JP2014182217A - Optical film material - Google Patents

Optical film material Download PDF

Info

Publication number
JP2014182217A
JP2014182217A JP2013055586A JP2013055586A JP2014182217A JP 2014182217 A JP2014182217 A JP 2014182217A JP 2013055586 A JP2013055586 A JP 2013055586A JP 2013055586 A JP2013055586 A JP 2013055586A JP 2014182217 A JP2014182217 A JP 2014182217A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
group
crystal compound
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2013055586A
Other languages
Japanese (ja)
Inventor
Kazuhiro Oki
和宏 沖
Hideaki Kagawa
英章 香川
Wataru Majima
渉 馬島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013055586A priority Critical patent/JP2014182217A/en
Priority to KR1020157024055A priority patent/KR101699652B1/en
Priority to PCT/JP2014/057044 priority patent/WO2014148408A1/en
Priority to CN201480016677.2A priority patent/CN105190380B/en
Priority to TW103110018A priority patent/TW201442866A/en
Publication of JP2014182217A publication Critical patent/JP2014182217A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical film material from which a thin optical film can be efficiently supplied.SOLUTION: The optical film material comprises a layer formed of a stretched film, an optical anisotropic layer, and an optically isotropic acryl polymer layer. In the optical film material, the layer formed of a stretched film has a surface subjected to a rubbing treatment; the optical anisotropic layer is formed by irradiating a polymerizable composition which contains a liquid crystal compound directly and directly applied to the rubbed surface, with light so as to polymerize the liquid crystal compound; the acryl polymer layer is formed by curing a polymerizable composition containing (meth)acrylate which is directly applied to the surface of the layer formed of the polymerizable compound containing the liquid crystal compound; and the film thickness of the acryl polymer layer is larger than the film thickness of the optical anisotropic layer.

Description

本発明は、光学フィルム材料およびその製造方法に関する。   The present invention relates to an optical film material and a method for producing the same.

スマートフォンやタブレットPC等の市場の拡大により、ディスプレイにもますます、薄型化が求められている。この流れの中で、透明で低複屈折性の光学フィルムとして従来から用いられているセルロース系ポリマーフィルムに加えて、アクリル系ポリマーフィルム、シクロオレフィン系ポリマーフィルムなどの様々なフィルムの利用が試みられている(例えば特許文献1)。これらのフィルムは、価格が高い、取扱い時にへこみなどを生じやすいなどの問題があり、実用のためには改善の余地があるが、普及に応じて、上記のポリマーフィルムをベースにした位相差を有する薄膜の光学フィルム等に対する要請も増加すると考えられる。   As the market for smartphones and tablet PCs expands, displays are increasingly required to be thinner. In this trend, attempts have been made to use various films such as acrylic polymer films and cycloolefin polymer films in addition to the cellulose polymer films conventionally used as transparent and low birefringence optical films. (For example, Patent Document 1). These films have problems such as high price and easy dents during handling, and there is room for improvement for practical use. The demand for thin optical films and the like is also expected to increase.

特開2009−175222号公報JP 2009-175222 A

本発明は薄膜の光学フィルムの提供を課題とする。本発明は特に位相差を有する薄膜の光学フィルムの提供を課題とし、より具体的には、本発明は、制御された位相差を有する薄膜の光学フィルムを、効率的に供給できる光学フィルム材料の提供を課題とする。   An object of the present invention is to provide a thin optical film. It is an object of the present invention to provide a thin film optical film having a retardation, and more specifically, the present invention provides an optical film material that can efficiently supply a thin film optical film having a controlled retardation. Offering is an issue.

薄型フィルムは、上記のへこみや傷防止のため、または取扱い性のために、ラミネートフィルムが貼付された材料として製造、搬送される場合がある。本発明者らは、薄膜形成のためラミネートフィルムとして機能しうるフィルムを仮支持体として用い、重合性化合物を含む組成物を仮支持体上に塗布後、前記化合物を重合させることによるアクリル系ポリマーフィルムの作製を試みた。しかし、仮支持体とアクリル系ポリマーフィルムの剥離性が不十分であるとの問題に直面した。この問題の解決のために本発明者がさらに鋭意研究を重ねた結果、仮支持体上へのアクリル系ポリマー層の形成の前に液晶化合物から形成される光学異方性層を設けることにより、アクリル系ポリマー層の仮支持体からの剥離性が改善し、制御された位相差も付与できることを見出した。そして、本発明者らは、これが、仮支持体上へ配向膜を介さずに直接、液晶化合物を含む組成物の光硬化により形成した位相差を有する薄膜(光学異方性層)を形成した場合、その薄膜を仮支持体から欠陥なく剥離することも可能としていることを見出した。すなわち、従来は、本発明者らが試行錯誤しても、液晶化合物を含む組成物の光硬化により形成した位相差を有する薄膜(光学異方性層)は、仮支持体から欠陥なく剥離できず、本発明者らは位相差を有する薄膜が仮支持体からの剥離の際に壊れやすいという難しい課題に悩まされていた。
上記の知見に基づいて、本発明者らは、さらに検討を重ね、本発明を完成させた。すなわち、本発明は下記の[1]〜[15]を提供するものである。
A thin film may be manufactured and transported as a material to which a laminate film is attached for the purpose of preventing the above-described dents and scratches or handling. The present inventors have used a film that can function as a laminate film for forming a thin film as a temporary support, an acrylic polymer obtained by polymerizing the compound after coating a composition containing a polymerizable compound on the temporary support. An attempt was made to make a film. However, the problem of insufficient peelability between the temporary support and the acrylic polymer film was encountered. As a result of further diligent research by the present inventors to solve this problem, by providing an optically anisotropic layer formed from a liquid crystal compound before the formation of the acrylic polymer layer on the temporary support, It has been found that the peelability of the acrylic polymer layer from the temporary support is improved and a controlled retardation can be imparted. And the present inventors formed the thin film (optical anisotropy layer) which has the phase difference which this formed by photocuring of the composition containing a liquid crystal compound directly on a temporary support body without passing an alignment film. In this case, the present inventors have found that the thin film can be peeled off from the temporary support without any defects. That is, conventionally, even if the present inventors have made trial and error, a thin film (optical anisotropic layer) having a phase difference formed by photocuring a composition containing a liquid crystal compound can be peeled off from a temporary support without defects. However, the present inventors have been troubled by a difficult problem that the thin film having a phase difference is easily broken at the time of peeling from the temporary support.
Based on the above findings, the present inventors have further studied and completed the present invention. That is, the present invention provides the following [1] to [15].

[1]延伸フィルムからなる層と、光学異方性層と、光学的に等方性のアクリルポリマー層とを含み、前記の延伸フィルムからなる層はラビング処理した面を有し、前記光学異方性層は、前記面に直接塗布された液晶化合物を含む重合性組成物を光照射して前記液晶化合物を重合させることにより形成された層であり、
前記アクリルポリマー層は、前記の液晶化合物を含む重合性組成物から形成される層の表面に直接塗布された(メタ)アクリレートを含む重合性組成物を硬化させることにより形成された層であり、かつ、前記アクリルポリマー層の膜厚が前記光学異方性層の膜厚よりも大きい、光学フィルム材料。
[1] A layer comprising a stretched film, an optically anisotropic layer, and an optically isotropic acrylic polymer layer, wherein the layer comprising the stretched film has a rubbed surface, and The isotropic layer is a layer formed by light-irradiating a polymerizable composition containing a liquid crystal compound directly applied to the surface to polymerize the liquid crystal compound,
The acrylic polymer layer is a layer formed by curing a polymerizable composition containing (meth) acrylate applied directly to the surface of the layer formed from the polymerizable composition containing the liquid crystal compound, And the optical film material whose film thickness of the said acrylic polymer layer is larger than the film thickness of the said optically anisotropic layer.

[2]前記延伸フィルムが、ポリエチレンテレフタレートフィルムまたはシクロオレフィンポリマーフィルムである[1]に記載の光学フィルム材料。
[3]前記延伸フィルムが、ポリエチレンテレフタレートフィルムである[1]に記載の光学フィルム材料。
[4]前記光学異方性層の膜厚が0.5μm〜5μmである、[1]〜[3]のいずれか一項に記載の光学フィルム材料。
[5]前記光学異方性層の膜厚が0.5μm〜3μmである、[1]〜[3]のいずれか一項に記載の光学フィルム材料。
[6]前記液晶化合物が(メタ)アクリル基を2つ以上有する化合物である[1]〜[5]のいずれか一項に記載の光学フィルム材料。
[2] The optical film material according to [1], wherein the stretched film is a polyethylene terephthalate film or a cycloolefin polymer film.
[3] The optical film material according to [1], wherein the stretched film is a polyethylene terephthalate film.
[4] The optical film material according to any one of [1] to [3], wherein the thickness of the optically anisotropic layer is 0.5 μm to 5 μm.
[5] The optical film material according to any one of [1] to [3], wherein the optical anisotropic layer has a thickness of 0.5 μm to 3 μm.
[6] The optical film material according to any one of [1] to [5], wherein the liquid crystal compound is a compound having two or more (meth) acryl groups.

[7]前記アクリルポリマー層が(メタ)アクリレートを含む重合性組成物を光照射して(メタ)アクリレートを重合させることにより形成された層である[1]〜[6]のいずれか一項に記載の光学フィルム材料。
[8]前記アクリルポリマー層の膜厚が50μm以下である[1]〜[7]のいずれか一項に記載の光学フィルム材料。
[9][1]〜[8]のいずれか一項に記載の光学フィルム材料の製造方法であって、
(1)延伸フィルムの少なくとも一方の面をラビングすること、
(2)前記延伸フィルムのラビングされた面に液晶化合物を含む重合性組成物を塗布すること、
(3)前記の液晶化合物を含む重合性組成物から形成される層に直接、(メタ)アクリレートを含む重合性組成物を塗布すること
(4)前記の液晶化合物を含む重合性組成物および前記の(メタ)アクリレート含む重合性組成物を硬化させることを含む製造方法。
[7] Any one of [1] to [6], wherein the acrylic polymer layer is a layer formed by light-irradiating a polymerizable composition containing (meth) acrylate to polymerize (meth) acrylate. The optical film material described in 1.
[8] The optical film material according to any one of [1] to [7], wherein the acrylic polymer layer has a thickness of 50 μm or less.
[9] A method for producing an optical film material according to any one of [1] to [8],
(1) rubbing at least one surface of the stretched film;
(2) applying a polymerizable composition containing a liquid crystal compound to the rubbed surface of the stretched film;
(3) Applying the polymerizable composition containing (meth) acrylate directly to the layer formed from the polymerizable composition containing the liquid crystal compound (4) The polymerizable composition containing the liquid crystal compound and the above The manufacturing method including hardening | curing polymeric composition containing (meth) acrylate of this.

[10]前記硬化が光照射により行われる[9]に記載の製造方法。
[11][10]に記載の製造方法であって、
(1)延伸フィルムの少なくとも一方の面をラビングすること、
(2)前記延伸フィルムのラビングされた面に直接、液晶化合物を含む重合性組成物を塗布すること、
(2−2)前記の液晶化合物を含む重合性組成物を光照射して、前記液晶化合物を重合させて光学異方性層を形成すること、
(3)前記光学異方性層に直接、前記の(メタ)アクリレートを含む重合性組成物を塗布すること、
(3−2)前記の(メタ)アクリレートを含む重合性組成物を光照射して前記(メタ)アクリレートを重合させてアクリルポリマー層を形成することを、この順に含む製造方法。
[10] The production method according to [9], wherein the curing is performed by light irradiation.
[11] The production method according to [10],
(1) rubbing at least one surface of the stretched film;
(2) coating a polymerizable composition containing a liquid crystal compound directly on the rubbed surface of the stretched film;
(2-2) The polymerizable composition containing the liquid crystal compound is irradiated with light to polymerize the liquid crystal compound to form an optically anisotropic layer.
(3) Applying the polymerizable composition containing the (meth) acrylate directly to the optically anisotropic layer,
(3-2) A production method including, in this order, forming an acrylic polymer layer by irradiating the polymerizable composition containing the (meth) acrylate with light to polymerize the (meth) acrylate.

本発明により、位相差を有する薄膜の光学フィルムを、効率的に供給できる光学フィルム材料が提供される。   The present invention provides an optical film material that can efficiently supply a thin film optical film having a retardation.

以下、本発明を詳細に説明する。
なお、本明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。また、本明細書において、(メタ)アクリレートとは、アクリレートおよびメタクリレートの両方を含む意味で使用される。
Hereinafter, the present invention will be described in detail.
In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. Moreover, in this specification, (meth) acrylate is used with the meaning containing both an acrylate and a methacrylate.

本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーション及び厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH又はWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、又は測定値をプログラム等で変換して測定することができる。   In the present specification, Re (λ) and Rth (λ) respectively represent in-plane retardation and retardation in the thickness direction at a wavelength λ. Re (λ) is measured by making light having a wavelength of λ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments). In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.

測定されるフィルムが1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
When the film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method.
Rth (λ) is Re (λ), with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (if there is no slow axis, any in-plane film The light is incident at a wavelength of λ nm from the inclined direction in steps of 10 degrees from the normal direction to 50 degrees on one side with respect to the film normal direction of the rotation axis of KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.

上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH又はWRが算出する。
なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(11)及び式(12)よりRthを算出することもできる。
式(11)
In the above case, in the case of a film having a direction in which the retardation value is zero at a certain tilt angle with the in-plane slow axis from the normal direction as the rotation axis, retardation at a tilt angle larger than the tilt angle. The value is calculated by KOBRA 21ADH or WR after changing its sign to negative.
In addition, the retardation value is measured from the two inclined directions, with the slow axis as the tilt axis (rotation axis) (when there is no slow axis, the arbitrary direction in the film plane is the rotation axis), Based on the value, the assumed value of the average refractive index, and the input film thickness value, Rth can also be calculated from the following equations (11) and (12).
Formula (11)

Figure 2014182217
Figure 2014182217

上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。
式(11)におけるnxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。dは膜厚である。
The above Re (θ) represents a retardation value in a direction inclined by an angle θ from the normal direction.
In formula (11), nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to nx in the plane, and nz represents the refractive index in the direction perpendicular to nx and ny. . d is the film thickness.

式(12):Rth={(nx+ny)/2−nz}×d
式(12)におけるnxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。dは膜厚である。
Formula (12): Rth = {(nx + ny) / 2−nz} × d
In formula (12), nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to nx in the plane, and nz represents the refractive index in the direction perpendicular to nx and ny. . d is the film thickness.

測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
In the case where the film to be measured cannot be expressed by a uniaxial or biaxial refractive index ellipsoid, that is, a film having no so-called optical axis, Rth (λ) is calculated by the following method.
Rth (λ) is from −50 degrees to +50 degrees with respect to the normal direction of the film, with Re (λ) being the in-plane slow axis (determined by KOBRA 21ADH or WR) and the tilt axis (rotating axis). In each of the 10 degree steps, light of wavelength λ nm is incident from the inclined direction and measured at 11 points. Based on the measured retardation value, the assumed average refractive index, and the input film thickness value, KOBRA 21ADH or WR is calculated.
In the above measurement, the assumed value of the average refractive index may be a value in a polymer handbook (John Wiley & Sons, Inc.) or a catalog of various optical films. Those whose average refractive index is not known can be measured with an Abbe refractometer. The average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). The KOBRA 21ADH or WR calculates nx, ny, and nz by inputting the assumed value of the average refractive index and the film thickness. Nz = (nx−nz) / (nx−ny) is further calculated from the calculated nx, ny, and nz.

本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。例えば、単にReと記載されているときは、Re(550)を示す。
また、本明細書において、角度(例えば「90°」等の角度)、およびその関係(例えば「直交」、「平行」、および「45°で交差」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。さらに、レターデーションが実質的に0とは、Re(550)≦10nmかつRth(550)≦10nm、好ましくはRe(550)≦5nm以下かつRth(550)≦5nmであることを意味する。
In this specification, when there is no special mention about a measurement wavelength, a measurement wavelength is 550 nm. For example, when it is simply described as Re, Re (550) is indicated.
Further, in the present specification, regarding the angle (for example, an angle such as “90 °”) and the relationship (for example, “orthogonal”, “parallel”, “crossing at 45 °”, etc.), the technical field to which the present invention belongs. The range of allowable error is included. For example, it means that the angle is within the range of strict angle ± 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less. Further, the retardation being substantially 0 means that Re (550) ≦ 10 nm and Rth (550) ≦ 10 nm, preferably Re (550) ≦ 5 nm and Rth (550) ≦ 5 nm.

[光学フィルム、光学フィルム材料]
本明細書において、光学フィルムとは、各種表示装置、発光装置、偏光板などの各種光学素子などの、光学部材に用いることができるフィルムを意味する。本発明において、光学フィルムは、例えば、100μm以下、60μm以下、40μm以下、25μm以下、10μm以下、または5μm以下程度の膜厚であることが好ましい。光学フィルムはまた、透明である(例えば、光透過率が80%以上)ことも好ましい。光学フィルムは低複屈折性であっても高複屈折性を有していてもよい。制御された複屈折性を有することが好ましい。
[Optical film, optical film material]
In this specification, an optical film means a film that can be used for an optical member such as various optical devices such as various display devices, light-emitting devices, and polarizing plates. In the present invention, the optical film preferably has a thickness of about 100 μm or less, 60 μm or less, 40 μm or less, 25 μm or less, 10 μm or less, or 5 μm or less. The optical film is also preferably transparent (for example, a light transmittance of 80% or more). The optical film may have low birefringence or high birefringence. Preferably it has a controlled birefringence.

本明細書において、光学フィルム材料とは光学フィルムを供給するための材料を意味する。具体的には、仮支持体として機能する延伸フィルムからなる層を剥離して光学フィルムを提供できるものであればよい。また、光学フィルム材料自体が光学フィルムであってもよい。   In this specification, the optical film material means a material for supplying an optical film. Specifically, any layer can be used as long as it can provide an optical film by peeling a layer made of a stretched film that functions as a temporary support. Further, the optical film material itself may be an optical film.

本発明の光学フィルム材料は、延伸フィルムからなる層と、光学異方性層と、(メタ)アクリレートを含む重合性組成物を硬化させて形成されたアクリルポリマー層とを含む。本発明の光学フィルム材料において、延伸フィルムからなる層および光学異方性層、並びに光学異方性層およびアクリルポリマー層は、それぞれ互いに直接接している。   The optical film material of the present invention includes a layer made of a stretched film, an optically anisotropic layer, and an acrylic polymer layer formed by curing a polymerizable composition containing (meth) acrylate. In the optical film material of the present invention, the layer made of a stretched film, the optically anisotropic layer, the optically anisotropic layer, and the acrylic polymer layer are in direct contact with each other.

本発明の光学フィルム材料は、上記の層のほか、保護層、帯電防止層、ハードコート層、接着層等の他の機能性層を含んでいてもよい。
以下、延伸フィルムからなる層、光学異方性層、(メタ)アクリレートを含む重合性組成物を硬化させて形成されたアクリルポリマー層のそれぞれについて詳細に説明する。
The optical film material of the present invention may contain other functional layers such as a protective layer, an antistatic layer, a hard coat layer, and an adhesive layer in addition to the above layers.
Hereinafter, each of the layer which consists of a stretched film, the optically anisotropic layer, and the acrylic polymer layer formed by hardening | curing polymeric composition containing (meth) acrylate is demonstrated in detail.

[延伸フィルム]
本発明の光学フィルム材料に用いられる延伸フィルムは、特に限定されず、一軸延伸フィルムであっても、二軸延伸フィルムであってもよいが、一軸延伸フィルムであることが好ましい。延伸フィルムは熱可塑性樹脂フィルムを延伸したものであることが好ましい。熱可塑性樹脂としては例えば、ポリエチレンテレフタレート等のポリエステル系ポリマー、シクロオレフィンポリマー(例えば、ノルボルネン系樹脂(日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等)が好ましい。この中でポリエチレンテレフタレート(PET)がより好ましい。延伸条件は特に限定されない。例えば、特開2009−214441号公報の記載を参照して行うことができる。
延伸フィルムからなる層の膜厚としては10μm〜1000μm程度であればよく、好ましくは25μm〜250μmであり、より好ましくは30μm〜90μmである。
[Stretched film]
The stretched film used for the optical film material of the present invention is not particularly limited, and may be a uniaxially stretched film or a biaxially stretched film, but is preferably a uniaxially stretched film. The stretched film is preferably a stretched thermoplastic resin film. Preferred examples of the thermoplastic resin include polyester polymers such as polyethylene terephthalate and cycloolefin polymers (for example, norbornene resins (ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., ARTON manufactured by JSR Co., Ltd.), etc.). Polyethylene terephthalate (PET) is more preferable, and the stretching conditions are not particularly limited, and can be carried out with reference to the description in JP-A-2009-214441, for example.
The film thickness of the layer made of the stretched film may be about 10 μm to 1000 μm, preferably 25 μm to 250 μm, more preferably 30 μm to 90 μm.

本発明の光学フィルム材料において、延伸フィルムからなる層はラビング処理した面を有し、ラビング処理した面には直接光学異方性層が設けられる。
ラビング処理は、一般にはポリマーを主成分とする膜の表面を、紙や布で一定方向に数回擦ることにより実施することができる。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
In the optical film material of the present invention, the layer made of a stretched film has a surface subjected to rubbing treatment, and the optically anisotropic layer is directly provided on the surface subjected to rubbing treatment.
The rubbing treatment can be generally performed by rubbing the surface of a film containing a polymer as a main component several times in a certain direction with paper or cloth. A general method of rubbing is described in, for example, “Liquid Crystal Handbook” (issued by Maruzen, October 30, 2000).

ラビング密度を変える方法としては、「液晶便覧」(丸善社発行)に記載されている方法を用いることができる。ラビング密度(L)は、下記式(A)で定量化されている。
式(A) L=Nl(1+2πrn/60v)
式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm)、vはステージ移動速度(秒速)である。
As a method for changing the rubbing density, a method described in “Liquid Crystal Handbook” (published by Maruzen) can be used. The rubbing density (L) is quantified by the following formula (A).
Formula (A) L = Nl (1 + 2πrn / 60v)
In the formula (A), N is the number of rubbing, l is the contact length of the rubbing roller, r is the radius of the roller, n is the number of rotations (rpm) of the roller, and v is the stage moving speed (second speed).

ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。
また、ラビング処理の際の条件としては、特許4052558号の記載を参照することもできる。
In order to increase the rubbing density, the rubbing frequency should be increased, the contact length of the rubbing roller should be increased, the radius of the roller should be increased, the rotation speed of the roller should be increased, and the stage moving speed should be decreased, while the rubbing density should be decreased. To do this, you can reverse this.
In addition, the description in Japanese Patent No. 4052558 can also be referred to as conditions for the rubbing process.

[光学異方性層]
光学異方性層は、レターデーションを測定したときにレターデーションが実質的に0でない入射方向が一つでもある、即ち等方性でない光学特性を有する層である。本発明の光学フィルム材料における光学異方性層は、液晶化合物を含む重合性組成物に光照射して前記液晶化合物を重合させることにより形成されたものである。前記重合性組成物は、少なくとも1つの重合性基を有する液晶化合物を含んでおり、光照射により前記液晶組成物が重合性基により重合するものであればよい。前記重合性組成物は、前記の延伸フィルムからなる層をラビング処理した面に直接塗布される。塗布層をさらに、室温等により乾燥させる、または加熱(例えば 50℃〜150℃、好ましくは80℃〜120℃の加熱)することにより、該層中の前記液晶化合物分子を配向させることができる。これを光照射して重合固定化することにより、光学異方性層が形成されていればよい。
[Optically anisotropic layer]
The optically anisotropic layer is a layer having optical characteristics that are not isotropic in that there is at least one incident direction in which retardation is not substantially zero when the retardation is measured. The optically anisotropic layer in the optical film material of the present invention is formed by irradiating a polymerizable composition containing a liquid crystal compound with light to polymerize the liquid crystal compound. The polymerizable composition may include any liquid crystal compound having at least one polymerizable group, and the liquid crystal composition may be polymerized by the polymerizable group by light irradiation. The polymerizable composition is directly applied to the surface on which the layer made of the stretched film is rubbed. The liquid crystal compound molecules in the layer can be aligned by further drying the coating layer at room temperature or by heating (for example, heating at 50 ° C. to 150 ° C., preferably 80 ° C. to 120 ° C.). It is only necessary to form an optically anisotropic layer by irradiating it with light and fixing it by polymerization.

光学異方性層の膜厚は、10μm以下、8μm未満、7μm以下、6μm以下、5μm以下、4μm以下、3μm以下、2μm以下、1.9μm以下、1.8μm以下、1.7μm以下、1.6μm以下、1.5μm以下、1.4μm以下、1.3μm以下、1.2μm以下、1.1μm以下または1μm以下、また、0.2μm以上、0.3μm以上、0.4μm以上、0.5μm以上、0.6μm以上、0.7μm以上、0.8μm以上、0.9μm以上であればよい。本発明の光学フィルム材料においては、光学異方性層の膜厚は、アクリルポリマー層の膜厚よりも小さいことが好ましい。   The film thickness of the optically anisotropic layer is 10 μm or less, less than 8 μm, 7 μm or less, 6 μm or less, 5 μm or less, 4 μm or less, 3 μm or less, 2 μm or less, 1.9 μm or less, 1.8 μm or less, 1.7 μm or less, 1 .6 μm or less, 1.5 μm or less, 1.4 μm or less, 1.3 μm or less, 1.2 μm or less, 1.1 μm or less, or 1 μm or less, 0.2 μm or more, 0.3 μm or more, 0.4 μm or more, 0 It may be 0.5 μm or more, 0.6 μm or more, 0.7 μm or more, 0.8 μm or more, or 0.9 μm or more. In the optical film material of the present invention, the thickness of the optically anisotropic layer is preferably smaller than the thickness of the acrylic polymer layer.

[液晶化合物]
液晶化合物としては、棒状液晶化合物、円盤状液晶化合物があげられる。
前記棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
[Liquid Crystal Compound]
Examples of the liquid crystal compound include a rod-like liquid crystal compound and a disk-like liquid crystal compound.
Examples of the rod-like liquid crystal compound include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. In addition to the above low-molecular liquid crystalline molecules, high-molecular liquid crystalline molecules can also be used.

棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、WO95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1−272551号、同6−16616号、同7−110469号、同11−80081号、および特願2001−64627号などに記載の化合物を用いることができる。また、重合性棒状液晶化合物として好ましくは、下記一般式(1)にて表される重合性棒状液晶化合物である。   It is more preferable to fix the orientation of the rod-like liquid crystal compound by polymerization, and examples of the polymerizable rod-like liquid crystal compound include those described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, 5,770,107, WO 95/22586, 95/24455, 97 / No. 0600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and Japanese Patent Application No. 2001-64627 These compounds can be used. The polymerizable rod-like liquid crystal compound is preferably a polymerizable rod-like liquid crystal compound represented by the following general formula (1).

一般式(1) Q1−L1−Cy1−L2−(Cy2−L3)n−Cy3−L4−Q2
(一般式(1)中、Q1およびQ2はそれぞれ独立に重合性基であり、L1およびL4はそれぞれ独立に二価の連結基であり、L2およびL3はそれぞれ独立に単結合または二価の連結基であり、Cy1、Cy2およびCy3は二価の環状基であり、nは0、1、2または3である。)
Formula (1) Q 1 -L 1 -Cy 1 -L 2 - (Cy 2 -L 3) n-Cy 3 -L 4 -Q 2
(In General Formula (1), Q 1 and Q 2 are each independently a polymerizable group, L 1 and L 4 are each independently a divalent linking group, and L 2 and L 3 are each independently a single group. A bond or a divalent linking group, Cy 1 , Cy 2 and Cy 3 are divalent cyclic groups, and n is 0, 1, 2 or 3.)

以下にさらに一般式(1)で表される重合性棒状液晶化合物について説明する。
一般式(1)中、Q1およびQ2はそれぞれ独立に重合性基である。重合性基の重合反応は、付加重合(開環重合を含む)または縮合重合であることが好ましい。言い換えると、重合性基は、付加重合反応または縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例を示す。
Hereinafter, the polymerizable rod-like liquid crystal compound represented by the general formula (1) will be described.
In general formula (1), Q 1 and Q 2 are each independently a polymerizable group. The polymerization reaction of the polymerizable group is preferably addition polymerization (including ring-opening polymerization) or condensation polymerization. In other words, the polymerizable group is preferably a functional group capable of addition polymerization reaction or condensation polymerization reaction. Examples of polymerizable groups are shown below.

Figure 2014182217
Figure 2014182217

上記のうち、好ましい重合性基としては、アクリル基、メタクリル基があげられる。特に一般式(1)におけるQ1およびQ2の双方がアクリル基またはメタクリル基であることが好ましい。これらの基を用いることにより、(メタ)アクリレートを含む重合性組成物を硬化させて形成されたアクリルポリマー層との密着性が良好になる傾向がある。 Among the above, preferred polymerizable groups include acryl groups and methacryl groups. In particular, it is preferable that both Q 1 and Q 2 in the general formula (1) are an acryl group or a methacryl group. By using these groups, the adhesion with an acrylic polymer layer formed by curing a polymerizable composition containing (meth) acrylate tends to be improved.

一般式(1)中、L1およびL4はそれぞれ独立に二価の連結基である。L1およびL4はそれぞれ独立に、−O−、−S−、−CO−、−NR−、−C=N−、二価の鎖状基、二価の環状基およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記Rは炭素原子数が1から7のアルキル基または水素原子である。Rは、炭素原子数1から4のアルキル基または水素原子であることが好ましく、メチル基、エチル基または水素原子であることがさらに好ましく、水素原子であることがもっとも好ましい。 In general formula (1), L 1 and L 4 are each independently a divalent linking group. L 1 and L 4 each independently include —O—, —S—, —CO—, —NR—, —C═N—, a divalent chain group, a divalent cyclic group, and combinations thereof. A divalent linking group selected from the group is preferred. R is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom. R is preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, more preferably a methyl group, an ethyl group or a hydrogen atom, and most preferably a hydrogen atom.

組み合わせからなる二価の連結基の例を以下に示す。ここで、左側がQ(Q1またはQ2)に、右側がCy(Cy1またはCy3)に結合する。 The example of the bivalent coupling group which consists of a combination is shown below. Here, the left side is coupled to Q (Q 1 or Q 2 ), and the right side is coupled to Cy (Cy 1 or Cy 3 ).

L−1:−CO−O−二価の鎖状基−O−
L−2:−CO−O−二価の鎖状基−O−CO−
L−3:−CO−O−二価の鎖状基−O−CO−O−
L−4:−CO−O−二価の鎖状基−O−二価の環状基−
L−5:−CO−O−二価の鎖状基−O−二価の環状基−CO−O−
L−6:−CO−O−二価の鎖状基−O−二価の環状基−O−CO−
L−7:−CO−O−二価の鎖状基−O−二価の環状基−二価の鎖状基−
L−8:−CO−O−二価の鎖状基−O−二価の環状基−二価の鎖状基−CO−O−
L−9:−CO−O−二価の鎖状基−O−二価の環状基−二価の鎖状基−O−CO−
L−10:−CO−O−二価の鎖状基−O−CO−二価の環状基−
L−11:−CO−O−二価の鎖状基−O−CO−二価の環状基−CO−O−
L−12:−CO−O−二価の鎖状基−O−CO−二価の環状基−O−CO−
L−13:−CO−O−二価の鎖状基−O−CO−二価の環状基−二価の鎖状基−
L−14:−CO−O−二価の鎖状基−O−CO−二価の環状基−二価の鎖状基−CO−O−
L−15:−CO−O−二価の鎖状基−O−CO−二価の環状基−二価の鎖状基−O−CO−
L−16:−CO−O−二価の鎖状基−O−CO−O−二価の環状基−
L−17:−CO−O−二価の鎖状基−O−CO−O−二価の環状基−CO−O−
L−18:−CO−O−二価の鎖状基−O−CO−O−二価の環状基−O−CO−
L−19:−CO−O−二価の鎖状基−O−CO−O−二価の環状基−二価の鎖状基−
L−20:−CO−O−二価の鎖状基−O−CO−O−二価の環状基−二価の鎖状基−CO−O−
L−21:−CO−O−二価の鎖状基−O−CO−O−二価の環状基−二価の鎖状基−O−CO−
L-1: —CO—O—divalent chain group —O—
L-2: -CO-O-divalent chain group -O-CO-
L-3: —CO—O—divalent chain group —O—CO—O—
L-4: -CO-O-divalent chain group -O-divalent cyclic group-
L-5: -CO-O-divalent chain group -O-divalent cyclic group -CO-O-
L-6: -CO-O-divalent chain group -O-divalent cyclic group -O-CO-
L-7: -CO-O-divalent chain group-O-divalent cyclic group-divalent chain group-
L-8: -CO-O-divalent chain group -O-divalent cyclic group -divalent chain group -CO-O-
L-9: -CO-O-divalent chain group -O-divalent cyclic group -divalent chain group -O-CO-
L-10: —CO—O—divalent chain group—O—CO—divalent cyclic group—
L-11: -CO-O-divalent chain group -O-CO-divalent cyclic group -CO-O-
L-12: -CO-O-divalent chain group -O-CO-divalent cyclic group -O-CO-
L-13: —CO—O—Divalent chain group—O—CO—Divalent cyclic group—Divalent chain group—
L-14: -CO-O-divalent chain group -O-CO-divalent cyclic group -divalent chain group -CO-O-
L-15: -CO-O-divalent chain group-O-CO-divalent cyclic group-divalent chain group-O-CO-
L-16: —CO—O—divalent chain group—O—CO—O—divalent cyclic group—
L-17: -CO-O-divalent chain group -O-CO-O-divalent cyclic group -CO-O-
L-18: -CO-O-divalent chain group -O-CO-O-divalent cyclic group -O-CO-
L-19: —CO—O—Divalent chain group—O—CO—O—Divalent cyclic group—Divalent chain group—
L-20: -CO-O-divalent chain group -O-CO-O-divalent cyclic group -divalent chain group -CO-O-
L-21: -CO-O-divalent chain group -O-CO-O-divalent cyclic group -divalent chain group -O-CO-

二価の鎖状基は、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基を意味する。アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基が好ましく、アルキレン基およびアルケニレン基がさらに好ましい。
アルキレン基は、分岐を有していてもよい。アルキレン基の炭素数は1乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
置換アルキレン基のアルキレン部分は、上記アルキレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
アルケニレン基は、分岐を有していてもよい。アルケニレン基の炭素数は2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
置換アルキレン基のアルキレン部分は、上記アルキレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
アルキニレン基は、分岐を有していてもよい。アルキニレン基の炭素数は2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
置換アルキニレン基のアルキニレン部分は、上記アルキニレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
二価の鎖状基の具体例としては、エチレン、トリメチレン、プロピレン、テトラメチレン、2−メチル−テトラメチレン、ペンタメチレン、ヘキサメチレン、オクタメチレン、2−ブテニレン、2−ブチニレンなどが上げられる。
The divalent chain group means an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, or a substituted alkynylene group. An alkylene group, a substituted alkylene group, an alkenylene group and a substituted alkenylene group are preferred, and an alkylene group and an alkenylene group are more preferred.
The alkylene group may have a branch. The alkylene group preferably has 1 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
The alkylene part of the substituted alkylene group is the same as the above alkylene group. Examples of the substituent include a halogen atom.
The alkenylene group may have a branch. The alkenylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
The alkylene part of the substituted alkylene group is the same as the above alkylene group. Examples of the substituent include a halogen atom.
The alkynylene group may have a branch. The alkynylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and most preferably 2 to 8 carbon atoms.
The alkynylene part of the substituted alkynylene group is the same as the above alkynylene group. Examples of the substituent include a halogen atom.
Specific examples of the divalent chain group include ethylene, trimethylene, propylene, tetramethylene, 2-methyl-tetramethylene, pentamethylene, hexamethylene, octamethylene, 2-butenylene, 2-butynylene and the like.

二価の環状基の定義および例は、後述するCy1、Cy2およびCy3の定義および例と同様である。 The definition and examples of the divalent cyclic group are the same as those of Cy 1 , Cy 2 and Cy 3 described later.

一般式(1)中、L2またはL3はそれぞれ独立に単結合または二価の連結基である。L2およびL3はそれぞれ独立に、−O−、−S−、−CO−、−NR−、−C=N−、二価の鎖状基、二価の環状基およびそれらの組み合わせからなる群より選ばれる二価の連結基または単結合であることが好ましい。上記Rは炭素原子数が1から7のアルキル基または水素原子であり、炭素原子数1から4のアルキル基または水素原子であることが好ましく、メチル基、エチル基または水素原子であることがさらに好ましく、水素原子であることがもっとも好ましい。二価の鎖状基、および二価の環状基についてはL1およびL4の定義と同義である。
2またはL3として好ましい二価の連結基としては、−COO−、−OCO−、−OCOO−、−OCONR−、−COS−、−SCO−、−CONR−、−NRCO−、−CH2CH2−、−C=C−COO−、−C=N−、−C=N−N=C−、等が挙げられる。
In the general formula (1), L 2 and L 3 are each independently a single bond or a divalent linking group. L 2 and L 3 each independently include —O—, —S—, —CO—, —NR—, —C═N—, a divalent chain group, a divalent cyclic group, and combinations thereof. It is preferably a divalent linking group or a single bond selected from the group. R is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom, preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, more preferably a methyl group, an ethyl group or a hydrogen atom. Preferably, it is a hydrogen atom. The divalent chain group and the divalent cyclic group have the same definitions as L 1 and L 4 .
Preferred divalent linking groups as L 2 or L 3 include —COO—, —OCO—, —OCOO—, —OCONR—, —COS—, —SCO—, —CONR—, —NRCO—, —CH 2. CH 2- , -C = C-COO-, -C = N-, -C = N-N = C-, and the like.

一般式(1)において、nは0、1、2または3である。nが2または3の場合、二つのL3は同じであっても異なっていてもよく、二つのCy2も同じであっても異なっていてもよい。nは1または2であることが好ましく、1であることがさらに好ましい。 In the general formula (1), n is 0, 1, 2, or 3. When n is 2 or 3, two L 3 may be the same or different, and two Cy 2 may be the same or different. n is preferably 1 or 2, and more preferably 1.

一般式(1)において、Cy1、Cy2およびCy3は、それぞれ独立に、二価の環状基である。
環状基に含まれる環は、5員環、6員環、または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることがもっとも好ましい。
環状基に含まれる環は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。
環状基に含まれる環は、芳香族環、脂肪族環、および複素環のいずれでもよい。芳香族環の例には、ベンゼン環およびナフタレン環が含まれる。脂肪族環の例には、シクロヘキサン環が含まれる。複素環の例には、ピリジン環およびピリミジン環が含まれる。
ベンゼン環を有する環状基としては、1、4−フェニレンが好ましい。ナフタレン環を有する環状基としては、ナフタレン−1、5−ジイルおよびナフタレン−2、6−ジイルが好ましい。シクロヘキサン環を有する環状基としては1、4−シクロへキシレンであることが好ましい。ピリジン環を有する環状基としてはピリジン−2、5−ジイルが好ましい。ピリミジン環を有する環状基としては、ピリミジン−2、5−ジイルが好ましい。
環状基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、シアノ基、ニトロ基、炭素原子数が1乃至5のアルキル基、炭素原子数が1乃至5のハロゲン置換アルキル基、炭素原子数が1乃至5のアルコキシ基、炭素原子数が1乃至5のアルキルチオ基、炭素原子数が2乃至6のアシルオキシ基、炭素原子数が2乃至6のアルコキシカルホ゛ニル基、カルバモイル基、炭素原子数が2乃至6のアルキル置換カルバモイル基および炭素原子数が2乃至6のアシルアミノ基が含まれる。
In the general formula (1), Cy 1 , Cy 2 and Cy 3 are each independently a divalent cyclic group.
The ring contained in the cyclic group is preferably a 5-membered ring, 6-membered ring, or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and most preferably a 6-membered ring.
The ring contained in the cyclic group may be a condensed ring. However, it is more preferably a monocycle than a condensed ring.
The ring contained in the cyclic group may be any of an aromatic ring, an aliphatic ring, and a heterocyclic ring. Examples of the aromatic ring include a benzene ring and a naphthalene ring. Examples of the aliphatic ring include a cyclohexane ring. Examples of the heterocyclic ring include a pyridine ring and a pyrimidine ring.
As the cyclic group having a benzene ring, 1,4-phenylene is preferable. As the cyclic group having a naphthalene ring, naphthalene-1,5-diyl and naphthalene-2,6-diyl are preferable. The cyclic group having a cyclohexane ring is preferably 1,4-cyclohexylene. As the cyclic group having a pyridine ring, pyridine-2,5-diyl is preferable. As the cyclic group having a pyrimidine ring, pyrimidine-2,5-diyl is preferable.
The cyclic group may have a substituent. Examples of the substituent include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 5 carbon atoms, a halogen-substituted alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. An alkylthio group having 1 to 5 carbon atoms, an acyloxy group having 2 to 6 carbon atoms, an alkoxycarbonyl group having 2 to 6 carbon atoms, a carbamoyl group, and an alkyl-substituted carbamoyl group having 2 to 6 carbon atoms And an acylamino group having 2 to 6 carbon atoms.

以下に、一般式(1)で表される重合性棒状液晶化合物の例を示す。本発明はこれらに限定されるものではない。   Examples of the polymerizable rod-like liquid crystal compound represented by the general formula (1) are shown below. The present invention is not limited to these.

Figure 2014182217
Figure 2014182217

Figure 2014182217
Figure 2014182217

Figure 2014182217
Figure 2014182217

Figure 2014182217
Figure 2014182217

また、前記棒状液晶化合物としては、前記一般式(1)で表される重合性棒状液晶化合物に加え、少なくとも一種の下記一般式(2)で表される化合物を併用することが好ましい。   In addition to the polymerizable rod-shaped liquid crystal compound represented by the general formula (1), it is preferable to use at least one compound represented by the following general formula (2) as the rod-shaped liquid crystal compound.

一般式(2)
1−(L1)p−Cy1−L2−(Cy2−L3)n−Cy3−(L4)q−M2
(一般式(2)中、M1およびM2はそれぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、ヘテロ環基、シアノ基、ハロゲン、−SCN、−CF3、ニトロ基、または、Q1を表すが、M1およびM2の少なくとも一つは、Q1以外の基を表す。
ただし、Q1、L1、L2、L3、L4、Cy1、Cy2、Cy3およびnは前記一般式(1)で表される基と同義である。また、pおよびqは0、または1である。)
General formula (2)
M 1 - (L 1) p -Cy 1 -L 2 - (Cy 2 -L 3) n-Cy 3 - (L 4) q-M 2
(In General Formula (2), M 1 and M 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a heterocyclic group, a cyano group, a halogen, —SCN, — CF 3 , a nitro group, or Q 1 is represented, but at least one of M 1 and M 2 represents a group other than Q 1 .
However, Q 1, L 1, L 2, L 3, L 4, Cy 1, Cy 2, Cy 3 and n have the same meanings as the group represented by the general formula (1). P and q are 0 or 1. )

1およびM2がQ1を表さない場合、M1およびM2は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、シアノ基であることが好ましく、より好ましくは、炭素数1〜4のアルキル基、もしくは、フェニル基であり、pおよびqは0であることが好ましい。 When M 1 and M 2 do not represent Q 1 , M 1 and M 2 are preferably a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a cyano group, more preferably , An alkyl group having 1 to 4 carbon atoms, or a phenyl group, and p and q are preferably 0.

また、前記一般式(1)で表される重合性液晶化合物と、一般式(2)で表される化合物の混合物中における、一般式(2)で表される化合物の好ましい混合比率としては、0.1%〜40%であり、より好ましくは、1%〜30%であり、更に好ましくは、5%〜20%である。   Moreover, as a preferable mixing ratio of the compound represented by the general formula (2) in the mixture of the polymerizable liquid crystal compound represented by the general formula (1) and the compound represented by the general formula (2), It is 0.1% -40%, More preferably, it is 1% -30%, More preferably, it is 5% -20%.

以下に、一般式(2)で表される化合物の好ましい例を示すが、本発明はこれらに限定されるものではない。   Although the preferable example of a compound represented by General formula (2) below is shown, this invention is not limited to these.

Figure 2014182217
Figure 2014182217

Figure 2014182217
Figure 2014182217

前記円盤状液晶性化合物は、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載されている。円盤状液晶性化合物の重合については、特開平8−27284公報に記載がある。円盤状液晶性化合物を重合により固定するためには、円盤状液晶性化合物の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。即ち、光硬化型円盤状液晶性化合物は、下記式(3)で表わされる化合物であることが好ましい。   The discotic liquid crystalline compound is disclosed in various documents (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); edited by The Chemical Society of Japan, Quarterly Chemical Review, No. 22). , Liquid Crystal Chemistry, Chapter 5, Chapter 10 Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al., J. Am. Chem. Soc., Vol. 116, page 2655 (1994)). The polymerization of the discotic liquid crystalline compound is described in JP-A-8-27284. In order to fix the discotic liquid crystalline compound by polymerization, it is necessary to bond a polymerizable group as a substituent to the discotic core of the discotic liquid crystalline compound. However, when the polymerizable group is directly connected to the disc-shaped core, it becomes difficult to maintain the orientation state in the polymerization reaction. Therefore, a linking group is introduced between the discotic core and the polymerizable group. That is, the photocurable discotic liquid crystalline compound is preferably a compound represented by the following formula (3).

一般式(3)
D(−L−P)n
(一般式中、Dは円盤状コアであり、Lは二価の連結基であり、Pは重合性基であり、nは4〜12の整数である。)
前記式(3)中の円盤状コア(D)、二価の連結基(L)および重合性基(P)の好ましい具体例は、それぞれ、特開2001−4837号公報に記載の(D1)〜(D15)、(L1)〜(L25)、(P1)〜(P18)であり、同公報に記載の内容を好ましく用いることができる。
General formula (3)
D (-LP) n
(In the general formula, D is a discotic core, L is a divalent linking group, P is a polymerizable group, and n is an integer of 4 to 12.)
Preferred specific examples of the discotic core (D), the divalent linking group (L) and the polymerizable group (P) in the formula (3) are (D1) described in JP-A No. 2001-4837, respectively. To (D15), (L1) to (L25), and (P1) to (P18), and the contents described in the publication can be preferably used.

前記一般式(1)〜(3)で表わされる化合物は重合性組成物の固形分質量(溶媒を除いた質量)に対し、80質量%以上、90質量%以上、または、95質量%以上、また、99.99質量%以下、99.98質量%以下、99.97質量%以下で含まれていればよい。特に、アクリル基、またはメタクリル基を含む化合物が、70質量%以上、80質量%以上、90質量%以上、または、95質量%以上、また、99.99質量%以下、99.98質量%以下、99.97質量%以下で含まれていることが好ましい。   The compound represented by the general formulas (1) to (3) is 80% by mass or more, 90% by mass or more, or 95% by mass or more with respect to the solid content mass (mass excluding the solvent) of the polymerizable composition. Moreover, what is necessary is just to contain 99.99 mass% or less, 99.98 mass% or less, and 99.97 mass% or less. In particular, the compound containing an acrylic group or a methacryl group is 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, and 99.99% by mass or less, 99.98% by mass or less. 99.97% by mass or less.

液晶化合物は、水平配向、垂直配向、傾斜配向、およびねじれ配向のいずれの配向状態で固定されていてもよい。尚、本明細書において「水平配向」とは、棒状液晶の場合、分子長軸と透明支持体の水平面が平行であることをいい、円盤状液晶の場合、円盤状液晶化合物のコアの円盤面と透明支持体の水平面が平行であることをいうが、厳密に平行であることを要求するものではなく、本明細書では、水平面とのなす傾斜角が10度未満の配向を意味するものとする。本発明の光学フィルム材料における光学異方性層としては、棒状液晶化合物を水平配向させた状態で固定化されたものを含むことが好ましい。   The liquid crystal compound may be fixed in any alignment state of horizontal alignment, vertical alignment, inclined alignment, and twist alignment. In the present specification, “horizontal alignment” means that in the case of a rod-like liquid crystal, the molecular long axis and the horizontal plane of the transparent support are parallel, and in the case of a disc-like liquid crystal, the disc surface of the core of the disc-like liquid crystal compound. And the horizontal plane of the transparent support is parallel, but it is not required to be strictly parallel, and in this specification, an inclination angle with the horizontal plane is less than 10 degrees. To do. The optically anisotropic layer in the optical film material of the present invention preferably contains a rod-like liquid crystal compound fixed in a horizontally aligned state.

[溶媒]
液晶化合物を含有する組成物を、塗布液として、延伸フィルム表面に塗布する場合の塗布液の調製に使用する溶媒としては、有機溶媒もしくは水、またはこれらの混合溶媒が好ましく用いられる。有機溶媒の例としては、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)、アルキルアルコール(例、メタノール、エタノール、プロパノール)が挙げられる。また、二種類以上の溶媒を混合して使用してもよい。上記の中で、アルキルハライド、エステル、ケトンおよびそれらの混合溶媒が好ましい。
後述のアクリルポリマー層作製のための組成物にも同様の溶媒を用いることができる。
[solvent]
As a solvent used for preparing a coating liquid when a composition containing a liquid crystal compound is applied to the stretched film surface as a coating liquid, an organic solvent or water, or a mixed solvent thereof is preferably used. Examples of organic solvents include amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethyl sulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (eg, benzene, hexane), alkyl halides (eg, , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane), alkyl alcohols (eg, , Methanol, ethanol, propanol). Two or more kinds of solvents may be mixed and used. Among the above, alkyl halides, esters, ketones and mixed solvents thereof are preferable.
A similar solvent can be used for a composition for preparing an acrylic polymer layer described later.

[配向固定化]
液晶化合物の重合反応は、光重合反応であればよい。光重合反応としては、ラジカル重合、カチオン重合のいずれでもよいが、ラジカル重合が好ましい。ラジカル光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。カチオン光重合開始剤の例には、有機スルフォニウム塩系、ヨードニウム塩系、フォスフォニウム塩系等を例示することができ、有機スルフォニウム塩系、が好ましく、トリフェニルスルフォニウム塩が特に好ましい。これら化合物の対イオンとしては、ヘキサフルオロアンチモネート、ヘキサフルオロフォスフェートなどが好ましく用いられる。
[Fixed orientation]
The polymerization reaction of the liquid crystal compound may be a photopolymerization reaction. The photopolymerization reaction may be either radical polymerization or cationic polymerization, but radical polymerization is preferred. Examples of radical photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Aciloin compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US Pat. No. 3,549,367) Acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850) and oxadiazole compounds (US Pat. No. 4,212,970). Examples of the cationic photopolymerization initiator include organic sulfonium salt systems, iodonium salt systems, phosphonium salt systems, and the like. Organic sulfonium salt systems are preferable, and triphenylsulfonium salts are particularly preferable. As counter ions of these compounds, hexafluoroantimonate, hexafluorophosphate, and the like are preferably used.

光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。液晶化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、10mJ/cm2〜10J/cm2であることが好ましく、25〜1000mJ/cm2であることがさらに好ましい。照度は10〜2000mW/cm2であることが好ましく、20〜1500mW/cm2であることがより好ましく、40〜1000mW/cm2であることがさらに好ましい。照射波長としては250〜450nmにピークを有することが好ましく、300〜410nmにピークを有することがさらに好ましい。光重合反応を促進するため、窒素などの不活性ガス雰囲気下あるいは加熱条件下で光照射を実施してもよい。 The amount of the photopolymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating solution. Light irradiation for the polymerization of the liquid crystal compound is preferably performed using ultraviolet rays. Irradiation energy is preferably 10mJ / cm 2 ~10J / cm 2 , further preferably 25~1000mJ / cm 2. The illuminance is preferably 10~2000mW / cm 2, more preferably 20~1500mW / cm 2, further preferably 40~1000mW / cm 2. The irradiation wavelength preferably has a peak at 250 to 450 nm, and more preferably has a peak at 300 to 410 nm. In order to accelerate the photopolymerization reaction, light irradiation may be performed under an inert gas atmosphere such as nitrogen or under heating conditions.

[水平配向剤]
液晶化合物を含む重合性組成物中に、特開2009−69793号公報の段落「0098」〜「0105」に記載の、一般式(1)〜(3)で表される化合物および一般式(4)のモノマーを用いた含フッ素ホモポリマーまたはコポリマーの少なくとも一種を含有させることで、液晶化合物の分子を実質的に水平配向させることができる。液晶化合物を水平配向させる場合、その傾斜角は0〜5度が好ましく、0〜3度がより好ましく、0〜2度がさらに好ましく、0〜1度が最も好ましい。
[Horizontal alignment agent]
In the polymerizable composition containing a liquid crystal compound, the compounds represented by the general formulas (1) to (3) and the general formula (4) described in paragraphs “0098” to “0105” of JP2009-69793A The molecule of the liquid crystal compound can be substantially horizontally aligned by containing at least one of a fluorine-containing homopolymer or copolymer using the monomer (1). When the liquid crystal compound is horizontally aligned, the tilt angle is preferably 0 to 5 degrees, more preferably 0 to 3 degrees, further preferably 0 to 2 degrees, and most preferably 0 to 1 degree.

水平配向剤の添加量としては、液晶化合物の質量の0.01〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.02〜1質量%が特に好ましい。なお、特開2009−69793号公報の段落「0098」〜「0105」に記載の一般式(1)〜(4)にて表される化合物は、単独で用いてもよいし、二種以上を併用してもよい。
[その他の添加剤]
液晶化合物を含む重合性組成物はそのほか必要な添加剤を含んでいてもよいが、いわゆるカイラル剤を含んでいないことが好ましい。
The addition amount of the horizontal alignment agent is preferably 0.01 to 20% by mass, more preferably 0.01 to 10% by mass, and particularly preferably 0.02 to 1% by mass of the mass of the liquid crystal compound. In addition, the compounds represented by the general formulas (1) to (4) described in paragraphs “0098” to “0105” of JP-A-2009-69793 may be used alone or in combination of two or more. You may use together.
[Other additives]
The polymerizable composition containing a liquid crystal compound may contain other necessary additives, but preferably does not contain a so-called chiral agent.

[アクリルポリマー層]
本発明の光学フィルム材料は、前記光学異方性層に(メタ)アクリレートを含む重合性組成物を硬化させて形成されたアクリルポリマー層を含む。本発明の光学フィルム材料において、アクリルポリマー層としては、光学異方性層、または硬化前の光学異方性層の表面に直接、(メタ)アクリレートモノマーを含む重合性組成物を塗布し、この塗布層を硬化して形成される層を用いる。なお、光学異方性層または硬化前の光学異方性層につき、本明細書において、「液晶化合物を含む重合性組成物から形成される層」という場合がある。
[Acrylic polymer layer]
The optical film material of the present invention includes an acrylic polymer layer formed by curing a polymerizable composition containing (meth) acrylate on the optically anisotropic layer. In the optical film material of the present invention, as the acrylic polymer layer, a polymerizable composition containing a (meth) acrylate monomer is directly applied to the surface of the optically anisotropic layer or the optically anisotropic layer before curing. A layer formed by curing the coating layer is used. The optically anisotropic layer or the optically anisotropic layer before curing may be referred to as “a layer formed from a polymerizable composition containing a liquid crystal compound” in this specification.

本発明の光学フィルム材料におけるアクリルポリマー層としては光学的に等方性であるものを用いればよい。光学的に等方性であるとは、面内レターデーション(Re(550))の絶対値が10nm以下、かつ、厚み方向レターデーション(Rth)の絶対値が10nm以下であることを意味する。
すなわち、本発明の光学フィルム材料におけるアクリルポリマー層は、例えば、アクリレート基を有する液晶化合物を重合させて得られるポリマー層を含まないことが好ましく、より詳しくは、液晶化合物を固形分量で80質量%以上、70質量%以上、60質量%以上、50質量%以上、40質量%以上、30質量%以上、20質量%以上、10質量%以上、5質量%以上、または1質量%以上で含む組成物を硬化させて得られたポリマー層を含まないことが好ましい。
What is necessary is just to use what is optically isotropic as an acrylic polymer layer in the optical film material of this invention. Optically isotropic means that the in-plane retardation (Re (550)) has an absolute value of 10 nm or less and the thickness direction retardation (Rth) has an absolute value of 10 nm or less.
That is, the acrylic polymer layer in the optical film material of the present invention preferably does not include, for example, a polymer layer obtained by polymerizing a liquid crystal compound having an acrylate group. More specifically, the liquid crystal compound is 80% by mass in solid content. 70% by mass or more, 60% by mass or more, 50% by mass or more, 40% by mass or more, 30% by mass or more, 20% by mass or more, 10% by mass or more, 5% by mass or more, or 1% by mass or more It is preferable not to include a polymer layer obtained by curing the product.

アクリルポリマーは、例えば、ポリメチル(メタ)アクリレート、(メタ)アクリル酸とその各種エステルの共重合体、スチレンと(メタ)アクリル酸あるいは各種(メタ)アクリル酸エステルの共重合体、ビニルトルエンと(メタ)アクリル酸あるいは各種(メタ)アクリル酸エステルの共重合体等を挙げることができる。好ましい例としてはメチル(メタ)アクリレートと(メタ)アクリル酸との共重合体、アリル(メタ)アクリレートと(メタ)アクリル酸の共重合体、ベンジル(メタ)アクリレートと(メタ)アクリル酸と他のモノマーとの多元共重合体などを挙げることができる。これらのポリマーは単独で用いてもよく、複数種を組み合わせて使用してもよい。   Acrylic polymers include, for example, polymethyl (meth) acrylate, copolymers of (meth) acrylic acid and various esters thereof, copolymers of styrene and (meth) acrylic acid or various (meth) acrylic esters, vinyltoluene and ( Mention may be made of (meth) acrylic acid or copolymers of various (meth) acrylic acid esters. Preferred examples include copolymers of methyl (meth) acrylate and (meth) acrylic acid, copolymers of allyl (meth) acrylate and (meth) acrylic acid, benzyl (meth) acrylate and (meth) acrylic acid, and others. And multi-component copolymers with other monomers. These polymers may be used alone or in combination of two or more.

アクリルポリマー層は(メタ)アクリレートおよびそのほかのモノマーを熱重合したものであっても光重合したものであってもよいが、光重合したものが特に好ましい。光重合反応は、液晶化合物を含む重合性組成物から形成される層に、(メタ)アクリレートを含む重合性組成物が直接塗布され、その塗布層において行われていればよい。光重合反応のための光照射は上述の液晶化合物の重合のための光照射と同様の条件で行われればよく、液晶化合物の重合のための光照射が、(メタ)アクリレートを同時に重合させていてもよい。   The acrylic polymer layer may be one obtained by thermally polymerizing (meth) acrylate and other monomers, or one obtained by photopolymerization, but one obtained by photopolymerization is particularly preferred. The photopolymerization reaction should just be performed in the coating layer in which the polymeric composition containing (meth) acrylate is directly apply | coated to the layer formed from the polymeric composition containing a liquid crystal compound. The light irradiation for the photopolymerization reaction may be performed under the same conditions as the light irradiation for the polymerization of the liquid crystal compound described above, and the light irradiation for the polymerization of the liquid crystal compound simultaneously polymerizes the (meth) acrylate. May be.

重合開始剤としては熱重合開始剤、光重合開始剤が、手法に合わせて適宜用いられる。
光重合開始剤としては米国特許第2367660号明細書に開示されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載のα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書および同第2951758号明細書に記載の多核キノン化合物、米国特許第3549367号明細書に記載のトリアリールイミダゾール2量体とp−アミノケトンの組み合わせ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物、米国特許第4239850号明細書に記載されているトリハロメチル−トリアジン化合物、米国特許第4212976号明細書に記載されているトリハロメチルオキサジアゾール化合物等を挙げることができる。特に、トリハロメチル−s−トリアジン、トリハロメチルオキサジアゾールおよびトリアリールイミダゾール2量体が好ましい。また、この他、特開平11−133600号公報に記載の「重合開始剤C」も好適なものとしてあげることができる。
また重合開始剤の量は、アクリルポリマー層形成のための重合性組成物の固形分の0.01〜20質量%であることが好ましく、0.2〜10質量%であることがさらに好ましい。
As the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator is appropriately used according to the method.
As photopolymerization initiators, vicinal polyketaldonyl compounds disclosed in US Pat. No. 2,367,660, acyloin ether compounds described in US Pat. No. 2,448,828, US Pat. No. 2,722,512 An aromatic acyloin compound substituted with an α-hydrocarbon described in US Pat. Nos. 3,046,127 and 2,951,758, and a triarylimidazole described in US Pat. No. 3,549,367 A combination of a dimer and p-aminoketone, a benzothiazole compound and a trihalomethyl-s-triazine compound described in JP-B-51-48516, a trihalomethyl-triazine compound described in US Pat. No. 4,239,850, US Pat. No. 4,221,976 And the like trihalomethyl oxadiazole compounds described. In particular, trihalomethyl-s-triazine, trihalomethyloxadiazole, and triarylimidazole dimer are preferable. In addition, “polymerization initiator C” described in JP-A-11-133600 can also be mentioned as a preferable example.
Further, the amount of the polymerization initiator is preferably 0.01 to 20% by mass, more preferably 0.2 to 10% by mass, based on the solid content of the polymerizable composition for forming the acrylic polymer layer.

アクリルポリマー層に ハードコート性を持たせるために、アクリルポリマー層中のポリマーとしてTgの高いポリマーを用いてもよい。そのTgは50℃以上が好ましく、80℃以上であればより好ましく、100℃以上であればさらに好ましい。ポリマーのTgを上げるために、水酸基、カルボン酸基、アミノ基といった極性基を導入するとよい。高Tgポリマーの一例として、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート等のアルキル(メタ)アクリレートの反応物、アルキル(メタ)アクリレートと(メタ)アクリル酸との共重合体、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレートの反応物、アルキル(メタ)アクリレートと、水酸基含有(メタ)アクリレートと無水コハク酸、無水フタル酸等の酸無水物との反応物であるハーフエステルの共重合体等が挙げられる。   In order to give the acrylic polymer layer a hard coat property, a polymer having a high Tg may be used as the polymer in the acrylic polymer layer. The Tg is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and even more preferably 100 ° C. or higher. In order to increase the Tg of the polymer, a polar group such as a hydroxyl group, a carboxylic acid group, or an amino group may be introduced. Examples of high Tg polymers include polymethyl (meth) acrylate, reaction product of alkyl (meth) acrylate such as polyethyl (meth) acrylate, copolymer of alkyl (meth) acrylate and (meth) acrylic acid, 2-hydroxyethyl Reaction products of hydroxyl group-containing (meth) acrylates such as (meth) acrylate and 2-hydroxypropyl (meth) acrylate, alkyl (meth) acrylates, hydroxyl-containing (meth) acrylates and acid anhydrides such as succinic anhydride and phthalic anhydride And a copolymer of a half ester which is a reaction product with the product.

また、ハードコート性を付与するために、少なくとも1種類の二官能以上の重合性モノマーおよび重合性ポリマーを含む層を光照射または熱により重合した層を用いてもよい。反応性基としては、(メタ)アクリル基のほか、ビニル基、アリル基、エポキシ基、オキセタニル基、ビニルエーテル基等が挙げられる。重合性ポリマーの一例として、グリシジル(メタ)アクリレート、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、グリセロール1,3−ジ(メタ)アクリレート等の重合性基含有アクリレートの反応物。重合性基含有アクリレートの反応物(メタ)アクリル酸との共重合体、および他のモノマーとの多元共重合体が挙げられる。   In order to impart hard coat properties, a layer obtained by polymerizing a layer containing at least one bifunctional or higher polymerizable monomer and a polymerizable polymer by light irradiation or heat may be used. Examples of reactive groups include (meth) acryl groups, vinyl groups, allyl groups, epoxy groups, oxetanyl groups, vinyl ether groups, and the like. As an example of the polymerizable polymer, a reaction product of a polymerizable group-containing acrylate such as glycidyl (meth) acrylate, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, or glycerol 1,3-di (meth) acrylate. Examples thereof include a copolymer of a polymerizable group-containing acrylate with a reaction product (meth) acrylic acid, and a multi-component copolymer with another monomer.

アクリルポリマー層の膜厚は、60μm以下、50μm以下、40μm以下、30μm以下、25μm以下、または15μm以下、また、2μm以上、3μm以上、3.5μm以上、4μm以上、4.5μm以上、または5μm以上であることが好ましい。本発明の光学フィルム材料においては、アクリルポリマー層の膜厚は、光学異方性層の膜厚よりも大きいことが好ましい。アクリルポリマー層の膜厚を光学異方性層の膜厚よりも大きくすることにより、アクリルポリマー層および光学異方性層を含む積層体を延伸フィルムから剥離することが容易である構成とすることができる。アクリルポリマー層の膜厚と光学異方性層の膜厚との比は、それぞれの膜厚にもよるが、例えば、「アクリルポリマー層の膜厚」/「光学異方性層の膜厚」が、6〜5、5〜4、4〜3、3〜2、2〜1.5、1.5〜1.1などであればよい。通常それぞれの膜厚が小さいほど、「アクリルポリマー層の膜厚」/「光学異方性層の膜厚」を大きくすることが好ましい。   The thickness of the acrylic polymer layer is 60 μm or less, 50 μm or less, 40 μm or less, 30 μm or less, 25 μm or less, or 15 μm or less, or 2 μm or more, 3 μm or more, 3.5 μm or more, 4 μm or more, 4.5 μm or more, or 5 μm. The above is preferable. In the optical film material of the present invention, the thickness of the acrylic polymer layer is preferably larger than the thickness of the optically anisotropic layer. By making the film thickness of the acrylic polymer layer larger than the film thickness of the optically anisotropic layer, the laminate including the acrylic polymer layer and the optically anisotropic layer can be easily peeled from the stretched film. Can do. The ratio between the film thickness of the acrylic polymer layer and the film thickness of the optically anisotropic layer depends on the respective film thicknesses. For example, “film thickness of acrylic polymer layer” / “film thickness of optically anisotropic layer” However, what is necessary is just 6-5, 5-4, 4-3, 3-2, 2-1.5, 1.5-1.1, etc. Usually, it is preferable to increase the “thickness of the acrylic polymer layer” / “thickness of the optically anisotropic layer” as the respective thicknesses are smaller.

[塗布方法]
光学異方性層またはアクリルポリマー層などの形成の際の組成物の塗布は、ディップコート法、エアーナイフコート法、スピンコート法、スリットコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号明細書)により、行うことができる。二以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2761791号、同2941898号、同3508947号、同3526528号の各明細書および原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
[Coating method]
Application of the composition when forming an optically anisotropic layer or an acrylic polymer layer is performed by the dip coating method, air knife coating method, spin coating method, slit coating method, curtain coating method, roller coating method, wire bar coating method. , By a gravure coating method or an extrusion coating method (US Pat. No. 2,681,294). Two or more layers may be applied simultaneously. The methods of simultaneous application are described in US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, and 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, Asakura Shoten (1973).

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.

<重合性液晶化合物を含む光学異方性層の形成>
下記表1に示す塗布液(A)の処方に調製した塗布液を、ワイヤーバーを用いて、ラビング処理した富士フイルム製PET(厚さ75μm)に塗布し、室温にて30秒間乾燥させた後、90℃の雰囲気で2分間加熱し、その後フュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6〜12秒間UV照射し、表4に示す膜厚の光学異方性層を作製した。棒状液晶性化合物のフィルム面に対する平均傾斜角は0°であり、棒状液晶がフィルム面に対して水平に配向していることを確認した。
<Formation of optically anisotropic layer containing polymerizable liquid crystal compound>
After applying the coating liquid prepared to the formulation of the coating liquid (A) shown in Table 1 below to rubbing-treated Fujifilm PET (thickness 75 μm) using a wire bar, and drying at room temperature for 30 seconds , Heated for 2 minutes in an atmosphere at 90 ° C., and then irradiated with UV at a power of 60% for 6 to 12 seconds using a fusion D bulb (lamp 90 mW / cm) to produce an optically anisotropic layer having the thickness shown in Table 4 did. The average inclination angle with respect to the film surface of the rod-like liquid crystal compound was 0 °, and it was confirmed that the rod-like liquid crystal was aligned horizontally with respect to the film surface.

Figure 2014182217
Figure 2014182217

Figure 2014182217
Figure 2014182217

<アクリルポリマー層形成>
作製した光学異方性層上に、下記表2に示す塗布液(B)の処方に調製した塗布液をワイヤーバーを用いて塗布し、60℃で150秒乾燥の後、更に窒素パージ下酸素濃度約0.1%で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量300mJ/cmの紫外線を照射して塗布層を硬化させて、表4に示す膜厚のアクリルポリマー層を形成し、実施例1〜3、比較例1〜3の光学フィルム材料を得た。
<Acrylic polymer layer formation>
On the produced optically anisotropic layer, the coating liquid prepared in the formulation of the coating liquid (B) shown in Table 2 below was applied using a wire bar, dried at 60 ° C. for 150 seconds, and then further oxygen purged with nitrogen purge. Using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at a concentration of about 0.1%, ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 300 mJ / cm 2 are used to cure the coating layer. Then, an acrylic polymer layer having a film thickness shown in Table 4 was formed, and optical film materials of Examples 1 to 3 and Comparative Examples 1 to 3 were obtained.

Figure 2014182217
Figure 2014182217

Figure 2014182217
Figure 2014182217

[配向層を有する例]
(配向層用塗布液AL−1の調製)
下記の組成物を調製し、孔径30μmのポリプロピレン製フィルタでろ過して、配向層用塗布液AL−1として用いた。
[Example with alignment layer]
(Preparation of coating liquid AL-1 for alignment layer)
The following composition was prepared, filtered through a polypropylene filter having a pore size of 30 μm, and used as an alignment layer coating liquid AL-1.

──────────────────────────────────―
配向層用塗布液組成(%)
──────────────────────────────────―
ポリビニルアルコール(PVA205、クラレ(株)製) 3.23
ポリビニルピロリドン(Luvitec K30、BASF社製) 1.50
蒸留水 57.11
メタノール 38.16
──────────────────────────────────―
───────────────────────────────────
Coating liquid composition for alignment layer (%)
───────────────────────────────────
Polyvinyl alcohol (PVA205, manufactured by Kuraray Co., Ltd.) 3.23
Polyvinylpyrrolidone (Luvitec K30, manufactured by BASF) 1.50
Distilled water 57.11
Methanol 38.16
───────────────────────────────────

上記の組成の配向膜塗布液をワイヤーバーで支持体(富士フイルム製PET(厚さ75μm))に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥した。配向膜の厚みは0.7μmだった。配向層の表面に表1に示す塗布液(A)の処方に調製した塗布液を、ワイヤーバーを用いて、塗布した。その後、実施例2と同様の方法で光学異方性層、アクリルポリマー層を形成して、比較例4、5の光学フィルム材料を作製した。   The alignment film coating solution having the above composition was applied to a support (PET manufactured by Fuji Film (thickness 75 μm)) with a wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds. The thickness of the alignment film was 0.7 μm. The coating liquid prepared to the formulation of the coating liquid (A) shown in Table 1 was applied to the surface of the alignment layer using a wire bar. Thereafter, an optical anisotropic layer and an acrylic polymer layer were formed in the same manner as in Example 2 to produce optical film materials of Comparative Examples 4 and 5.

[ラビング処理していない仮支持体を用いる例]
仮支持体としてラビング処理していない富士フイルム製PET(厚さ75μm)を用いた以外は実施例2と同様の方法で、光学異方性層、アクリルポリマー層を形成して、比較例6の光学フィルム材料を作製した。
[Example using a temporary support that has not been rubbed]
An optically anisotropic layer and an acrylic polymer layer were formed in the same manner as in Example 2 except that Fuji Film PET (thickness: 75 μm) that was not rubbed was used as a temporary support. An optical film material was prepared.

[アクリルポリマー溶液を用いる例]
(アクリルポリマー溶液の調整)
下記の組成物を調製し、アクリルポリマー溶液P−1として用いた。
──────────────────────────────────―
アクリルポリマー層用塗布液組成(%)
──────────────────────────────────―
ダイヤナールBR(三菱レイヨン(株)製、Mw280000 10.00
界面活性剤溶液 0.03
(メガファックF−176PF、大日本インキ化学工業(株)製)
メチレンクロライド 適宜
──────────────────────────────────―
上記の組成のアクリルポリマー溶液P−1をワイヤーバーで支持体に塗布し、60℃の温風で120秒乾燥して層を作製した。
アクリルポリマー層として上記のように形成した層を使用した以外は実施例2と同様の方法で比較例7の光学フィルム材料を作製した。
[Example using acrylic polymer solution]
(Preparation of acrylic polymer solution)
The following composition was prepared and used as the acrylic polymer solution P-1.
───────────────────────────────────
Coating solution composition for acrylic polymer layer (%)
───────────────────────────────────
Dianar BR (Mitsubishi Rayon Co., Ltd., Mw 280000 10.00
Surfactant solution 0.03
(Megafuck F-176PF, manufactured by Dainippon Ink & Chemicals, Inc.)
Methylene chloride as appropriate───────────────────────────────────
The acrylic polymer solution P-1 having the above composition was applied to a support with a wire bar, and dried with hot air at 60 ° C. for 120 seconds to prepare a layer.
An optical film material of Comparative Example 7 was produced in the same manner as in Example 2 except that the layer formed as described above was used as the acrylic polymer layer.

[高分子液晶ポリマーを用いた例]
(主鎖型液晶ポリエステルの合成)
4−アセトキシ安息香酸137質量部、6−アセトキシ−2−ナフトエ酸63質量部、及び酢酸カリウム0.01質量部を反応容器に仕込み、撹拌しながら150℃ まで温度を上昇させ、十分に窒素置換させた。更に撹拌しながら300℃ まで温度を上昇させ、発生する酢酸を除去させながら反応容器内を徐々に減圧させた。この状態で1 時間撹拌し続け、下記構造式(I−1)で表される主鎖型液晶ポリマーA を合成した。
該主鎖型液晶ポリマーA を少量取り2枚のガラスにはさみ、加熱しながら偏光顕微鏡で軟化が始まる温度を観察したところ、約310℃ であった。
なお、下記構造式(I−1) におけるm 及びnはモル比を表し、m:n =73:27であった。
[Example using polymer liquid crystal polymer]
(Synthesis of main-chain liquid crystal polyester)
Charge 137 parts by mass of 4-acetoxybenzoic acid, 63 parts by mass of 6-acetoxy-2-naphthoic acid, and 0.01 parts by mass of potassium acetate to the reaction vessel, raise the temperature to 150 ° C. while stirring, and thoroughly substitute nitrogen I let you. Further, the temperature was raised to 300 ° C. while stirring, and the inside of the reaction vessel was gradually depressurized while removing generated acetic acid. In this state, stirring was continued for 1 hour to synthesize main chain type liquid crystal polymer A 1 represented by the following structural formula (I-1).
A small amount of the main-chain type liquid crystal polymer A was taken and sandwiched between two glasses, and the temperature at which softening started with a polarizing microscope was observed while heating.
In the structural formula (I-1) below, m 1 and n represent a molar ratio, and m: n = 73: 27.

Figure 2014182217
Figure 2014182217

(高分子液晶ポリマー溶液の調整)
下記の組成物を調製し、高分子液晶ポリマー溶液LC−2として用いた。
──────────────────────────────────―
高分子液晶ポリマー層用塗布液組成(%)
──────────────────────────────────―
主鎖型液晶ポリマーA 10.00
界面活性剤溶液 0.03
(メガファックF−176PF、大日本インキ化学工業(株)製)
クロロホルム 適宜
──────────────────────────────────―

光学異方性層として、高分子液晶ポリマー溶液LC−2を用い、ワイヤーバーでPET支持体に塗布し、その後60℃の温風で120秒乾燥して得られた層を用いた以外は実施例2と同様の方法で比較例8の光学フィルム材料を作製した。
(Preparation of polymer liquid crystal polymer solution)
The following composition was prepared and used as the polymer liquid crystal polymer solution LC-2.
───────────────────────────────────
Coating liquid composition for polymer liquid crystal polymer layer (%)
───────────────────────────────────
Main chain type liquid crystal polymer A 10.00
Surfactant solution 0.03
(Megafuck F-176PF, manufactured by Dainippon Ink & Chemicals, Inc.)
Chloroform As appropriate ───────────────────────────────────

The optically anisotropic layer was used except that the polymer liquid crystal polymer solution LC-2 was used, applied to a PET support with a wire bar, and then dried for 120 seconds with hot air at 60 ° C. The optical film material of Comparative Example 8 was produced in the same manner as in Example 2.

[無延伸シクロオレフィン系ポリマーフィルムを仮支持体として用いる例]
仮支持体として、市販のシクロオレフィン系ポリマーフィルム(無延伸のフィルム)“ZEONOR ZF14”(日本ゼオン社製、膜厚100μm)を使用した以外は実施例2と同様の方法で比較例9の光学フィルム材料を作製した。
[Example of using an unstretched cycloolefin-based polymer film as a temporary support]
The optical of Comparative Example 9 was prepared in the same manner as in Example 2 except that a commercially available cycloolefin polymer film (non-stretched film) “ZEONOR ZF14” (manufactured by Zeon Corporation, film thickness: 100 μm) was used as a temporary support. A film material was prepared.

[延伸シクロオレフィン系ポリマーフィルムを仮支持体として用いる例]
(シクロオレフィンポリマーフィルムT1の作製)
市販されているシクロオレフィン系ポリマーフィルム“ZEONOR ZF14”(日本ゼオン製)を、下記表3に記載の条件で延伸して、フィルムT1を得た。フィルムT1の膜厚、Re、Rth、Nzを表3に示す。フィルムの遅相軸は延伸方向と平行、すなわちフィルム搬送方向に対して反時計回りに45°方向であった。
[Example of using a stretched cycloolefin-based polymer film as a temporary support]
(Preparation of cycloolefin polymer film T1)
A commercially available cycloolefin polymer film “ZEONOR ZF14” (manufactured by Zeon Corporation) was stretched under the conditions described in Table 3 below to obtain a film T1. Table 3 shows the film thickness, Re, Rth, and Nz of the film T1. The slow axis of the film was parallel to the stretching direction, that is, 45 ° counterclockwise with respect to the film transport direction.

Figure 2014182217
Figure 2014182217

作製したフィルムT1を仮支持体として使用した以外は実施例2と同様の方法で実施例4の光学フィルム材料を作製した。   An optical film material of Example 4 was produced in the same manner as in Example 2 except that the produced film T1 was used as a temporary support.

<光学フィルム材料の特性の評価>
得られた光学フィルム材料につき、特性の評価を以下の基準で行った。結果を表4に示す。
(1)光学異方性の評価
作製した光学フィルムを仮支持体から剥がし、異方性のないガラス基板上に密着させて、偏光顕微鏡の消光位条件でサンプルを回転させて、光学フィルム材料の光学異方性を確認した。
A:明らかに明光位を有する。
B:弱い明光位を有する。
C:部分的に弱い明光位を有する。
D:明確な明光位を有しない。
<Evaluation of characteristics of optical film material>
About the obtained optical film material, the characteristic was evaluated on the following references | standards. The results are shown in Table 4.
(1) Evaluation of optical anisotropy The produced optical film is peeled off from the temporary support, and is adhered to a glass substrate having no anisotropy, and the sample is rotated under the extinction condition of a polarizing microscope. Optical anisotropy was confirmed.
A: Clearly has bright light level.
B: It has weak bright light level.
C: Partially weak bright light level.
D: There is no clear bright light level.

(2)重合性液晶化合物を含む光学異方性層とアクリルポリマー層の密着性評価
作製した光学フィルムを仮支持体から剥がし、光学フィルム材料の両面に日東電工(株)製のポリエステル粘着テープ“NO.31B”を圧着して密着試験を行い、重合性液晶化合物を含む光学異方性層とアクリルポリマー層の剥がれの有無を目視で観察した。
A:剥がれが全く認められなかったもの
B:部分的に剥がれを生じたもの
C:完全に剥がれたもの
(2) Adhesive evaluation of optically anisotropic layer containing polymerizable liquid crystal compound and acrylic polymer layer The produced optical film was peeled off from the temporary support, and the polyester adhesive tape “Nitto Denko Co., Ltd.” was applied to both sides of the optical film material. No. 31B ″ was pressure-bonded to perform an adhesion test, and the presence or absence of peeling between the optically anisotropic layer containing the polymerizable liquid crystal compound and the acrylic polymer layer was visually observed.
A: No peeling was observed at all B: Partial peeling occurred C: Completely peeled

(3)仮支持体からの剥離性評価
作製した光学フィルム材料を200mm×300mmに切り抜き、200mmの1辺の縁の形成した層に日東電工(株)製のポリエステル粘着テープ“NO.31B”を圧着しての仮支持体からの剥離性を以下の基準で評価した。
A:引き剥がし抵抗がなく、全面円滑に剥離できる。
B:引き剥がし時に抵抗があるが、全面円滑に剥離できる。
C:引き剥がし抵抗が大きく、全面円滑に剥離できない。
D:引き剥がし抵抗が大きく、途中で千切れて半分程度しか剥離できない。
E:千切れて引き剥がせない。
(3) Evaluation of releasability from temporary support The produced optical film material was cut out to 200 mm × 300 mm, and a polyester adhesive tape “NO.31B” manufactured by Nitto Denko Corporation was applied to the layer formed with one edge of 200 mm. The peelability from the temporary support after pressure bonding was evaluated according to the following criteria.
A: There is no peeling resistance, and the entire surface can be smoothly peeled off.
B: Although there is resistance at the time of peeling, the entire surface can be peeled off smoothly.
C: The peeling resistance is large and the entire surface cannot be smoothly peeled off.
D: Peeling resistance is large and can be peeled off halfway and peeled only about half.
E: It is torn and cannot be peeled off.

(4)曲げ耐性評価
作製した光学フィルム材料を仮支持体から剥がし、無加重で二つに折り曲げた後、もとに戻して折り曲げた部位を光学顕微鏡で観察し、評価した。
A:折り曲げたすべての箇所で、割れ、へこみが発生しない。
B:折り曲げたすべての箇所で割れはないが、一部の場所でへこみが発生した。
C:一部の場所で割れ、へこみが発生した。
D:ほぼすべての部位で割れ、へこみが発生した。
(4) Evaluation of bending resistance The produced optical film material was peeled off from the temporary support, bent in two under no load, and then returned to its original position and observed with an optical microscope for evaluation.
A: Cracks and dents do not occur in all the bent portions.
B: Although there was no crack in all the places bent, the dent generate | occur | produced in one part.
C: Cracks and dents occurred in some places.
D: Cracks and dents occurred at almost all sites.

Figure 2014182217
Figure 2014182217

Claims (11)

延伸フィルムからなる層と、光学異方性層と、光学的に等方性のアクリルポリマー層とを含み、
前記の延伸フィルムからなる層はラビング処理した面を有し、
前記光学異方性層は、前記面に直接塗布された液晶化合物を含む重合性組成物を光照射して前記液晶化合物を重合させることにより形成された層であり、
前記アクリルポリマー層は、前記の液晶化合物を含む重合性組成物から形成される層の表面に直接塗布された(メタ)アクリレートを含む重合性組成物を硬化させることにより形成された層であり、かつ、
前記アクリルポリマー層の膜厚が前記光学異方性層の膜厚よりも大きい、光学フィルム材料。
Including a layer made of a stretched film, an optically anisotropic layer, and an optically isotropic acrylic polymer layer,
The layer made of the stretched film has a rubbed surface,
The optically anisotropic layer is a layer formed by light-irradiating a polymerizable composition containing a liquid crystal compound directly applied to the surface to polymerize the liquid crystal compound,
The acrylic polymer layer is a layer formed by curing a polymerizable composition containing (meth) acrylate applied directly to the surface of the layer formed from the polymerizable composition containing the liquid crystal compound, And,
An optical film material in which the thickness of the acrylic polymer layer is larger than the thickness of the optically anisotropic layer.
前記延伸フィルムが、ポリエチレンテレフタレートフィルムまたはシクロオレフィンポリマーフィルムである請求項1に記載の光学フィルム材料。 The optical film material according to claim 1, wherein the stretched film is a polyethylene terephthalate film or a cycloolefin polymer film. 前記延伸フィルムが、ポリエチレンテレフタレートフィルムである請求項1に記載の光学フィルム材料。 The optical film material according to claim 1, wherein the stretched film is a polyethylene terephthalate film. 前記光学異方性層の膜厚が0.5μm〜5μmである、請求項1〜3のいずれか一項に記載の光学フィルム材料。 The optical film material as described in any one of Claims 1-3 whose film thickness of the said optically anisotropic layer is 0.5 micrometer-5 micrometers. 前記光学異方性層の膜厚が0.5μm〜3μmである、請求項1〜3のいずれか一項に記載の光学フィルム材料。 The optical film material as described in any one of Claims 1-3 whose film thickness of the said optically anisotropic layer is 0.5 micrometer-3 micrometers. 前記液晶化合物が(メタ)アクリル基を2つ以上有する化合物である請求項1〜5のいずれか一項に記載の光学フィルム材料。 The optical film material according to any one of claims 1 to 5, wherein the liquid crystal compound is a compound having two or more (meth) acrylic groups. 前記アクリルポリマー層が(メタ)アクリレートを含む重合性組成物を光照射して(メタ)アクリレートを重合させることにより形成された層である請求項1〜6のいずれか一項に記載の光学フィルム材料。 The optical film according to claim 1, wherein the acrylic polymer layer is a layer formed by light-irradiating a polymerizable composition containing (meth) acrylate to polymerize (meth) acrylate. material. 前記アクリルポリマー層の膜厚が50μm以下である請求項1〜7のいずれか一項に記載の光学フィルム材料。 The film thickness of the said acrylic polymer layer is 50 micrometers or less, The optical film material as described in any one of Claims 1-7. 請求項1〜8のいずれか一項に記載の光学フィルム材料の製造方法であって、
(1)延伸フィルムの少なくとも一方の面をラビングすること、
(2)前記延伸フィルムのラビングされた面に液晶化合物を含む重合性組成物を塗布すること、
(3)前記の液晶化合物を含む重合性組成物から形成される層に直接、(メタ)アクリレートを含む重合性組成物を塗布すること、
(4)前記の液晶化合物を含む重合性組成物および前記の(メタ)アクリレート含む重合性組成物を硬化させることを含む製造方法。
It is a manufacturing method of the optical film material according to any one of claims 1 to 8,
(1) rubbing at least one surface of the stretched film;
(2) applying a polymerizable composition containing a liquid crystal compound to the rubbed surface of the stretched film;
(3) Applying a polymerizable composition containing (meth) acrylate directly to a layer formed from the polymerizable composition containing the liquid crystal compound,
(4) A production method comprising curing the polymerizable composition containing the liquid crystal compound and the polymerizable composition containing the (meth) acrylate.
前記硬化が光照射により行われる請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the curing is performed by light irradiation. 請求項10に記載の製造方法であって、
(1)延伸フィルムの少なくとも一方の面をラビングすること、
(2)前記延伸フィルムのラビングされた面に直接、液晶化合物を含む重合性組成物を塗布すること、
(2−2)前記の液晶化合物を含む重合性組成物を光照射して、前記液晶化合物を重合させて光学異方性層を形成すること、
(3)前記光学異方性層に直接、前記の(メタ)アクリレートを含む重合性組成物を塗布すること、
(3−2)前記の(メタ)アクリレートを含む重合性組成物を光照射して前記(メタ)アクリレートを重合させてアクリルポリマー層を形成することを、この順に含む製造方法。
It is a manufacturing method of Claim 10, Comprising:
(1) rubbing at least one surface of the stretched film;
(2) coating a polymerizable composition containing a liquid crystal compound directly on the rubbed surface of the stretched film;
(2-2) The polymerizable composition containing the liquid crystal compound is irradiated with light to polymerize the liquid crystal compound to form an optically anisotropic layer.
(3) Applying the polymerizable composition containing the (meth) acrylate directly to the optically anisotropic layer,
(3-2) A production method including, in this order, forming an acrylic polymer layer by irradiating the polymerizable composition containing the (meth) acrylate with light to polymerize the (meth) acrylate.
JP2013055586A 2013-03-18 2013-03-18 Optical film material Abandoned JP2014182217A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013055586A JP2014182217A (en) 2013-03-18 2013-03-18 Optical film material
KR1020157024055A KR101699652B1 (en) 2013-03-18 2014-03-17 Optical-film material, optical film, method for manufacturing polarizer, and polarizer
PCT/JP2014/057044 WO2014148408A1 (en) 2013-03-18 2014-03-17 Optical-film material, optical film, method for manufacturing polarizer, and polarizer
CN201480016677.2A CN105190380B (en) 2013-03-18 2014-03-17 Optical film materials, optical thin film, the manufacture method of polarizer and polarizer
TW103110018A TW201442866A (en) 2013-03-18 2014-03-18 Optical film material and process of producing the same, optical film, a process of producing polarizing plate, and polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055586A JP2014182217A (en) 2013-03-18 2013-03-18 Optical film material

Publications (1)

Publication Number Publication Date
JP2014182217A true JP2014182217A (en) 2014-09-29

Family

ID=51700993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055586A Abandoned JP2014182217A (en) 2013-03-18 2013-03-18 Optical film material

Country Status (1)

Country Link
JP (1) JP2014182217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501654A (en) * 2019-01-09 2022-01-06 エルジー・ケム・リミテッド Manufacturing method of optically anisotropic film
KR20220032586A (en) 2019-08-16 2022-03-15 후지필름 가부시키가이샤 optical film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330731A (en) * 2000-03-16 2001-11-30 Nitto Denko Corp Optical film
JP2007065575A (en) * 2005-09-02 2007-03-15 Jsr Corp Optical film, polarizing plate and liquid crystal display
JP2008183812A (en) * 2007-01-30 2008-08-14 Nippon Oil Corp Manufacturing process of liquid crystal film and lamination film for optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330731A (en) * 2000-03-16 2001-11-30 Nitto Denko Corp Optical film
JP2007065575A (en) * 2005-09-02 2007-03-15 Jsr Corp Optical film, polarizing plate and liquid crystal display
JP2008183812A (en) * 2007-01-30 2008-08-14 Nippon Oil Corp Manufacturing process of liquid crystal film and lamination film for optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501654A (en) * 2019-01-09 2022-01-06 エルジー・ケム・リミテッド Manufacturing method of optically anisotropic film
JP7191439B2 (en) 2019-01-09 2022-12-19 エルジー・ケム・リミテッド Method for producing optically anisotropic film
KR20220032586A (en) 2019-08-16 2022-03-15 후지필름 가부시키가이샤 optical film
US11860338B2 (en) 2019-08-16 2024-01-02 Fujifilm Corporation Optical film

Similar Documents

Publication Publication Date Title
WO2014199934A1 (en) Polarizing plate, method for producing polarizing plate, transfer material for production of polarizing plate, and transfer material
US9671539B2 (en) Polarizing plate comprising an optical film including an alignment layer, an anisotropic layer, and an isotropic acrylic polymer layer and method for producing the same
JP5016568B2 (en) Optical compensation film, manufacturing method thereof, polarizing plate and liquid crystal display device using the same
WO2015141818A1 (en) Composition, light-reflection membrane, brightness-improving film, backlight unit, and liquid crystal display device
US20090251642A1 (en) Retardation film, brightness enhancement film, polarizing plate, producing method of a retardation film, and liquid crystal display
JP2006284903A (en) Optical anisotropic film, luminance improving film, multilayer optical film, and image display device using them
JP6303006B2 (en) Brightness-enhancement film transfer material, transfer material production method, brightness-enhancement film, optical sheet member manufacturing method using transfer material, and optical sheet member
JP2002006138A (en) Optical compensation sheet and manufacturing method for the same
JPWO2018123725A1 (en) Circular polarizing plate, organic electroluminescence display device
WO2015046399A1 (en) Polarizing plate fabrication method
WO2017057316A1 (en) Optical film, luminance improved film, backlight unit with luminance improved film, and liquid crystal display device
JP2008209872A (en) Elliptically polarizing plate for vertically aligned liquid crystal display device and vertically aligned liquid crystal display device using the same
US20160047963A1 (en) Polarizing plate and method for producing same, and transfer material
WO2015016297A1 (en) Production method for polarizing plate
JP2006098460A (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device, and method for manufacturing retardation film
WO2015016296A1 (en) Production method for polarizing plate
JP2014182217A (en) Optical film material
WO2015068678A1 (en) Polarizing plate and method for manufacturing polarizing plate
JP2017067964A (en) Optical sheet and manufacturing method of the same, and liquid crystal display
WO2014148408A1 (en) Optical-film material, optical film, method for manufacturing polarizer, and polarizer
JP2014182311A (en) Polarizing plate and method for manufacturing the same
JP2010085534A (en) Optical compensation film, and method of manufacturing the same
JP6684526B2 (en) Retardation film, optical film, display device
WO2015068647A1 (en) Optical film material, method for manufacturing optical film, and method for manufacturing polarizing plate
JP2009294522A (en) Inclined retardation film, method for manufacturing inclined retardation film, sheet polarizer and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20170120