
本発明によると、モータコア径ΦMoを変更せずに、ガス負荷(圧縮負荷)を左程大きくすることなく、ブレードストロークをロングストローク化して、圧縮機の押し退け量を大容量化(押し退け量UP)することができるとともに、シリンダ幅Hcに対する仕切板の幅Hsを極力小さくし、上部軸受および下部軸受の支持点間距離を小さくすることにより、軸受面圧の上昇を抑制することができるため、既存のモータコア径のままで、1ランク上の押し退け量を持つ密閉型の多気筒ロータリ圧縮機を製造でき、大きな設備投資を行うことなく、製品ラインナップの拡充を図ることができる。
本発明の一実施形態に係る多気筒ロータリ圧縮機の縦断面図である。 上記多気筒ロータリ圧縮機の圧縮機構部分の諸元を表す横断面図である。 上記多気筒ロータリ圧縮機の圧縮機構部分の諸元を表す縦断面図である。 上記多気筒ロータリ圧縮機のモータコア径とシリンダ内径の比と、ガス負荷との関係を示すグラフである。 上記多気筒ロータリ圧縮機の仕切板幅とシリンダ幅の比と、軸受面圧との関係を示すグラフである。 上記多気筒ロータリ圧縮機の仕切板幅とシリンダ幅の比と、モータコア径とシリンダ内径の比との関係を示すグラフ図である。
以下に、本発明の一実施形態について、図1ないし図6を参照して説明する。
図1には、本発明の一実施形態に係る多気筒ロータリ圧縮機の縦断面図が示され、図2には、その圧縮機構部分の諸元を表す横断面図、図3には、圧縮機構部分の諸元を表す縦断面図が示されている。
本実施形態に係る多気筒ロータリ圧縮機1は、上部および下部が上部カバー3および下部カバー4により密閉された円筒状の密閉容器2を備え、その内部の上方部位にモータ5が設置され、該モータ5により駆動される圧縮機構(ロータリ圧縮機構)6がその下方部位に設置された密閉型の多気筒ロータリ圧縮機1とされている。
密閉容器2の下部外周には、据え付け脚7が設けられている。また、密閉容器2の上部には、上部カバー3を貫通する吐出配管8が設けられ、多気筒ロータリ圧縮機1で圧縮された高圧の冷媒ガスを冷凍サイクル側へと吐き出す構成とされている。更に、密閉容器2の外周部には、アキュームレータ9が一体に組み付けられており、冷凍サイクル側からリターンする低圧の冷媒ガス中に含まれる油、液冷媒等の液分を分離し、ガス分のみを吸入配管10,11を介して圧縮機構6へと吸い込ませる構成とされている。
モータ5は、ステータ12とロータ13とを備え、ステータ12が密閉容器2の内周面に圧入等によって固定設置されている。ロータ13には、クランク軸14が一体に結合されることにより、その回転駆動力がクランク軸14を介して圧縮機構6に伝達可能とされている。また、クランク軸14の下方部位には、後述するロータリ圧縮機構6の第1ロータ24および第2ロータ25に対応して第1偏心部15および第2偏心部16が設けられている。
ロータリ圧縮機構6は、本実施形態では2気筒タイプとされ。その第1および第2ロータリ圧縮機構6A,6Bは、第1シリンダ室17および第2シリンダ室18(以下、単にシリンダ17,18という場合もある。)が形成され、クランク軸14の第1偏心部15および第2偏心部16に対応して密閉容器2内に固定設置された第1シリンダ本体19および第2シリンダ本体20と、第1シリンダ本体19と第2シリンダ本体20との間に介装され、第1シリンダ室17および第2シリンダ室18を区画する仕切板(セパレータプレート)21と、第1シリンダ本体19の上面に設けられ、第1シリンダ室17を区画するとともに、クランク軸14を支持する上部軸受22と、第2シリンダ本体20の下面に設けられ、第2シリンダ室18を区画するとともに、クランク軸14を支持する下部軸受23と、を備えている。
また、第1および第2ロータリ圧縮機構6A,6Bは、第1偏心部15および第2偏心部16に回動自在に嵌合され、第1シリンダ室17および第2シリンダ室18内を回動される第1ロータ24および第2ロータ25と、第1シリンダ本体19および第2シリンダ本体20に設けられているブレード溝26,27(図2参照)に摺動自在に嵌合され、第1シリンダ室17および第2シリンダ室18内を吸入室側と吐出室側とに仕切るブレード28,29(図2参照)とを備えている。
第1および第2ロータリ圧縮機構6A,6Bの第1シリンダ室17および第2シリンダ室18内には、吸入配管10,11から吸入ポート30,31を介して低圧の冷媒ガスが吸入され、第1ロータ24および第2ロータ25の回動により圧縮された後、吐出ポートおよび吐出弁(図示省略)を介して吐出チャンバー32,33内に吐出され、吐出チャンバー32,33から密閉容器2内に吐き出された後、吐出配管8を経て冷凍サイクルへと送り出されるように構成されている。
ロータリ圧縮機構6を構成する第1シリンダ本体19および第2シリンダ本体20、仕切板21、上部軸受22および下部軸受23は、ボルトを介して一体に締め付け固定されている。また、密閉容器2内の底部には、PAG油、POE油等の冷凍機油34が充填されており、クランク軸14中に設けられている給油孔等を介して、公知の如く、圧縮機構6内の潤滑部位に給油可能とされている。この冷凍機油34には、各々の油に適応する極圧剤が適量添加されているものとする。
上記の多気筒ロータリ圧縮機1において、既に生産中の圧縮機に使われているモータ5のコア径ΦMoを変えずに、第1シリンダ室17および第2シリンダ室18の内径、すなわちシリンダ内径ΦDcを大きくし、その押し退け量(容量)を1ランク上の容量に大容量化するため、モータコア径をΦMo、第1シリンダ室17および第2シリンダ室18のシリンダ内径をΦDcとしたとき、シリンダ内径ΦDcを、
ΦDc/ΦMo≧0.49
に設定している。
これは、現状生産中のロータリ圧縮機にあって、モータコア径ΦMoとシリンダ内径ΦDcとの比であるΦDc/ΦMoは、図6に示されるように、一般に0.35〜0.45の範囲に入るものがほとんどであり、最大でも0.48であった。一方、ロータリ圧縮機のメカ負荷となるガス負荷(圧縮負荷)とΦDc/ΦMoとの関係は、図4に示されるように、押し退け量を一定とした場合、右肩下がりのカーブとなっており、このため、シリンダ内径ΦDcを大きくすることにより、ΦDc/ΦMoの値を大きくしても、ガス負荷(図3参照)は大きくならず、メカ負荷を増大することがないことが判った。
つまり、ロータリ圧縮機1の押し退け量をある値まで大容量化するために、モータコア径ΦMoを変えずにシリンダ内径ΦDcを大きくし、その比であるΦDc/ΦMoを0.49以上として、ブレードストローク(ブレード28,29の摺動ストローク)をロングストローク化させても、ロータ外径ΦDrとロータ幅Hrの積であるロータの前映投影面積を抑えたまま、ロータの前映投影面積によって決まるガス負荷(圧縮負荷)を所定値以下に抑えられることが、図4および図6から明らかとなった。
上記の条件下において、メカ負荷を決めるガス負荷を一定値以下に抑制することができれば、モータコア径ΦMoを変えずに、シリンダ内径ΦDcを大きくすることで押し退け量を大容量化できるとの知見が得られた。つまり、押し退け量を大容量化すると、図3に示されるように、メカ負荷であるガス負荷が大きくなってクランク軸14の変形量が大きくなるため、クランク軸14の変形を抑える必要が生じる。クランク軸14の変形量が大きくなると、軸受に対する軸の片当たりが大きくなって、軸受面圧が大きくなる。クランク軸14の変形量は、上部軸受22と下部軸受23との間の軸受支持点間距離Lによって左右されるので、軸受支持点間距離Lをできる限り小さくすることが軸受面圧を抑える上で有効であることが解る。
上記の軸受支持点間距離Lを小さくするには、第1シリンダ室17および第2シリンダ室18の幅Hc(以下、シリンダ幅Hcという。)および仕切板(セパレータプレート)21の幅Hs(以下、仕切板幅Hsという。)を小さくすればよいが、押し退け量を大きくする上で、シリンダ幅Hcを小さくすることは困難である。そこで、仕切板幅Hsを小さくすることとなるが、この仕切板幅Hsおよびシリンダ幅Hcと軸受面圧との関係を分析の結果、図5に示されるように、Hs/Hcを横軸、軸受面圧を縦軸にしてグラフ化したところ、右肩上がりのカーブとなり、Hs/Hcを所定値以下とすれば、軸受面圧を許容値以下にできることが判明した。
以上から、製造設備に影響を及ぼすモータコア径ΦMo(モータコア径は製造設備による制限を受け、モータコア径を大きくすると、新たに設備投資が必要となる。)を変更することなく、シリンダ内径ΦDcを大きくして、ΦDc/ΦMo≧0.49としても、Hs/Hcを、Hs/Hc≦0.35に制限すれば、メカ負荷である軸受面圧の増加を抑制してロータリ圧縮機1の押し退け量を大容量化することが可能となる。つまり、図6に示される斜線領域において、モータ5のコア径ΦMoを既存のコア径ΦMoのままで、1ランク上の押し退け量を持つロータリ圧縮機1を、新たに設備投資することなく、既存の設備を使用して簡易に製造することが可能となる。
なお、上記の如く、仕切板21の幅Hsを薄くすることによって、従来から仕切板21に用いられていた焼結金属や鋳鉄製の仕切板をそのまま使用すると、これらの材料はヤング率が160[GPa]以下と低いことから、薄幅化による変形が問題となる可能性が出てくる。そこで、仕切板21をヤング率が160[GPa]以上の素材で構成することが望ましく、例えばヤング率が200[GPa]前後の炭素鋼や合金鋼を用いるとよい。
また、シリンダ内径ΦDcを大きくすると、それに相当してブレード28,29のストロークを大きくし、ロングストローク化しなければならなくなり、このブレードストロークのロングストローク化によって、ブレード28,29の側面に係る圧力が増加し、いわゆるブレードサイド面圧が上昇する。これに対応するため、ブレード28,29の両側面に対して、例えばCrN系等のPVD膜もしくはDLC膜(ダイヤモンド・ライク・カーボン)等の硬質被膜を施し、面圧上昇による異常摩耗等に対応できるようにすることが望ましい。
さらに、圧縮機の押し退け量を大容量化することによるメカ負荷の増大を極力抑制するようにしてはいるものの、軸受面圧やブレードサイド面圧等のメカ負荷が多少増大することは避けられず、軸受22,23やブレード28,29、ロータ24,25等の摺動部分において極圧潤滑状態が発生し易くなる。これに対応するため、密閉容器2内の底部に充填されている冷凍機油34に対して、前記したように、高荷重下で有効な極圧剤を適量添加しておくことが望ましい。
以上の説明の構成により、本実施形態によれば、以下の作用効果を奏する。
ロータリ圧縮機1において、第1シリンダ室17および第2シリンダ室18の内径、すなわちシリンダ内径ΦDcを大きくすれば、シリンダ容積が大きくなることから、第1偏心部15および第2偏心部16の偏心量を大きくしてブレード28,29のストロークを大きくすることにより、圧縮機の押し退け量を大容量化することができる。
また、ロータリ圧縮機1の製造に際して、モータ5のコア径ΦMoは、製造設備による制限を受けることから、モータコア径ΦMoを大きくすると、新たに設備投資が必要となるが、モータコア径ΦMoを既存のロータリ圧縮機1のままとし、シリンダ内径ΦDcを大きくして大容量化すれば、設備投資を行うことなく、既存の設備を使って1ランク上の押し退け量を持つロータリ圧縮機1を製造することができることになる。
斯くして、本実施形態では、密閉容器2内にモータ5と、モータ5により駆動される圧縮機構6とが設けられ、その圧縮機構6が複数のシリンダ17,18と、複数のシリンダ17,18間を仕切る仕切板21と、各シリンダ17,18内を吸入側と吐出側とに仕切るブレード28,29と、シリンダ17,18内を回動するロータ24,25とを備えたロータリ圧縮機構6A,6Bとされている密閉型の多気筒ロータリ圧縮機1にあって、モータ5のコア径をΦMo、各シリンダ17,18の内径をΦDc、各シリンダ17,18の幅をHc、仕切板21の幅をHsとしたとき、ΦDc/ΦMo≧0.49の条件下において、Hs/Hc≦0.35を満たす構成としている。
これにより、モータコア径ΦMoを変更せずに、ガス負荷(圧縮負荷)を大きくすることなく、ブレード28,29ストロークをロングストローク化して、多気筒ロータリ圧縮機1の押し退け量を大容量化(押し退け量UP)することができるとともに、シリンダ幅Hcに対する仕切板の幅Hsを極力小さくし、上部軸受22および下部軸受23の支持点間距離Lを小さくすることにより、軸受面圧の上昇を抑制することができる。従って、既存のモータコア径ΦMoのままで、1ランク上の押し退け量を持つ密閉型の多気筒ロータリ圧縮機1を製造でき、大きな設備投資を行うことなく、製品ラインナップの拡充を図ることができる。
また、仕切板21の幅Hsを、Hs/Hc≦0.35として薄幅化することにより、仕切板21の変形の可能性が生じるが、仕切板21をヤング率が160[GPa]以上の例えば、炭素鋼もしくは合金鋼等の素材で構成することにより、仕切板21の幅Hsをシリンダ幅Hcの0.35以下に薄幅化したとしても、その変形を抑制することができる。従って、軸受面圧等のメカ負荷の増大を抑制し、モータコア径ΦMoを変更せずに、シリンダ内径ΦDcを大きくして簡易に多気筒ロータリ圧縮機1の押し退け量を1ランク上の容量に大容量化することができる。
さらに、シリンダ内径ΦDcを大きくして大容量化することにより、ブレード28,29のストロークがロングストローク化し、ブレードサイド面圧が上昇するが、ブレード表面にCrN系等のPVD膜もしくはDLC膜等の硬質被膜を施すことにより、ブレードサイド面圧の上昇による異常摩耗等にも十分対応することができる。このため、モータ5のコア径ΦMoを変えずにシリンダ内径ΦDcを大きくし、設備投資を行わずに、簡易に多気筒ロータリ圧縮機1の押し退け量を1ランク上の容量に大容量化することができる。
また、密閉容器2の底部に充填される冷凍機油34に極圧剤を添加しているため、圧縮機の大容量化に伴って、軸受面圧やブレードサイド面圧等のメカ負荷が多少増大することは避けられず、それらの摺動部分において極圧潤滑状態が発生し易くなるが、高荷重下で有効な極圧剤を冷凍機油に添加しておくことにより、摺動面での高潤滑性を維持し、焼き付きや摩耗、スカッフィングを防止することができる。これによって、ロータリ圧縮機1の大容量化に伴うメカ負荷の増大にも有効に対応することができる。
なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態において、第1ロータリ圧縮機構6Aと第2ロータリ圧縮機構6Bとは、180度位相をずらして設けられることは云うまでもない。また、吐出チャンバー32,33は、吐出チャンバー33に吐出された高圧ガスを吐出チャンバー32で合流して密閉容器2内に吐き出す構成としてもよいことはもちろんである。さらに、第1シリンダ室17と第2シリンダ室18との幅Hcは、必ずしも同一である必要はなく、異なる幅としてもよく、この場合、幅Hcが大きい方を基準にすればよい。
1 多気筒ロータリ圧縮機
2 密閉容器
5 モータ
6 圧縮機構(ロータリ圧縮機構)
6A 第1ロータリ圧縮機構
6B 第2ロータリ圧縮機構
14 クランク軸
15 第1偏心部
16 第2偏心部
17 第1シリンダ室(シリンダ)
18 第2シリンダ室(シリンダ)
19 第1シリンダ本体
20 第2シリンダ本体
21 仕切板
24 第1ロータ
25 第2ロータ
28,29 ブレード
34 冷凍機油
ΦMo モータコア径
ΦDc シリンダ内径
Hc シリンダ幅
Hs 仕切板幅

Claims (5)

  1. 密閉容器内にモータと、該モータにより駆動される圧縮機構とが設けられ、該圧縮機構が複数のシリンダと、該複数のシリンダ間を仕切る仕切板と、前記各シリンダ内を吸入側と吐出側とに仕切るブレードと、前記各シリンダ内を回動するロータとを備えたロータリ圧縮機構とされている多気筒ロータリ圧縮機であって、
    前記モータのコア径をΦMo、前記各シリンダの内径をΦDc、前記各シリンダの幅をHc、前記仕切板の幅をHsとしたとき、
    ΦDc/ΦMo≧0.49の条件下において、
    Hs/Hc≦0.35
    を満たしていることを特徴とする多気筒ロータリ圧縮機。
  2. 前記仕切板は、ヤング率160[GPa]以上の素材で構成されていることを特徴とする請求項1に記載の多気筒ロータリ圧縮機。
  3. 前記仕切板は、炭素鋼もしくは合金鋼とされていることを特徴とする請求項2に記載の多気筒ロータリ圧縮機。
  4. 前記ブレードは、表面にCrN系等のPVD膜もしくはDLC膜等の硬質被膜が施されたブレードとされていることを特徴とする請求項1ないし3のいずれかに記載の多気筒ロータリ圧縮機。
  5. 前記密閉容器内の底部に充填される冷凍機油は、極圧剤を添加した冷凍機油とされていることを特徴とする請求項1ないし4のいずれかに記載の多気筒ロータリ圧縮機。
JP2013073093A 2013-03-29 2013-03-29 多気筒ロータリ圧縮機 Pending JP2014196714A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013073093A JP2014196714A (ja) 2013-03-29 2013-03-29 多気筒ロータリ圧縮機
PCT/JP2014/056650 WO2014156679A1 (ja) 2013-03-29 2014-03-13 多気筒ロータリ圧縮機
EP14774791.9A EP2947321A4 (en) 2013-03-29 2014-03-13 MULTI-YELLOW ROTARY COMPRESSOR
CN201480008720.0A CN105008722A (zh) 2013-03-29 2014-03-13 多气缸旋转压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073093A JP2014196714A (ja) 2013-03-29 2013-03-29 多気筒ロータリ圧縮機

Publications (1)

Publication Number Publication Date
JP2014196714A true JP2014196714A (ja) 2014-10-16

Family

ID=51623662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073093A Pending JP2014196714A (ja) 2013-03-29 2013-03-29 多気筒ロータリ圧縮機

Country Status (4)

Country Link
EP (1) EP2947321A4 (ja)
JP (1) JP2014196714A (ja)
CN (1) CN105008722A (ja)
WO (1) WO2014156679A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201845B (zh) * 2015-10-22 2017-11-07 广东美芝制冷设备有限公司 旋转式压缩机
JPWO2017138175A1 (ja) * 2016-02-12 2018-11-29 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
CN105840508A (zh) * 2016-05-17 2016-08-10 广东美芝制冷设备有限公司 旋转式压缩机及具有其的冷冻循环装置
CN109958622B (zh) * 2017-12-25 2021-06-08 上海海立电器有限公司 一种滚动转子式压缩机
CN108788658A (zh) * 2018-06-08 2018-11-13 宁波甬微集团有限公司 一种多缸压缩机中隔板的制作方法
CN109083843A (zh) * 2018-07-22 2018-12-25 宁波甬微集团有限公司 一种多缸压缩机中隔板的制作方法
CN109113999A (zh) * 2018-09-06 2019-01-01 宁波甬微集团有限公司 一种多缸压缩机中隔板的制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165885A (en) * 1983-03-09 1984-09-19 Matsushita Refrig Co Rotary compressor with multiple cylinders
JPS61126395A (en) * 1984-11-22 1986-06-13 Mitsubishi Electric Corp 2-cylinder type rotary compressor
JPH03206387A (en) * 1990-01-08 1991-09-09 Hitachi Ltd Rotary type compressor
JPH06159277A (ja) * 1992-11-26 1994-06-07 Sanyo Electric Co Ltd 多気筒回転圧縮機
JPH109168A (ja) * 1996-06-28 1998-01-13 Hitachi Ltd ロータリ圧縮機
JP2005257240A (ja) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd 遷臨界冷凍装置
JP2008101523A (ja) * 2006-10-18 2008-05-01 Daikin Ind Ltd 密閉型圧縮機
WO2011148453A1 (ja) * 2010-05-24 2011-12-01 三菱電機株式会社 二段回転式圧縮機及びヒートポンプ装置
WO2012032765A1 (ja) * 2010-09-07 2012-03-15 パナソニック株式会社 圧縮機およびそれを用いた冷凍サイクル装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790515B2 (ja) * 1990-03-06 1998-08-27 松下冷機株式会社 2シリンダロータリコンプレッサ
JP4365729B2 (ja) 2004-05-31 2009-11-18 三菱重工業株式会社 ロータリー圧縮機
JP4780971B2 (ja) * 2005-02-17 2011-09-28 三洋電機株式会社 ロータリコンプレッサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165885A (en) * 1983-03-09 1984-09-19 Matsushita Refrig Co Rotary compressor with multiple cylinders
JPS61126395A (en) * 1984-11-22 1986-06-13 Mitsubishi Electric Corp 2-cylinder type rotary compressor
JPH03206387A (en) * 1990-01-08 1991-09-09 Hitachi Ltd Rotary type compressor
JPH06159277A (ja) * 1992-11-26 1994-06-07 Sanyo Electric Co Ltd 多気筒回転圧縮機
JPH109168A (ja) * 1996-06-28 1998-01-13 Hitachi Ltd ロータリ圧縮機
JP2005257240A (ja) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd 遷臨界冷凍装置
JP2008101523A (ja) * 2006-10-18 2008-05-01 Daikin Ind Ltd 密閉型圧縮機
WO2011148453A1 (ja) * 2010-05-24 2011-12-01 三菱電機株式会社 二段回転式圧縮機及びヒートポンプ装置
WO2012032765A1 (ja) * 2010-09-07 2012-03-15 パナソニック株式会社 圧縮機およびそれを用いた冷凍サイクル装置

Also Published As

Publication number Publication date
CN105008722A (zh) 2015-10-28
EP2947321A4 (en) 2016-02-24
EP2947321A1 (en) 2015-11-25
WO2014156679A1 (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2014156679A1 (ja) 多気筒ロータリ圧縮機
JP5441982B2 (ja) 回転圧縮機
US9157437B2 (en) Rotary compressor with oiling mechanism
EP3214312B1 (en) Two-cylinder hermetic compressor
JP5743019B1 (ja) 圧縮機
JP2007315261A (ja) 密閉型圧縮機
CN104963868A (zh) 旋转压缩机及其曲轴
CN104976123A (zh) 多缸旋转式压缩机
EP2613053B1 (en) Rotary compressor with dual eccentric portion
JP2007224767A (ja) 回転式流体機械
JPH10141271A (ja) ロータリー圧縮機
JP2014070619A (ja) 回転圧縮機
CN204783677U (zh) 旋转压缩机及其曲轴
EP3217014B1 (en) Compressor
WO2016151769A1 (ja) 回転式密閉型圧縮機
JP6071787B2 (ja) ロータリ圧縮機
JP5861456B2 (ja) 回転式圧縮機
JP6643712B2 (ja) 2シリンダ型密閉圧縮機
JP4807209B2 (ja) 圧縮機
JP2008082267A (ja) 圧縮機
JP2013139722A (ja) 回転式圧縮機
JP2015113801A (ja) 圧縮機
JP6008478B2 (ja) 流体機械
JP2017008818A (ja) 回転式圧縮機
JP2017008819A (ja) 回転式圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820