JP2014185892A - Dehumidification system in turbine condenser - Google Patents

Dehumidification system in turbine condenser Download PDF

Info

Publication number
JP2014185892A
JP2014185892A JP2013059812A JP2013059812A JP2014185892A JP 2014185892 A JP2014185892 A JP 2014185892A JP 2013059812 A JP2013059812 A JP 2013059812A JP 2013059812 A JP2013059812 A JP 2013059812A JP 2014185892 A JP2014185892 A JP 2014185892A
Authority
JP
Japan
Prior art keywords
air
condenser
desiccant rotor
regeneration
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013059812A
Other languages
Japanese (ja)
Inventor
Junichi Igawa
潤一 井川
Tadatsugu Takita
忠嗣 瀧田
Shigemitsu Shiina
重充 椎名
Nobuhiko Kubotani
信彦 久保谷
Yosuke Mukai
洋介 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013059812A priority Critical patent/JP2014185892A/en
Publication of JP2014185892A publication Critical patent/JP2014185892A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a dehumidification system in a turbine condenser, not causing air leakage from a dehumidification device using a desiccant rotor for dehumidify air in the condenser and allowing stable dehumidification effect to be obtained without depending on air humidity change inside the condenser, in maintenance construction in the turbine condenser of a nuclear power plant.SOLUTION: The dehumidification system in the turbine condenser includes: an air suction port for sucking air in the condenser; an HEPA filter connected to the air suction port via a duct; a dehumidification device having a desiccant rotor connected to a subsequent stage of the HEPA filter; a blower fan connected to a subsequent stage of the dehumidification device; a reproduction heater having a duct connecting an exhaust side of the blower fan and an exhaust port installed in the condenser, and supplying heated air to a reproduction part of the desiccant rotor; and a reproduction fan for sucking exhaust air from the reproduction part of the desiccant rotor.

Description

本発明は、原子力発電所のタービン復水器内を除湿する除湿装置に係り、特に吸湿剤がドラム状に形成されたデシカントロータを用いた除湿装置に関する。   The present invention relates to a dehumidifying device for dehumidifying the inside of a turbine condenser of a nuclear power plant, and more particularly to a dehumidifying device using a desiccant rotor in which a hygroscopic agent is formed in a drum shape.

一般的な沸騰水型原子力発電所のフローは図1に示すように、圧力容器10内で発生した蒸気によって高圧タービン20、低圧タービン30を回転させて発電機50により発電し、低圧タービン30で使用された蒸気を復水器60で水に戻した後、低圧給水加熱器110、高圧給水加熱器130によって加熱して圧力容器10に戻すよう構成されている。復水器60内には海水と熱交換するための熱交換チューブ80が設置されているが、この熱交換チューブ80の腐食対策等のメンテナンスのために復水器60を開放して作業員が内部に入って作業を行う場合がある。   As shown in FIG. 1, the flow of a general boiling water nuclear power plant is to generate power by a generator 50 by rotating a high-pressure turbine 20 and a low-pressure turbine 30 by steam generated in a pressure vessel 10. After the used steam is returned to water by the condenser 60, the steam is heated by the low-pressure feed water heater 110 and the high-pressure feed water heater 130 and returned to the pressure vessel 10. A heat exchange tube 80 for exchanging heat with seawater is installed in the condenser 60. For maintenance such as countermeasures against corrosion of the heat exchange tube 80, the condenser 60 is opened so that workers can There is a case to work inside.

この作業は、復水器60内から水を排出した状態で行われるが、開放したばかりの復水器60内の湿度は約90%と高く、そのため作業中に熱交換チューブ80の腐食が進行するのを防止すること、および作業員の作業環境改善のため、除湿と放射性塵埃対策を行う必要がある。   This operation is performed in a state where water is discharged from the condenser 60, but the humidity in the condenser 60 which has just been opened is as high as about 90%, and therefore the corrosion of the heat exchange tube 80 proceeds during the operation. In order to prevent this and to improve the working environment of workers, it is necessary to take dehumidification and countermeasures against radioactive dust.

同様な環境における除湿と放射性塵埃対策としては、圧力抑制室内(サプレッションチェンバ内)の塗膜を更新する再塗装工事を対象として、特許文献1にサプレッションチェンバ内の空気を吸引して該空気に随伴する粉塵を捕捉し、粉塵除去後の空気を除湿してサプレッションチェンバ内へ送給する構成が開示されている。ただし、除湿器についての具体的な記載は無く、また、ファンの後段に除湿器が配置される押し込み方式のため、デシカントロータのように圧力損失の大きな装置の場合には空気の漏れが生じる虞がある。   As countermeasures for dehumidification and radioactive dust in a similar environment, the air in the suppression chamber is sucked into Patent Document 1 and the air is accompanied by the repainting work for renewing the coating film in the pressure suppression chamber (in the suppression chamber). The structure which capture | acquires the dust to perform, dehumidifies the air after dust removal, and is supplied in a suppression chamber is disclosed. However, there is no specific description of the dehumidifier, and because of the push-in method in which the dehumidifier is arranged after the fan, air leakage may occur in the case of a device with a large pressure loss such as a desiccant rotor. There is.

一方、特許文献2には原子炉建屋内の空気を取り込んで除湿し前記圧力抑制室内に供給する乾式の除湿装置(前記デシカントロータもその一種)と、この除湿装置の吐出側と吸込側とを接続するバイパスラインと、このバイパスラインで循環させる除湿空気量を調整することによって前記圧力抑制室内に供給する除湿空気量を制御する構成が開示されている。上記文献と同様に、除湿装置に対しては押し込み方式となり、原子炉建屋内の塵埃の少ない空気であっても漏洩の虞があり好ましくない。   On the other hand, Patent Document 2 describes a dry-type dehumidifier that takes in air in a reactor building, dehumidifies it, and supplies it to the pressure suppression chamber (the desiccant rotor is also a kind thereof), and a discharge side and a suction side of the dehumidifier. A configuration is disclosed in which the amount of dehumidified air supplied into the pressure suppression chamber is controlled by adjusting the bypass line to be connected and the amount of dehumidified air circulated through the bypass line. Similar to the above document, the dehumidifying device is pushed in, and even air with little dust in the reactor building is not preferable because there is a risk of leakage.

特開2000-314794号JP 2000-314794 A 特開2004-226249号JP 2004-226249 A

本発明は、上記の特許文献1および2に記載された問題点を生じないよう、デシカントロータを用いた除湿装置からの空気漏洩を生じないタービン復水器内除湿システムを提供することを課題とする。   It is an object of the present invention to provide a turbine condenser dehumidification system that does not cause air leakage from a dehumidifier using a desiccant rotor so as not to cause the problems described in Patent Documents 1 and 2 above. To do.

また、復水器内の空気の湿度変化によらず安定したデシカントロータの除湿効果を得ることを課題とする。   Another object is to obtain a stable desiccant rotor dehumidifying effect regardless of the humidity change of the air in the condenser.

前記課題を解決するために、本発明に係るタービン復水器内除湿システムは、復水器内の空気を吸引する吸気口と、該吸気口にダクトを介して接続したHEPAフィルタと、該HEPAフィルタの後段に接続したデシカントロータを有する除湿装置と、該除湿装置の後段に接続した送風ファンと、該送風ファンの排気側と前記復水器内に設置した排気口とを接続するダクトを有するとともに、該デシカントロータの再生部に加熱空気を供給する再生用ヒータと、該デシカントロータの再生部からの排気を吸引する再生用ファンを有することを特徴とする。これにより、デシカントロータに流入する空気は全て吸引によるためデシカントロータからの空気の漏えいは防止できる。   In order to solve the above problems, a dehumidifying system in a turbine condenser according to the present invention includes an intake port for sucking air in the condenser, a HEPA filter connected to the intake port via a duct, and the HEPA A dehumidifying device having a desiccant rotor connected to the subsequent stage of the filter, a blower fan connected to the subsequent stage of the dehumidifying device, and a duct connecting the exhaust side of the blower fan and the exhaust port installed in the condenser And a regeneration heater for supplying heated air to the regeneration portion of the desiccant rotor, and a regeneration fan for sucking exhaust gas from the regeneration portion of the desiccant rotor. Thereby, since all the air flowing into the desiccant rotor is sucked, leakage of air from the desiccant rotor can be prevented.

また、本発明に係るタービン復水器内除湿システムは、復水器内の空気を吸引する吸気口と、該吸気口にダクトを介して接続したHEPAフィルタと、該HEPAフィルタの後段に接続したデシカントロータを有する除湿装置と、該除湿装置の後段に接続した送風ファンと、該送風ファンの排気側と前記復水器内に設置した排気口とを接続するダクトと、該デシカントロータの再生部に加熱空気を供給する再生用ヒータと、該デシカントロータの再生部からの排気を吸引する再生用ファンを有するとともに、該送風ファンの上流側と該再生用ファンの上流側の差圧を計測する差圧計測器を有することを特徴とする。これにより、送風ファンの上流側の圧力を再生ファンの上流側より負圧に保つことが可能となり、タービン復水器内の空気がデシカントロータ内部を通過して再生用ファンから漏出することを防止できる。   Further, the turbine condenser dehumidification system according to the present invention is connected to an intake port for sucking air in the condenser, a HEPA filter connected to the intake port via a duct, and a subsequent stage of the HEPA filter. A dehumidifying device having a desiccant rotor, a blower fan connected to a subsequent stage of the dehumidifying device, a duct connecting an exhaust side of the blower fan and an exhaust port installed in the condenser, and a regeneration unit of the desiccant rotor A regenerative heater for supplying heated air to the regenerator and a regenerative fan for sucking exhaust from the regenerative portion of the desiccant rotor, and measuring the differential pressure between the upstream side of the blower fan and the upstream side of the regenerative fan It has a differential pressure measuring instrument. As a result, the pressure on the upstream side of the blower fan can be kept negative from the upstream side of the regeneration fan, and the air in the turbine condenser is prevented from leaking from the regeneration fan through the inside of the desiccant rotor. it can.

また、本発明に係るタービン復水器内除湿システムは、復水器内の空気を吸引する吸気口と、該吸気口にダクトを介して接続したHEPAフィルタと、該HEPAフィルタの後段に接続した空気加熱用ヒータと、該空気加熱用ヒータの後段に接続したデシカントロータを有する除湿装置と、該除湿装置の後段に接続した送風ファンと、該送風ファンの排気側と前記復水器内に設置した排気口とを接続するダクトと、該デシカントロータの再生部に加熱空気を供給する再生用ヒータと、該デシカントロータの再生部からの排気を吸引する再生用ファンを有するとともに、該送風ファンの上流側と該再生用ファンの上流側の差圧を計測する差圧計測器を有することを特徴とする。これにより、タービン復水器内の湿度が変化した場合でも空気加熱用ヒータによって湿度変化を低減できるため安定したデシカントロータの除湿効果を得ることができる。   Further, the turbine condenser dehumidification system according to the present invention is connected to an intake port for sucking air in the condenser, a HEPA filter connected to the intake port via a duct, and a subsequent stage of the HEPA filter. A heater for air heating, a dehumidifying device having a desiccant rotor connected to the subsequent stage of the air heating heater, a blower fan connected to the subsequent stage of the dehumidifying device, an exhaust side of the blower fan, and installed in the condenser A duct for connecting the exhaust port, a regeneration heater for supplying heated air to the regeneration portion of the desiccant rotor, a regeneration fan for sucking exhaust gas from the regeneration portion of the desiccant rotor, It has a differential pressure measuring device for measuring a differential pressure between the upstream side and the upstream side of the regeneration fan. Thereby, even when the humidity in the turbine condenser changes, the humidity change can be reduced by the air heating heater, so that a stable desiccant rotor dehumidifying effect can be obtained.

また、本発明に係るタービン復水器内除湿システムは、復水器内の空気を吸引する吸気口と、該吸気口にダクトを介して接続したHEPAフィルタと、該HEPAフィルタの後段に接続した空気加熱用ヒータと、該空気加熱用ヒータの後段に接続したデシカントロータを有する除湿装置と、該除湿装置の後段に並列に接続した複数の送風ファンと、該複数の送風ファンの排気側と前記復水器内に設置した排気口とを接続するダクトと、該デシカントロータの再生部に加熱空気を供給する再生用ヒータと、該デシカントロータの再生部からの排気を吸引する再生用ファンを有するとともに、該送風ファンの上流側と該再生用ファンの上流側の差圧を計測する差圧計測器を有することを特徴とする。これにより、タービン復水器内の塵埃によるHEPAフィルタやデシカントロータの圧力が増加した場合でも、送風ファンの運転台数を制御することで一定の送風量を得ることができるため安定したデシカントロータの除湿効果を得ることができる。   Further, the turbine condenser dehumidification system according to the present invention is connected to an intake port for sucking air in the condenser, a HEPA filter connected to the intake port via a duct, and a subsequent stage of the HEPA filter. A heater for air heating, a dehumidifying device having a desiccant rotor connected to a subsequent stage of the heater for air heating, a plurality of blower fans connected in parallel to a subsequent stage of the dehumidifying apparatus, an exhaust side of the plurality of blower fans, and the A duct connecting an exhaust port installed in the condenser, a regeneration heater for supplying heated air to the regeneration portion of the desiccant rotor, and a regeneration fan for sucking exhaust air from the regeneration portion of the desiccant rotor And a differential pressure measuring device for measuring a differential pressure between the upstream side of the blower fan and the upstream side of the regeneration fan. As a result, even when the pressure of the HEPA filter or the desiccant rotor increases due to dust in the turbine condenser, it is possible to obtain a constant amount of air flow by controlling the number of operating fans, so stable dehumidification of the desiccant rotor An effect can be obtained.

上記のような特徴を有するタービン復水器内除湿システムによれば、タービン復水器内の空気の除湿を閉ループで行うことができるため建屋内への放射性物質の拡散を防止できる。また、除湿装置の運転による湿度低下や天候の変化によるタービン復水器内の除湿変化においても安定したデシカントロータの除湿効果が得られる。   According to the turbine condenser dehumidification system having the above-described features, the air in the turbine condenser can be dehumidified in a closed loop, so that the diffusion of radioactive substances into the building can be prevented. In addition, a stable desiccant rotor dehumidifying effect can be obtained even in a dehumidifying change in the turbine condenser due to a decrease in humidity due to operation of the dehumidifying device or a change in weather.

沸騰水型原子力発電所のフローを示す概略図。Schematic showing the flow of a boiling water nuclear power plant. 本発明の実施例1の構成を示す概略図。Schematic which shows the structure of Example 1 of this invention. 本発明の実施例2の構成を示す概略図。Schematic which shows the structure of Example 2 of this invention. 本発明の実施例3の構成を示す概略図。Schematic which shows the structure of Example 3 of this invention. 本発明の実施例4の構成を示す概略図。Schematic which shows the structure of Example 4 of this invention. 本発明の実施例4の配置を示す平面図。The top view which shows arrangement | positioning of Example 4 of this invention.

図2は本発明の実施例1に係るタービン復水器内除湿システムの構成を示す概略図である。
復水器60内の湿度の高い空気を吸引する吸気口290と、該吸気口290にダクト300を介して接続したHEPAフィルタ220と、該HEPAフィルタ220の後段に接続したデシカントロータ240を有する除湿装置210と、該除湿装置210の後段に接続した送風ファン250と、該送風ファン250の排気側と前記復水器内に設置した排気口280とを接続するダクトを有するとともに、該デシカントロータ240の再生部245に加熱空気を供給する再生用ヒータ270と、該デシカントロータ240の再生部245からの排気を吸引する再生用ファン260を有している。
FIG. 2 is a schematic diagram illustrating the configuration of the dehumidifying system in the turbine condenser according to the first embodiment of the present invention.
Dehumidification having an intake port 290 for sucking high-humidity air in the condenser 60, a HEPA filter 220 connected to the intake port 290 via a duct 300, and a desiccant rotor 240 connected to the subsequent stage of the HEPA filter 220 The desiccant rotor 240 has a device 210, a blower fan 250 connected to the subsequent stage of the dehumidifying device 210, a duct connecting the exhaust side of the blower fan 250 and the exhaust port 280 installed in the condenser. A regeneration heater 270 that supplies heated air to the regeneration unit 245 and a regeneration fan 260 that sucks exhaust air from the regeneration unit 245 of the desiccant rotor 240.

復水器60を開放した後、メンテナンス作業の前にタービン復水器60内の水は排出されるが、多少なりとも水分が残留することから復水器60内の湿度は約90%(温度は30〜40℃)と高い状態にあり、また、復水器60内には放射性の塵埃も存在する。そこで、復水器60内の空気をHEPAフィルタ220及び除湿装置210を含む上記系統に通過させて除湿と塵埃除去を行うことで、徐々に湿度を25%程度まで低下させるとともに塵埃濃度も低下させて作業環境を改善する。デシカントロータ240は円形のドラム状に吸着剤が成形されたもので、空気中の水分を吸着して乾燥空気を作る吸着部と、吸着した水分を熱風によって放出する再生部とにシール構造によって区分されており、1時間に約8回転のゆっくりとした速度で回転している。   After the condenser 60 is opened, the water in the turbine condenser 60 is discharged before the maintenance work, but the moisture in the condenser 60 is about 90% (temperature) because some moisture remains. 30 to 40 ° C.), and there is also radioactive dust in the condenser 60. Therefore, by passing the air in the condenser 60 through the system including the HEPA filter 220 and the dehumidifying device 210 to perform dehumidification and dust removal, the humidity is gradually reduced to about 25% and the dust concentration is also reduced. To improve the working environment. The desiccant rotor 240 is formed by adsorbing an adsorbent in a circular drum shape. The desiccant rotor 240 is divided by a seal structure into an adsorption part that adsorbs moisture in the air to produce dry air and a regeneration part that releases the adsorbed moisture by hot air. It is rotating at a slow speed of about 8 revolutions per hour.

上記シール構造には回転する吸着剤との間に僅かな隙間を有することから、送風ファン250によって復水器60内に戻す空気が再生用ファン260によって排出される系統に漏れ出さないよう送風ファン250側をより負圧に維持している。   The seal structure has a slight gap between the rotating adsorbent and the blower fan so that the air returned into the condenser 60 by the blower fan 250 does not leak into the system discharged by the regeneration fan 260. The 250 side is maintained at a negative pressure.

HEPAフィルタ220は定格風量で粒径が0.3μmの粒子に対して99.97%以上の粒子捕集率を有するものであるが、捕集されなかった粒子はデシカントロータ240に付着する可能性がある。そのため、再生用の加熱空気を押し込み式にすると除湿装置のケーシングから加熱空気とともにデシカントロータ240に付着した放射性塵埃が除湿装置の周辺に漏出する可能性があるため、再生用ファン260は吸引による方式とすることが望ましい。   Although the HEPA filter 220 has a particle collection rate of 99.97% or more with respect to particles having a rated air volume and a particle size of 0.3 μm, particles that are not collected may adhere to the desiccant rotor 240. Therefore, when the regeneration heating air is pushed in, radioactive dust attached to the desiccant rotor 240 together with the heating air from the casing of the dehumidification device may leak to the periphery of the dehumidification device. Is desirable.

図3は本発明の実施例2に係るタービン復水器内除湿システムの構成を示す概略図である。
復水器60内の空気を吸引する吸気口290と、該吸気口290にダクト300を介して接続したHEPAフィルタ220と、該HEPAフィルタ220の後段に接続したデシカントロータ240を有する除湿装置210と、該除湿装置210の後段に接続した送風ファン250と、該送風ファン250の排気側と前記復水器60内に設置した排気口280とを接続するダクトと、該デシカントロータ240の再生部245に加熱空気を供給する再生用ヒータ270と、該デシカントロータ240の再生部245からの排気を吸引する再生用ファン260を有するとともに、該送風ファン250の上流側と該再生用ファン260の上流側の差圧を計測する差圧計測器310を有している。
FIG. 3 is a schematic diagram showing the configuration of a turbine condenser dehumidification system according to Embodiment 2 of the present invention.
A dehumidifier 210 having an intake port 290 for sucking air in the condenser 60, a HEPA filter 220 connected to the intake port 290 via a duct 300, and a desiccant rotor 240 connected to a subsequent stage of the HEPA filter 220; The blower fan 250 connected to the subsequent stage of the dehumidifier 210, the duct connecting the exhaust side of the blower fan 250 and the exhaust port 280 installed in the condenser 60, and the regeneration unit 245 of the desiccant rotor 240 A regenerative heater 270 for supplying heated air to the regenerator, a regenerative fan 260 for sucking exhaust gas from the regenerator 245 of the desiccant rotor 240, and an upstream side of the blower fan 250 and an upstream side of the regenerative fan 260 The differential pressure measuring device 310 that measures the differential pressure is provided.

実施例1との構成の違いは差圧計測器310を有する点である。送風ファン250と再生用ファン260それぞれの風量と圧力をパラメータとする運転条件をあらかじめ設定しておくことも考えられるが、前記のように復水器60内の空気の湿度は種々の要因で変化するためリアルタイムで送風ファン250の上流側と再生用ファン260の上流側の差圧を計測して送風ファン250側をより負圧に維持することが有効である。なお、両者の負圧関係の維持のために送風ファン250の運転条件を変化させると復水器60内への乾燥空気の供給量が変化するため、好ましくは再生用ファン260の運転条件を変化させると良いが、これに伴い再生用ヒータ270の運転条件も調整することになる。   A difference in configuration from the first embodiment is that a differential pressure measuring device 310 is provided. Although it is conceivable to previously set operating conditions using the air volume and pressure of the blower fan 250 and the regeneration fan 260 as parameters, the humidity of the air in the condenser 60 varies depending on various factors as described above. Therefore, it is effective to measure the differential pressure between the upstream side of the blower fan 250 and the upstream side of the regeneration fan 260 in real time to maintain the blower fan 250 side at a more negative pressure. Note that if the operating condition of the blower fan 250 is changed in order to maintain the negative pressure relationship between the two, the amount of dry air supplied into the condenser 60 changes, so the operating condition of the regeneration fan 260 is preferably changed. However, the operating conditions of the regeneration heater 270 are also adjusted accordingly.

図4は本発明の実施例3に係るタービン復水器内除湿システムの構成を示す概略図である。
復水器60内の空気を吸引する吸気口290と、該吸気口290にダクト300を介して接続したHEPAフィルタ220と、該HEPAフィルタ220の後段に接続した空気加熱用ヒータ230と、該空気加熱用ヒータ230の後段に接続したデシカントロータ240を有する除湿装置210と、該除湿装置210の後段に接続した送風ファン250と、該送風ファン250の排気側と前記復水器60内に設置した排気口280とを接続するダクトと、該デシカントロータ240の再生部245に加熱空気を供給する再生用ヒータ270と、該デシカントロータ240の再生部245からの排気を吸引する再生用ファン260を有するとともに、該送風ファン250の上流側と該再生用ファン260の上流側の差圧を計測する差圧計測器310を有している。
FIG. 4 is a schematic diagram showing the configuration of a turbine condenser dehumidification system according to Embodiment 3 of the present invention.
An intake port 290 for sucking air in the condenser 60, a HEPA filter 220 connected to the intake port 290 via a duct 300, an air heater 230 connected to a subsequent stage of the HEPA filter 220, and the air A dehumidifier 210 having a desiccant rotor 240 connected to the rear stage of the heater 230, a blower fan 250 connected to the rear stage of the dehumidifier 210, the exhaust side of the blower fan 250, and the condenser 60 are installed. A duct connecting the exhaust port 280, a regeneration heater 270 for supplying heated air to the regeneration unit 245 of the desiccant rotor 240, and a regeneration fan 260 for sucking exhaust from the regeneration unit 245 of the desiccant rotor 240 are provided. In addition, a differential pressure measuring device 3 that measures a differential pressure between the upstream side of the blower fan 250 and the upstream side of the regeneration fan 260. And has a 0.

実施例2との構成の違いは、空気加熱用ヒータ230を有する点である。前記のように復水器60内の空気の湿度が変化することから、デシカントロータ240(例えば1時間に約8回転の回転数)、再生用ヒータ270(例えば熱量)、および再生用ファン260(例えば流量)などの機器の運転条件を変化させることが必要であるが、それぞれの運転効率が高い定格値近辺で一定に保つことが望ましい。そのためには、除湿装置210に流入する空気の湿度を一定にすることが有効であり、空気加熱用ヒータ230によって復水器60内の空気の湿度が大きく変動しないよう制御して、除湿システム全体の運転効率を向上させている。   The difference from the configuration of the second embodiment is that an air heating heater 230 is provided. Since the humidity of the air in the condenser 60 changes as described above, the desiccant rotor 240 (for example, about 8 revolutions per hour), the regeneration heater 270 (for example, the amount of heat), and the regeneration fan 260 ( For example, it is necessary to change the operating conditions of the equipment, such as the flow rate, but it is desirable to keep the respective operating efficiency constant around the rated value with high operating efficiency. For this purpose, it is effective to keep the humidity of the air flowing into the dehumidifying device 210 constant, and the air heating heater 230 controls the humidity of the air in the condenser 60 so as not to fluctuate greatly, so that the entire dehumidifying system is The driving efficiency is improved.

図5は本発明の実施例4に係るタービン復水器内除湿システムの構成を示す概略図である。
復水器60内の空気を吸引する吸気口290と、該吸気口290にダクト300を介して接続したHEPAフィルタ220と、該HEPAフィルタ220の後段に接続した空気加熱用ヒータ230と、該空気加熱用ヒータ230の後段に接続したデシカントロータ240を有する除湿装置210と、該除湿装置210の後段に並列に接続した複数の送風ファン250と、該複数の送風ファン250の排気側と前記復水器60内に設置した排気口280とを接続するダクトと、該デシカントロータ240の再生部245に加熱空気を供給する再生用ヒータ270と、該デシカントロータ240の再生部245からの排気を吸引する再生用ファン260を有するとともに、該送風ファン250の上流側と該再生用ファン260の上流側の差圧を計測する差圧計測器310を有している。
FIG. 5 is a schematic diagram showing a configuration of a dehumidifying system in a turbine condenser according to a fourth embodiment of the present invention.
An intake port 290 for sucking air in the condenser 60, a HEPA filter 220 connected to the intake port 290 via a duct 300, an air heater 230 connected to a subsequent stage of the HEPA filter 220, and the air A dehumidifier 210 having a desiccant rotor 240 connected to the rear stage of the heater 230, a plurality of blower fans 250 connected in parallel to the rear stage of the dehumidifier 210, the exhaust side of the plurality of blower fans 250 and the condensate A duct connecting the exhaust port 280 installed in the chamber 60, a regeneration heater 270 for supplying heated air to the regeneration unit 245 of the desiccant rotor 240, and exhaust from the regeneration unit 245 of the desiccant rotor 240 While having a regeneration fan 260, the differential pressure between the upstream side of the blower fan 250 and the upstream side of the regeneration fan 260 is measured. And a differential pressure measuring instrument 310.

実施例3との構成の違いは、送風ファン250を複数台並列に接続した点である。前記のように復水器60内の湿度に応じて空気加熱用ヒータ230を制御すると湿度の変動は低減できるが空気の温度とともに風量が変化する。また、HEPAフィルタ220での塵埃捕集の影響で圧力損失が増加するなどにより運転時間の増加とともに風量が低下する。そのため、送風ファン250の風量(出力)を変化させる必要があるが、送風ファン250の定格運転条件からはずれて運転効率が下がる場合があるため、送風ファン250を並列運転することでシステム全体の効率向上を達成している。   The difference from the third embodiment is that a plurality of blower fans 250 are connected in parallel. As described above, when the air heater 230 is controlled according to the humidity in the condenser 60, the fluctuation in humidity can be reduced, but the air volume changes with the temperature of the air. Further, the air volume decreases as the operating time increases due to an increase in pressure loss due to the influence of dust collection by the HEPA filter 220. Therefore, although it is necessary to change the air volume (output) of the blower fan 250, the efficiency of the entire system can be improved by operating the blower fan 250 in parallel because the blower fan 250 may deviate from the rated operation condition and the operation efficiency may decrease. Improvement has been achieved.

図6は実施例4を行った際のタービン復水器内除湿システムの平面配置を示したものであり、低圧タービン(復水器)の数だけ同様に配置される。復水器60の寸法は縦横数十メートル規模であり、この空間内の空気を効率良く除湿するため対角線上に吸気口290と排気口280を配置している。また、吸気口290からHEPAフィルタ220までの経路には放射性塵埃が含まれるためこの経路は極力短くすることが好ましい。そのため、吸気口290は除湿装置210などが配置される場所に近いところに配置し、排気口280はその対角線上(除湿装置210から遠い位置)に配置している。なお、再生用ファン260からの排気は建屋自体の換気系統の吸気口(図示せず)の近辺とすることで、湿分を多く含む空気が建屋内に残留することを防止できる。   FIG. 6 shows a planar arrangement of the dehumidifying system in the turbine condenser when the fourth embodiment is performed, and the arrangement is the same as the number of low-pressure turbines (condensers). The size of the condenser 60 is several tens of meters in length and width, and the intake port 290 and the exhaust port 280 are arranged on a diagonal line in order to efficiently dehumidify the air in this space. Further, since the path from the inlet 290 to the HEPA filter 220 contains radioactive dust, it is preferable to shorten this path as much as possible. Therefore, the intake port 290 is disposed near a place where the dehumidifier 210 and the like are disposed, and the exhaust port 280 is disposed on the diagonal line (a position far from the dehumidifier 210). Note that exhaust from the regeneration fan 260 is in the vicinity of an air inlet (not shown) of the ventilation system of the building itself, so that moisture containing a large amount of moisture can be prevented from remaining in the building.

10………圧力容器、20………高圧タービン、30………低圧タービン、40………低圧タービン、50………発電機、60………復水器、70………循環ポンプ、80………熱交換チューブ、90………給水配管、95………排水配管、100………復水ポンプ、110………低圧給水加熱器、120………給水ポンプ、130………高圧給水加熱器、200………燃料棒、210………除湿装置、220………HEPAフィルタ、230………空気加熱用ヒータ、240………デシカントロータ、245………再生部、250………送風ファン、260………再生用ファン、270………再生用ヒータ、280………排気口、290………吸気口、300………ダクト、310………差圧計測器。 10 ......... pressure vessel, 20 ......... high pressure turbine, 30 ......... low pressure turbine, 40 ......... low pressure turbine, 50 ......... generator, 60 ......... condenser, 70 ......... circulation pump, 80 ......... Heat exchange tube, 90 ......... Water supply piping, 95 ......... Drain piping, 100 ......... Condensate pump, 110 ......... Low pressure feed water heater, 120 ......... Water supply pump, 130 ......... High pressure feed water heater, 200 ......... Fuel rod, 210 ......... Dehumidifier, 220 ......... HEPA filter, 230 ...... Heater for air heating, 240 ......... Desicant rotor, 245 ......... Regeneration unit, 250 ......... Blower fan, 260 ......... Regeneration fan, 270 ......... Regeneration heater, 280 ...... Exhaust port, 290 ...... Intake port, 300 ...... Duct, 310 ...... Differential pressure measuring instrument .

Claims (4)

原子力発電所のタービン復水器内の空気を吸引する吸気口と、該吸気口にダクトを介して接続したHEPAフィルタと、該HEPAフィルタの後段に接続したデシカントロータを有する除湿装置と、該除湿装置の後段に接続した送風ファンと、該送風ファンの排気側と前記復水器内に設置した排気口とを接続するダクトを有するとともに、該デシカントロータの再生部に加熱空気を供給する再生用ヒータと、該デシカントロータの再生部からの排気を吸引する再生用ファンを有することを特徴とするタービン復水器内除湿システム。 An intake port for sucking air in a turbine condenser of a nuclear power plant, a HEPA filter connected to the intake port via a duct, a dehumidifying device having a desiccant rotor connected to a subsequent stage of the HEPA filter, and the dehumidification device A regenerative fan for supplying heated air to the regeneration section of the desiccant rotor, having a blower fan connected to the rear stage of the device, a duct connecting the exhaust side of the blower fan and an exhaust port installed in the condenser A dehumidifying system in a turbine condenser having a heater and a regeneration fan for sucking exhaust gas from a regeneration part of the desiccant rotor. 前記送風ファンの上流側と前記再生用ファンの上流側の差圧を計測する差圧計測器を有することを特徴とする請求項1に記載のタービン復水器内除湿システム。 The dehumidifying system in a turbine condenser according to claim 1, further comprising a differential pressure measuring device that measures a differential pressure between the upstream side of the blower fan and the upstream side of the regeneration fan. 前記HEPAフィルタと前記除湿装置の間に空気加熱用ヒータを設けたことを特徴とする請求項1または2に記載のタービン復水器内除湿システム。 The turbine condenser dehumidification system according to claim 1 or 2, wherein an air heating heater is provided between the HEPA filter and the dehumidifier. 前記送風ファンを複数台並列接続したことを特徴とする請求項1乃至3に記載のタービン復水器内除湿システム。 The dehumidification system in a turbine condenser according to any one of claims 1 to 3, wherein a plurality of the blower fans are connected in parallel.
JP2013059812A 2013-03-22 2013-03-22 Dehumidification system in turbine condenser Withdrawn JP2014185892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059812A JP2014185892A (en) 2013-03-22 2013-03-22 Dehumidification system in turbine condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059812A JP2014185892A (en) 2013-03-22 2013-03-22 Dehumidification system in turbine condenser

Publications (1)

Publication Number Publication Date
JP2014185892A true JP2014185892A (en) 2014-10-02

Family

ID=51833610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059812A Withdrawn JP2014185892A (en) 2013-03-22 2013-03-22 Dehumidification system in turbine condenser

Country Status (1)

Country Link
JP (1) JP2014185892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131923A (en) * 2019-04-24 2019-08-16 南京航空航天大学 Use the air cycle refrigeration and dehumidification system for runner and method of Driven by Solar Energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146984A (en) * 1980-04-18 1981-11-14 Toshiba Corp Turbine condenser for nuclear power plant
JPH1194299A (en) * 1997-09-24 1999-04-09 Daikin Ind Ltd Low humidity working apparatus
JP2000314794A (en) * 1999-04-30 2000-11-14 Ishikawajima Harima Heavy Ind Co Ltd Dust-collecting and dehumidifying method and device for suppression chamber
JP2004226249A (en) * 2003-01-23 2004-08-12 Hitachi Plant Eng & Constr Co Ltd Device for supplying dehumidification air for construction
JP2005177739A (en) * 2003-12-22 2005-07-07 Samsung Electronics Co Ltd Air cleaner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146984A (en) * 1980-04-18 1981-11-14 Toshiba Corp Turbine condenser for nuclear power plant
JPH1194299A (en) * 1997-09-24 1999-04-09 Daikin Ind Ltd Low humidity working apparatus
JP2000314794A (en) * 1999-04-30 2000-11-14 Ishikawajima Harima Heavy Ind Co Ltd Dust-collecting and dehumidifying method and device for suppression chamber
JP2004226249A (en) * 2003-01-23 2004-08-12 Hitachi Plant Eng & Constr Co Ltd Device for supplying dehumidification air for construction
JP2005177739A (en) * 2003-12-22 2005-07-07 Samsung Electronics Co Ltd Air cleaner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131923A (en) * 2019-04-24 2019-08-16 南京航空航天大学 Use the air cycle refrigeration and dehumidification system for runner and method of Driven by Solar Energy
CN110131923B (en) * 2019-04-24 2023-06-23 南京航空航天大学 Air circulation refrigeration and rotary dehumidification system and method driven by solar energy

Similar Documents

Publication Publication Date Title
O’Connor et al. A novel design of a desiccant rotary wheel for passive ventilation applications
CN102441320B (en) Dehumidification device and control method thereof
JP6787885B2 (en) Dehumidification system and method
JP4798492B2 (en) Dehumidifier
DK2997255T3 (en) Method and device for dehumidifying the interior air in offshore installations
JP2013108652A (en) Air conditioning method, and air conditioner
WO2015045609A1 (en) Dehumidification system
JP2018502303A5 (en)
JP2008019801A (en) Gas turbine intake device and method for operating the same
JP2004116419A (en) Exhaust gas heat utilizing system
Khoukhi A study of desiccant-based cooling and dehumidifying system in hot-humid climate
JP2011033302A (en) Humidity control ventilator
CN110686332A (en) Dehumidification equipment and method for flash drying chamber of automobile coating line
JP2014185892A (en) Dehumidification system in turbine condenser
TW201916427A (en) Dry Room For Gas Substitution
JP6565101B2 (en) Humidity control air generator
EP2623179A1 (en) A rotary air drying apparatus
JP5686311B2 (en) Gas removal system
CN208187804U (en) A kind of air-cooled smoke sampling pretreatment unit of bag-type dust dehumidifying
CN207002257U (en) A kind of ozone generator of long-term stable operation
JP2015190452A (en) Filter management device and inlet duct
CN204837791U (en) Can retrieve thermal heat pump type grain drying tower of waste gas
JP5681435B2 (en) Gas dehumidifier
JP2018084228A (en) System and method for higher plant efficiency
KR101399924B1 (en) Dehumidification apparatus having solar energy supply part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160628