JP2014181373A - SILICON WAFER ON WHICH Ni AND Ni ALLOY FILM IS FORMED, FORMING METHOD OF Ni AND Ni ALLOY FILM ON Si WAFER, SURFACE ROUGHENING PROCESSING LIQUID TO SURFACE OF Si WAFER IN FORMING Ni AND Ni ALLOY FILM, AND SURFACE ROUGHENING PROCESSING METHOD OF THE SURFACE - Google Patents

SILICON WAFER ON WHICH Ni AND Ni ALLOY FILM IS FORMED, FORMING METHOD OF Ni AND Ni ALLOY FILM ON Si WAFER, SURFACE ROUGHENING PROCESSING LIQUID TO SURFACE OF Si WAFER IN FORMING Ni AND Ni ALLOY FILM, AND SURFACE ROUGHENING PROCESSING METHOD OF THE SURFACE Download PDF

Info

Publication number
JP2014181373A
JP2014181373A JP2013056032A JP2013056032A JP2014181373A JP 2014181373 A JP2014181373 A JP 2014181373A JP 2013056032 A JP2013056032 A JP 2013056032A JP 2013056032 A JP2013056032 A JP 2013056032A JP 2014181373 A JP2014181373 A JP 2014181373A
Authority
JP
Japan
Prior art keywords
wafer
film
thin film
alloy
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013056032A
Other languages
Japanese (ja)
Other versions
JP5996463B2 (en
Inventor
Masaomi Murakami
昌臣 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013056032A priority Critical patent/JP5996463B2/en
Publication of JP2014181373A publication Critical patent/JP2014181373A/en
Application granted granted Critical
Publication of JP5996463B2 publication Critical patent/JP5996463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)
  • Weting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming Ni film having excellent adhesion on an Si wafer with electroless Ni plating without coating metal element having a catalytic function and without performing excessive heat treatment.SOLUTION: There is provided a method of forming a Ni thin film 2 having a thickness of 0.05 to 0.5 μm on an Si wafer 1 and forming a thick film 3 of Ni or Ni alloy having a thickness of 3 to 7 μm on the thin film, in which SiOthat exists on the Si wafer is removed in advance by hydrofluoric acid aqueous solution or buffered hydrofluoric acid, then the wafer is immersed into aqueous solution containing strong alkali, ammonium fluoride and Cu to perform roughening processing by hydrophilic treatment and etching. In forming the Ni thin film 2, the wafer is immersed into aqueous solution containing Ni salt, complexing agent, ammonium fluoride and pH buffering agent, and Ni ion in the aqueous solution and Si are substituted. The thick film 3 of Ni or Ni alloy is formed by using electroless Ni plating liquid. Heat treatment is performed to the films in the atmospheric air at 150 to 200°C for 15 to 60 minutes.

Description

本発明は、半導体デバイスを形成したSiウエハ上へ、密着性の良いNi薄膜を形成した後、直接無電解めっきでNi又は合金厚膜を形成する技術に関する。
特に、ICやLSI等デバイス構造を有するSi基板のデバイス側だけではなく、Si母板基板(裏面)側の表面にNiめっき膜を形成し、さらに用途に応じては、金めっきやパラジウムめっきのいずれか一方又は双方のめっき層を積層しためっき物構造体とし、その上に半田ボールや金ボールなどで他のボード基板上にバンピングすることで、種々の機能を有するデバイス構造を該ボード基板上に積載し、MEMS素子やASIC(application specific integrated circuit)等の新たな特定の用途向けの複数素子からなる回路を1つにまとめた集積回路又はシステム回路を製造するために利用できるNiめっき技術に関する。
The present invention relates to a technique for directly forming an Ni or alloy thick film by electroless plating after forming a thin Ni film with good adhesion on a Si wafer on which a semiconductor device is formed.
In particular, a Ni plating film is formed not only on the device side of the Si substrate having a device structure such as IC or LSI, but also on the surface on the Si base substrate (back surface) side. A plated structure in which one or both of the plating layers are laminated is bumped onto another board substrate with a solder ball or a gold ball on the plated structure, thereby providing a device structure having various functions on the board substrate. The present invention relates to a Ni plating technology that can be used to manufacture integrated circuits or system circuits that are integrated into a single circuit composed of a plurality of elements for new specific applications such as MEMS elements and ASIC (application specific integrated circuit). .

また、半導体デバイスを形成したSiウエハのデバイスの形成されていないSi母板基板(裏面)側の表面をバックラッピング若しくはバックグラインド加工して薄くし、さらにその上にNiめっき膜を形成することで、半導体デバイスが駆動時に発生する熱を効率よく放熱するためのヒートシンク構造体として利用できるNiめっき技術に関する。   Also, by thinning the surface of the Si wafer substrate (back surface) side of the Si wafer on which the semiconductor device is formed by back wrapping or back grinding, and further forming a Ni plating film thereon The present invention relates to a Ni plating technique that can be used as a heat sink structure for efficiently radiating heat generated when a semiconductor device is driven.

従来、Siウエハ(基板)上にNi膜を形成する場合には、Si上に触媒機能を有する金属元素で被覆し、その後、無電解Niめっきを行い、Ni膜を形成する方法が用いられているが、Niめっき膜の密着性が十分に得られていなかった。Niめっき膜の密着性を挙げる方法としては以下の先行技術がある。   Conventionally, when a Ni film is formed on a Si wafer (substrate), a method of forming a Ni film by covering the Si with a metal element having a catalytic function and then performing electroless Ni plating has been used. However, sufficient adhesion of the Ni plating film was not obtained. As a method for increasing the adhesion of the Ni plating film, there are the following prior arts.

(1)触媒化処理として、フッ化物イオンを含む水溶液からPdをSi上に置換析出させた後、無電解めっきの前後に2回熱処理を施す事で密着性を得る方法(下記非特許文献1)。
(2)Si上に無電解NiめっきによってNi膜を形成した後、熱処理を行う方法(下記特許文献1)。
(3)希薄なHFを含む金属塩水溶液に浸漬し、無電解置換析出でAgナノ粒子をSi上に形成、次に単純なHF水溶液に浸漬する金属援用HFエッチングによりナノ孔を形成、最後にナノ孔の底に残存するAgナノ粒子を起点とする無電解自己触媒めっきにより金属薄膜を形成する方法(下記非特許文献2)。
(1) A method for obtaining adhesion by performing Pt deposition on Si from an aqueous solution containing fluoride ions and performing heat treatment twice before and after electroless plating as a catalyst treatment (non-patent document 1 below) ).
(2) A method of performing a heat treatment after forming a Ni film on Si by electroless Ni plating (Patent Document 1 below).
(3) Immerse in a dilute HF-containing metal salt solution, form Ag nanoparticles on Si by electroless displacement deposition, and then form nanopores by metal-assisted HF etching dipped in a simple HF solution, and finally A method of forming a metal thin film by electroless autocatalytic plating starting from Ag nanoparticles remaining at the bottom of the nanopore (Non-patent Document 2 below).

しかし、上記(1)や(3)の方法は、Si上に触媒金属が残留し、Siウエハが半導体デバイスとして使用される場合にはSi中への拡散等による悪影響が懸念される。また、上記(2)の方法は、熱処理温度が600℃程度と高く、デバイスへの悪影響が懸念される。さらに、上記(3)の方法で使用されるAgナノ粒子は、安定性が良く、取扱い易いため多用される無電解Ni−Pめっき液に対する触媒性がないため使用できず、安定性等に問題がある無電解Ni−Bめっき液を使用しなければならず、実用的ではない。   However, in the methods (1) and (3), when a catalytic metal remains on Si and the Si wafer is used as a semiconductor device, there is a concern about an adverse effect due to diffusion into Si or the like. In the method (2), the heat treatment temperature is as high as about 600 ° C., and there is a concern about adverse effects on the device. Furthermore, the Ag nanoparticles used in the above method (3) are not stable because they have good stability and are easy to handle. Therefore, an electroless Ni-B plating solution must be used, which is not practical.

この他、特許文献2には、体積抵抗率が1〜100Ω・cmである単結晶S i基板と、該単結晶Si基板上に設けられた1層以上の金属メッキ層とを含んでなる金属メッキ層付き単結晶Si基板が、また、上記単結晶Si基板の表面に接する金属メッキ層が、メッキ法により形成されるAg、Co、Cu、Ni、Pd、Fe及びPtからなる一群から選ばれる一以上の金属、又は該金属の一以上を含む合金もしくは化合物である請求項1に記載の金属メッキ層付き単結晶Si基板が記載されている。   In addition, Patent Document 2 discloses a metal comprising a single crystal Si substrate having a volume resistivity of 1 to 100 Ω · cm, and one or more metal plating layers provided on the single crystal Si substrate. The single crystal Si substrate with a plating layer and the metal plating layer in contact with the surface of the single crystal Si substrate are selected from the group consisting of Ag, Co, Cu, Ni, Pd, Fe and Pt formed by a plating method. The single crystal Si substrate with a metal plating layer according to claim 1, which is one or more metals, or an alloy or compound containing one or more of the metals.

しかし、この文献2の段落0015に記載するように、Si基板の体積抵抗率を調節することにより、金属メッキ層とSi基板の密着性を良好にしようというものであり、段落0013に記載するように、特殊なSi基板を使用することが前提となっているので、汎用性がないという問題がある。   However, as described in paragraph 0015 of this document 2, it is intended to improve the adhesion between the metal plating layer and the Si substrate by adjusting the volume resistivity of the Si substrate, as described in paragraph 0013. Furthermore, since it is premised on the use of a special Si substrate, there is a problem that it is not versatile.

また、特許文献3の段落[0028]に、「なお、無電解めっきによるNiP膜の成膜は、以下の組成のめっき液を用いて、pH8.0、70°C×1.0分の条件で実施した。めっき液は、組成が硫酸Ni六水和物21g/L, クエン酸一水和物21g/L、フッ化アンモニウム37g/L、ホスフィン酸26.4g/Lであり、アンモニア水の添加によりpHを8.0へ調整したものである。」と記載されている。   In addition, in paragraph [0028] of Patent Document 3, “the formation of the NiP film by electroless plating is performed under the conditions of pH 8.0, 70 ° C. × 1.0 min using a plating solution having the following composition. The plating solution has a composition of Ni sulfate hexahydrate 21 g / L, citric acid monohydrate 21 g / L, ammonium fluoride 37 g / L, phosphinic acid 26.4 g / L, and aqueous ammonia. The pH is adjusted to 8.0 by addition. "

また、特許文献3の段落[0029]には、「また、無電解めっきによるNiB膜の成膜は、以下の組成のめっき液を用いて、pH7.5、70°C×1.0分の条件で実施した。めっき液は、組成が硫酸Ni六水和物21g/L、クエン酸一水和物21g/L、フッ化アンモニウム37g/L、ジメチルアミンボラン(DMAB)5.0g/Lであり、アンモニア水の添加によりpHを7.5へ調整したものである。」という記載があり、無電解めっき法としては、有効な手法が開示されている。
しかしながら、工程が本願発明とは一致しておらず、また無電解めっき方法にも改善の余地があり、本願発明の課題、構成、効果とは一致していない。
In addition, paragraph [0029] of Patent Document 3 states that “The NiB film is formed by electroless plating using a plating solution having the following composition, pH 7.5, 70 ° C. × 1.0 min. The plating solution was composed of Ni sulfate sulfate 21 g / L, citric acid monohydrate 21 g / L, ammonium fluoride 37 g / L, dimethylamine borane (DMAB) 5.0 g / L. And the pH is adjusted to 7.5 by addition of aqueous ammonia ”, and an effective method is disclosed as an electroless plating method.
However, the process is not consistent with the present invention, and there is room for improvement in the electroless plating method, which does not agree with the problems, configurations, and effects of the present invention.

特開2004−193337号公報JP 2004-193337 A 特開2005−293778号公報JP 2005-293778 A 特開2011−208227号公報JP 2011-208227 A

S. Karmalkar, V. P. Kumar; J.Electrochem.Soc., 151, C554 (2004)S. Karmalkar, V. P. Kumar; J. Electrochem. Soc., 151, C554 (2004). S. Yae, K. Sakabe, N. Fukumuro, S. Sakamoto, H. Matsuda;J.Electrochem.Soc., 158, D573 (2011)S. Yae, K. Sakabe, N. Fukumura, S. Sakamoto, H. Matsuda; J. Electrochem. Soc., 158, D573 (2011)

本発明は、上記の諸問題点を解決するためのものであり、触媒機能を有する金属元素を被覆することなく、過酷な熱処理を行わずに、Siウエハ上に無電解Niめっきで密着性の良いNi膜を形成する方法を提供することを目的とする。   The present invention is to solve the above-mentioned problems, and without covering with a metal element having a catalytic function, without performing a harsh heat treatment, the electroless Ni plating on the Si wafer can provide an adhesive property. An object is to provide a method for forming a good Ni film.

本発明は、以下の発明を提供する。
1)Siウエハ上に形成された0.05μm以上0.5μm以下の厚さのNi薄膜、該薄膜上に形成された3μm以上7μm以下の厚さのNi厚膜又はNi合金厚膜を備えることを特徴とするNi膜構造体が形成されたSiウエハ。
2)Ni合金膜がNi−P合金膜又はNi−B合金膜であることを特徴とする上記1)記載のNi膜構造体が形成されたSiウエハ。
3)Ni薄膜とSiウエハの界面の算術平均粗さRaが1.5nm以上であることを特徴とする上記1)又は2)に記載のNi膜構造体が形成されたSiウエハ。
4)Ni合金厚膜は、Ni薄膜との隣接部分が柱状結晶からなり、該柱状結晶の平均太さが100〜1200nmであることを特徴とする請求項1〜3のいずれかに記載のSiウエハ。
5)前記1〜4のいずれか1項に記載されたNi膜構造体が形成されたSiウエハであって、Ni膜構造体とSiウエハとの密着強度がJIS H8504に準拠した「めっきの密着性試験方法の内のテープ試験法」に適合する密着強度を有することを特徴とするSiウエハ。
The present invention provides the following inventions.
1) Provide a Ni thin film with a thickness of 0.05 μm or more and 0.5 μm or less formed on a Si wafer, a Ni thick film or a Ni alloy thick film with a thickness of 3 μm or more and 7 μm or less formed on the thin film. A Si wafer on which a Ni film structure is formed.
2) The Si wafer on which the Ni film structure according to 1) is formed, wherein the Ni alloy film is a Ni—P alloy film or a Ni—B alloy film.
3) The Si wafer on which the Ni film structure according to the above 1) or 2) is formed, wherein the arithmetic average roughness Ra of the interface between the Ni thin film and the Si wafer is 1.5 nm or more.
4) The Si alloy thick film according to any one of claims 1 to 3, wherein the Ni alloy thick film has a portion adjacent to the Ni thin film made of columnar crystals, and the average thickness of the columnar crystals is 100 to 1200 nm. Wafer.
5) A Si wafer on which the Ni film structure described in any one of 1 to 4 above is formed, wherein the adhesion strength between the Ni film structure and the Si wafer is compliant with JIS H8504. An Si wafer characterized by having an adhesion strength compatible with the “tape test method among the test methods”.

また、本発明は、次の発明を提供する。
6)Siウエハ上に0.05μm以上0.5μm以下の厚さのNi薄膜、該薄膜上に3μm以上7μm以下の厚さのNi又はNi合金の厚膜を形成する方法であって、予めSiウエハをフッ酸水溶液又はバッファードフッ酸によりSiウエハ上に存在するSiOを除去し、次に親水化及びエッチングによる粗化処理を行い、粗化処理後のSiウエハの表面にNi薄膜と、さらにその上にNi膜又はNi合金膜の厚膜を形成することを特徴とするSiウエハ上へのNi膜構造体の形成方法。
7)Ni塩、錯化剤、フッ化アンモニウム、pH緩衝剤を含む水溶液に浸漬して、水溶液中のNiイオンとSiを置換させる置換反応により、Siウエハ上にNi薄膜を形成し、さらに無電解めっき液を使用してNi合金厚膜を形成することを特徴とする上記6)記載のSiウエハ上へのNi及びNi合金膜の形成方法。
8)Ni合金厚膜が、Ni−P合金又はNi−B合金厚膜であることを特徴とする上記7)記載のSiウエハ上へのNi及びNi合金膜の形成方法。
9)Ni薄膜及びNi合金膜を形成した後、大気中、150℃以上200℃以下で、15分以上60分以下で熱処理することを特徴とする上記6)〜8)のいずれかに記載のSiウエハ上へのNi及びNi合金膜の形成方法。
The present invention also provides the following inventions.
6) A method of forming a Ni thin film with a thickness of 0.05 μm or more and 0.5 μm or less on a Si wafer, and a Ni or Ni alloy thick film with a thickness of 3 μm or more and 7 μm or less on the thin film. SiO 2 present on the Si wafer is removed from the wafer by hydrofluoric acid aqueous solution or buffered hydrofluoric acid, and then a roughening process is performed by hydrophilization and etching, and a Ni thin film is formed on the surface of the Si wafer after the roughening process, A method for forming a Ni film structure on a Si wafer, further comprising forming a thick Ni film or Ni alloy film thereon.
7) A Ni thin film is formed on the Si wafer by a substitution reaction in which Ni ions and Si in the aqueous solution are substituted by immersion in an aqueous solution containing Ni salt, complexing agent, ammonium fluoride, and pH buffering agent. The method for forming Ni and Ni alloy films on the Si wafer as described in 6) above, wherein an Ni alloy thick film is formed using an electrolytic plating solution.
8) The method for forming Ni and Ni alloy films on the Si wafer as described in 7) above, wherein the Ni alloy thick film is a Ni—P alloy or Ni—B alloy thick film.
9) After forming the Ni thin film and the Ni alloy film, heat treatment is performed at 150 ° C. to 200 ° C. for 15 minutes to 60 minutes in the air, according to any one of 6) to 8) above. A method for forming Ni and Ni alloy films on a Si wafer.

また、本発明は、次の発明を提供する。
10)NiめっきのためのSiウエハ表面の表面粗化処理液であって、水酸化カリウムを30%以上55%以下、フッ化アンモニウムを0.5mol/L以上2mol/L以下、Cuを1mg/L以上含む水溶液からなることを特徴とするSiウエハの表面の表面粗化処理液。
11)上記10)記載の表面粗化処理液を使用して、25℃以上70℃以下の温度、0.5分から10分の処理時間で、Siウエハの強アルカリ水溶液による親水化とエッチングにより、Si表面の粗化処理を行うことを特徴とするSiウエハの表面の表面粗化処理方法。
The present invention also provides the following inventions.
10) A surface roughening solution for the surface of a Si wafer for Ni plating, wherein potassium hydroxide is 30% to 55%, ammonium fluoride is 0.5 mol / L to 2 mol / L, and Cu is 1 mg / liter. A surface roughening solution for the surface of a Si wafer, comprising an aqueous solution containing L or more.
11) By using the surface roughening treatment liquid described in 10) above, hydrophilization and etching of a Si wafer with a strong alkali aqueous solution at a temperature of 25 ° C. or more and 70 ° C. or less and a treatment time of 0.5 to 10 minutes, A surface roughening treatment method for a surface of a Si wafer, characterized by performing a roughening treatment on a Si surface.

本発明は、Siウエハを湿式エッチングした後に、無電解置換析出でNi薄膜を形成し、次に自己触媒の無電解Niめっきを行う事によりNi厚膜を形成する。さらに、Ni厚膜形成後に熱処理を行い、Ni膜の密着性を確保する技術を提供するものであり、従来技術のような、触媒機能を有する金属元素を被覆することなく、過酷な熱処理を行わずに、Siウエハ上に無電解Niめっきで密着性の良いNi膜を形成する方法を提供することができるという優れた効果を有する。   In the present invention, after a Si wafer is wet-etched, a Ni thin film is formed by electroless displacement deposition, followed by autocatalytic electroless Ni plating to form a Ni thick film. Furthermore, the heat treatment is performed after the Ni thick film is formed to provide a technique for ensuring the adhesion of the Ni film, and a severe heat treatment is performed without coating a metal element having a catalytic function as in the prior art. In addition, it has an excellent effect that it is possible to provide a method of forming a Ni film having good adhesion by electroless Ni plating on a Si wafer.

Siウエハ上に形成されたNi薄膜とNi厚膜の概略説明図である。It is a schematic explanatory drawing of Ni thin film and Ni thick film which were formed on Si wafer. Siウエハ上に形成したNi薄膜とNi−P厚膜の断面構造を示す図である。It is a figure which shows the cross-section of Ni thin film and Ni-P thick film which were formed on Si wafer.

本発明の、Ni又はNi合金膜が形成されたSiウエハ(Si基板)は、Siウエハ上に形成された0.05μm以上0.5μm以下の厚さのNi薄膜と該薄膜上に形成された3μm以上7μm以下の厚さのNi厚膜又はNi合金厚膜を備えることが大きな特徴の一つである。Siウエハ上に形成されたNi薄膜とNi厚膜の概略説明図を、図1に示す。   The Si wafer (Si substrate) on which the Ni or Ni alloy film of the present invention was formed was formed on the Ni thin film having a thickness of 0.05 μm or more and 0.5 μm or less formed on the Si wafer and the thin film. One of the major features is that a thick Ni film or Ni alloy thick film having a thickness of 3 μm or more and 7 μm or less is provided. FIG. 1 shows a schematic explanatory diagram of a Ni thin film and a Ni thick film formed on a Si wafer.

前記Ni合金膜は、Ni−P合金膜又はNi−B合金膜とすることができるが、他のNi合金膜であっても良い。前記Ni−P合金膜とNi−B合金膜のP含有量については、特に制限はないが、通常P含有量4〜10wt%、B含有量1〜3wt%の添加量として使用することが多い。   The Ni alloy film may be a Ni-P alloy film or a Ni-B alloy film, but may be another Ni alloy film. Although there is no restriction | limiting in particular about P content of the said Ni-P alloy film and a Ni-B alloy film, Usually, it uses as an addition amount with 4-10 wt% of P content and 1-3 wt% of B content in many cases. .

Ni薄膜とSiウエハの界面の算術平均粗さRa(JIS R1683 2007に準拠した「原子間力顕微鏡によるファインセラミックス薄膜の表面粗さ測定方法」により評価した)が1.5nm以上とするのが望ましい。Ni薄膜とSiウエハの界面が接し、相互に転写されているので、いずれの界面も同一の表面粗さとなる。これによって、Ni薄膜とSiウエハの接合性が向上できる。しかし、この表面粗さに制限されるものではない。   Arithmetic average roughness Ra (evaluated by “method for measuring surface roughness of fine ceramic thin film by atomic force microscope” based on JIS R1683 2007) based on JIS R1683 2007) is desirably 1.5 nm or more. . Since the interface between the Ni thin film and the Si wafer is in contact and transferred to each other, both interfaces have the same surface roughness. Thereby, the bondability between the Ni thin film and the Si wafer can be improved. However, the surface roughness is not limited.

SiウエハとNi膜構造体との密着強度は、JIS H8504に準拠した「めっきの密着性試験方法の内のテープ試験法」に適合する強度を有すること、そしてこの強度は、より高いことが望ましい。
また、Ni薄膜の上に形成されるNi合金厚膜はNi薄膜との隣接部分が柱状結晶からなり、柱状結晶の平均太さは、通常100〜1200nmである。
Siウエハ上に形成したNi薄膜とNi−P膜の断面構造を図2に示す。
It is desirable that the adhesion strength between the Si wafer and the Ni film structure has a strength conforming to “tape test method of plating adhesion test method” based on JIS H8504, and this strength is preferably higher. .
In addition, the Ni alloy thick film formed on the Ni thin film has a columnar crystal adjacent to the Ni thin film, and the average thickness of the columnar crystal is usually 100 to 1200 nm.
FIG. 2 shows a cross-sectional structure of the Ni thin film and the Ni—P film formed on the Si wafer.

次に、Siウエハ上に0.05μm以上0.5μm以下の厚さのNi薄膜、該薄膜上に3μm以上7μm以下の厚さのNi又はNi合金の厚膜を形成する方法であるが、予めSiウエハをフッ酸水溶液又はバッファードフッ酸によりSiウエハ上に存在するSiOを除去し、次に親水化及びエッチングによる粗化処理を行い、粗化処理後のSiウエハの表面にNi薄膜と、さらにその上にNi膜又はNi合金膜の厚膜を形成するものであり、これも本願発明の大きな特徴の一つである。 Next, a Ni thin film having a thickness of 0.05 μm or more and 0.5 μm or less is formed on the Si wafer, and a Ni or Ni alloy thick film having a thickness of 3 μm or more and 7 μm or less is formed on the thin film in advance. SiO 2 present on the Si wafer is removed from the Si wafer with a hydrofluoric acid aqueous solution or buffered hydrofluoric acid, followed by a hydrophilic treatment and a roughening treatment by etching, and a Ni thin film is formed on the surface of the Si wafer after the roughening treatment. Further, a thick film of Ni film or Ni alloy film is formed thereon, which is one of the major features of the present invention.

Siウエハ表面の表面粗化処理液については、水酸化カリウムを30%以上55%以下、フッ化アンモニウムを0.5mol/L以上2mol/L以下、Cuを1mg/L以上含む水溶液を用いるのが好適である。この表面粗化処理液を使用して、25℃以上70℃以下の温度、0.5分から10分の処理時間で、Siウエハの強アルカリ水溶液による親水化とエッチングにより、Si表面の粗化処理を行う。   For the surface roughening treatment liquid on the Si wafer surface, an aqueous solution containing 30% to 55% potassium hydroxide, 0.5 mol / L to 2 mol / L ammonium fluoride, and 1 mg / L or more Cu is used. Is preferred. Using this surface roughening treatment liquid, the Si surface is roughened by hydrophilization and etching of the Si wafer with a strong alkaline aqueous solution at a temperature of 25 ° C. to 70 ° C. and a treatment time of 0.5 to 10 minutes. I do.

このSiウエハ表面の表面粗化処理工程は、親水化及びエッチングによる粗化の工程であるが、まず強アルカリ、フッ化アンモニウム、Cuを含む水溶液に浸漬する。このプロセスでSiO膜を除去したSiウエハは撥水性を示すが、このままでは「めっき」ができないので強アルカリ水溶液による親水化を行なう。
この時Siのエッチングも同時に起こる。またフッ化アンモニウム及びCuを添加するとエッチング時にSi表面の粗化作用があるため、後工程で形成するNi薄膜との密着性が向上する。
This surface roughening treatment step on the surface of the Si wafer is a step of roughening by hydrophilization and etching. First, it is immersed in an aqueous solution containing strong alkali, ammonium fluoride, and Cu. The Si wafer from which the SiO 2 film has been removed by this process exhibits water repellency. However, since it cannot be “plated” as it is, it is hydrophilicized with a strong alkaline aqueous solution.
At this time, Si etching occurs simultaneously. In addition, when ammonium fluoride and Cu are added, there is a roughening effect on the Si surface during etching, so that the adhesion with the Ni thin film formed in a later step is improved.

前記の条件で、水酸化カリウム濃度が30%未満では均一なエッチングが困難で、後工程でのめっきの均一性や膜の密着性が不十分となり、フッ化アンモニウム濃度が0.5mol/L以下では粗化が不十分で密着性が劣る傾向にあり、さらに、Cu濃度が1mg/L未満では粗化が不十分で密着性が劣る傾向にあり、処理時間が短いと粗化が不十分で密着性が劣る傾向にある。したがって、上記条件の範囲は、好ましい条件と言える。   Under the above conditions, if the potassium hydroxide concentration is less than 30%, uniform etching is difficult, and the uniformity of plating and film adhesion in the subsequent process become insufficient, and the ammonium fluoride concentration is 0.5 mol / L or less. However, if the Cu concentration is less than 1 mg / L, the roughening tends to be insufficient and the adhesiveness tends to be poor. If the treatment time is short, the roughening is insufficient. There is a tendency for adhesion to be inferior. Therefore, the range of the above conditions is a preferable condition.

次に、Siウエハ上にNi薄膜を形成する工程であるが、Ni塩、錯化剤、フッ化アンモニウム、pH緩衝剤を含む水溶液に浸漬して、水溶液中のNiイオンとSiを置換させる置換反応により行うのが望ましい。
Ni塩はNi供給源として、錯化剤は水溶液の安定剤として作用し、フッ化アンモニウムはSiの溶解作用によりNi析出を促進し且つ粗化作用により密着性を向上させる効果がある。pH緩衝剤はNi薄膜析出中のSiウエハ近傍のpH変動を低減し、安定した反応をもたらすとともに析出速度の制御に効果がある。
Next, the Ni thin film is formed on the Si wafer. Substitution is performed by immersing in an aqueous solution containing a Ni salt, a complexing agent, ammonium fluoride, and a pH buffer to replace Si in the aqueous solution with Ni ions. It is desirable to carry out by reaction.
The Ni salt acts as a Ni supply source, the complexing agent acts as an aqueous solution stabilizer, and the ammonium fluoride has the effect of promoting Ni precipitation by the dissolving action of Si and improving the adhesion by the roughening action. The pH buffering agent reduces the pH fluctuation in the vicinity of the Si wafer during Ni thin film deposition, brings about a stable reaction and is effective in controlling the deposition rate.

Ni塩、錯化剤、フッ化アンモニウム、pH緩衝剤、処理条件等の例を示すと、次のようになる。
硫酸ニッケル六水和物:0.1〜0.2mol/L
クエン酸1水和物:0.05〜0.15mol/L
フッ化アンモニウム:0.7〜2mol/L
ホウ酸:5〜15g/L
pH:9±0.3(アンモニア水調整を行う)
処理条件:温度60〜80 °C、時間 3〜10分)
Examples of Ni salts, complexing agents, ammonium fluoride, pH buffering agents, treatment conditions, etc. are as follows.
Nickel sulfate hexahydrate: 0.1-0.2 mol / L
Citric acid monohydrate: 0.05 to 0.15 mol / L
Ammonium fluoride: 0.7-2 mol / L
Boric acid: 5 to 15 g / L
pH: 9 ± 0.3 (adjust ammonia water)
Processing conditions: temperature 60-80 ° C, time 3-10 minutes)

上記において、Ni塩濃度は低いと析出反応が遅く時間がかかるので経済的に不利で、高すぎると水溶液のコストが高くなりこれも経済的に不利となる。
また、錯化剤濃度はNi塩濃度との一定の比率を保つ必要があり、Ni塩/錯化剤濃度比率はmol濃度で1.5〜2程度が良い。比率が低い(錯化剤濃度が高い)とNi薄膜の均一性が低下し、比率が高い(錯化剤濃度が低い)と水溶液の安定性が低下するので上記に調整するのが望ましいと言える。
In the above, if the Ni salt concentration is low, the precipitation reaction is slow and takes time, which is economically disadvantageous. If it is too high, the cost of the aqueous solution increases, which is also economically disadvantageous.
Further, the complexing agent concentration needs to maintain a constant ratio with the Ni salt concentration, and the Ni salt / complexing agent concentration ratio is preferably about 1.5 to 2 in terms of mol concentration. If the ratio is low (the complexing agent concentration is high), the uniformity of the Ni thin film decreases, and if the ratio is high (the complexing agent concentration is low), the stability of the aqueous solution decreases. .

フッ化アンモニウム濃度が低いとSiウエハ表面の粗化が不十分で密着性が劣り、高いとNi薄膜の均一性が低下する傾向にある。また、ホウ酸濃度が低いとpHが安定せずNi薄膜の状態が安定せず、高いと析出速度が低下しNi薄膜の均一性が低下するので、上記の範囲とするのが良い。
pH調整に使用されるアンモニア水はNi塩の錯化剤としても働く、pHは高すぎても低すぎても密着性が低下する傾向があるので、上記の範囲が望ましい。
さらに、処理時間が短いと、均一なNi薄膜が得られず、長いとNi膜が厚くなりすぎ密着性が低下するので、上記の範囲とするのが良い。
If the ammonium fluoride concentration is low, the surface of the Si wafer is not sufficiently roughened, resulting in poor adhesion, and if it is high, the uniformity of the Ni thin film tends to decrease. In addition, when the boric acid concentration is low, the pH is not stable and the state of the Ni thin film is not stable. When the boric acid concentration is high, the deposition rate is lowered and the uniformity of the Ni thin film is lowered.
Aqueous ammonia used for pH adjustment also works as a complexing agent for Ni salt. The above range is desirable because the adhesiveness tends to decrease if the pH is too high or too low.
Furthermore, if the treatment time is short, a uniform Ni thin film cannot be obtained, and if the treatment time is long, the Ni film becomes too thick and the adhesion decreases, so the above range is preferable.

上記Ni薄膜の形成後、さらに無電解めっき液を使用してNi合金厚膜を形成する。このNi合金厚膜は、Ni−P合金又はNi−B合金の厚膜とすることができる。このNi又はNi合金の厚膜の形成は、市販の無電解めっき液を使用して形成できる。例えば、JX金属商事株式会社市販の「無電解Ni−Pめっき液、KG−537」を使用してめっきできる。   After the formation of the Ni thin film, a Ni alloy thick film is further formed using an electroless plating solution. This Ni alloy thick film can be a Ni-P alloy or Ni-B alloy thick film. The thick film of Ni or Ni alloy can be formed using a commercially available electroless plating solution. For example, plating can be performed using “electroless Ni—P plating solution, KG-537” available from JX Metals Corporation.

Ni薄膜及びNi合金膜を形成した後、大気中、150℃以上200℃以下で、15分以上60分以下で熱処理することができる。処理温度が低いと密着性が十分得られず、高いとSiウエハ表面が脆くなり易い傾向がある。また、処理時間は短いと密着性が十分得られないので、上記の範囲とするのが望ましい。
本願発明は、Siウエハ上にNi薄膜、該薄膜上にNi合金厚膜からなるNi膜構造体が形成されるが、上記の熱処理により、相互の界面の接合強度を向上させることができる。
After forming the Ni thin film and the Ni alloy film, heat treatment can be performed in the air at 150 ° C. or more and 200 ° C. or less for 15 minutes or more and 60 minutes or less. If the processing temperature is low, sufficient adhesion cannot be obtained, and if it is high, the Si wafer surface tends to be brittle. Further, if the treatment time is short, sufficient adhesion cannot be obtained, so it is desirable that the above range.
In the present invention, a Ni film structure composed of a Ni thin film and a Ni alloy thick film is formed on a Si wafer, and the bonding strength at the interface can be improved by the heat treatment.

次に、本発明の実施例について説明する。なお、本実施例はあくまで1例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲に含まれる実施例以外の態様あるいは変形を全て包含するものである。   Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all the aspects or modifications other than the Example included in the scope of the technical idea of the present invention are included.

ノンドープのSiウエハ(Si基板)を用いて、以下の(1)〜(5)の各処理を順次行い、Siウエハ(Si基板)上にNi薄膜とNi合金厚膜を形成した。
(1)SiO除去
(2)親水化及びエッチングによる粗化
(3)Ni薄膜形成
(4)Ni合金厚膜形成
(5)熱処理
Using a non-doped Si wafer (Si substrate), the following processes (1) to (5) were sequentially performed to form a Ni thin film and a Ni alloy thick film on the Si wafer (Si substrate).
(1) SiO 2 removal (2) Hydrophilization and roughening by etching (3) Ni thin film formation (4) Ni alloy thick film formation (5) Heat treatment

(1)〜(3)及び(5)の条件をそれぞれ表1〜3、表5に示す。
表1のSiO除去の条件では、フッ酸濃度を調整した場合(No.1−01)と、さらにフッ化アンモニウムを添加した場合(No.1−02)の2つの条件を示す。
The conditions of (1) to (3) and (5) are shown in Tables 1 to 3 and Table 5, respectively.
The conditions for removing SiO 2 in Table 1 show two conditions: the case where the hydrofluoric acid concentration is adjusted (No. 1-01) and the case where ammonium fluoride is further added (No. 1-02).

表2の親水化及びエッチングによる粗化の条件では、KOH濃度、フッ化アンモニウム濃度、Cu濃度を調節し、かつ処理温度(℃)と処理時間(分)を調節した場合を示す。No.2−01からNo.2−13の実施条件の中で、No.2−01からNo.2−08までは、本願発明の範囲の条件であり、No.2−09からNo.2−13までは、本願発明外の条件である。
すなわち、No.2−09では、KOHの濃度が低過ぎ、No.2−10ではフッ化アンモニウム濃度が0で、本願発明の条件外であり、No.2−11ではCu濃度0で、No.2−12とNo.2−13では、処理温度と時間を本願発明の条件外とした場合である。
The conditions for roughening by hydrophilization and etching in Table 2 show the case where the KOH concentration, ammonium fluoride concentration, and Cu concentration are adjusted, and the processing temperature (° C.) and processing time (minutes) are adjusted. No. 2-01 to No. 2 Among the implementation conditions of No. 2-13, no. 2-01 to No. 2 Up to 2-08 is a condition within the scope of the present invention. No. 2-09 to No. The conditions up to 2-13 are conditions outside the present invention.
That is, no. In No. 2-09, the concentration of KOH was too low. In No. 2-10, the ammonium fluoride concentration is 0, which is outside the conditions of the present invention. In No. 2-11, the Cu concentration was 0. 2-12 and No. 2-12. In 2-13, the processing temperature and time are outside the conditions of the present invention.

表3には、Ni薄膜の形成条件の具体例を示す。Ni塩、錯化剤、フッ化アンモニウム、pH緩衝剤を含む水溶液に浸漬して、水溶液中のNiイオンとSiを置換させる置換反応を行う条件の具体例(No.3−01からNo.3−02)を示すもので、硫酸ニッケル六水和物濃度、クエン酸一水和物濃度、フッ化アンモニウム濃度、ホウ酸、pH調整(アンモニア水)、70℃処理時間(分)をそれぞれ調整した例を示す。   Table 3 shows specific examples of conditions for forming the Ni thin film. Specific examples (No. 3-01 to No. 3) of conditions for performing a substitution reaction in which Ni ions and Si in an aqueous solution are substituted by immersing in an aqueous solution containing a Ni salt, a complexing agent, ammonium fluoride, and a pH buffer. -02), and adjusted nickel sulfate hexahydrate concentration, citric acid monohydrate concentration, ammonium fluoride concentration, boric acid, pH adjustment (ammonia water), and 70 ° C. treatment time (minutes). An example is shown.

表4には、熱処理条件を示す。ここでは処理温度(℃)と処理時間(分)を調節した場合で、No.4−01、No4−2は、本願発明の範囲の条件で、No.4−3からNo.4−5は、本発明外の条件を示す。   Table 4 shows the heat treatment conditions. In this case, the treatment temperature (° C.) and the treatment time (minute) are adjusted. 4-01 and No. 4-2 are conditions within the scope of the present invention. 4-3 to No.4. 4-5 shows conditions outside the present invention.

前記(4)のNi合金厚膜形成はJX金属商事株式会社市販の「無電解Ni−Pめっき液、KG−537」を用いて液温85℃、pH4.5、めっき時間20分の条件で行った。   The Ni alloy thick film formation of (4) is performed under the conditions of a liquid temperature of 85 ° C., a pH of 4.5, and a plating time of 20 minutes using “electroless Ni-P plating solution, KG-537” available from JX Metals Corporation. went.

次に、上記表1〜表4に示す、SiO除去の条件、親水化及びエッチングによる粗化の条件、Ni薄膜の形成条件、熱処理条件を適宜選択し、外観(均一性)、密着性、Ni薄膜の厚さ(μm)、Ni合金厚膜の厚さ(μm)、Ni合金厚膜とNi薄膜との隣接部分の柱状結晶の平均太さ(nm)、Ni薄膜とSiウエハの界面の算術平均粗さRa(nm)を調べた結果を表5に示す。外観は均一性及び表面平滑性を良好(○)、やや悪い(△)、不良(×)とした。 Next, the conditions for removing SiO 2 , the conditions for hydrophilization and roughening by etching, the conditions for forming the Ni thin film, and the heat treatment conditions shown in Table 1 to Table 4 are selected as appropriate, and the appearance (uniformity), adhesion, The thickness of the Ni thin film (μm), the thickness of the Ni alloy thick film (μm), the average thickness of the columnar crystals in the adjacent portion of the Ni alloy thick film and the Ni thin film (nm), the interface between the Ni thin film and the Si wafer Table 5 shows the results of examining the arithmetic average roughness Ra (nm). As for the appearance, the uniformity and the surface smoothness were judged as good (◯), slightly bad (Δ), and poor (×).

密着性はJIS H8504に準拠した「めっきの密着性試験方法」のうち「テープ試験方法」により評価した。具体的には、各サンプルのNi膜表面に、JIS Z1522に規定された粘着テープ(幅25mm当たり約8Nの粘着力、呼び幅12〜19mm)を貼り付け、気泡ができないように強く押し付ける。そして、粘着テープの端部を持ち、粘着テープをNi膜表面に対して垂直方向に強く引っ張って瞬時に引き剥がす方法である。   The adhesion was evaluated by the “tape test method” in the “plating adhesion test method” based on JIS H8504. Specifically, an adhesive tape (adhesive strength of about 8N per 25 mm width, nominal width 12 to 19 mm) specified in JIS Z1522 is applied to the surface of the Ni film of each sample and pressed strongly so as not to generate bubbles. And it is the method of holding the edge part of an adhesive tape, pulling an adhesive tape strongly perpendicularly | vertically with respect to the Ni film | membrane surface, and peeling off instantaneously.

このようにして、剥離したNi膜の面積を測定し、剥離したNi膜の面積が、粘着テープに貼り付いたNi膜の面積全体の5%以下であったものを密着性良好(○)とし、5%を超えたものを密着性不良(×)とした。   In this way, the area of the peeled Ni film was measured, and if the peeled Ni film area was 5% or less of the total area of the Ni film attached to the adhesive tape, the adhesiveness was good (O). Those exceeding 5% were defined as poor adhesion (x).

また、Ni薄膜、Ni合金厚膜の厚さ、Ni薄膜との隣接部分の柱状結晶の平均太さは断面のSEM観察により測定した。
Ni薄膜とSiウエハの界面の算術平均粗さRaはNi薄膜、Ni合金厚膜をSiウエハ上に形成後、硝酸水溶液でこれらを溶解しSiウエハ表面の測定を行った。なお、ここでの算術平均粗さRaはJIS R1683 2007に準拠した「原子間力顕微鏡によるファインセラミックス薄膜の表面粗さ測定方法」により評価した。
The thickness of the Ni thin film, the Ni alloy thick film, and the average thickness of the columnar crystals adjacent to the Ni thin film were measured by SEM observation of the cross section.
Arithmetic mean roughness Ra of the interface between the Ni thin film and the Si wafer was measured by measuring the surface of the Si wafer by forming a Ni thin film and a Ni alloy thick film on the Si wafer and then dissolving them in an aqueous nitric acid solution. Here, the arithmetic average roughness Ra was evaluated by a “method for measuring the surface roughness of a fine ceramic thin film using an atomic force microscope” in accordance with JIS R1683 2007.

この表5に示すように、親水化及びエッチングによる粗化条件、Ni薄膜形成条件、熱処理条件、Ni薄膜の厚さ、Ni合金厚膜の厚さ、Ni薄膜とSiウエハの界面の算術平均粗さRaが、本発明に含まれる条件(実施例1〜実施例8)では、いずれも外観の均一性及び表面平滑性、密着性が良好(○)であるという結果が得られた。   As shown in Table 5, roughening conditions by hydrophilization and etching, Ni thin film formation conditions, heat treatment conditions, Ni thin film thickness, Ni alloy thick film thickness, arithmetic average roughness at the interface between Ni thin film and Si wafer Under the conditions (Examples 1 to 8) included in the present invention, Ra was the result that the appearance uniformity, surface smoothness, and adhesion were all good (◯).

これに対し、本発明から逸脱する条件(比較例1〜比較例8)では、外観の均一性及び表面平滑性が不良の場合があり、密着性はいずれも不良(×)となった。
すなわち、比較例1〜比較例5については、親水化及びエッチングによる粗化条件が本願発明から逸脱し、比較例6〜比較例8については、熱処理条件が本願発明から逸脱し、またNi薄膜の厚さとNi合金厚膜の厚さも、本願発明に適合していないため、外観の均一性及び表面平滑性が不良の場合があり、密着性はいずれも不良(×)となった。
On the other hand, under the conditions deviating from the present invention (Comparative Example 1 to Comparative Example 8), the uniformity of the appearance and the surface smoothness may be poor, and the adhesiveness was both poor (x).
That is, for Comparative Examples 1 to 5, the roughening conditions by hydrophilization and etching deviate from the present invention, and for Comparative Examples 6 to 8, the heat treatment conditions deviate from the present invention, and the Ni thin film Since the thickness and the thickness of the Ni alloy thick film did not conform to the present invention, the uniformity of the appearance and the surface smoothness were sometimes poor, and the adhesion was both poor (x).

また、Ni薄膜とSiウエハの界面の算術平均粗さRaはいずれの比較例においても、本願発明の範囲にはなかった。
上記表1〜表4に示す条件で、本発明の条件下にあるものの組み合わせは、いずれも良好な結果となり、本発明の条件外にあるものの組み合わせは、不良となった。
Further, the arithmetic average roughness Ra of the interface between the Ni thin film and the Si wafer was not within the scope of the present invention in any of the comparative examples.
Under the conditions shown in Tables 1 to 4 above, combinations of those under the conditions of the present invention all gave good results, and combinations of those outside the conditions of the present invention were poor.

Siウエハを湿式エッチングした後に、無電解置換析出でNi薄膜を形成し、次に自己触媒の無電解Niめっきを行う事によりNi厚膜を形成する。さらに、Ni厚膜形成後に熱処理を行い、Ni膜の密着性を確保する技術を提供するものである。従来技術のような、触媒機能を有する金属元素を被覆することなく、過酷な熱処理を行わずに、Siウエハ上に無電解Niめっきで密着性の良いNi膜を形成する方法を提供することができるという優れた効果を有するので、ICやLSI等デバイス構造を有するSi基板のデバイス側だけではなく、種々の機能を有するデバイス構造をSi基板上に積載し、MEMS素子やASIC(application specific integrated circuit)等の新たな特定の用途向けの複数素子からなる回路を1つにまとめた集積回路又はシステム回路を製造するために利用できる。   After wet etching the Si wafer, an Ni thin film is formed by electroless displacement deposition, and then an Ni thick film is formed by performing an electroless electroless Ni plating. Furthermore, the present invention provides a technique for performing heat treatment after forming the Ni thick film to ensure the adhesion of the Ni film. There is provided a method for forming a Ni film having good adhesion by electroless Ni plating on a Si wafer without covering a metal element having a catalytic function as in the prior art and without performing a severe heat treatment. In addition to the device side of a Si substrate having a device structure such as an IC or LSI, device structures having various functions are loaded on the Si substrate, and MEMS elements or ASICs (application specific integrated circuits) can be obtained. ) And the like can be used to manufacture an integrated circuit or a system circuit in which circuits composed of a plurality of elements for a specific application are combined into one.

1: Siウエハ
2: Ni薄膜
3: Ni厚膜又はNi合金厚膜
1: Si wafer 2: Ni thin film 3: Ni thick film or Ni alloy thick film

Claims (11)

Siウエハ上に形成された0.05μm以上0.5μm以下の厚さのNi薄膜と、該薄膜上に形成された3μm以上7μm以下の厚さのNi厚膜又はNi合金厚膜を備えることを特徴とするNi膜構造体が形成されたSiウエハ。   A Ni thin film having a thickness of 0.05 μm or more and 0.5 μm or less formed on a Si wafer, and a Ni thick film or a Ni alloy thick film having a thickness of 3 μm or more and 7 μm or less formed on the thin film; A Si wafer on which a characteristic Ni film structure is formed. 請求項1に記載されたNi膜構造体が形成されたSiウエハにおいて、Ni薄膜上に形成された膜がNi合金厚膜の場合、該Ni合金厚膜がNi−P合金膜又はNi−B合金膜であることを特徴とする請求項1記載のNi膜構造体が形成されたSiウエハ。   In the Si wafer on which the Ni film structure according to claim 1 is formed, when the film formed on the Ni thin film is a Ni alloy thick film, the Ni alloy thick film is a Ni-P alloy film or a Ni-B film. 2. The Si wafer formed with the Ni film structure according to claim 1, wherein the Si wafer is an alloy film. Ni薄膜とSiウエハの界面の算術平均粗さRaが1.5nm以上であることを特徴とする請求項1又は2に記載のNi膜構造体が形成されたSiウエハ。   The Si wafer on which the Ni film structure according to claim 1 or 2 is formed, wherein an arithmetic average roughness Ra of an interface between the Ni thin film and the Si wafer is 1.5 nm or more. Ni合金厚膜は、Ni薄膜との隣接部分が柱状結晶からなり、該柱状結晶の平均太さが100〜1200nmであることを特徴とする請求項1〜3のいずれかに記載のNi膜構造体が形成されたSiウエハ。   4. The Ni film structure according to claim 1, wherein the Ni alloy thick film has a columnar crystal adjacent to the Ni thin film, and an average thickness of the columnar crystal is 100 to 1200 nm. Si wafer on which a body is formed. 請求項1〜4のいずれか1項に記載されたNi膜構造体が形成されたSiウエハであって、Ni膜構造体とSiウエハとの密着強度がJIS H8504に準拠した「めっきの密着性試験方法の内のテープ試験法」に適合する密着強度を有することを特徴とするNi膜構造体が形成されたSiウエハ。   5. An Si wafer on which the Ni film structure according to claim 1 is formed, wherein the adhesion strength between the Ni film structure and the Si wafer conforms to JIS H8504. A Si wafer on which a Ni film structure is formed, having adhesion strength compatible with “tape test method among test methods”. Siウエハ上に0.05μm以上0.5μm以下の厚さのNi薄膜、該薄膜上に3μm以上7μm以下の厚さのNi又はNi合金の厚膜を形成する方法であって、予めSiウエハをフッ酸水溶液又はバッファードフッ酸によりSiウエハ上に存在するSiOを除去し、次に親水化及びエッチングによる粗化処理を行い、粗化処理後のSiウエハの表面にNi薄膜と、さらにその上にNi厚膜又はNi合金厚膜を形成することを特徴とするSiウエハ上へのNi膜構造体の形成方法 A method of forming a Ni thin film having a thickness of 0.05 μm or more and 0.5 μm or less on a Si wafer, and a Ni or Ni alloy thick film having a thickness of 3 μm or more and 7 μm or less on the thin film, The SiO 2 present on the Si wafer is removed with an aqueous hydrofluoric acid solution or buffered hydrofluoric acid, and then a roughening process is performed by hydrophilization and etching, and a Ni thin film is further formed on the surface of the Si wafer after the roughening process. A method for forming a Ni film structure on a Si wafer, comprising forming a Ni thick film or a Ni alloy thick film thereon Ni塩、錯化剤、フッ化アンモニウム、pH緩衝剤を含む水溶液に浸漬して、水溶液中のNiイオンとSiを置換させる置換反応により、Siウエハ上にNi薄膜を形成し、さらに無電解めっき液を使用してNi合金厚膜を形成することを特徴とする請求項6記載のSiウエハ上へのNi膜構造体の形成方法。   A Ni thin film is formed on the Si wafer by a substitution reaction in which Ni ions and Si in the aqueous solution are substituted by immersing in an aqueous solution containing Ni salt, complexing agent, ammonium fluoride, and pH buffering agent. 7. The method for forming a Ni film structure on a Si wafer according to claim 6, wherein a Ni alloy thick film is formed using a liquid. Ni合金厚膜が、Ni−P合金又はNi−B合金厚膜であることを特徴とする請求項7記載のSiウエハ上へのNi膜構造体の形成方法。   The method for forming a Ni film structure on a Si wafer according to claim 7, wherein the Ni alloy thick film is a Ni-P alloy or Ni-B alloy thick film. Ni薄膜及びNi合金膜を形成した後、大気中、150℃以上200℃以下で、15分以上60分以下で熱処理することを特徴とする請求項6〜8のいずれかに記載のSiウエハ上へのNi膜構造体の形成方法。   After forming the Ni thin film and the Ni alloy film, heat treatment is performed at 150 ° C. to 200 ° C. for 15 minutes to 60 minutes in the air, on the Si wafer according to claim 6. Of forming a Ni film structure on the substrate. NiめっきのためのSiウエハ表面の表面粗化処理液であって、水酸化カリウムを30%以上55%以下、フッ化アンモニウムを0.5mol/L以上2mol/L以下、Cuを1mg/L以上含む水溶液からなることを特徴とするSiウエハの表面の表面粗化処理液。   A surface roughening solution for the surface of a Si wafer for Ni plating, wherein potassium hydroxide is 30% to 55%, ammonium fluoride is 0.5 mol / L to 2 mol / L, and Cu is 1 mg / L or more. A surface roughening treatment liquid for the surface of a Si wafer, comprising an aqueous solution containing the same. 請求項10記載の表面粗化処理液を使用して、25℃以上70℃以下の温度、0.5分から10分の処理時間で、Siウエハの強アルカリ水溶液による親水化とエッチングにより、Si表面の粗化処理を行うことを特徴とするSiウエハの表面の表面粗化処理方法。   Using the surface roughening treatment liquid according to claim 10, the Si surface is hydrophilized and etched with a strong alkaline aqueous solution of the Si wafer at a temperature of 25 ° C. to 70 ° C. and a treatment time of 0.5 to 10 minutes. The surface roughening method of the surface of Si wafer characterized by performing the roughening process of this.
JP2013056032A 2013-03-19 2013-03-19 Silicon wafer having Ni and Ni alloy film formed thereon, method of forming Ni and Ni alloy film on Si wafer, surface roughening treatment liquid and surface roughness of Si wafer surface when forming Ni and Ni alloy film Processing method Active JP5996463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056032A JP5996463B2 (en) 2013-03-19 2013-03-19 Silicon wafer having Ni and Ni alloy film formed thereon, method of forming Ni and Ni alloy film on Si wafer, surface roughening treatment liquid and surface roughness of Si wafer surface when forming Ni and Ni alloy film Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056032A JP5996463B2 (en) 2013-03-19 2013-03-19 Silicon wafer having Ni and Ni alloy film formed thereon, method of forming Ni and Ni alloy film on Si wafer, surface roughening treatment liquid and surface roughness of Si wafer surface when forming Ni and Ni alloy film Processing method

Publications (2)

Publication Number Publication Date
JP2014181373A true JP2014181373A (en) 2014-09-29
JP5996463B2 JP5996463B2 (en) 2016-09-21

Family

ID=51700387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056032A Active JP5996463B2 (en) 2013-03-19 2013-03-19 Silicon wafer having Ni and Ni alloy film formed thereon, method of forming Ni and Ni alloy film on Si wafer, surface roughening treatment liquid and surface roughness of Si wafer surface when forming Ni and Ni alloy film Processing method

Country Status (1)

Country Link
JP (1) JP5996463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591359A (en) * 2017-08-15 2018-01-16 深圳市华星光电技术有限公司 The method of adhesiveness between array base palte and preparation method thereof, raising film layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010734A (en) * 1973-06-04 1975-02-04
JPH10245682A (en) * 1997-03-03 1998-09-14 Fujitsu Ltd Formation of wiring and wiring board
JP2005293778A (en) * 2004-04-05 2005-10-20 Shin Etsu Chem Co Ltd SINGLE CRYSTAL Si SUBSTRATE WITH METAL PLATING LAYER AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2005336600A (en) * 2004-04-30 2005-12-08 Alps Electric Co Ltd Electroless plating method for silicon substrate and method for forming metallic layer on silicon substrate
JP2006206985A (en) * 2005-01-31 2006-08-10 C Uyemura & Co Ltd Electroless nickel-phosphorus plated coating and electroless nickel-phosphorus plating bath
WO2009110431A1 (en) * 2008-03-07 2009-09-11 独立行政法人科学技術振興機構 Compound material, method of producing the same and apparatus for producing the same
WO2013024746A1 (en) * 2011-08-12 2013-02-21 Kobayashi Hikaru Method for manufacturing semiconductor device, device for manufacturing semiconductor device, semiconductor device, program for manufacturing semiconductor device, treatment agent for semiconductor, and transfer member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010734A (en) * 1973-06-04 1975-02-04
JPH10245682A (en) * 1997-03-03 1998-09-14 Fujitsu Ltd Formation of wiring and wiring board
JP2005293778A (en) * 2004-04-05 2005-10-20 Shin Etsu Chem Co Ltd SINGLE CRYSTAL Si SUBSTRATE WITH METAL PLATING LAYER AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2005336600A (en) * 2004-04-30 2005-12-08 Alps Electric Co Ltd Electroless plating method for silicon substrate and method for forming metallic layer on silicon substrate
JP2006206985A (en) * 2005-01-31 2006-08-10 C Uyemura & Co Ltd Electroless nickel-phosphorus plated coating and electroless nickel-phosphorus plating bath
WO2009110431A1 (en) * 2008-03-07 2009-09-11 独立行政法人科学技術振興機構 Compound material, method of producing the same and apparatus for producing the same
WO2013024746A1 (en) * 2011-08-12 2013-02-21 Kobayashi Hikaru Method for manufacturing semiconductor device, device for manufacturing semiconductor device, semiconductor device, program for manufacturing semiconductor device, treatment agent for semiconductor, and transfer member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591359A (en) * 2017-08-15 2018-01-16 深圳市华星光电技术有限公司 The method of adhesiveness between array base palte and preparation method thereof, raising film layer

Also Published As

Publication number Publication date
JP5996463B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5164878B2 (en) Anisotropic conductive member and manufacturing method thereof
JP5649322B2 (en) Semiconductor device and manufacturing method of semiconductor device
CN110999553B (en) Method for manufacturing ceramic circuit board
JP2009283431A (en) Microstructural body and method of manufacturing the same
JP2006152431A (en) Plating substrate, electroless plating method, and circuit forming method using the same
JP2012026029A (en) Aluminum oxide film remover and method for surface treatment of aluminum or aluminum alloy
JP5253972B2 (en) Structure and manufacturing method thereof
US20190024239A1 (en) Method for depositing a copper seed layer onto a barrier layer and copper plating bath
WO1995014116A1 (en) Preparation of alumina ceramic surfaces for electroless and electrochemical metal deposition
JP2008227395A (en) Submount and method of forming the same
JP5996463B2 (en) Silicon wafer having Ni and Ni alloy film formed thereon, method of forming Ni and Ni alloy film on Si wafer, surface roughening treatment liquid and surface roughness of Si wafer surface when forming Ni and Ni alloy film Processing method
JP5435484B2 (en) Method for producing metal-filled microstructure
JP3959044B2 (en) Pretreatment method for plating aluminum and aluminum alloy
JP2003013249A (en) Gold substitution plating solution
JP2004339584A (en) Lead frame, and plating method therefor
US20160108254A1 (en) Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device
JP2011080139A (en) Metal-filled fine structure and method for producing the same
KR101493358B1 (en) Method of fabricating copper plating layer using electroless copper plating solution
JP4069181B2 (en) Electroless plating method
JP6270681B2 (en) Wiring structure manufacturing method, copper displacement plating solution, and wiring structure
JP2007324522A (en) Method of manufacturing metallized ceramic substrate
JP2009287115A (en) Electrolytic plating method and method of manufacturing metal-filled microstructure using the same
JP5965235B2 (en) Semiconductor substrate having metal plating film and method for producing the same
JP4577156B2 (en) Electroless nickel plating bath and electroless plating method using the same
JP2009170153A (en) Method of manufacturing metal-filled microstructure, metal-filled microstructure, and anisotropic conductive member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250