JP2014190547A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014190547A
JP2014190547A JP2013063195A JP2013063195A JP2014190547A JP 2014190547 A JP2014190547 A JP 2014190547A JP 2013063195 A JP2013063195 A JP 2013063195A JP 2013063195 A JP2013063195 A JP 2013063195A JP 2014190547 A JP2014190547 A JP 2014190547A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat exchanger
diameter
hfc32
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013063195A
Other languages
Japanese (ja)
Inventor
Michiko Endo
道子 遠藤
Hiroaki Tsuboe
宏明 坪江
Kenji Matsumura
賢治 松村
Atsuhiko Yokozeki
敦彦 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013063195A priority Critical patent/JP2014190547A/en
Publication of JP2014190547A publication Critical patent/JP2014190547A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce pressure loss and reduce size while reducing a refrigerant enclosed amount in a case of adopting HFC32 refrigerant for a microchannel heat exchanger.SOLUTION: A microchannel heat exchanger of an air conditioner includes: a first pipe circulating therein refrigerant; a second pipe arranged downward of the first pipe, and circulating therein the refrigerant; and a plurality of flat heat transfer tubes connecting the first pipe to the second pipe, these flat heat transfer tubes being made of aluminum or aluminum alloy, and a plurality of refrigerant channels being formed by partition walls, and is configured so that the refrigerant from the first pipe flows from an inlet portions of the respective refrigerant channels, flows in the respective refrigerant channels, and then flows to the second pipe. A diameter D32 of each of the refrigerant channels is set to have a size in a range of 0.85*D410<D32<0.95*D410, where the diameter D410 is a diameter if only HFC32 refrigerant is enclosed in each of the refrigerant channels or the HFC32 refrigerant is enclosed therein by 70% or more of entire refrigerant relatively to a diameter D410 of each refrigerant channel if HFC410A refrigerant is adopted.

Description

本発明は、マイクロチャネル型の熱交換器を備えた空気調和機に関する。   The present invention relates to an air conditioner including a microchannel heat exchanger.

本技術分野の背景技術として、近年、特開2012−132641号公報(特許文献1)に示すようなアルミニウム製またはアルミニウム合金製の扁平管とヘッダー集合管とを有したマイクロチャネル熱交換器が使用されるようになってきた。   As a background art in this technical field, a microchannel heat exchanger having a flat tube made of aluminum or aluminum alloy and a header collecting tube as shown in Japanese Patent Application Laid-Open No. 2012-132641 (Patent Document 1) has recently been used. It has come to be.

特開2012−132641号公報JP 2012-132641 A

一般的に熱交換器の管内熱伝達率は管の流路断面寸法の逆数に比例することが知られており、上記特許文献1に記載の熱交換器のように、熱交換器をマイクロチャンネル化した場合、伝熱面密度(熱交換の体積に対する伝熱面積)を大幅に向上させることができ高い熱伝達率が得られることとなる。これにより従来の熱交換器よりも小型化を図ることが可能となる。   In general, it is known that the heat transfer coefficient in a pipe of a heat exchanger is proportional to the reciprocal of the cross-sectional dimension of the flow path of the pipe. In this case, the heat transfer surface density (heat transfer area with respect to the heat exchange volume) can be greatly improved, and a high heat transfer coefficient can be obtained. This makes it possible to reduce the size of the conventional heat exchanger.

ところで近年、地球温暖化防止の観点から、冷媒回路の冷媒としてHFC32冷媒が注目されている。このHFC32冷媒は、微燃性はあるものの、従来のHFC410A冷媒と比べてGWP(地球温暖化係数)が低く、更には、蒸発潜熱が大きいことから冷媒充填量が少なくて済み、冷凍装置のCOP(成績係数)の向上も図れるといった多くの利点を有する。   Incidentally, in recent years, HFC32 refrigerant has attracted attention as a refrigerant in the refrigerant circuit from the viewpoint of preventing global warming. Although this HFC32 refrigerant is slightly flammable, it has a lower GWP (global warming potential) than the conventional HFC410A refrigerant, and furthermore, since the latent heat of vaporization is large, the refrigerant charging amount can be reduced. It has many advantages such as an improvement in (coefficient of performance).

現状で主流となっているHFC410Aをマイクロチャネル熱交換器に採用することがすでに行われているが、このマイクロチャネル熱交換器に対してHFC32冷媒を採用した場合において、冷媒封入量を少なくしつつ、圧力損失を低減すること、あるいはマイクロ熱交換器の小型化を図ることが望まれる。   Although HFC410A, which is currently mainstream, has already been adopted for microchannel heat exchangers, when HFC32 refrigerant is adopted for this microchannel heat exchanger, the amount of refrigerant charged is reduced. It is desirable to reduce the pressure loss or to reduce the size of the micro heat exchanger.

そこで本発明は、マイクロチャネル熱交換器に対してHFC32冷媒を採用した場合において、冷媒封入量を少なくしつつ、圧力損失を低減し、さらにマイクロ熱交換器の小型化を図ることを目的とする。   Accordingly, the present invention has an object of reducing pressure loss while reducing the amount of refrigerant filled and reducing the size of the micro heat exchanger when the HFC32 refrigerant is adopted for the micro channel heat exchanger. .

上記課題を解決するために、「室内熱交換器を備えた室内機と室外熱交換器を備えた室外機とが冷媒配管により接続されるとともに、
HFC32冷媒が単一で又は全冷媒のうち70%以上が封入されて冷凍サイクルが構成され、前記室内熱交換器又は前記室外熱交換器にはマイクロチャネル熱交換器が採用され、
該マイクロチャネル熱交換器は、
内部に冷媒を流す第1のパイプと、
該第1のパイプより下側に配置され、内部に冷媒を流す第2のパイプと、
前記第1のパイプと前記第2のパイプとを接続する複数の扁平伝熱管と、を備え、
これらの扁平伝熱管は、アルミニウム製またはアルミニウム合金製により構成されるとともに、扁平伝熱管の内部には、複数の冷媒流路が形成され
前記第1のパイプからの冷媒は、前記複数の冷媒流路のそれぞれの流入部から流入し、 それぞれの冷媒流路を流れた後に前記第2のパイプに流れるように構成された空気調和機において、
前記マイクロチャネル熱交換器の前記冷媒流路は、HFC410Aを採用した場合の冷媒流路の径D410に対してHFC32冷媒を単一、又は70%以上が封入された場合の径D32を、0.85*D410<D32<0.95*D410の範囲のサイズとすること」を特徴とする。
In order to solve the above problem, “the indoor unit provided with the indoor heat exchanger and the outdoor unit provided with the outdoor heat exchanger are connected by a refrigerant pipe,
A refrigeration cycle is configured with a single HFC32 refrigerant or 70% or more of all refrigerants, and a microchannel heat exchanger is employed for the indoor heat exchanger or the outdoor heat exchanger,
The microchannel heat exchanger is
A first pipe for flowing refrigerant into the interior;
A second pipe disposed below the first pipe and flowing a refrigerant therein;
A plurality of flat heat transfer tubes connecting the first pipe and the second pipe;
These flat heat transfer tubes are made of aluminum or aluminum alloy, and a plurality of refrigerant flow paths are formed inside the flat heat transfer tubes.
In the air conditioner configured such that the refrigerant from the first pipe flows in from the inflow portions of the plurality of refrigerant flow paths, flows through the respective refrigerant flow paths, and then flows into the second pipe. ,
The refrigerant flow path of the microchannel heat exchanger has a diameter D32 when the HFC32 refrigerant is enclosed in a single or 70% or more with respect to the diameter D410 of the refrigerant flow path when HFC410A is used, and is 0. 85 * D410 <D32 <0.95 * D410. ”

本発明によれば、マイクロチャネル熱交換器に対してHFC32冷媒を採用した場合において、冷媒封入量を少なくしつつ、圧力損失を低減し、さらにマイクロ熱交換器の小型化を図ることが可能となる。   According to the present invention, when the HFC32 refrigerant is adopted for the microchannel heat exchanger, it is possible to reduce the pressure loss while reducing the amount of refrigerant enclosed, and to further reduce the size of the micro heat exchanger. Become.

本発明によるマイクロチャネル熱交換器の構成図の例である。It is an example of the block diagram of the microchannel heat exchanger by this invention. 図1のマイクロチャネル熱交換器の扁平伝熱管の形状の例である。It is an example of the shape of the flat heat exchanger tube of the microchannel heat exchanger of FIG. 本発明による冷媒流路径と冷媒流路の圧力損失の関係のイメージ図である。It is an image figure of the relationship between the refrigerant flow path diameter by this invention, and the pressure loss of a refrigerant flow path.

以下、実施例を図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

本実施例では、空気調和装置の蒸発器としてマイクロチャネル熱交換器を使用する例を説明する。なお、図示していないが本実施例のマイクロチャネル熱交換器は、室内熱交換器を備えた室内機と室外熱交換器を備えた室外機とが冷媒配管により接続される空気調和機において、室内熱交換器又は室外熱交換器に採用されるものである。   In this embodiment, an example in which a microchannel heat exchanger is used as an evaporator of an air conditioner will be described. Although not shown, the microchannel heat exchanger of the present embodiment is an air conditioner in which an indoor unit provided with an indoor heat exchanger and an outdoor unit provided with an outdoor heat exchanger are connected by a refrigerant pipe. It is adopted for an indoor heat exchanger or an outdoor heat exchanger.

図1は、本発明を適用したマイクロチャネル熱交換器である。蒸発器として使用している状態である。空気は奥側から手前に通過する。冷媒は、例えば冷媒上部出入口6から流入して上部ヘッダ2を経由して複数の扁平伝熱管4に分流し、空気と熱交換の後に下部ヘッダ3にて合流し、冷媒下部出入口7から流出する。扁平伝熱管4は、内部に複数の冷媒通路を持ち扁平な断面を持っている。扁平伝熱管4の空気側熱伝達面積を増加させるために、伝熱管4同士の間にフィン5が設置されている。   FIG. 1 is a microchannel heat exchanger to which the present invention is applied. It is in a state where it is used as an evaporator. Air passes from the back to the front. For example, the refrigerant flows in from the refrigerant upper inlet / outlet 6 and is divided into a plurality of flat heat transfer tubes 4 via the upper header 2, merges in the lower header 3 after heat exchange with air, and flows out from the refrigerant lower inlet / outlet 7. . The flat heat transfer tube 4 has a plurality of refrigerant passages inside and has a flat cross section. In order to increase the air side heat transfer area of the flat heat transfer tubes 4, fins 5 are installed between the heat transfer tubes 4.

より具体的に説明すると本実施例のマイクロチャネル熱交換器は、内部に冷媒を流す第1のパイプ(上部ヘッダ2)と、第1のパイプ(上部ヘッダ2)より下側に配置され、内部に冷媒を流す第2のパイプ(下部ヘッダ3)と、第1のパイプ(上部ヘッダ2)と第2のパイプ(下部ヘッダ3)とを接続する複数の扁平伝熱管4と、を備え、これらの扁平伝熱管はアルミニウム製またはアルミニウム合金製により構成される。そして扁平伝熱管4の内部には、複数の冷媒流路8が形成され、これらの冷媒流路8の径は約1mmでありとても薄く、これを多数設けることにより、伝熱面積を増やすことで熱交換能力を向上することが可能となる。第1のパイプ(上部ヘッダ2)からの冷媒は、複数の冷媒流路8のそれぞれの流入部から流入し、それぞれの冷媒流路8を流れた後に第2のパイプ(下部ヘッダ3)に流れる。   More specifically, the microchannel heat exchanger according to the present embodiment is arranged with a first pipe (upper header 2) for flowing a refrigerant therein and a lower side of the first pipe (upper header 2). And a plurality of flat heat transfer tubes 4 that connect the first pipe (upper header 2) and the second pipe (lower header 3). The flat heat transfer tube is made of aluminum or aluminum alloy. A plurality of refrigerant flow paths 8 are formed inside the flat heat transfer tube 4, and the diameter of these refrigerant flow paths 8 is about 1 mm, which is very thin. By providing a large number of these, the heat transfer area can be increased. It becomes possible to improve heat exchange capability. The refrigerant from the first pipe (upper header 2) flows in from the inflow portions of the plurality of refrigerant flow paths 8, flows through the respective refrigerant flow paths 8, and then flows into the second pipe (lower header 3). .

図2は、図1に示すマイクロチャネル型熱交換器の扁平伝熱管4を抜きだして示した図である。扁平伝熱管4の内部に冷媒流路8が複数あり、この冷媒流路8の内部を冷媒が流れて外側の空気と熱交換することになる。   FIG. 2 is a view showing the flat heat transfer tube 4 extracted from the microchannel heat exchanger shown in FIG. There are a plurality of refrigerant flow paths 8 inside the flat heat transfer tubes 4, and the refrigerant flows through the refrigerant flow paths 8 to exchange heat with the outside air.

HFC32冷媒の液密度は、HFC410A冷媒の液密度の約92%〜93%である。熱交換器内の冷媒質量としては液密度が支配的であるため、同じサイズの熱交換器の場合、HFC410A冷媒の場合と比較して、HFC32冷媒の場合は、必要冷媒質量が約92%〜93%となり、冷媒をHFC410AからHFC32に変更しただけでも、熱交換器に対応する必要封入冷媒質量は7%〜8%削減となる。以下においては、HFC32冷媒が単一で冷凍サイクルを流れる場合、あるいはHFC32冷媒が70%以上の割合で封入される場合について説明する。   The liquid density of the HFC32 refrigerant is approximately 92% to 93% of the liquid density of the HFC410A refrigerant. Since the liquid density is dominant as the refrigerant mass in the heat exchanger, in the case of the heat exchanger of the same size, the required refrigerant mass is about 92% in the case of the HFC32 refrigerant as compared with the case of the HFC410A refrigerant. Even if only the refrigerant is changed from HFC410A to HFC32, the required enclosed refrigerant mass corresponding to the heat exchanger is reduced by 7% to 8%. Hereinafter, a case where a single HFC32 refrigerant flows through the refrigeration cycle, or a case where the HFC32 refrigerant is sealed at a ratio of 70% or more will be described.

本発明ではさらに、マイクロチャネル型熱交換器の冷媒流路の径を小さくする。ここで図2に示す冷媒流路8は断面が略正方形で形成されており、冷媒流路の径とはこの略正方形の一辺を示す。よって、冷媒流路8の径を小さくすることで冷媒流路8の断面積を小さくなり冷媒が存在する内容積を小さくし、封入冷媒量低減を図る。   In the present invention, the diameter of the refrigerant flow path of the microchannel heat exchanger is further reduced. Here, the refrigerant flow path 8 shown in FIG. 2 has a substantially square cross section, and the diameter of the refrigerant flow path indicates one side of the substantially square. Therefore, by reducing the diameter of the refrigerant flow path 8, the cross-sectional area of the refrigerant flow path 8 is reduced, the internal volume in which the refrigerant exists is reduced, and the amount of enclosed refrigerant is reduced.

ここで同等の能力を考えるために、凝縮温度および蒸発温度が同じであり、同じ定格能力の冷凍サイクルにてHFC410A冷媒とHFC32冷媒とを比較して考える。すると、物性の違いにより同じ定格能力の場合、HFC410A冷媒の冷凍サイクルに比べて、HFC32冷媒の冷凍サイクルにおいては、蒸発器出入口での比エンタルピ差は、140%〜200%程度となる。空気流量を得るためのファンにより発生する熱量などを無視すれば、比エンタルピ差に冷媒流量を乗じたものが冷媒の熱交換量すなわち能力であるので、HFC410A冷媒と同等の能力を得るためにはHFC32冷媒で必要な質量流量は、HFC410A冷媒の質量流量の50%〜70%程度である。   Here, in order to consider the equivalent capacity, the HFC410A refrigerant and the HFC32 refrigerant are compared in the refrigeration cycle having the same condensation temperature and evaporation temperature and the same rated capacity. Then, in the case of the same rated capacity due to the difference in physical properties, the specific enthalpy difference at the evaporator inlet / outlet is about 140% to 200% in the refrigeration cycle of the HFC32 refrigerant compared to the refrigeration cycle of the HFC410A refrigerant. If the amount of heat generated by the fan for obtaining the air flow rate is ignored, the refrigerant flow rate is multiplied by the specific enthalpy difference to obtain the heat exchange amount of the refrigerant, that is, the ability. In order to obtain the same ability as the HFC410A refrigerant, The mass flow rate required for the HFC32 refrigerant is about 50% to 70% of the mass flow rate of the HFC410A refrigerant.

図3は、冷媒流路径と冷媒圧力損失の関係を模式的に示したイメージ図である。必要な質量流量の冷媒が流れる場合、HFC410A冷媒の場合の圧力損失(○印)に比べてHFC32冷媒の場合の圧力損失(△印)は小さくなる。およそ50%〜70%の圧力損失である。ここで、熱交換器の小型化および冷媒封入量削減を目的として、冷媒流路径を小さくし、冷媒流路の断面積を減少させることを検討する。冷媒流路径を小さくして冷媒流路の圧力損失が増大すると熱交換器の能力が低下したり効率が低下するなどの悪影響が出る恐れがあるので、HFC410A冷媒の場合の圧力損失を上回らない範囲で冷媒流路径を下げる必要がある。   FIG. 3 is an image diagram schematically showing the relationship between the refrigerant flow path diameter and the refrigerant pressure loss. When a refrigerant having a necessary mass flow flows, the pressure loss (Δ mark) in the case of the HFC32 refrigerant is smaller than the pressure loss (◯ mark) in the case of the HFC410A refrigerant. The pressure loss is approximately 50% to 70%. Here, for the purpose of downsizing the heat exchanger and reducing the amount of refrigerant enclosed, it is considered to reduce the diameter of the refrigerant flow path and reduce the cross-sectional area of the refrigerant flow path. If the refrigerant flow path diameter is reduced and the pressure loss in the refrigerant flow path is increased, there is a risk that the capacity of the heat exchanger will be reduced or the efficiency will be lowered. Therefore, the pressure loss in the case of the HFC410A refrigerant is not exceeded. Therefore, it is necessary to reduce the refrigerant flow path diameter.

図3における▲印である、HFC32にてHFC410A同等の圧力損失となる径とした場合が、そのポイントとなる。同一の定格能力の空気調和機の冷凍サイクルにHFC32冷媒を採用した場合において、必要な質量流量が流れる場合に、HFC410A冷媒の場合の圧力損失相当の圧力損失となる冷媒流路の断面積は、HFC410A冷媒の場合の0.72倍〜0.90倍である。このとき、冷媒流路の径は、HFC410Aの場合における冷媒流路径の0.85倍〜0.95倍となる。   This is the case when the diameter of the HFC 32 is the same as that of the pressure loss equivalent to HFC410A, as indicated by the ▲ mark in FIG. When HFC32 refrigerant is used in the refrigeration cycle of an air conditioner with the same rated capacity, when the necessary mass flow flows, the cross-sectional area of the refrigerant flow path corresponding to the pressure loss in the case of the HFC410A refrigerant is It is 0.72 times to 0.90 times that of the HFC410A refrigerant. At this time, the diameter of the refrigerant channel is 0.85 to 0.95 times the refrigerant channel diameter in the case of HFC410A.

つまり、HFC32冷媒が単一で又は全冷媒のうち70%以上が封入されて冷凍サイクルが構成される空気調和機では、室内熱交換器又は室外熱交換器に採用されるマイクロチャネル熱交換器において、HFC410Aを採用した場合の冷媒流路8の径D410に対してHFC32冷媒を単一、又は70%以上が封入された場合の径D32を、0.85*D410<D32<0.95*D410の範囲のサイズとする。   That is, in an air conditioner in which a refrigeration cycle is configured with a single HFC32 refrigerant or 70% or more of all refrigerants, in a microchannel heat exchanger employed in an indoor heat exchanger or an outdoor heat exchanger When the HFC410A is used, the diameter D32 when the HFC32 refrigerant is single or 70% or more of the diameter D410 of the refrigerant flow path 8 is 0.85 * D410 <D32 <0.95 * D410. The size of the range.

これにより、扁平伝熱管の冷媒流路サイズが小さくなることで、扁平伝熱管を小さくすることができ、マイクロチャネル型熱交換器の小型化が図れる。また、マイクロチャネル熱交換器が小さくなることで、材料費の低減が可能である。また、熱交換器の内容量が小さくなることで、必要冷媒量が低減され、冷媒費用削減および万が一の冷媒漏洩時の環境への負荷低減が図れる。   As a result, the flat heat transfer tube can be made smaller by reducing the refrigerant flow path size of the flat heat transfer tube, and the microchannel heat exchanger can be downsized. In addition, material costs can be reduced by reducing the size of the microchannel heat exchanger. In addition, since the internal capacity of the heat exchanger is reduced, the required amount of refrigerant can be reduced, the refrigerant cost can be reduced, and the load on the environment when the refrigerant leaks can be reduced.

ここで、マイクロチャネル型熱交換器の扁平伝熱管の冷媒流路サイズを小さくした場合に、冷媒回路における圧力損失が増大し、必要な能力が出ない、効率が落ちる、などの影響が出る可能性が考えられるが、上記したように圧力損失を、HFC410Aを利用した場合の圧力損失と同等の圧力損失レベルにおさえることができる。   Here, when the refrigerant flow path size of the flat heat transfer tube of the microchannel heat exchanger is reduced, the pressure loss in the refrigerant circuit increases, which may affect the required capacity and reduce efficiency. However, as described above, the pressure loss can be suppressed to a pressure loss level equivalent to the pressure loss when the HFC 410A is used.

1 熱交換器
2 冷媒上部ヘッダ
3 冷媒下部ヘッダ
4 熱交換器伝熱管(断面扁平形状)
5 熱交フィン
6 冷媒上部出入口
7 冷媒下部出入口
8 冷媒流路チャネル
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Refrigerant upper header 3 Refrigerant lower header 4 Heat exchanger heat exchanger tube (cross-sectional flat shape)
5 Heat Exchange Fin 6 Refrigerant Upper Entrance / Reception 7 Refrigerant Lower Entrance / Reception 8 Refrigerant Flow Channel

Claims (1)

室内熱交換器を備えた室内機と室外熱交換器を備えた室外機とが冷媒配管により接続されるとともに、
HFC32冷媒が単一で又は全冷媒のうち70%以上が封入されて冷凍サイクルが構成され、前記室内熱交換器又は前記室外熱交換器にはマイクロチャネル熱交換器が採用され、
該マイクロチャネル熱交換器は、
内部に冷媒を流す第1のパイプと、
該第1のパイプより下側に配置され、内部に冷媒を流す第2のパイプと、
前記第1のパイプと前記第2のパイプとを接続する複数の扁平伝熱管と、を備え、
これらの扁平伝熱管は、アルミニウム製またはアルミニウム合金製により構成されるとともに、扁平伝熱管の内部には、複数の冷媒流路が形成され
前記第1のパイプからの冷媒は、前記複数の冷媒流路のそれぞれの流入部から流入し、それぞれの冷媒流路を流れた後に前記第2のパイプに流れるように構成された空気調和機において、
前記マイクロチャネル熱交換器の前記冷媒流路は、HFC410Aを採用した場合の冷媒流路の径D410に対してHFC32冷媒を単一、又は70%以上が封入された場合の径D32を、0.85*D410<D32<0.95*D410の範囲のサイズとすることを特徴とする空気調和機。
An indoor unit provided with an indoor heat exchanger and an outdoor unit provided with an outdoor heat exchanger are connected by a refrigerant pipe,
A refrigeration cycle is configured with a single HFC32 refrigerant or 70% or more of all refrigerants, and a microchannel heat exchanger is employed for the indoor heat exchanger or the outdoor heat exchanger,
The microchannel heat exchanger is
A first pipe for flowing refrigerant into the interior;
A second pipe disposed below the first pipe and flowing a refrigerant therein;
A plurality of flat heat transfer tubes connecting the first pipe and the second pipe;
These flat heat transfer tubes are made of aluminum or aluminum alloy, and a plurality of refrigerant flow paths are formed inside the flat heat transfer tubes, and the refrigerant from the first pipe is the refrigerant flow. In an air conditioner configured to flow into the second pipe after flowing from the respective inflow portions of the path and flowing through the respective refrigerant flow paths,
The refrigerant flow path of the microchannel heat exchanger has a diameter D32 when the HFC32 refrigerant is enclosed in a single or 70% or more with respect to the diameter D410 of the refrigerant flow path when HFC410A is used, and is 0. An air conditioner having a size in the range of 85 * D410 <D32 <0.95 * D410.
JP2013063195A 2013-03-26 2013-03-26 Air conditioner Pending JP2014190547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013063195A JP2014190547A (en) 2013-03-26 2013-03-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013063195A JP2014190547A (en) 2013-03-26 2013-03-26 Air conditioner

Publications (1)

Publication Number Publication Date
JP2014190547A true JP2014190547A (en) 2014-10-06

Family

ID=51836985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013063195A Pending JP2014190547A (en) 2013-03-26 2013-03-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP2014190547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089137A (en) * 2021-02-08 2021-06-10 株式会社ガスター Heat radiation unit and heating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089137A (en) * 2021-02-08 2021-06-10 株式会社ガスター Heat radiation unit and heating system
JP7162089B2 (en) 2021-02-08 2022-10-27 株式会社ガスター Heat dissipation unit Heating system

Similar Documents

Publication Publication Date Title
JP6749398B2 (en) Heat exchangers and air conditioning systems
US11009295B2 (en) Extruded aluminum flat multi-hole tube and heat exchanger
EP3021064B1 (en) Heat pump device
Chen et al. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
EP3051244B1 (en) Heat exchanger and air conditioner using same
AU2016200845A1 (en) Water Cooled Microchannel Condenser
WO2018131309A1 (en) Air conditioner
JP6678235B2 (en) Heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JP2014190547A (en) Air conditioner
JP6273838B2 (en) Heat exchanger
JP2014137172A (en) Heat exchanger and refrigerator
JP2005098603A (en) Air conditioner of natural circulation method
JP2008070106A (en) Condenser and radiator in air conditioning cooling system
JP2012167912A (en) Air conditioner
JP6415597B2 (en) Refrigeration cycle equipment
JP2017138053A (en) Battery cooling device
JP7296264B2 (en) Heat exchanger and refrigeration cycle equipment
JP5686753B2 (en) Air conditioner
US20230033824A1 (en) Air conditioning system, and heat exchange system for heat dissipation of electronic control assembly of air conditioning system
JP2018071895A (en) Heat exchanger
Palaskar et al. Review on Performance of Different Micro-channel Condensers
JP2014085047A (en) Parallel flow type heat exchanger
JP6026871B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD