JP2014177029A - Liquid droplet discharge head, liquid droplet discharge device and image formation device - Google Patents

Liquid droplet discharge head, liquid droplet discharge device and image formation device Download PDF

Info

Publication number
JP2014177029A
JP2014177029A JP2013052387A JP2013052387A JP2014177029A JP 2014177029 A JP2014177029 A JP 2014177029A JP 2013052387 A JP2013052387 A JP 2013052387A JP 2013052387 A JP2013052387 A JP 2013052387A JP 2014177029 A JP2014177029 A JP 2014177029A
Authority
JP
Japan
Prior art keywords
liquid chamber
ink
individual liquid
droplet discharge
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013052387A
Other languages
Japanese (ja)
Other versions
JP6164516B2 (en
Inventor
Tsuyoshi Miyazaki
剛史 宮▲崎▼
Masanori Kato
将紀 加藤
Original Assignee
Ricoh Co Ltd
株式会社リコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, 株式会社リコー filed Critical Ricoh Co Ltd
Priority to JP2013052387A priority Critical patent/JP6164516B2/en
Publication of JP2014177029A publication Critical patent/JP2014177029A/en
Application granted granted Critical
Publication of JP6164516B2 publication Critical patent/JP6164516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress temperature unevenness in a liquid droplet discharge head due to exothermic heat of a connection part to drive ICs while achieving downsizing and cost reduction of the liquid droplet discharge head.SOLUTION: A liquid droplet discharge head comprises an individual liquid chamber substrate 101 in which plural individual liquid chambers 3 communicated with plural nozzles 1 and piezoelectric devices 15 are formed, a common liquid chamber 4 which supplies ink to the individual liquid chambers, an ink port 107 for supplying the ink from an ink tank to the common liquid chamber, drive ICs 105 which drive the piezoelectric devices, and a connection pad 109 for inputting drive control signals from the outside to the drive ICs. The connection pad is mounted at one edge side in the aligning direction of the individual liquid chambers on the individual liquid chamber substrate, and the ink port is arranged so as to supply the ink to the edge of one edge side of the arrangement of the common liquid chamber.

Description

本発明は、液滴を吐出する液滴吐出ヘッド、液滴吐出装置及び画像形成装置に関するものである。   The present invention relates to a droplet discharge head that discharges droplets, a droplet discharge device, and an image forming apparatus.

一般に、プリンタ、ファックス、複写機、プロッタ、或いはこれらの内の複数の機能を複合した画像形成装置としては、例えばインクの液滴(以下、インク滴という)を吐出する液滴吐出ヘッドを備えたインクジェット記録装置がある。インクジェット記録装置では、媒体を搬送しながら液滴吐出ヘッドによりインク滴を用紙に付着させて画像形成を行う。ここでの媒体は「用紙」ともいうが材質を限定するものではなく、被記録媒体、記録媒体、転写材、記録紙なども同義で使用する。また、画像形成装置は、紙、糸、繊維、布帛、皮革、金属、プラスチック、ガラス、木材、セラミックス等の媒体に液滴を吐出して画像形成を行う装置を意味する。そして、画像形成とは、文字や図形等の意味を持つ画像を媒体に対して付与することだけでなく、パターン等の意味を持たない画像を媒体に付与する(単に液滴を吐出する)ことをも意味する。また、インクとは、所謂インクに限るものではなく、吐出されるときに液体となるものであれば特に限定されるものではなく、例えばDNA試料、レジスト、パターン材料なども含まれる液体の総称として用いる。   In general, a printer, a fax machine, a copier, a plotter, or an image forming apparatus that combines a plurality of these functions includes, for example, a droplet ejection head that ejects ink droplets (hereinafter referred to as ink droplets). There is an ink jet recording apparatus. In an ink jet recording apparatus, an image is formed by adhering ink droplets to a sheet by a droplet discharge head while conveying a medium. The medium here is also referred to as “paper”, but the material is not limited, and a recording medium, a recording medium, a transfer material, a recording paper, and the like are also used synonymously. The image forming apparatus means an apparatus for forming an image by ejecting liquid droplets on a medium such as paper, thread, fiber, fabric, leather, metal, plastic, glass, wood, or ceramic. The image formation is not only giving an image having a meaning such as a character or a figure to the medium but also giving an image having no meaning such as a pattern to the medium (simply ejecting a droplet). Also means. The ink is not limited to so-called ink, and is not particularly limited as long as it becomes liquid when ejected. For example, the ink is a generic term for liquids including DNA samples, resists, pattern materials, and the like. Use.

液滴吐出ヘッドは、複数のノズルからなるノズル列と、各ノズルにそれぞれ連通する複数の個別液室と、各個別液室に圧力変動を発生させる圧力発生手段と、各個別液室にインクを供給する共通液室等を有している。インクジェット記録装置では、インクタンクからインクを、インク供給孔を経由して共通液室に供給し、共通液室から各個別液室に供給し、圧力発生手段により個別液室に圧力変動を発生させることにより、ノズルからインク滴として吐出する。   The droplet discharge head includes a nozzle row composed of a plurality of nozzles, a plurality of individual liquid chambers communicating with each nozzle, pressure generating means for generating pressure fluctuations in each individual liquid chamber, and ink in each individual liquid chamber. It has a common liquid chamber to be supplied. In an ink jet recording apparatus, ink is supplied from an ink tank to a common liquid chamber via an ink supply hole, and is supplied to each individual liquid chamber from the common liquid chamber, and pressure fluctuation is generated in the individual liquid chamber by a pressure generating unit. As a result, ink droplets are ejected from the nozzles.

個別液室に圧力変動を発生する方式としては、複数のものが実用化・製品化されている。例えば、個別液室内にヒータを設置して液体を気化させた圧力変動を利用するサーマルインクジェット方式が挙げられる。また、個別液室にアクチュエータを設置するアクチェータ方式も挙げられる。アクチュエータ方式は、アクチュエータの種類により圧電素子方式、静電方式などが挙げられる。   Several methods for generating pressure fluctuations in individual liquid chambers have been put into practical use and commercialized. For example, there is a thermal ink jet method that uses a pressure variation in which a liquid is vaporized by installing a heater in an individual liquid chamber. In addition, an actuator system in which an actuator is installed in the individual liquid chamber can also be mentioned. Examples of the actuator method include a piezoelectric element method and an electrostatic method depending on the type of actuator.

いずれの方式においても、圧力発生手段を駆動してノズルからインク滴を吐出する際に駆動される圧力発生手段から熱が放出され、この熱により液滴吐出ヘッドのヘッド温度が上昇し、ヘッド内に温度ムラが発生する。ヘッド温度が上昇した箇所では、インク温度が上昇してインク粘度が低下し、インクが飛び出しやすくなり吐出するインクの量が増加する。このため、印字ムラが発生しまう。   In either method, heat is released from the pressure generating means that is driven when the pressure generating means is driven to eject ink droplets from the nozzles, and this heat increases the head temperature of the droplet discharge head, Temperature unevenness occurs. Where the head temperature rises, the ink temperature rises, the ink viscosity decreases, the ink tends to jump out, and the amount of ink ejected increases. For this reason, uneven printing occurs.

特許文献1には、個別液室の配列方向に沿って熱移動手段としてのヒートパイプを設けることにより、液滴吐出ヘッド内の温度ムラを抑制する液滴吐出ヘッドが記載されている。   Patent Document 1 describes a droplet discharge head that suppresses temperature unevenness in the droplet discharge head by providing a heat pipe as a heat transfer means along the arrangement direction of the individual liquid chambers.

近年、液滴吐出ヘッドに対して、小型化や低コスト化の要求が一段と増している。この要求に対応するために駆動ICを液滴吐出ヘッドに内蔵させる試みがなされている。その具体的な試みとして、特許文献2に記載された液滴吐出ヘッドが知られている。この液滴吐出ヘッドでは、個別液室と個別液室を駆動する圧電素子とが形成されている個別液室基板上に駆動ICと、駆動ICに電気的に接続される接続パッドを設けている。この接続パッドには、フレキシブルプリント基板(以下、FPCと略す)、ボンディングワイヤ等の外部配線が電気的に接続されている。駆動ICには、インクジェット記録装置本体側からの駆動制御信号が外部配線及び接続パッドを介して入力される。駆動ICは駆動制御信号に基づいた駆動信号を圧力発生手段である圧電素子に供給し、圧電素子の変位によって個別液室の内圧が変化することでノズルからインク滴を吐出する。   In recent years, demands for smaller size and lower cost are increasing for the droplet discharge head. In order to meet this requirement, an attempt has been made to incorporate a drive IC in a droplet discharge head. As a specific attempt, a droplet discharge head described in Patent Document 2 is known. In this droplet discharge head, a drive IC and a connection pad electrically connected to the drive IC are provided on an individual liquid chamber substrate on which an individual liquid chamber and a piezoelectric element that drives the individual liquid chamber are formed. . External wiring such as a flexible printed circuit board (hereinafter abbreviated as FPC) and a bonding wire is electrically connected to the connection pad. A drive control signal from the ink jet recording apparatus main body side is input to the drive IC via an external wiring and a connection pad. The drive IC supplies a drive signal based on the drive control signal to the piezoelectric element that is the pressure generating means, and ejects ink droplets from the nozzles by changing the internal pressure of the individual liquid chamber due to the displacement of the piezoelectric element.

特許文献2の液滴吐出ヘッドでは、接続パッドを介して駆動ICに駆動制御信号が供給されると、接続パッドの電気抵抗による熱が発生し、接続パッドが設けられている個別液室基板を介して放熱する。   In the droplet discharge head of Patent Document 2, when a drive control signal is supplied to the drive IC through the connection pad, heat is generated by the electrical resistance of the connection pad, and the individual liquid chamber substrate on which the connection pad is provided To dissipate heat.

駆動ICに駆動制御信号を入力する接続パッドは、個別液室配列方向である液滴吐出ヘッドの長手方向の一端側にまとめて設けることが、液滴吐出ヘッドの低コスト化のために好ましい。しかし、液滴吐出ヘッドの個別液室配列方向の一端側に設けられた接続パッドには、液滴吐出ヘッドの全ての個別液室を駆動する駆動制御信号が供給されるため、大きな電流が流れて発熱量は大きなものとなる。このため、液滴吐出ヘッドの接続パッドを設けた一端側近傍の温度上昇は大きくなる。この温度上昇に伴い、接続パッドを設けた一端側に近い個別液室においては吐出特性が大きく変化して、印字ムラが顕著になる。   The connection pads for inputting drive control signals to the drive IC are preferably provided collectively on one end side in the longitudinal direction of the droplet discharge head, which is the individual liquid chamber arrangement direction, in order to reduce the cost of the droplet discharge head. However, since a drive control signal for driving all the individual liquid chambers of the droplet discharge head is supplied to the connection pad provided on one end side of the droplet discharge head in the individual liquid chamber arrangement direction, a large current flows. Therefore, the calorific value becomes large. For this reason, the temperature rise near one end side where the connection pad of the droplet discharge head is provided becomes large. As the temperature rises, the ejection characteristics change greatly in the individual liquid chamber near the one end side where the connection pad is provided, and printing unevenness becomes noticeable.

上記特許文献1の個別液室の配列方向に沿ってヒートパイプを設けた構成では、個別液室の配列方向全体の温度分布を緩和することができるが、入力パッドを設けた一端部側のヘッド温度上昇に特化して抑制できるものではない。また、ヒートパイプを設けるため、液滴吐出ヘッドの大型化は避けられない。   In the configuration in which the heat pipe is provided along the arrangement direction of the individual liquid chambers in Patent Document 1, the temperature distribution in the whole arrangement direction of the individual liquid chambers can be relaxed, but the head on one end side provided with the input pad It cannot be specifically controlled for temperature rise. In addition, since a heat pipe is provided, an increase in the size of the droplet discharge head is inevitable.

本発明は以上の問題点に鑑みなされたものであり、その目的は、液滴吐出ヘッドの小型化や低コスト化を図りつつ、駆動ICへの接続部の発熱による液滴吐出ヘッド内の温度ムラを抑制できる液滴吐出ヘッド、液滴吐出装置及び画像形成装置を提供することである。   The present invention has been made in view of the above problems, and its object is to reduce the size and cost of the droplet discharge head, and to reduce the temperature inside the droplet discharge head due to heat generation at the connection portion to the drive IC. To provide a droplet discharge head, a droplet discharge device, and an image forming apparatus that can suppress unevenness.

上記目的を達成するために、請求項1の発明は、複数のノズルに連通する複数の個別液室と各個別液室に圧力変動を発生する圧力発生手段とを形成した個別液室基板と、該個別液室の配列方向に沿って設けられ該個別液室に連通して液体を供給する共通液室と、液体タンクから該共通液室に液体を供給するための液体供給孔と、該圧力発生手段を駆動する駆動ICと、該駆動ICに外部からの駆動制御信号を入力するための接続部とを備えた液滴吐出ヘッドにおいて、
上記接続部を上記個別液室基板上の上記個別液室の配列方向の一端側に設け、上記液体供給孔を上記共通液室の該接続部が配置された一端側の端部に液体を供給するよう配置したことを特徴とするものである。 The connection portion is provided on one end side of the individual liquid chamber substrate in the arrangement direction of the individual liquid chambers, and the liquid supply hole is provided at one end side of the common liquid chamber where the connection portion is arranged. It is characterized by being arranged so as to do so. In order to achieve the above-mentioned object, the invention of claim 1 comprises: an individual liquid chamber substrate in which a plurality of individual liquid chambers communicating with a plurality of nozzles and pressure generating means for generating pressure fluctuations in each individual liquid chamber are formed; A common liquid chamber provided along the arrangement direction of the individual liquid chambers to supply liquid in communication with the individual liquid chambers; a liquid supply hole for supplying liquid from a liquid tank to the common liquid chamber; and the pressure In a droplet discharge head provided with a drive IC for driving the generating means and a connection part for inputting a drive control signal from the outside to the drive IC, In order to achieve the above-mentioned object, the invention of claim 1: an individual liquid chamber substrate in which a plurality of individual liquid chambers communicating with a plurality of nozzles and pressure generating means for generating pressure fluctuations in each individual liquid chamber are formed; A common liquid chamber provided along the arrangement direction of the individual liquid chambers to supply liquid in communication with the individual liquid chambers; a liquid supply hole for supplying liquid from a liquid tank to the common liquid chamber; and the pressure In a droplet discharge head provided with a drive IC for driving the generating means and a connection part for inputting a drive control signal from the outside to the drive IC,
The connection portion is provided on one end side in the arrangement direction of the individual liquid chambers on the individual liquid chamber substrate, and the liquid supply hole is supplied with liquid to the end portion on one end side where the connection portion of the common liquid chamber is disposed. It arrange | positions so that it may carry out. The connection portion is provided on one end side in the arrangement direction of the individual liquid chambers on the individual liquid chamber substrate, and the liquid supply hole is supplied with liquid to the end portion on one end side where the connection portion of the common liquid chamber is disposed. It arrange | positions so that it may carry out.

本発明では、液体タンクから液体供給孔を介して、共通液室の駆動ICに外部からの駆動制御信号を入力する接続部が配置された一端側の端部に液体が供給される。接続部が配置された一端側に近い個別液室内には、共通液室から、液体タンクから供給されたばかりのヘッド温度で温められていない液体が供給されて、接続部の発熱により温度上昇した個別液室基板を冷却する。これと比較して、液体供給孔を、接続部が配置された一端側の端部から離れた、例えば、共通液室の中央部に液体を供給するよう配置する構成では、供給された液体が共通液室内を中央部から接続部が配置された一端側に移動していく途中で温められる。接続部が配置された一端側に近い個別液室内には、温められた液体が供給され、接続部の発熱により温度上昇した個別液室基板を冷却することは難しい。
本発明では、駆動ICに外部からの駆動制御信号を入力する接続部を、低コスト化のため個別液室基板上の個別液室の配列方向の一端側に配置しても、共通液室への液体供給孔を上記配置とすることで接続部の発熱による温度上昇部を冷却できる。 In the present invention, even if the connection portion for inputting the drive control signal from the outside to the drive IC is arranged on one end side in the arrangement direction of the individual liquid chambers on the individual liquid chamber substrate for cost reduction, the common liquid chamber is formed. By arranging the liquid supply holes of the above, it is possible to cool the temperature rise part due to the heat generation of the connection part. このため、液滴吐出ヘッド内の温度ムラが抑制できる。 Therefore, temperature unevenness in the droplet ejection head can be suppressed. また、本発明では、液体供給孔を上記配置とするだけであり、ヒートパイプのような熱移動手段を別途設ける必要が無いので、液滴吐出ヘッドの大型化を招くおそれはない。 Further, in the present invention, only the liquid supply holes are arranged as described above, and it is not necessary to separately provide a heat transfer means such as a heat pipe, so that there is no possibility that the droplet ejection head becomes large. In the present invention, the liquid is supplied from the liquid tank to the end portion on one end side where the connection portion for inputting the drive control signal from the outside to the drive IC of the common liquid chamber is arranged through the liquid supply hole. The individual liquid chamber close to one end where the connection portion is arranged is supplied with liquid not heated at the head temperature just supplied from the liquid tank from the common liquid chamber, and the individual liquid temperature rises due to heat generation at the connection portion. Cool the liquid chamber substrate. Compared to this, in the configuration in which the liquid supply hole is arranged so as to supply the liquid to the central portion of the common liquid chamber, for example, apart from the end portion on one end side where the connection portion is arranged, the supplied liquid is The common liquid chamber is warmed while moving from the central portion to one end where the In the present invention, the liquid is supplied from the liquid tank to the end portion on one end side where the connection portion for inputting the drive control signal from the outside to the drive IC of the common liquid chamber is arranged through the liquid supply hole The individual liquid chamber close to one end where the connection portion is arranged is supplied with liquid not heated at the head temperature just supplied from the liquid tank from the common liquid chamber, and the individual liquid temperature rises due to heat generation at the connection Compared to this, in the configuration in which the liquid supply hole is arranged so as to supply the liquid to the central portion of the common liquid chamber, for example, apart from the end portion on one end side where the connection portion is arranged, the supplied liquid is The common liquid chamber is warmed while moving from the central portion to one end where the connecting portion is disposed. A warmed liquid is supplied into the individual liquid chamber close to one end side where the connecting portion is disposed, and it is difficult to cool the individual liquid chamber substrate whose temperature has risen due to heat generated by the connecting portion. A warmed liquid is supplied into the individual liquid chamber close to one end side where the connecting portion is disposed, and it is difficult to cool the individual liquid chamber substrate whose temperature has risen due to heat generated by the connecting portion ..
In the present invention, even if the connection portion for inputting a drive control signal from the outside to the drive IC is arranged on one end side in the arrangement direction of the individual liquid chambers on the individual liquid chamber substrate for cost reduction, the connection portion is connected to the common liquid chamber. By arranging the liquid supply holes in the above-described arrangement, the temperature rising portion due to the heat generation of the connecting portion can be cooled. For this reason, the temperature nonuniformity in a droplet discharge head can be suppressed. Further, in the present invention, the liquid supply holes are merely arranged as described above, and there is no need to separately provide a heat transfer means such as a heat pipe, so there is no possibility of increasing the size of the droplet discharge head. In the present invention, even if the connection portion for inputting a drive control signal from the outside to the drive IC is arranged on one end side in the arrangement direction of the individual liquid chambers on the individual liquid chamber substrate for cost reduction, the connection By arranging the liquid supply holes in the above-described arrangement, the temperature rising portion due to the heat generation of the connecting portion can be cooled. For this reason, the temperature nonuniformity in a droplet discharge. Head can be suppressed. Further, in the present invention, the liquid supply holes are merely arranged as described above, and there is no need to separately provide a heat transfer means such as a heat pipe, so there is no possibility of increasing the size. of the droplet discharge head.

本発明によれば、液滴吐出ヘッドの小型化や低コスト化を図りつつ、駆動ICへの接続部の発熱による液滴吐出ヘッド内の温度ムラが抑制できるという優れた効果がある。 According to the present invention, there is an excellent effect that temperature unevenness in the droplet discharge head due to heat generation at the connection portion to the drive IC can be suppressed while reducing the size and cost of the droplet discharge head.

本実施形態に係る液滴吐出ヘッドの分解斜視図。 FIG. 3 is an exploded perspective view of a droplet discharge head according to the present embodiment. 本実施形態に係る液滴吐出ヘッドの組立斜視図。 FIG. 3 is an assembled perspective view of a droplet discharge head according to the present embodiment. 図2からフレーム部材を除いた斜視図。 The perspective view which remove | eliminated the frame member from FIG. 本実施形態に係る液滴吐出ヘッドの個別液室列の幅方向断面図。 FIG. 4 is a cross-sectional view in the width direction of an individual liquid chamber row of the droplet discharge head according to the present embodiment. 個別液室基板の上面図。 The top view of a separate liquid chamber board | substrate. 個別液室基板とFPCとの接続を示す断面図。 Sectional drawing which shows the connection of a separate liquid chamber board | substrate and FPC. インクポートの配置位置とヘッドの温度分布との関係を示すグラフ。 6 is a graph showing the relationship between the ink port arrangement position and the head temperature distribution. 実施例2に係る液滴吐出ヘッドの組立斜視図。 FIG. 6 is an assembled perspective view of a droplet discharge head according to Embodiment 2. 図8からフレーム部材を除いた斜視図。 The perspective view which remove | eliminated the frame member from FIG. 実施例2に係るインク循環手段の一例を示す概略構成図。 FIG. 5 is a schematic configuration diagram illustrating an example of an ink circulation unit according to a second embodiment. 本実施形態の一例のインクジェット記録装置の全体構成を示す側面図。 1 is a side view illustrating an overall configuration of an ink jet recording apparatus according to an example of an embodiment. 図11のインクジェット記録装置の要部構成を示す平面図である。 It is a top view which shows the principal part structure of the inkjet recording device of FIG. 本実施形態の他の例のインクジェット記録装置の全体構成を示す側面図。 The side view which shows the whole structure of the inkjet recording device of the other example of this embodiment.

まず、本発明の実施形態の液滴吐出ヘッド50を図面に基づき説明する。
本実施形態の液滴吐出ヘッド50は、個別液室に圧力変動を発生する圧力発生手段として、圧電素子を用いたアクチュエータ方式を採用するものである。 The droplet ejection head 50 of the present embodiment employs an actuator method using a piezoelectric element as a pressure generating means for generating pressure fluctuations in individual liquid chambers. アクチュエータ方式は、幅広い物性のインクに対応可能である反面、従来、個別液室の配列の高密度化・ヘッドの小型化が困難とされてきた。 While the actuator method can handle inks with a wide range of physical properties, it has been difficult to increase the density of the arrangement of individual liquid chambers and reduce the size of the head. しかし、近年、いわゆるMEMS(Micro Electro Mechanical Systems)技術を用いることにより、高密度化・小型化する方法が確立されてきている。 However, in recent years, a method of increasing the density and reducing the size has been established by using the so-called MEMS (Micro Electro Mechanical Systems) technology. すなわち、個別液室に薄膜形成技術を用いて振動板、電極層、圧電体層などを積層したユニモルフ型のアクチュエータ形成する。 That is, a unimorph type actuator in which a diaphragm, an electrode layer, a piezoelectric layer, and the like are laminated is formed in an individual liquid chamber by using a thin film forming technique. これを、フォトリソグラフィ等の半導体デバイス製造プロセスを用いて個別の圧電素子と電極・配線部材等にパターニングすることで高密度化・小型化を図っている。 By patterning this on individual piezoelectric elements and electrodes, wiring members, etc. using a semiconductor device manufacturing process such as photolithography, high density and miniaturization are aimed at. First, a droplet discharge head 50 according to an embodiment of the present invention will be described with reference to the drawings. First, a droplet discharge head 50 according to an embodiment of the present invention will be described with reference to the drawings.
The droplet discharge head 50 according to the present embodiment employs an actuator system using a piezoelectric element as pressure generating means for generating pressure fluctuations in individual liquid chambers. While the actuator method is compatible with inks with a wide range of physical properties, it has been conventionally difficult to increase the density of the individual liquid chambers and reduce the size of the head. However, in recent years, a method for increasing the density and reducing the size by using a so-called MEMS (Micro Electro Mechanical Systems) technique has been established. That is, a unimorph type actuator is formed by laminating a diaphragm, an electrode layer, a piezoelectric layer, etc. in a separate liquid chamber using a thin film forming technique. By patterning this into individual piezoelectric elements and electrodes / wiring members using a semiconductor device manufacturing process such as photolithography, the density and size are reduce The droplet discharge head 50 according to the present embodiment employs an actuator system using a piezoelectric element as pressure generating means for generating pressure fluctuations in individual liquid chambers. While the actuator method is compatible with inks with a wide range of physical properties, it has been However, in recent years, a method for increasing the density and reducing the size by using a so-called MEMS (Micro Electro Mechanical Systems) technique has. Therefore difficult to increase the density of the individual liquid chambers and reduce the size of the head. That is, a unimorph type actuator is formed by laminating a diaphragm, an electrode layer, a piezoelectric layer, etc. in a separate liquid chamber using a thin film forming technique. By patterning this into individual piezoelectric elements and electrodes / wiring members using a semiconductor device manufacturing process such as photolithography, the density and size are reduce d. d.

図1は、本実施形態に係る液滴吐出ヘッド50の分解斜視図である。液滴吐出ヘッド50は、イエロー(y)、マゼンタ(m)、シアン(c)、黒(k)に対応する、多数のノズルを配列した4つのノズル列10y、10m、10c、10kと、各ノズル列に対応する4つの個別液室列3y、3m、3c、3kとを有している。また、各個別液室に圧力変動を発生する圧力発生手段として、圧電素子15y、15m、15c、15kを用いたアクチュエータを有している。図にしめすように、液滴吐出ヘッド50の長手方向がノズル列方向(個別液室配列方向)となる。   FIG. 1 is an exploded perspective view of a droplet discharge head 50 according to the present embodiment. The droplet discharge head 50 includes four nozzle rows 10y, 10m, 10c, and 10k in which a large number of nozzles corresponding to yellow (y), magenta (m), cyan (c), and black (k) are arranged. There are four individual liquid chamber rows 3y, 3m, 3c and 3k corresponding to the nozzle rows. In addition, an actuator using piezoelectric elements 15y, 15m, 15c, and 15k is provided as pressure generating means for generating a pressure fluctuation in each individual liquid chamber. As shown in the figure, the longitudinal direction of the droplet discharge head 50 is the nozzle row direction (individual liquid chamber arrangement direction).

この液滴吐出ヘッド50は、ノズル板2と、個別液室基板101、保持基板102、共通液室基板103、フレーム部材104とが順に積層されている。個別液室基板101は、個別液室列3y、3m、3c、3kの隔壁部を形成する基板に、個別液室列3y、3m、3c、3kの一壁面を形成する振動板14と、圧電素子15y、15m、15c、15kとを一体的に形成したものである。個別液室基板101上には、各圧電素子15y、15m、15c、15kに駆動信号を出力する駆動IC105a,105b、圧電素子15y、15m、15c、15kと駆動IC105a,105bとの配線(不図示)、測温抵抗体(不図示)等が設けられている。さらに、個別液室基板101上の長手方向(個別液室配列方向)一端部には、駆動IC105a,105bに配線(不図示)により電気的に接続された接続パッド109が設けられている。この接続パッド109にはFPC110が電気的に接続され、ヘッド外部回路(不図示)から駆動制御信号が送られる。   In the droplet discharge head 50, the nozzle plate 2, the individual liquid chamber substrate 101, the holding substrate 102, the common liquid chamber substrate 103, and the frame member 104 are sequentially stacked. The individual liquid chamber substrate 101 includes a vibration plate 14 that forms one wall surface of the individual liquid chamber rows 3y, 3m, 3c, and 3k on a substrate that forms the partition walls of the individual liquid chamber rows 3y, 3m, 3c, and 3k, and a piezoelectric member. Elements 15y, 15m, 15c, and 15k are integrally formed. On the individual liquid chamber substrate 101, driving ICs 105a and 105b that output driving signals to the piezoelectric elements 15y, 15m, 15c, and 15k, and wiring between the piezoelectric elements 15y, 15m, 15c, and 15k and the driving ICs 105a and 105b (not shown). ), A resistance temperature detector (not shown), and the like. Furthermore, a connection pad 109 electrically connected to the drive ICs 105a and 105b by wiring (not shown) is provided at one end in the longitudinal direction (individual liquid chamber arrangement direction) on the individual liquid chamber substrate 101. The FPC 110 is electrically connected to the connection pad 109, and a drive control signal is sent from an external head circuit (not shown).

図2は、図1の液滴吐出ヘッド50の組立斜視図である。図3は、図2からフレーム部材104を取り除いた斜視図である。また、図4は、4つの個別液室列のうちの一つの個別液室列の幅方向断面図であり、図1のA−A´ラインの断面を示すものである。なお、各色における構成動作は同じであるので、以下の説明においては、各色を示す添え字y、m、c、kを省略して説明を行う。
図4に示すように、ノズル板2、個別液室基板101、保持基板102、共通液室基板103およびフレーム部材104によりインク流路を形成している。 As shown in FIG. 4, the ink flow path is formed by the nozzle plate 2, the individual liquid chamber substrate 101, the holding substrate 102, the common liquid chamber substrate 103, and the frame member 104. 図示しないインクタンクから、フレーム部材104のインク供給孔としてのインクポート107を介して、共通液室基板103の共通液室4にインクを供給する。 Ink is supplied from an ink tank (not shown) to the common liquid chamber 4 of the common liquid chamber substrate 103 via an ink port 107 as an ink supply hole of the frame member 104. 共通液室4から、保持基板102の開口部21、個別液室基板101のインク供給口22、流体抵抗部23を介して、個別液室3内にインクを供給する。 Ink is supplied from the common liquid chamber 4 into the individual liquid chamber 3 through the opening 21 of the holding substrate 102, the ink supply port 22 of the individual liquid chamber substrate 101, and the fluid resistance portion 23. 個別液室3の一壁面を形成する振動板14上に形成された圧電素子15を駆動して振動板14を変位することで、個別液室3内を昇圧させて、ノズル1からインクを吐出する。 By driving the piezoelectric element 15 formed on the diaphragm 14 forming one wall surface of the individual liquid chamber 3 to displace the diaphragm 14, the inside of the individual liquid chamber 3 is boosted and ink is ejected from the nozzle 1. To do. FIG. 2 is an assembled perspective view of the droplet discharge head 50 of FIG. FIG. 3 is a perspective view in which the frame member 104 is removed from FIG. FIG. 4 is a cross-sectional view in the width direction of one individual liquid chamber row among the four individual liquid chamber rows, and shows a cross section taken along the line AA ′ of FIG. 1. In addition, since the composition operation | movement in each color is the same, in the following description, the subscripts y, m, c, and k which show each color are abbreviate | omitted and demonstrated. FIG. 2 is an assembled perspective view of the droplet discharge head 50 of FIG. 3 is a perspective view in which the frame member 104 is removed from FIG. FIG. 4 is a cross-sectional view in the width direction of one individual liquid chamber row among the four individual liquid chamber rows, and shows a cross section taken along the line AA ′ of FIG. 1. In addition, since the composition operation | movement in each color is the same, in the following description, the subscripts y, m, c, and k which show each color are abbreviate | omitted and demonstrated.
As shown in FIG. 4, the ink flow path is formed by the nozzle plate 2, the individual liquid chamber substrate 101, the holding substrate 102, the common liquid chamber substrate 103, and the frame member 104. Ink is supplied from an ink tank (not shown) to the common liquid chamber 4 of the common liquid chamber substrate 103 via an ink port 107 as an ink supply hole of the frame member 104. Ink is supplied from the common liquid chamber 4 into the individual liquid chamber 3 through the opening 21 of the holding substrate 102, the ink supply port 22 of the individual liquid chamber substrate 101, and the fluid resistance portion 23. By driving the piezoelectric element 15 formed on the diaphragm 14 forming one wall surface of the individual liquid chamber 3 and displacing the diaphragm 14, the pressure in the individual liquid chamber 3 is increased, and ink is ejected from the nozzle 1. To do. As shown in FIG. 4, the ink flow path is formed by the nozzle plate 2, the individual liquid chamber substrate 101, the holding substrate 102, the common liquid chamber substrate 103, and the frame member 104. Ink is supplied from an ink tank (not shown) to the common liquid chamber 4 of the common liquid chamber substrate 103 via an ink port 107 as an ink supply hole of the frame member 104. Ink is supplied from the common liquid chamber 4 into the individual liquid chamber 3 through The opening 21 of the holding substrate 102, the ink supply port 22 of the individual liquid chamber substrate 101, and the fluid resistance portion 23. By driving the piezoelectric element 15 formed on the diaphragm 14 forming one wall surface of the individual liquid chamber 3 and displacing the diaphragm 14, the pressure in the individual liquid chamber 3 is increased, and ink is ejected from the nozzle 1. To do.

圧電素子15は、圧電体を下部電極と上部電極で挟んだ構成であり、上部電極、下部電極からそれぞれ引き出された配線部材に接続された駆動IC105により駆動される。 The piezoelectric element 15 has a configuration in which a piezoelectric body is sandwiched between a lower electrode and an upper electrode, and is driven by a driving IC 105 connected to a wiring member drawn from the upper electrode and the lower electrode.

以下、本実施形態の液滴吐出ヘッド50の構成部材について詳細に説明する。
<ノズル板>

ノズル板2は、インク吐出用のノズル1が配列している基板であり、材料は必要な剛性や加工性から任意のものを用いることができる。 The nozzle plate 2 is a substrate on which the nozzles 1 for ejecting ink are arranged, and any material can be used from the viewpoint of required rigidity and workability. 例えば、SUS,ニッケル等の金属または合金、シリコン、セラミックス等の無機材料、ポリイミド等の樹脂材料などを挙げることができる。 For example, metals or alloys such as SUS and nickel, inorganic materials such as silicon and ceramics, and resin materials such as polyimide can be mentioned. ノズル1の加工方法は、基板の材料の特性と要求される精度・加工性から任意のものを選ぶことができ、電鋳めっき法、エッチング法、プレス加工法、レーザー加工法等、フォトリソグラフィ法等が挙げられる。 The processing method of the nozzle 1 can be selected from any one from the characteristics of the material of the substrate and the required accuracy and workability. Photolithography methods such as electroforming plating method, etching method, press processing method, laser processing method, etc. And so on. ノズル1の開口径、配列数,配列密度は、インクヘッドに要求される仕様に合わせて最適な組み合わせを設定することができる。 The optimum combination of the aperture diameter, the number of arrangements, and the arrangement density of the nozzle 1 can be set according to the specifications required for the ink head. Hereinafter, the constituent members of the droplet discharge head 50 of this embodiment will be described in detail. Embodied, the constituent members of the droplet discharge head 50 of this embodiment will be described in detail.
<Nozzle plate> <Nozzle plate>
The nozzle plate 2 is a substrate on which the ink discharge nozzles 1 are arranged, and any material can be used from the required rigidity and workability. Examples thereof include metals or alloys such as SUS and nickel, inorganic materials such as silicon and ceramics, and resin materials such as polyimide. The processing method of the nozzle 1 can be selected arbitrarily from the characteristics of the material of the substrate and the required accuracy and workability, such as electroforming plating method, etching method, press processing method, laser processing method, photolithography method, etc. Etc. The opening diameter, the number of arrays, and the array density of the nozzles 1 can be set to an optimum combination according to the specifications required for the ink head. The nozzle plate 2 is a substrate on which the ink discharge nozzles 1 are arranged, and any material can be used from the required rigidity and workability. Examples thereof include metals or alloys such as SUS and nickel, inorganic materials such as silicon and ceramics, and resin materials such as polyimide. The processing method of the nozzle 1 can be selected particularly from the characteristics of the material of the substrate and the required accuracy and workability, such as electroforming plating method, etching method, press processing method, laser processing method. , photolithography method, etc. Etc. The opening diameter, the number of arrays, and the array density of the nozzles 1 can be set to an optimum combination according to the specifications required for the ink head.

<個別液室基板>
個別液室基板101には、個別液室3の隔壁部、流体抵抗部23、インク供給口22が形成される。 The individual liquid chamber substrate 101 is formed with a partition wall portion, a fluid resistance portion 23, and an ink supply port 22 of the individual liquid chamber 3. 個別液室基板101の材料は加工性・物性から任意のものを用いることができるが、例えば、300dpi(約85[μm]ピッチ)ではフォトリソグラフィ法を用いることができるシリコン基板を用いることが好ましい。 Any material can be used for the individual liquid chamber substrate 101 from the viewpoint of processability and physical properties. For example, at 300 dpi (about 85 [μm] pitch), it is preferable to use a silicon substrate that can use a photolithography method. .. 個別液室3の加工は任意のものを用いることができるが、前述のフォトリソグラフィ法を用いる場合は、ウェットエッチング法、ドライエッチング法のいずれかを用いることができる。 Any process can be used for the individual liquid chamber 3, but when the above-mentioned photolithography method is used, either a wet etching method or a dry etching method can be used. いずれの手法でも、振動板14の個別液室3側を二酸化シリコン膜等とすることで、エッチストップ層とできるため、個別液室3の高さを高精度に制御することができる。 In either method, the height of the individual liquid chamber 3 can be controlled with high accuracy because the etch stop layer can be formed by forming the individual liquid chamber 3 side of the diaphragm 14 with a silicon dioxide film or the like. <Individual liquid chamber substrate> <Individual liquid chamber substrate>
The individual liquid chamber substrate 101 is formed with a partition portion of the individual liquid chamber 3, a fluid resistance portion 23, and an ink supply port 22. Any material can be used for the material of the individual liquid chamber substrate 101 in view of workability and physical properties. For example, it is preferable to use a silicon substrate capable of using a photolithography method at 300 dpi (about 85 [μm] pitch). . Although processing of the individual liquid chamber 3 can be performed arbitrarily, when the photolithography method described above is used, either a wet etching method or a dry etching method can be used. In any method, since the individual liquid chamber 3 side of the vibration plate 14 is made of a silicon dioxide film or the like, an etch stop layer can be formed, so that the height of the individual liquid chamber 3 can be controlled with high accuracy. The individual liquid chamber substrate 101 is formed with a partition portion of the individual liquid chamber 3, a fluid resistance portion 23, and an ink supply port 22. Any material can be used for the material of the individual liquid chamber substrate 101 in view of For example, it is preferred to use a silicon substrate capable of using a photolithography method at 300 dpi (about 85 [μm] pitch). Although processing of the individual liquid chamber 3 can be performed favorably, when the photolithography method described above is used, either a wet partition method or a dry sintering method can be used. In any method, since the individual liquid chamber 3 side of the vibration plate 14 is made of a silicon dioxide film or the like, an etch stop layer can be formed, so that the height of the individual liquid chamber 3 can be controlled with high accuracy.

個別液室3はインクに圧力を加え、ノズル1から液滴を吐出させる機能を有する。個別液室基板101には、個別液室3の一壁面を形成する振動板14と、下部電極、圧電体、上部電極が積層された圧電素子15とが一体的に形成される。振動板14は任意のものを用いることができるが、シリコンや窒化物、酸化物、炭化物等の剛性の高い材料とすることが好ましい。また、これらの材料の積層構造としても良い。積層膜とする場合は、それぞれの材料の内部応力を考慮し、残留応力が少ない構成とすることが好ましい。例えば、SiとSiOの積層の場合は、引張り応力となるSiと圧縮応力となるSiOを交互に積層し、応力緩和する構成が例として挙げられる。 The individual liquid chamber 3 has a function of applying pressure to the ink and ejecting droplets from the nozzle 1. The individual liquid chamber substrate 101 is integrally formed with a diaphragm 14 forming one wall surface of the individual liquid chamber 3 and a piezoelectric element 15 in which a lower electrode, a piezoelectric body, and an upper electrode are laminated. Although any diaphragm 14 can be used, it is preferable to use a material having high rigidity such as silicon, nitride, oxide, or carbide. Alternatively, a stacked structure of these materials may be used. In the case of a laminated film, it is preferable that the residual stress is reduced in consideration of the internal stress of each material. For example, in the case of stacked the Si 3 N 4 and SiO 2, the SiO 2 serving as the Si 3 N 4 as the tensile stress and compressive stress are alternately stacked, arrangement of stress relaxation can be mentioned as an example.

振動板14の厚さは、所望の特性に応じて選択できるが、概ね、0.5〜10[μm]の範囲が好ましく、さらに好ましくは1.0〜5.0[μm]の範囲である。振動板14が薄すぎる場合はクラック等により振動板14が破損しやすくなり、厚すぎる場合は変位量が小さくなり吐出効率が低下してしまう。また、薄すぎる場合は、振動板14の固有振動数が低下し、駆動周波数が高められない課題がある。   The thickness of the diaphragm 14 can be selected according to desired characteristics, but is generally preferably in the range of 0.5 to 10 [μm], more preferably in the range of 1.0 to 5.0 [μm]. . If the diaphragm 14 is too thin, the diaphragm 14 is easily damaged by cracks or the like, and if it is too thick, the amount of displacement becomes small and the discharge efficiency decreases. If it is too thin, there is a problem that the natural frequency of the diaphragm 14 is lowered and the drive frequency cannot be increased.

圧電素子15を構成する、下部電極(不図示)、上部電極(不図示)は導電性のある任意の材料を用いることができる。例えば、金属,合金,導電性化合物が上げられる。これらの材料の単層膜でも積層膜でも良い。また、圧電体と反応したり、拡散したりしない材料を選定する必要があるため、安定性の高い材料を選定する必要がある。また、必要に応じて圧電体、振動板14との密着性を考慮し、密着層を形成しても良い。電極材料の例としては、Pt,Ir,Ir酸化物,Pd,Pd酸化物等が安定性の高い材料として挙げられる。また、振動板14との密着層としては、Ti,Ta,W,Cr等が例示できる。   The lower electrode (not shown) and the upper electrode (not shown) constituting the piezoelectric element 15 can be made of any conductive material. For example, metals, alloys, and conductive compounds can be raised. A single layer film or a laminated film of these materials may be used. Moreover, since it is necessary to select a material that does not react with or diffuse with the piezoelectric body, it is necessary to select a highly stable material. Further, if necessary, the adhesion layer may be formed in consideration of the adhesion with the piezoelectric body and the vibration plate 14. Examples of the electrode material include Pt, Ir, Ir oxide, Pd, Pd oxide, and the like as highly stable materials. Examples of the adhesion layer with the diaphragm 14 include Ti, Ta, W, and Cr.

圧電体を形成する構成する圧電体材料は圧電性を示す強誘電体材料を用いることができる。例えば、チタン酸ジルコン酸鉛やチタン酸バリウムが一般的に用いられる。圧電体の成膜方法は任意の手法を用いることができ、例としてはスパッタリング法,ゾルゲル法が挙げられ、成膜温度の低さからゾルゲル法が好ましい。上部電極、圧電体は個別液室3ごとにパターニングする必要がある。パターニングは通常のフォトリソグラフィ法を用いることができる。また、圧電体の成膜をゾルゲル法にて行う場合は、スピンコーティング法や印刷法を用いることもできる。   As the piezoelectric material constituting the piezoelectric body, a ferroelectric material exhibiting piezoelectricity can be used. For example, lead zirconate titanate and barium titanate are generally used. Arbitrary methods can be used as the method for forming the piezoelectric body, and examples thereof include a sputtering method and a sol-gel method, and the sol-gel method is preferable because the film forming temperature is low. The upper electrode and the piezoelectric body need to be patterned for each individual liquid chamber 3. For patterning, a normal photolithography method can be used. Also, when the piezoelectric film is formed by the sol-gel method, a spin coating method or a printing method can also be used.

圧電素子15は個別液室3の上部に形成される必要がある。個別液室3を区画する隔壁部上に形成した場合、振動板14の変形を阻害してしまうため、吐出効率の低下や応力集中による圧電素子の破損等の原因となる。   The piezoelectric element 15 needs to be formed above the individual liquid chamber 3. When formed on the partition wall partitioning the individual liquid chamber 3, the deformation of the vibration plate 14 is hindered, which causes a decrease in discharge efficiency and damage of the piezoelectric element due to stress concentration.

個別液室基板101には、個別液室3に連通する流体抵抗部23が形成される。流体抵抗部23は共通液室4から個別液室3にインクを供給する機能を有する。と同時に、圧電素子15を駆動することにより個別液室3に発生する圧力により、インクの逆流を防止しノズル1から吐出させる機能を有する。そのため、個別液室3のインク流動方向の断面積を小さくし、流体抵抗を高くする必要がある。個別液室基板101にシリコンを用い、個別液室3と流体抵抗部23をフォトリソグラフィ法によるエッチングを用いて形成した場合、個別液室3と同一の条件で加工できるメリットがある。流体抵抗部23の高さを個別液室3より低くすることで、流体抵抗を高めるためには、個別液室3のオーバーエッチング量を時間管理で制御する必要がある。このため、エッチングレートのばらつきにより、流体抵抗を均一にすることができない。その結果、吐出均一性が悪化する。   In the individual liquid chamber substrate 101, a fluid resistance portion 23 communicating with the individual liquid chamber 3 is formed. The fluid resistance unit 23 has a function of supplying ink from the common liquid chamber 4 to the individual liquid chamber 3. At the same time, the piezoelectric element 15 is driven to have a function of preventing ink backflow and discharging from the nozzle 1 by the pressure generated in the individual liquid chamber 3. Therefore, it is necessary to reduce the cross-sectional area of the individual liquid chamber 3 in the ink flow direction and increase the fluid resistance. When silicon is used for the individual liquid chamber substrate 101 and the individual liquid chamber 3 and the fluid resistance portion 23 are formed by etching using a photolithography method, there is an advantage that processing can be performed under the same conditions as the individual liquid chamber 3. In order to increase the fluid resistance by making the height of the fluid resistance portion 23 lower than that of the individual liquid chamber 3, it is necessary to control the amount of overetching of the individual liquid chamber 3 by time management. For this reason, fluid resistance cannot be made uniform due to variations in etching rate. As a result, the discharge uniformity is deteriorated.

流体抵抗部23はインク供給口22および保持基板102に形成される開口部21を通じて、共通液室基板103に形成される共通液室4に連通する。個別液室3は隔壁部(不図示)により区画されており、それぞれに対応する圧電素子15が形成される。個別液室3の高さはヘッド特性から任意に設定できるが、20〜100[μm]の範囲とすることが好ましい。また、個別液室3の隔壁部は配列密度に合わせて任意に設定することが可能であるが、隔壁部の幅は10〜30[μm]とすることが好ましい。また、隔壁部の幅が狭い場合は、隣接する個別液室3の圧電素子15を駆動した場合に、隣接する個別液室3間の相互干渉が発生し、吐出ばらつきが大きくなる。隔壁部の幅を狭くする場合は、液室高さを低くすることで対応する。   The fluid resistance unit 23 communicates with the common liquid chamber 4 formed on the common liquid chamber substrate 103 through the ink supply port 22 and the opening 21 formed in the holding substrate 102. The individual liquid chambers 3 are partitioned by partition walls (not shown), and corresponding piezoelectric elements 15 are formed. The height of the individual liquid chamber 3 can be arbitrarily set from the head characteristics, but is preferably in the range of 20 to 100 [μm]. Moreover, although the partition part of the separate liquid chamber 3 can be arbitrarily set according to the arrangement density, the width of the partition part is preferably 10 to 30 [μm]. When the partition wall is narrow, when the piezoelectric elements 15 of the adjacent individual liquid chambers 3 are driven, mutual interference between the adjacent individual liquid chambers 3 occurs, resulting in a large discharge variation. When narrowing the width of the partition wall, it is possible to reduce the height of the liquid chamber.

<配線>
図5は、個別液室基板101の上面図である。 FIG. 5 is a top view of the individual liquid chamber substrate 101. 図5に基づき、個別液室基板101の配線を説明する。 The wiring of the individual liquid chamber substrate 101 will be described with reference to FIG. 個別液室3の上部に配列した圧電素子15に駆動信号を入力するために、圧電素子15を構成する上部電極152から個別配線17bを引き出し、下部電極151から共通配線17aを引き出す。 In order to input a drive signal to the piezoelectric elements 15 arranged in the upper part of the individual liquid chamber 3, the individual wiring 17b is drawn from the upper electrode 152 constituting the piezoelectric element 15, and the common wiring 17a is drawn from the lower electrode 151. 上部電極152からは、後述する配線層の一部である個別配線17bを介して個別配線パッド(不図示)まで引き出され、駆動IC105と接続される。 The upper electrode 152 is drawn out to an individual wiring pad (not shown) via the individual wiring 17b which is a part of the wiring layer described later, and is connected to the drive IC 105. さらに、駆動IC105から配線17cを介して長手方向の一端側に設けられた接続パッド109まで引き出される。 Further, it is pulled out from the drive IC 105 via the wiring 17c to the connection pad 109 provided on one end side in the longitudinal direction. 下部電極151は、共通配線17aを介して接続パッド109まで引き出される。 The lower electrode 151 is pulled out to the connection pad 109 via the common wiring 17a. 接続パッド109は、FPC110(図1参照)によりヘッド外部回路(不図示)に接続される。 The connection pad 109 is connected to a head external circuit (not shown) by an FPC 110 (see FIG. 1).
図6は、個別液室基板101とFPC110との接続を示す断面図である。 FIG. 6 is a cross-sectional view showing the connection between the individual liquid chamber substrate 101 and the FPC 110. 接続パッド109は、ワイヤーボンディングによるワイヤー111によりFPC110に接続され、FPC110を介してヘッド外部回路(不図示)に接続される。 The connection pad 109 is connected to the FPC 110 by a wire 111 by wire bonding, and is connected to a head external circuit (not shown) via the FPC 110. <Wiring> <Wiring>
FIG. 5 is a top view of the individual liquid chamber substrate 101. The wiring of the individual liquid chamber substrate 101 will be described with reference to FIG. In order to input a drive signal to the piezoelectric elements 15 arranged above the individual liquid chamber 3, the individual wiring 17 b is drawn from the upper electrode 152 constituting the piezoelectric element 15, and the common wiring 17 a is drawn from the lower electrode 151. From the upper electrode 152, an individual wiring pad (not shown) is led out through an individual wiring 17b which is a part of a wiring layer described later, and is connected to the driving IC 105. Furthermore, it is pulled out from the driving IC 105 to the connection pad 109 provided on one end side in the longitudinal direction via the wiring 17c. The lower electrode 151 is drawn to the connection pad 109 via the common wiring 17a. The connection pad 109 is connected to an external head circuit (not shown) by the FPC 110 (see FIG. FIG. 5 is a top view of the individual liquid chamber substrate 101. The wiring of the individual liquid chamber substrate 101 will be described with reference to FIG. In order to input a drive signal to the piezoelectric elements 15 arranged above the individual liquid chamber 3, the individual wiring 17 b is drawn from the upper electrode 152 separately the piezoelectric element 15, and the common wiring 17 a is drawn from the lower electrode 151. From the upper electrode 152, an individual wiring pad (not shown) is led out through an individual wiring 17b which is a part of a wiring layer described later, and is connected to the driving IC 105. Further, it is pulled out from the driving IC 105 to the connection pad 109 provided on one end side in the longitudinal direction via the wiring 17c. The lower electrode 151 is drawn to the connection pad 109 via the common wiring 17a. The connection pad 109 is connected to an external head circuit (not shown) by the FPC 110 (see FIG. 1). 1).
FIG. 6 is a cross-sectional view showing the connection between the individual liquid chamber substrate 101 and the FPC 110. The connection pad 109 is connected to the FPC 110 by a wire 111 by wire bonding, and is connected to an external head circuit (not shown) through the FPC 110. FIG. 6 is a cross-sectional view showing the connection between the individual liquid chamber substrate 101 and the FPC 110. The connection pad 109 is connected to the FPC 110 by a wire 111 by wire bonding, and is connected to an external head circuit (not shown) through the FPC 110.

上記配線は同一材料・同一工程で形成することが好ましい。配線材料としては、抵抗値の低い金属・合金・導電性材料を用いることができる。また、上部電極、下部電極としてはコンタクト抵抗の低い材料を用いることが必要である。例えば、Al,Au,Ag,Pd,Ir,W,Ti,Ta,Cu,Crなどが例示でき、コンタクト抵抗を低減するために、これらの材料の積層構造としても良い。コンタクト抵抗を下げる材料としては、任意の導電性化合物を用いても良い。例えば、Ta,TiO,TiN,ZnO,In,SnO等の酸化物、窒化物およびその複合化合物が挙げられる。 The wiring is preferably formed by the same material and the same process. As the wiring material, a metal / alloy / conductive material having a low resistance value can be used. Further, it is necessary to use a material having a low contact resistance for the upper electrode and the lower electrode. For example, Al, Au, Ag, Pd, Ir, W, Ti, Ta, Cu, Cr and the like can be exemplified, and a laminated structure of these materials may be used in order to reduce contact resistance. As a material for reducing the contact resistance, any conductive compound may be used. Examples thereof include oxides such as Ta 2 O 5 , TiO 2 , TiN, ZnO, In 2 O 3 and SnO, nitrides, and composite compounds thereof.

膜厚は任意に設定できるが、3[μm]以下とすることが好ましい。また、成膜には真空成膜法等の膜厚均一性が高い成膜方法を採用することが好ましい。これらの配線は、後述の保持基板102との接合面にもなるため、高さ均一性を確保できる膜厚・成膜方法を取る必要がある。 The film thickness can be arbitrarily set, but is preferably 3 [μm] or less. In addition, it is preferable to employ a film forming method with high film thickness uniformity such as a vacuum film forming method. Since these wirings also serve as a bonding surface with the holding substrate 102 described later, it is necessary to adopt a film thickness / film forming method capable of ensuring height uniformity.

<保持基板>
上述の個別液室基板101は20〜100[μm]厚と薄いため、個別液室基板101の剛性を確保するために保持基板102をノズル板2と対向する側に接合する。 Since the individual liquid chamber substrate 101 described above is as thin as 20 to 100 [μm], the holding substrate 102 is joined to the side facing the nozzle plate 2 in order to secure the rigidity of the individual liquid chamber substrate 101. 保持基板102の材料は任意の材料を用いることができるが、個別液室基板101の反りを防止するために熱膨張係数の近い材料を選定する必要がある。 Any material can be used as the material of the holding substrate 102, but it is necessary to select a material having a coefficient of thermal expansion close to that of the individual liquid chamber substrate 101 in order to prevent warpage. そのため、ガラス、シリコンやSiO 、ZrO 、Al 等のセラミックス材料とすることが好ましい。 Therefore, it is preferable to use glass, silicon, or ceramic materials such as SiO 2 , ZrO 2 , and Al 2 O 3 . <Holding substrate> <Holding substrate>
Since the individual liquid chamber substrate 101 is as thin as 20 to 100 [μm], the holding substrate 102 is joined to the side facing the nozzle plate 2 in order to ensure the rigidity of the individual liquid chamber substrate 101. Although any material can be used as the material of the holding substrate 102, it is necessary to select a material having a thermal expansion coefficient close to prevent the individual liquid chamber substrate 101 from warping. Therefore, it is preferable to use ceramic materials such as glass, silicon, SiO 2 , ZrO 2 , and Al 2 O 3 . Since the individual liquid chamber substrate 101 is as thin as 20 to 100 [μm], the holding substrate 102 is joined to the side facing the nozzle plate 2 in order to ensure the rigidity of the individual liquid chamber substrate 101. Although any material can be used as the material of the holding substrate 102, it is necessary to select a material having a thermal expansion coefficient close to prevent the individual liquid chamber substrate 101 from warping. Therefore, it is preferred to use ceramic materials such as glass, silicon, SiO 2 , ZrO 2 , and Al 2 O 3 .

図4に示すように、保持基板102は、個別液室配列方向に連通した開口部21を有しており、共通液室4の一部を形成する。また、圧電素子15を駆動して振動板14が変位できる空間を確保するため、保持基板102の圧電素子15に対向する領域に保持基板凹部24を形成する。なお、図示しないが、保持基板凹部24は個別液室ごとに区画し、個別液室隔壁上で接合されることが好ましい。これにより、板厚の薄い個別液室基板101の剛性を高めることができ、圧電素子15を駆動した際の隣接個別液室間の相互干渉を低減することが可能となる。そのため、保持基板102は樹脂などの低剛性材料ではなく、シリコンなどの高剛性材料が好ましい。また、保持基板凹部24は個別液室3ごとに区画されるため、高密度化のためには高度な加工精度が要求され、300dpiヘッドにおいては保持基板102の隔壁幅を5〜20[μm]とすることが望ましい。   As shown in FIG. 4, the holding substrate 102 has an opening 21 communicating with the individual liquid chamber arrangement direction, and forms a part of the common liquid chamber 4. Further, in order to secure a space in which the diaphragm 14 can be displaced by driving the piezoelectric element 15, the holding substrate recess 24 is formed in a region of the holding substrate 102 that faces the piezoelectric element 15. Although not shown, it is preferable that the holding substrate recess 24 is divided for each individual liquid chamber and joined on the individual liquid chamber partition wall. As a result, the rigidity of the individual liquid chamber substrate 101 having a thin plate thickness can be increased, and mutual interference between adjacent individual liquid chambers when the piezoelectric element 15 is driven can be reduced. Therefore, the holding substrate 102 is preferably not a low-rigidity material such as resin but a high-rigidity material such as silicon. In addition, since the holding substrate recess 24 is partitioned for each individual liquid chamber 3, high processing accuracy is required for high density, and in the 300 dpi head, the partition wall width of the holding substrate 102 is 5 to 20 [μm]. Is desirable.

<共通液室基板>
共通液室基板103は、各個別液室3に連通し各個別液室3に供給するインクを収容する個別液室配列方向に長尺な共通液室4が形成されたものである。共通液室基板103の材料は必要な剛性や加工性から任意のものを用いることができる。例えば、SUS等の合金や、シリコン、セラミックス等の無機材料、エポキシやポリフェニレンサルファイド(PPS)などの樹脂材料をあげることができる。加工方法としては、材料に応じてエッチング、プレス加工、レーザー加工、フォトリソグラフィイ、射出成形などがある。
<Common liquid chamber substrate>
The common liquid chamber substrate 103 is formed with a common liquid chamber 4 that is long in the arrangement direction of the individual liquid chambers that communicate with the individual liquid chambers 3 and store ink to be supplied to the individual liquid chambers 3. Any material can be used as the material for the common liquid chamber substrate 103 in view of the required rigidity and workability. Examples thereof include alloys such as SUS, inorganic materials such as silicon and ceramics, and resin materials such as epoxy and polyphenylene sulfide (PPS). Examples of processing methods include etching, press processing, laser processing, photolithography, and injection molding depending on the material. The common liquid chamber substrate 103 is formed with a common liquid chamber 4 that is long in the arrangement direction of the individual liquid chambers that communicate with the individual liquid chambers 3 and store ink to be supplied to the individual liquid chambers 3. Any material can Examples thereof include alloys such as SUS, inorganic materials such as silicon and ceramics, and resin materials such as epitaxial and polyphenylene sulfide (PPS). Be used as the material for the common liquid chamber substrate 103 in view of the required rigidity and workability. Examples of processing methods include sequencing, press processing, laser processing, photolithography, and injection molding depending on the material.

<フレーム部材>
フレーム部材104は共通液室4とインクを受け渡しするインクポート107を形成する部品である。 The frame member 104 is a component that forms an ink port 107 that transfers ink to the common liquid chamber 4. フレーム部材104の材料は必要な剛性や加工性から任意のものを用いることができる。 Any material can be used for the frame member 104 from the viewpoint of required rigidity and workability. 例えば、SUS等の合金、エポキシやPPSなどの樹脂材料をあげることができる。 For example, alloys such as SUS and resin materials such as epoxy and PPS can be mentioned. 加工方法としては、材料に応じてプレス加工、レーザー加工、射出成形などがある。 Processing methods include press processing, laser processing, injection molding, etc., depending on the material. <Frame member> <Frame member>
The frame member 104 is a component that forms an ink port 107 for transferring ink to and from the common liquid chamber 4. Any material can be used for the frame member 104 in view of the required rigidity and workability. For example, alloys such as SUS, and resin materials such as epoxy and PPS can be used. Examples of processing methods include press processing, laser processing, injection molding, and the like depending on the material. The frame member 104 is a component that forms an ink port 107 for transferring ink to and from the common liquid chamber 4. Any material can be used for the frame member 104 in view of the required rigidity and workability. For example, alloys such as SUS, and resin materials such as epoxy and PPS can be used. Examples of processing methods include press processing, laser processing, injection molding, and the like depending on the material.

このような構成の液滴吐出ヘッド50で、ヘッド外部回路(不図示)から接続パッド109を介して駆動IC105へ駆動制御信号が供給され、駆動制御信号に基づき駆動IC105が圧電素子15を駆動して、ノズル1からインク滴を吐出する。この際、圧電素子15、駆動IC105と、接続パッド109が流れる電流により発熱する。この熱は、液滴吐出ヘッド50の構成部材によって伝達されヘッド温度が上昇する。この中でも、個別液室配列方向の一端側に設けられている接続パッド109には、液滴吐出ヘッド50の全ての個別液室3を駆動する駆動制御信号が供給されるため、大きな電流が流れて発熱量は大きなものとなる。このため、液滴吐出ヘッド50の接続パッド109を設けた一端側近傍の温度上昇は大きくなる。このため、液滴吐出ヘッド50内における液室配列方向における温度ムラが大きくなる。   With the droplet discharge head 50 having such a configuration, a drive control signal is supplied from the head external circuit (not shown) to the drive IC 105 via the connection pad 109, and the drive IC 105 drives the piezoelectric element 15 based on the drive control signal. Ink droplets are ejected from the nozzle 1. At this time, heat is generated by the current flowing through the piezoelectric element 15, the drive IC 105, and the connection pad 109. This heat is transmitted by the constituent members of the droplet discharge head 50 and the head temperature rises. Among these, since a drive control signal for driving all the individual liquid chambers 3 of the droplet discharge head 50 is supplied to the connection pad 109 provided on one end side in the individual liquid chamber arrangement direction, a large current flows. Therefore, the calorific value becomes large. For this reason, the temperature rise in the vicinity of one end where the connection pad 109 of the droplet discharge head 50 is provided becomes large. For this reason, the temperature unevenness in the liquid chamber arrangement direction in the droplet discharge head 50 increases.

本実施形態では、このような温度ムラを抑制するため、図1,2に示すように、フレーム部材104のインクポート107を、接続パッド109が配置された一端側に近い共通液室4の端部にインクを供給するよう設けている。これにより、接続パッド109が配置された一端側に近い個別液室3内には、共通液室4からインクタンク(不図示)から供給されたばかりのヘッド温度で温められていないインクが供給され、温度上昇した個別液室基板101を冷却する。   In the present embodiment, in order to suppress such temperature unevenness, as shown in FIGS. 1 and 2, the ink port 107 of the frame member 104 is connected to the end of the common liquid chamber 4 close to one end where the connection pad 109 is disposed. The ink is supplied to the part. As a result, the ink that has not been warmed at the head temperature just supplied from the ink tank (not shown) from the common liquid chamber 4 is supplied into the individual liquid chamber 3 near the one end side where the connection pad 109 is disposed, The individual liquid chamber substrate 101 whose temperature has risen is cooled.

これと比較して、フレーム部材104のインクポートを共通液室4の中央部にインクを供給するよう配置する構成では、供給されたインクが共通液室4内を中央部から接続パッド109が配置された一端側に移動していく途中で温められる。接続パッド109が配置された一端側に近い個別液室3内には、温められたインクが供給され、温度上昇した個別液室基板101を冷却して温度ムラを抑制することが難しい。   In contrast, in the configuration in which the ink port of the frame member 104 is arranged to supply ink to the central portion of the common liquid chamber 4, the connection pad 109 is arranged in the common liquid chamber 4 from the central portion of the supplied ink. It is heated on the way to the one end side. Warm ink is supplied into the individual liquid chamber 3 near one end where the connection pads 109 are arranged, and it is difficult to cool the individual liquid chamber substrate 101 whose temperature has risen to suppress temperature unevenness.

図7に、インクポート107の位置を変化させた液滴吐出ヘッド50を、2つの駆動条件で駆動した際のヘッドの温度分布を測定した結果を示す。2つの駆動条件の何れにおいても、インクポート107を接続パッド109が配置された一端側の端部から配列方向長さの1/8の位置に設けた構成は、インクポート107を中央部に設けた構成に較べて、温度分布を抑える効果が得られている。これより、インクポート107を接続パッド109が配置された一端側の端部から配列方向長さの1/8までの端部に設けると良い。   FIG. 7 shows the result of measuring the temperature distribution of the head when the droplet discharge head 50 in which the position of the ink port 107 is changed is driven under two driving conditions. In either of the two driving conditions, the configuration in which the ink port 107 is provided at a position that is 1/8 of the length in the arrangement direction from the end on one end side where the connection pad 109 is disposed is provided in the center portion. Compared to the configuration described above, the effect of suppressing the temperature distribution is obtained. Accordingly, it is preferable to provide the ink port 107 at the end from the end on one end side where the connection pad 109 is arranged to 1/8 of the arrangement direction length.

以下、具体的な液滴吐出ヘッド50の製造工程を実施例に基づき詳細に説明する。
<実施例1>
個別液室基板101を、直径6インチのシリコンウェハを用いて作成する。 The individual liquid chamber substrate 101 is prepared using a silicon wafer having a diameter of 6 inches. 厚さ600[μm]のシリコンウェハ上に、SiO 0.6[μm]、Si 1.5[μm]、SiO 0.4[μm]を積層することで3層構成の振動板14を形成した。 A three-layer diaphragm 14 is formed by laminating SiO 2 0.6 [μm], Si 1.5 [μm], and SiO 2 0.4 [μm] on a silicon wafer having a thickness of 600 [μm]. Formed. この振動板14上に、下部電極151としてTi 20[nm]、Pt 200[nm]をスパッタリング法で成膜した。 Ti 20 [nm] and Pt 200 [nm] were formed on the diaphragm 14 as the lower electrode 151 by a sputtering method. 下部電極151上に、チタン酸ジルコン酸鉛(PZT)を有機金属溶液に用いたゾルゲル法で厚さ2[μm]を成膜した後、700℃で焼成し、PZTの圧電体膜(不図示)を形成した。 A thickness of 2 [μm] was formed on the lower electrode 151 by a sol-gel method using lead zirconate titanate (PZT) as an organic metal solution, and then fired at 700 ° C. ) Was formed. その後、圧電体膜上にPt 200[nm]をスパッタリング法で成膜して上部電極152とした。 Then, Pt 200 [nm] was formed on the piezoelectric film by a sputtering method to form an upper electrode 152. Hereinafter, a specific manufacturing process of the droplet discharge head 50 will be described in detail based on examples. Recently, a specific manufacturing process of the droplet discharge head 50 will be described in detail based on examples.
<Example 1> <Example 1>
The individual liquid chamber substrate 101 is formed using a silicon wafer having a diameter of 6 inches. A diaphragm 14 having a three-layer structure is formed by laminating SiO 2 0.6 [μm], Si 1.5 [μm], and SiO 2 0.4 [μm] on a silicon wafer having a thickness of 600 [μm]. Formed. On the vibration plate 14, Ti 20 [nm] and Pt 200 [nm] were formed as a lower electrode 151 by a sputtering method. On the lower electrode 151, a film having a thickness of 2 [μm] is formed by a sol-gel method using lead zirconate titanate (PZT) as an organic metal solution, and then fired at 700 ° C. to form a PZT piezoelectric film (not shown). ) Was formed. Thereafter, Pt 200 [nm] was formed on the piezoelectric film by a sputtering method to form the upper electrode 152. The individual liquid chamber substrate 101 is formed using a silicon wafer having a diameter of 6 inches. A diaphragm 14 having a three-layer structure is formed by laminating SiO 2 0.6 [μm], Si 1.5 [μm], and SiO 2 0.4 [ μm] on a silicon wafer having a thickness of 600 [μm]. Formed. On the vibration plate 14, Ti 20 [nm] and Pt 200 [nm] were formed as a lower electrode 151 by a sputtering method. On the lower electrode 151, a film having a thickness of 2 [μm] is formed by a sol-gel method using lead zirconate titanate (PZT) as an organic metal solution, and then fired at 700 ° C. to form a PZT silicon film (not shown) ).) Was formed. Wafer, Pt 200 [nm] was formed on the piezoelectric film by a sputtering method to form the upper electrode 152.

上部電極152形成後に、上部電極152、圧電体膜(不図示)、下部電極151をドライエッチング法でパターニングすることで、個別液室3に対応した圧電素子15と測温抵抗体18を形成した。
圧電素子15の配列ピッチは85[μm]とし、圧電体の幅は40[μm]とした。 The arrangement pitch of the piezoelectric elements 15 was 85 [μm], and the width of the piezoelectric body was 40 [μm]. 圧電素子15の長手方向の長さは1000[μm]とし、1列あたりの圧電素子15の配列数は300個の4列配置とした。 The length of the piezoelectric element 15 in the longitudinal direction was 1000 [μm], and the number of arrangements of the piezoelectric elements 15 per row was set to 300 in four rows. また、振動板14の可動部は個別液室3の隔壁上の部分にかからないようにした。 Further, the movable portion of the diaphragm 14 was prevented from covering the portion on the partition wall of the individual liquid chamber 3. これより、個別液室3に対応した振動板14の変形を阻害することがない。 As a result, the deformation of the diaphragm 14 corresponding to the individual liquid chamber 3 is not hindered. After the formation of the upper electrode 152, the upper electrode 152, the piezoelectric film (not shown), and the lower electrode 151 are patterned by the dry etching method, thereby forming the piezoelectric element 15 and the resistance temperature detector 18 corresponding to the individual liquid chamber 3. . After the formation of the upper electrode 152, the upper electrode 152, the piezoelectric film (not shown), and the lower electrode 151 are patterned by the dry etching method, thereby forming the piezoelectric element 15 and the resistance temperature detector 18 corresponding to the individual liquid chamber 3.
The arrangement pitch of the piezoelectric elements 15 was 85 [μm], and the width of the piezoelectric body was 40 [μm]. The length of the piezoelectric elements 15 in the longitudinal direction was 1000 [μm], and the number of arrangement of the piezoelectric elements 15 per one row was 300 and arranged in four rows. Further, the movable part of the vibration plate 14 is not covered with the part on the partition wall of the individual liquid chamber 3. Thus, the deformation of the diaphragm 14 corresponding to the individual liquid chamber 3 is not hindered. The arrangement pitch of the piezoelectric elements 15 was 85 [μm], and the width of the piezoelectric body was 40 [μm]. The length of the piezoelectric elements 15 in the longitudinal direction was 1000 [μm], and the number of arrangement of The piezoelectric elements 15 per one row was 300 and arranged in four rows. Further, the movable part of the vibration plate 14 is not covered with the part on the partition wall of the individual liquid chamber 3. Thus, the deformation of the diaphragm 14 corresponding to the individual liquid chamber 3 is not hindered.

また、よりインクに近い温度を検出するために、個別液室基板101上に測温抵抗体18を形成する。測温抵抗体18は、個別液室3を加圧する圧電素子15を形成する積層構成を利用しており、上部電極152または下部電極151と同じ層を用いることができる。この測温抵抗体18を形成するために、別途,専用の材料やプロセスを追加する必要がなく、コストアップを招くことはない。また、個別液室基板101上の測温抵抗体18を設けるために必要な領域も狭いため、液滴吐出ヘッドの大型化を招くこともない。測温抵抗体18は、上部電極152または下部電極151と同じ層に定電流を与えたときの電圧値から、温度を推定することができる。上部電極152または下部電極151の材料として、上記ではPt,Ir,Ir酸化物,Pd,Pd酸化物等としたが、測温抵抗体18として用いる場合には、Ptがもっとも好ましい。   Further, in order to detect a temperature closer to the ink, the resistance temperature detector 18 is formed on the individual liquid chamber substrate 101. The resistance temperature detector 18 uses a stacked structure in which the piezoelectric element 15 that pressurizes the individual liquid chamber 3 is used, and the same layer as the upper electrode 152 or the lower electrode 151 can be used. In order to form the resistance temperature detector 18, it is not necessary to add a dedicated material or process separately, and the cost is not increased. Further, since the area necessary for providing the resistance temperature detector 18 on the individual liquid chamber substrate 101 is also narrow, the size of the droplet discharge head is not increased. The resistance temperature detector 18 can estimate the temperature from the voltage value when a constant current is applied to the same layer as the upper electrode 152 or the lower electrode 151. In the above description, Pt, Ir, Ir oxide, Pd, Pd oxide or the like is used as the material of the upper electrode 152 or the lower electrode 151. However, when used as the resistance temperature detector 18, Pt is most preferable.

次に、プラズマCVD法により層間絶縁膜(不図示)を成膜し、上部電極152上および下部電極151上の層間絶縁膜にコンタクトホールを形成後、Ti 50[nm]とAl 2[μm]を順次積層しドライエッチングすることで、配線層を形成した。この配線層の形成工程と同じ工程を用いて、接続パッド109を、積層およびドライエッチングによって形成した。   Next, an interlayer insulating film (not shown) is formed by plasma CVD, contact holes are formed in the interlayer insulating film on the upper electrode 152 and the lower electrode 151, and then Ti 50 [nm] and Al 2 [μm]. A wiring layer was formed by sequentially laminating and dry etching. Using the same process as the wiring layer forming process, the connection pad 109 was formed by stacking and dry etching.

その後、インク供給口22部分の振動板14をドライエッチングで除去し、インク供給口22を形成して個別液室基板101が完成する。   Thereafter, the vibration plate 14 at the ink supply port 22 is removed by dry etching to form the ink supply port 22 to complete the individual liquid chamber substrate 101.

次に、保持基板102を、直径6インチのシリコンウェハを用いて作成する。まず、シリコンウェハを厚さ400[μm]に研磨し、個別液室基板101側に酸化膜などを形成する。その後、その酸化膜を保持基板凹部24および開口部21が開口するようにフォトリソグラフィによりパターニングする。さらにその上にレジストを形成し、開口部21だけが開口するようにレジストをフォトリソグラフィによりパターニングする。そして、ICPエッチングで、個別液室基板101側から開口部21を貫通形成する。その後、個別液室基板101側のレジストのみを除去し、はじめにパターニングした酸化膜パターンをマスクとして、ICPエッチングでハーフエッチングする。最後に酸化膜を除去すると、個別液室基板101側の保持基板凹部24と貫通する開口部21とを形成することができる。   Next, the holding substrate 102 is formed using a silicon wafer having a diameter of 6 inches. First, the silicon wafer is polished to a thickness of 400 [μm], and an oxide film or the like is formed on the individual liquid chamber substrate 101 side. Thereafter, the oxide film is patterned by photolithography so that the holding substrate recess 24 and the opening 21 are opened. Further, a resist is formed thereon, and the resist is patterned by photolithography so that only the opening 21 is opened. Then, the opening 21 is formed through the ICP etching from the individual liquid chamber substrate 101 side. Thereafter, only the resist on the individual liquid chamber substrate 101 side is removed, and half etching is performed by ICP etching using the first patterned oxide film pattern as a mask. Finally, when the oxide film is removed, the holding substrate recess 24 on the individual liquid chamber substrate 101 side and the opening 21 penetrating therethrough can be formed.

このようにして作成した保持基板101の接合面にエポキシ系接着剤をフレキソ印刷機で膜厚2[μm]で塗布し接合、接着剤を硬化することで保持基板101を個別液室基板101に接合した。   An epoxy adhesive is applied to the bonding surface of the holding substrate 101 created in this way with a flexographic printing machine at a film thickness of 2 [μm] and bonded, and the adhesive is cured, so that the holding substrate 101 is applied to the individual liquid chamber substrate 101. Joined.

その後、保持基板102と接合された個別液室基板101上に駆動IC105を実装する。まず、個別液室基板101上の個別配線パッド(不図示)上にスタッドバンプを形成し、そこに駆動IC105の電極部を位置合わせし、超音波接合などによって個別配線パッド(不図示)と駆動IC105とを物理的および電気的に接合する。   Thereafter, the driving IC 105 is mounted on the individual liquid chamber substrate 101 bonded to the holding substrate 102. First, stud bumps are formed on individual wiring pads (not shown) on the individual liquid chamber substrate 101, electrode portions of the driving IC 105 are aligned there, and driving with the individual wiring pads (not shown) by ultrasonic bonding or the like. The IC 105 is physically and electrically joined.

その後、600[μm]の個別液室基板101を80[μm]まで研磨した後に、個別液室3、流体抵抗部23をICPドライエッチング法で形成した。個別液室の幅は60[μm]とし、流体抵抗部23の幅は30[μm]、長さは300[μm]とした。流体抵抗部23、個別液室3のエッチングは振動板14に到達するまで行い同一の高さとした。また、インク供給口22の部分の振動板14は事前にエッチングをしているため、貫通口を形成することができる。   Thereafter, the individual liquid chamber substrate 101 of 600 [μm] was polished to 80 [μm], and then the individual liquid chamber 3 and the fluid resistance portion 23 were formed by ICP dry etching. The width of the individual liquid chamber was 60 [μm], the width of the fluid resistance portion 23 was 30 [μm], and the length was 300 [μm]. Etching of the fluid resistance portion 23 and the individual liquid chamber 3 was performed until the diaphragm 14 was reached, and the height was the same. Moreover, since the diaphragm 14 in the ink supply port 22 is etched in advance, a through-hole can be formed.

ウェハをダイシングによりチップに切り出した後に、保持基板102と同様の手法でノズル板2と個別液室基板101とを接合した。ノズル板2は、厚さ30[μm]のSUS材にプレス加工で直径20[μm]のノズル1を85[μm]ピッチで形成したものを用いた。   After the wafer was cut into chips by dicing, the nozzle plate 2 and the individual liquid chamber substrate 101 were joined by the same method as the holding substrate 102. As the nozzle plate 2, a SUS material having a thickness of 30 [μm] formed by pressing the nozzles 1 having a diameter of 20 [μm] at a pitch of 85 [μm] was used.

次に、共通液室基板103を形成した。共通液室基板103はSUSをエッチングして共通液室4となる開口を形成した。なお、図3に示すように、共通液室4となる開口は、個別液室配列方向の一端側に設けられている接続パッド109と反対側で先細る形状にした。これは、インクポート107より接続パッド109が配置された一端側に近い共通液室4の端部にインクを供給するよう設けた場合、インクポート107から遠ざかるにつれてインク流速が遅くなり、インクの充填性が確保できない虞がある。本実施例では、接続パッド109と反対側で共通液室4が先細る形状としてインク流速が遅くなるのを防ぐことで、インクの充填性を高めている。   Next, the common liquid chamber substrate 103 was formed. The common liquid chamber substrate 103 was formed by etching SUS to form the common liquid chamber 4. In addition, as shown in FIG. 3, the opening used as the common liquid chamber 4 was formed to taper on the side opposite to the connection pad 109 provided on one end side in the individual liquid chamber arrangement direction. This is because when the ink is provided to supply the end of the common liquid chamber 4 closer to one end where the connection pad 109 is disposed than the ink port 107, the ink flow rate decreases as the ink port 107 moves away from the ink port 107. There is a possibility that the property cannot be secured. In this embodiment, the common liquid chamber 4 is tapered on the side opposite to the connection pad 109 to prevent the ink flow rate from slowing, thereby enhancing the ink filling property.

次に、フレーム部材104を形成した。フレーム部材104はPPSを射出成形し、インクポート107をとなる開口を形成した。インクポート107は、図1、2に示すように、個別液室配列方向に対して、接続パッド109が配置された一端側に近い共通液室4の端部にインクを供給するよう設けた。上述のように、インクポート107は接続パッド109が配置された一端側の端部から、配列方向長さの1/8までの位置にあれば、温度分布を抑える効果が得られ、さらに端部に近い位置に設けることが、より好ましい。   Next, the frame member 104 was formed. The frame member 104 is formed by injection-molding PPS to form an opening that becomes the ink port 107. As shown in FIGS. 1 and 2, the ink port 107 is provided so as to supply ink to the end of the common liquid chamber 4 close to one end where the connection pads 109 are arranged in the individual liquid chamber arrangement direction. As described above, if the ink port 107 is located at a position from the end on one end side where the connection pad 109 is arranged to 1/8 of the length in the arrangement direction, the effect of suppressing the temperature distribution can be obtained. It is more preferable to provide it at a position close to.

そして、保持基板102上に、共通液室基板103とフレーム部材104とを接合し、フレーム部材104のインクポート107を外部のインクタンク(不図示)と接続した。また、接続パッド109に異方性導電膜(ACF)やワイヤーボンディングにて、ヘッド外部回路(不図示)へ接続されるFPC110を接合することで液滴吐出ヘッド50とする。   Then, the common liquid chamber substrate 103 and the frame member 104 were joined on the holding substrate 102, and the ink port 107 of the frame member 104 was connected to an external ink tank (not shown). Further, the droplet discharge head 50 is formed by bonding the FPC 110 connected to the head external circuit (not shown) to the connection pad 109 by anisotropic conductive film (ACF) or wire bonding.

作製した液滴吐出ヘッド50において、各ノズル1から吐出される液滴1滴の体積を10[pl]とした。また、例えば、20[kHz]で、4列×300個の全ノズルから液滴を吐出する際に消費する電力を1[W]として、後述するインクジェット記録装置で印字した。この結果、良好な画像を得ることができた。 In the manufactured droplet discharge head 50, the volume of one droplet discharged from each nozzle 1 was set to 10 [pl]. For example, at 20 [kHz], the power consumed when ejecting droplets from all nozzles of 4 rows × 300 was set to 1 [W], and printing was performed by an inkjet recording apparatus described later. As a result, a good image could be obtained.

<実施例2>
図8は、実施例2の液滴吐出ヘッド50の組立斜視図である。 FIG. 8 is an assembly perspective view of the droplet ejection head 50 of the second embodiment. 図9は、図8からフレーム部材104を取り除いた斜視図である。 FIG. 9 is a perspective view in which the frame member 104 is removed from FIG. 実施例2は、実施例1の液滴吐出ヘッド50において、フレーム部材104に、インクポート107を設けた箇所と個別液室配列方向に対して反対側の共通液室4端部に連通するインクポート108を設けたものである。 In the second embodiment, in the droplet ejection head 50 of the first embodiment, the ink communicating with the portion where the ink port 107 is provided on the frame member 104 and the four ends of the common liquid chamber on the opposite side of the individual liquid chamber arrangement direction. The port 108 is provided. また、図9に示すように、共通液室4は、個別液室配列方向に関して均等に設けられている。 Further, as shown in FIG. 9, the common liquid chambers 4 are evenly provided with respect to the individual liquid chamber arrangement directions. この液滴吐出ヘッド50では、接続パッド109に近い側のインクポート107にインクタンクからのインクを供給し、反対側のインクポート108からインクタンクへインクを排出するよう構成する。 The droplet ejection head 50 is configured to supply ink from the ink tank to the ink port 107 on the side close to the connection pad 109 and discharge the ink from the ink port 108 on the opposite side to the ink tank. このようにして、共通液室4内でインクの流れを作ることで、接続パッド109と反対側でインク流速が遅くなるのを防いで、インクの充填性を高めている。 By creating an ink flow in the common liquid chamber 4 in this way, it is possible to prevent the ink flow rate from slowing down on the side opposite to the connection pad 109 and improve the ink filling property. これは、例えば、ヘッドの小型化などの要求から、液滴吐出ヘッドの短手寸法が限られて共通液室のインク充填性が悪い場合に、実施例2の構成にすることで、温度分布を低減しつつインクの充填性も高めることが可能になる。 This is done by using the configuration of Example 2 when, for example, the short size of the droplet ejection head is limited and the ink filling property of the common liquid chamber is poor due to the demand for miniaturization of the head. It becomes possible to improve the ink filling property while reducing the amount of ink. <Example 2> <Example 2>
FIG. 8 is an assembled perspective view of the droplet discharge head 50 according to the second embodiment. FIG. 9 is a perspective view in which the frame member 104 is removed from FIG. In the second embodiment, in the liquid droplet ejection head 50 of the first embodiment, the ink that communicates with the end of the common liquid chamber 4 on the side opposite to the position where the ink port 107 is provided in the frame member 104 and the individual liquid chamber arrangement direction. A port 108 is provided. Moreover, as shown in FIG. 9, the common liquid chamber 4 is equally provided in the individual liquid chamber arrangement direction. The droplet discharge head 50 is configured to supply ink from the ink tank to the ink port 107 on the side close to the connection pad 109 and to discharge ink from the ink port 108 on the opposite side to the ink tank. In this way, by creating an ink flow in the common liquid chamber 4, the ink flow rate is prevented from slowing on the FIG. 8 is an assembled perspective view of the droplet discharge head 50 according to the second embodiment. FIG. 9 is a perspective view in which the frame member 104 is removed from FIG. In the second embodiment, in the liquid droplet ejection head 50 of the first embodiment, the ink that communicates with the end of the common liquid chamber 4 on the side opposite to the position where the ink port 107 is provided in the frame member 104 and the individual liquid chamber arrangement direction. A port 108 is provided Moreover, as shown in FIG. 9, the common liquid chamber 4 is equally provided in the individual liquid chamber arrangement direction. The droplet discharge head 50 is configured to supply ink from the ink tank to the ink port 107 on the side close to In this way, by creating an ink flow in the common liquid chamber 4, the ink flow rate is prevented from slowing on the connection pad 109 and to discharge ink from the ink port 108 on the opposite side to the ink tank. side opposite to the connection pad 109, and the ink filling property is improved. This is because, for example, in the case where the short dimension of the droplet discharge head is limited and the ink filling property of the common liquid chamber is poor due to a demand for miniaturization of the head, the temperature distribution is obtained by adopting the configuration of the second embodiment. Ink filling properties can be improved while reducing the above. side opposite to the connection pad 109, and the ink filling property is improved. This is because, for example, in the case where the short dimension of the droplet discharge head is limited and the ink filling property of the common liquid chamber is poor due Ink filling properties can be improved while reducing the above. To a demand for miniaturization of the head, the temperature distribution is obtained by adopting the configuration of the second embodiment.

図10は、実施例2に係るインク循環手段の一例を示す概略構成図である。具体的には、インクポート108とインクタンク235の間にインク循環手段としてのポンプ230を設ける。そして、サブタンク235から接続パッド109に近い側のインクポート107にインクを供給し、反対側のインクポート108からポンプ230を通してインクタンク235にインクを排出するようにする。   FIG. 10 is a schematic configuration diagram illustrating an example of the ink circulation unit according to the second embodiment. Specifically, a pump 230 as an ink circulation unit is provided between the ink port 108 and the ink tank 235. Then, ink is supplied from the sub tank 235 to the ink port 107 on the side close to the connection pad 109, and the ink is discharged from the ink port 108 on the opposite side to the ink tank 235 through the pump 230.

次に、実施形態に係る本発明の液滴吐出ヘッドを備える画像形成装置の一例としてのインクジェット記録装置の構成例について説明する。
図11は、本実施形態の一例のインクジェット記録装置201の全体構成を示す側面図である。図12は、図11のインクジェット記録装置201の要部構成を示す平面図である。
このインクジェット記録装置201はシリアル型のインクジェット記録装置であり、左右の側板221A、221Bに横架したガイド部材である主ガイドロッド231、従ガイドロッド232でキャリッジ233を主走査方向に摺動自在に保持する。 This inkjet recording device 201 is a serial type inkjet recording device, and the carriage 233 can be slidably slidable in the main scanning direction by the main guide rod 231 and the slave guide rod 232 which are guide members laid horizontally on the left and right side plates 221A and 221B. Hold. そして、図示しない主走査モータによってタイミングベルトを介して図12中の矢示方向(キャリッジ主走査方向)に移動走査する。 Then, a main scanning motor (not shown) moves and scans in the direction indicated by the arrow in FIG. 12 (carriage main scanning direction) via the timing belt. このキャリッジ233には、イエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(K)の各色のインク滴を吐出するために、本発明に係る液滴吐出ヘッドからなる記録ヘッド234を装着している。 In order to eject ink droplets of each color of yellow (Y), cyan (C), magenta (M), and black (K), the carriage 233 is provided with a recording head 234 composed of a droplet ejection head according to the present invention. I am wearing it. Next, a configuration example of an ink jet recording apparatus as an example of an image forming apparatus including the droplet discharge head of the present invention according to the embodiment will be described. Next, a configuration example of an ink jet recording apparatus as an example of an image forming apparatus including the droplet discharge head of the present invention according to the embodiment will be described.
FIG. 11 is a side view illustrating the overall configuration of an inkjet recording apparatus 201 as an example of the present embodiment. FIG. 12 is a plan view showing the main configuration of the inkjet recording apparatus 201 of FIG. FIG. 11 is a side view illustrating the overall configuration of an inkjet recording apparatus 201 as an example of the present embodiment. FIG. 12 is a plan view showing the main configuration of the inkjet recording apparatus 201 of FIG.
This ink jet recording apparatus 201 is a serial type ink jet recording apparatus, and a carriage 233 is slidable in a main scanning direction by a main guide rod 231 and a sub guide rod 232 which are guide members horizontally mounted on left and right side plates 221A and 221B. Hold. Then, the main scanning motor (not shown) moves and scans in the arrow direction (carriage main scanning direction) in FIG. 12 via the timing belt. The carriage 233 is provided with a recording head 234 including a droplet discharge head according to the present invention in order to discharge ink droplets of each color of yellow (Y), cyan (C), magenta (M), and black (K). Wearing. This ink jet recording apparatus 201 is a serial type ink jet recording apparatus, and a carriage 233 is slidable in a main scanning direction by a main guide rod 231 and a sub guide rod 232 which are guide members horizontally mounted on left and right side plates 221A and 221B. Hold. Then, the main scanning motor (not shown) moves and scans in the arrow direction (carriage main scanning direction) in FIG. 12 via the timing belt. The carriage 233 is provided with a recording head 234 including a droplet discharge head according to the present invention in order to discharge ink droplets of each color of yellow (Y), cyan (C), magenta (M), and black (K). Wearing.

この記録ヘッド234は、複数のノズルからなるノズル列を主走査方向と直交する副走査方向に配列し、インク滴吐出方向を下方に向けている。記録ヘッド234は、それぞれ2つのノズル列を有する液滴吐出ヘッド234a、234bを1つのベース部材に取り付けて構成している。そして、一方のヘッド234aの一方のノズル列はブラック(K)の液滴を、他方のノズル列はシアン(C)の液滴を、他方のヘッド234bの一方のノズル列はマゼンタ(M)の液滴を、他方のノズル列はイエロー(Y)の液滴を、それぞれ吐出する。ここでは2ヘッド構成で4色の液滴を吐出する構成としているが、各色毎の液滴吐出ヘッドを備えることもできる。また、キャリッジ233には、記録ヘッド234のノズル列に対応して各色のインクを供給するためのサブタンク235a、235b(区別しないときは「サブタンク235」という。)を搭載している。このサブタンク235には各色の供給チューブ236を介して、供給ユニット224によって各色のインクカートリッジ210から各色のインクが補充供給される。   The recording head 234 arranges nozzle rows composed of a plurality of nozzles in the sub-scanning direction orthogonal to the main scanning direction, and directs the ink droplet ejection direction downward. The recording head 234 is configured by attaching droplet discharge heads 234a and 234b each having two nozzle rows to one base member. Then, one nozzle row of one head 234a has black (K) droplets, the other nozzle row has cyan (C) droplets, and one nozzle row of the other head 234b has magenta (M) droplets. Droplets are discharged, and the other nozzle row discharges yellow (Y) droplets. In this example, a four-color droplet is ejected with a two-head configuration, but a droplet ejection head for each color may be provided. The carriage 233 is equipped with sub tanks 235a and 235b (referred to as “sub tank 235” when not distinguished) for supplying ink of each color corresponding to the nozzle rows of the recording head 234. The sub tank 235 is supplied with ink of each color from the ink cartridge 210 of each color by the supply unit 224 via the supply tube 236 of each color.

一方、給紙トレイ202の用紙積載部(圧板)241上に積載した用紙242を給紙するための給紙部として、用紙積載部241から用紙242を1枚ずつ分離給送する半月コロ(給紙コロ)243及び給紙コロ243に対向している。そして、摩擦係数の大きな材質からなる分離パッド244を備え、この分離パッド244は給紙コロ243側に付勢されている。この給紙部から給紙された用紙242が記録ヘッド234の下方側に送り込まれる。このために、用紙242を案内するガイド部材245と、カウンタローラ246と、搬送ガイド部材247と、先端加圧コロ249を有する押さえ部材248とが備わっている。また、給送された用紙242を静電吸着して記録ヘッド234に対向する位置で搬送するための搬送手段である搬送ベルト251を備えている。この搬送ベルト251は、無端状ベルトであり、搬送ローラ252とテンションローラ253との間に掛け渡されて、ベルト搬送方向(副走査方向)に周回するように構成している。   On the other hand, as a paper feeding unit for feeding the paper 242 stacked on the paper stacking unit (pressure plate) 241 of the paper feed tray 202, a half-moon roller (feeding) that separates and feeds the paper 242 one by one from the paper stacking unit 241. Paper roller) 243 and paper feed roller 243. A separation pad 244 made of a material having a large friction coefficient is provided, and the separation pad 244 is urged toward the paper feed roller 243 side. A sheet 242 fed from the sheet feeding unit is fed to the lower side of the recording head 234. For this purpose, a guide member 245 for guiding the paper 242, a counter roller 246, a conveyance guide member 247, and a pressing member 248 having a tip pressure roller 249 are provided. In addition, a transport belt 251 serving as a transport unit for electrostatically attracting the fed paper 242 and transporting the paper 242 at a position facing the recording head 234 is provided. The conveyor belt 251 is an endless belt, and is configured to wrap around the conveyor roller 252 and the tension roller 253 so as to circulate in the belt conveyance direction (sub-scanning direction).

また、この搬送ベルト251の表面を帯電させるための帯電手段である帯電ローラ256を備えている。この帯電ローラ256は、搬送ベルト251の表層に接触し、搬送ベルト251の回動に従動して回転するように配置されている。この搬送ベルト251は、図示しない副走査モータによってタイミングを介して搬送ローラ252が回転駆動されることによってベルト搬送方向に周回移動する。さらに、記録ヘッド234で記録された用紙242を排紙するための排紙部として、搬送ベルト251から用紙242を分離するための分離爪261と、排紙ローラ262及び排紙コロ263とを備えている。そして、排紙ローラ262の下方には排紙トレイ203が備わっている。   In addition, a charging roller 256 that is a charging unit for charging the surface of the transport belt 251 is provided. The charging roller 256 is disposed so as to come into contact with the surface layer of the conveyor belt 251 and to rotate following the rotation of the conveyor belt 251. The transport belt 251 rotates in the belt transport direction when the transport roller 252 is rotationally driven through timing by a sub-scanning motor (not shown). Further, as a paper discharge unit for discharging the paper 242 recorded by the recording head 234, a separation claw 261 for separating the paper 242 from the transport belt 251, a paper discharge roller 262, and a paper discharge roller 263 are provided. ing. A paper discharge tray 203 is provided below the paper discharge roller 262.

また、装置本体の背面部には両面ユニット271が着脱自在に装着されている。この両面ユニット271は搬送ベルト251の逆方向回転で戻される用紙242を取り込んで反転させて 再度、カウンタローラ246と搬送ベルト251との間に給紙する。また、この両面ユニット271の上面は手差しトレイ272としている。さらに、キャリッジ233の走査方向一方側の非印字領域には、記録ヘッド234のノズルの状態を維持し、回復するための維持回復機構281を配置している。この維持回復機構281には、記録ヘッド234の各ノズル面をキャピングするための各キャップ部材(以下「キャップ」という。)282a、282b(区別しないときは「キャップ282」という。)と、ノズル面をワイピングするためのブレード部材であるワイパーブレード283と、増粘したインクを排出するために記録に寄与しない液滴を吐出させる空吐出を行うときの液滴を受ける空吐出受け284などを備えている。   A double-sided unit 271 is detachably attached to the back surface of the apparatus main body. The duplex unit 271 takes in the paper 242 returned by the reverse rotation of the transport belt 251, reverses it, and feeds it again between the counter roller 246 and the transport belt 251. The upper surface of the duplex unit 271 is a manual feed tray 272. Further, a maintenance / recovery mechanism 281 for maintaining and recovering the nozzle state of the recording head 234 is disposed in a non-printing area on one side in the scanning direction of the carriage 233. The maintenance / recovery mechanism 281 includes cap members (hereinafter referred to as “caps”) 282a and 282b (hereinafter referred to as “caps 282” when not distinguished) for capping each nozzle surface of the recording head 234, and nozzle surfaces. A wiper blade 283 that is a blade member for wiping the ink, and an empty discharge receiver 284 that receives liquid droplets when performing empty discharge for discharging liquid droplets that do not contribute to recording in order to discharge thickened ink. Yes.

また、キャリッジ233の走査方向他方側の非印字領域には、記録中などに増粘したインクを排出するために記録に寄与しない液滴を吐出させる空吐出を行うときの液滴を受ける空吐出受け288を配置している。そして、この空吐出受け288には記録ヘッド234のノズル列方向に沿った開口部289などを備えている。このように構成したこの画像形成装置においては、給紙トレイ202から用紙242が1枚ずつ分離給紙され、略鉛直上方に給紙された用紙242はガイド部材245で案内される。そして、搬送ベルト251とカウンタローラ246との間に挟まれて搬送され、更に先端を搬送ガイド237で案内されて先端加圧コロ249で搬送ベルト251に押し付けられ、略90°搬送方向を転換される。このとき、帯電ローラ256に対してプラス出力とマイナス出力とが交互に繰り返すように、つまり交番する電圧が印加される。この場合、搬送ベルト251が交番する帯電電圧パターン、すなわち、周回方向である副走査方向に、プラスとマイナスが所定の幅で帯状に交互に帯電されたものとなる。このプラス、マイナス交互に帯電した搬送ベルト251上に用紙242が給送されると、用紙242が搬送ベルト251に吸着され、搬送ベルト251の周回移動によって用紙242が副走査方向に搬送される。そこで、キャリッジ233を移動させながら画像信号に応じて記録ヘッド234を駆動することにより、停止している用紙242にインク滴を吐出して1行分を記録し、用紙242を所定量搬送後、次の行の記録を行う。記録終了信号又は用紙242の後端が記録領域に到達した信号を受けることにより、記録動作を終了して、用紙242を排紙トレイ203に排紙する。
このように、インクジェット記録装置201では、本発明に係る液滴吐出ヘッドを記録ヘッドとして備えているので、信頼性の高い安定した滴吐出をおこなうことができて、高速で、印字ムラのない高画質画像を形成することができる。 As described above, since the inkjet recording device 201 is provided with the droplet ejection head according to the present invention as the recording head, it is possible to perform highly reliable and stable droplet ejection, and the high speed and printing unevenness are high. A high-quality image can be formed. In addition, in the non-printing area on the other side of the carriage 233 in the scanning direction, idle ejection that receives droplets when performing idle ejection that ejects droplets that do not contribute to recording in order to discharge ink that has been thickened during recording or the like. A receptacle 288 is arranged. The idle discharge receiver 288 includes an opening 289 along the nozzle row direction of the recording head 234. In the image forming apparatus configured as described above, the sheets 242 are separated and fed one by one from the sheet feeding tray 202, and the sheet 242 fed substantially vertically upward is guided by the guide member 245. Then, the paper is sandwiched between the transport belt 251 and the counter roller 246 and transported. Further, the front end is guided by the transport guide 237 and pressed against the transport belt 251 by the front end pressure roller 249, and the transport direction is changed by approximately 90 °. The At th In addition, in the non-printing area on the other side of the carriage 233 in the scanning direction, idle ejection that receives droplets when performing idle ejection that ejects droplets that do not contribute to recording in order to discharge ink that has been thickened during recording or the like. A receptacle 288 is arranged. The idle discharge receiver 288 includes an opening 289 along the nozzle row direction of the recording head 234. In the image forming apparatus configured as described above, the sheets 242 are separated and fed one by one from the sheet feeding tray 202, and the sheet 242 fed substantially vertically upward is guided by the guide member 245. Then, the paper is sandwiched between the transport belt 251 and the counter roller 246 and emitter. Further, the front end is guided by the transport guide 237 and pressed against the transport belt 251 by the front end pressure roller 249, and the transport direction is changed by approximately 90 °. The At th is time, an alternating voltage is applied to the charging roller 256 so that a positive output and a negative output are alternately repeated. In this case, a positive voltage and a negative voltage are alternately charged in a band shape with a predetermined width in a charging voltage pattern in which the conveying belt 251 alternates, that is, in the sub-scanning direction that is the circumferential direction. When the sheet 242 is fed onto the conveyance belt 251 charged alternately with plus and minus, the sheet 242 is attracted to the conveyance belt 251, and the sheet 242 is conveyed in the sub scanning direction by the circumferential movement of the conveyance belt 251. Therefore, by driving the recording head 234 according to the image signal while moving the carriage 233, ink droplets are ejected onto the stopped paper 242 to record one line, and after the paper 242 is conveyed by a predetermined amount, Record the next line. Upon receiving a recording end signal or a sign is time, an alternating voltage is applied to the charging roller 256 so that a positive output and a negative output are subsequently repeated. In this case, a positive voltage and a negative voltage are similarly charged in a band shape with a predetermined width in a charging voltage pattern in which the transmitting belt 251 alternates, that is, in the sub-scanning direction that is the transmitted direction. When the sheet 242 is fed onto the utilizing belt 251 charged appropriately with plus and minus, the sheet 242 is attracted to The voltage belt 251, and the sheet 242 is transmitted in the sub scanning direction by the transmitting movement of the generating belt 251. Therefore, by driving the recording head 234 according to the image signal while moving the carriage 233, ink droplets are ejected onto The stopped paper 242 to record one line, and after the paper 242 is transmitted by a predetermined amount, Record the next line. Upon receiving a recording end signal or a sign al that the trailing edge of the paper 242 has reached the recording area, the recording operation is finished and the paper 242 is discharged onto the paper discharge tray 203. al that the trailing edge of the paper 242 has reached the recording area, the recording operation is finished and the paper 242 is discharged onto the paper discharge tray 203.
As described above, since the inkjet recording apparatus 201 includes the droplet discharge head according to the present invention as a recording head, it is possible to perform highly reliable and stable droplet discharge, high speed, and high printing uniformity. A quality image can be formed. As described above, since the inkjet recording apparatus 201 includes the inkjet recording apparatus 201 includes the droplet discharge head according to the present invention as a recording head, it is possible to perform highly reliable and stable droplet discharge, high speed, and high printing uniformity. A quality image can be formed.

次に、実施形態に係る本発明の液滴吐出ヘッドを備える画像形成装置の一例としてのインクジェット記録装置の他の構成例について説明する。図13は本実施形態の他の例のインクジェット記録装置401の全体構成を示す側面図である。このインクジェット記録装置401はライン型のインクジェット記録装置であり、装置本体401の内部に画像形成部402等を有し、装置本体401の下方側に多数枚の記録媒体(用紙)403を積載可能な給紙トレイ404を備えている。この給紙トレイ404から給紙される用紙403を取り込み、搬送機構405によって用紙403を搬送しながら画像形成部402によって所要の画像を記録する。その後、装置本体401の側方に装着された排紙トレイ406に用紙403を排紙する。また、装置本体401に対して着脱可能な両面ユニット407を備えている。両面印刷を行うときには、一面(表面)印刷終了後、搬送機構405によって用紙403を逆方向に搬送しながら両面ユニット407内に取り込む。そして、反転させて他面(裏面)を印刷可能面として再度、搬送機構405に送り込み、他面(裏面)印刷終了後、排紙トレイ406に用紙403を排紙する。ここで、画像形成部402は、例えばブラック(K)、シアン(C)、マゼンタ(M)、イエロー(Y)の各色の液滴を吐出する、フルライン型の4個の液滴吐出ヘッドで構成した記録ヘッド411k、411c、411m、411yを備えている。なお、記録ヘッド411k、411c、411m、411yの色を区別しないときには、以下、「記録ヘッド411」という。各記録ヘッド411は液滴を吐出するノズルを形成したノズル面を下方に向けてヘッドホルダ413に装着している。   Next, another configuration example of the ink jet recording apparatus as an example of an image forming apparatus including the droplet discharge head of the present invention according to the embodiment will be described. FIG. 13 is a side view showing the overall configuration of an ink jet recording apparatus 401 of another example of this embodiment. The ink jet recording apparatus 401 is a line type ink jet recording apparatus, and has an image forming unit 402 and the like inside the apparatus main body 401, and a large number of recording media (sheets) 403 can be stacked on the lower side of the apparatus main body 401. A paper feed tray 404 is provided. A sheet 403 fed from the sheet feeding tray 404 is taken in, and a required image is recorded by the image forming unit 402 while the sheet 403 is conveyed by the conveying mechanism 405. Thereafter, the paper 403 is discharged onto a paper discharge tray 406 attached to the side of the apparatus main body 401. In addition, a duplex unit 407 that can be attached to and detached from the apparatus main body 401 is provided. When performing double-sided printing, after the one-side (front) printing is completed, the paper 403 is taken into the double-sided unit 407 while being conveyed in the reverse direction by the conveyance mechanism 405. Then, the paper is reversed and sent to the transport mechanism 405 again with the other side (back side) as the printable side. After the other side (back side) printing is completed, the paper 403 is discharged to the paper discharge tray 406. Here, the image forming unit 402 is, for example, four full-line type droplet discharge heads that discharge droplets of each color of black (K), cyan (C), magenta (M), and yellow (Y). The recording heads 411k, 411c, 411m, and 411y are provided. When the colors of the recording heads 411k, 411c, 411m, and 411y are not distinguished, they are hereinafter referred to as “recording head 411”. Each recording head 411 is mounted on the head holder 413 with the nozzle surface on which nozzles for discharging droplets are formed facing downward.

また、各記録ヘッド411に対応して記録ヘッドの性能を維持回復するための維持回復機構412k、412c、412m、412yを備えている。なお、維持回復機構412k、412c、412m、412yの色を区別しないときには、以下、「維持回復機構412」という。パージ処理、ワイピング処理などのヘッドの性能維持動作時には、記録ヘッド411と維持回復機構412とを相対的に移動させて、記録ヘッド411のノズル面に維持回復機構412を構成するキャッピング部材などを対向させる。ここでは、記録ヘッド411は、用紙搬送方向上流側から、ブランク、シアン、マゼンタ、イエローの順に各色の液滴を吐出する配置としているが、配置及び色数はこれに限るものではない。   Also, a maintenance / recovery mechanism 412k, 412c, 412m, 412y for maintaining and recovering the performance of the recording head is provided corresponding to each recording head 411. When the colors of the maintenance / recovery mechanisms 412k, 412c, 412m, and 412y are not distinguished, they are hereinafter referred to as “a maintenance / recovery mechanism 412”. During the head performance maintenance operation such as purge processing and wiping processing, the recording head 411 and the maintenance / recovery mechanism 412 are relatively moved so that the capping member constituting the maintenance / recovery mechanism 412 faces the nozzle surface of the recording head 411. Let Here, the recording head 411 is arranged to eject droplets of each color in the order of blank, cyan, magenta, and yellow from the upstream side in the paper conveyance direction, but the arrangement and the number of colors are not limited to this.

さらに、ライン型記録ヘッドとしては、各色の液滴を吐出する複数のノズル列を所定間隔で設けた1又は複数の記録ヘッドを用いることもできる。また、記録ヘッドとこの記録ヘッドにインクを供給する記録液カートリッジを一体とすることも別体とすることもできる。給紙トレイ404の用紙403は、給紙コロ(半月コロ)421と図示しない分離パッドによって1枚ずつ分離され装置本体401内に給紙される。そして、搬送ガイド部材423のガイド面423aに沿ってレジストローラ425と搬送ベルト433との間に送り込まれ、所定のタイミングでガイド部材426を介して搬送機構405の搬送ベルト433に送り込まれる。   Further, as the line-type recording head, one or a plurality of recording heads provided with a plurality of nozzle rows that discharge droplets of each color at a predetermined interval may be used. Further, the recording head and the recording liquid cartridge that supplies ink to the recording head can be integrated or separated. The sheets 403 in the sheet feed tray 404 are separated one by one by a sheet feed roller (half-moon roller) 421 and a separation pad (not shown) and fed into the apparatus main body 401. Then, the sheet is fed between the registration roller 425 and the conveyance belt 433 along the guide surface 423a of the conveyance guide member 423, and is conveyed to the conveyance belt 433 of the conveyance mechanism 405 through the guide member 426 at a predetermined timing.

また、搬送ガイド部材423には両面ユニット407から送り出される用紙403を案内するガイド面423bも形成されている。更に、両面印刷時に搬送機構405から戻される用紙403を両面ユニット407に案内するガイド部材427も配置している。搬送機構405は、搬送ベルト433、帯電ローラ434、プラテン部材435及び押さえコロ436を有している。そして、搬送ベルト433は、駆動ローラである搬送ローラ431と従動ローラ432との間に掛け渡した無端状の搬送ベルトである。帯電ローラ434は、搬送ベルト433を帯電させるための帯電ローラである。プラテン部材435は、画像形成部402に対向する部分で搬送ベルト433の平面性を維持する部材である。押さえコロ436は、搬送ベルト433から送り出す用紙403を搬送ローラ431側に押し付けている。その他図示しないが、搬送ベルト433に付着したインクを除去するためのクリーニング手段である多孔質体などからなるクリーニングローラなども有している。この搬送機構405の下流側には、画像が記録された用紙403を排紙トレイ406に送り出すための排紙ローラ438及び拍車439を備えている。   In addition, the conveyance guide member 423 is also formed with a guide surface 423 b for guiding the paper 403 sent out from the duplex unit 407. Further, a guide member 427 for guiding the sheet 403 returned from the transport mechanism 405 to the duplex unit 407 during duplex printing is also provided. The transport mechanism 405 includes a transport belt 433, a charging roller 434, a platen member 435, and a pressing roller 436. The conveyance belt 433 is an endless conveyance belt that is stretched between a conveyance roller 431 that is a driving roller and a driven roller 432. The charging roller 434 is a charging roller for charging the conveyance belt 433. The platen member 435 is a member that maintains the flatness of the transport belt 433 at a portion facing the image forming unit 402. The holding roller 436 presses the sheet 403 fed from the conveying belt 433 against the conveying roller 431 side. Although not shown in the drawings, a cleaning roller made of a porous material or the like, which is a cleaning means for removing ink attached to the conveyance belt 433, is also provided. On the downstream side of the transport mechanism 405, a paper discharge roller 438 and a spur 439 for sending the paper 403 on which an image is recorded to the paper discharge tray 406 are provided.

このように構成した画像形成装置において、搬送ベルト433は矢示方向に周回移動し、高電位の印加電圧が印加される帯電ローラ434と接触することで帯電される。そして、この高電位に帯電した搬送ベルト433上に用紙403が給送されると、用紙403は搬送ベルト433に静電的に吸着される。このようにして、搬送ベルト433に強力に吸着した用紙403は反りや凹凸が校正され、高度に平らな面が形成される。そして、搬送ベルト433を周回させて用紙403を移動させ、記録ヘッド411から液滴を吐出する。これにより、用紙403上に所要の画像が形成され、画像が記録された用紙403は排紙ローラ438によって排紙トレイ406に排紙される。   In the image forming apparatus configured as described above, the transport belt 433 moves in the direction indicated by the arrow and is charged by coming into contact with the charging roller 434 to which a high potential applied voltage is applied. When the paper 403 is fed onto the conveyance belt 433 charged to this high potential, the paper 403 is electrostatically attracted to the conveyance belt 433. In this way, the sheet 403 that is strongly adsorbed to the transport belt 433 is calibrated for warpage and unevenness, and forms a highly flat surface. Then, the sheet 403 is moved around the conveyor belt 433, and droplets are ejected from the recording head 411. As a result, a required image is formed on the sheet 403, and the sheet 403 on which the image is recorded is discharged to the discharge tray 406 by the discharge roller 438.

このように、インクジェット記録装置401では、本実施形態に係る液滴吐出ヘッドを記録ヘッドとして備えているので、信頼性の高い安定した滴吐出を行なうことができて、印字ムラのない高画質画像を形成することができる。   As described above, since the inkjet recording apparatus 401 includes the droplet ejection head according to the present embodiment as a recording head, it is possible to perform highly reliable and stable droplet ejection, and a high-quality image without print unevenness. Can be formed.

なお、上記実施形態では本発明に係る液滴吐出ヘッドをインクジェット記録装置のインク滴を吐出する記録ヘッドに適用した例を用いて説明した。これに限らず、インク以外の液体の滴、例えばパターニング用の液体レジストを吐出する液滴吐出ヘッド、遺伝子分析試料を吐出する液滴吐出ヘッドなどにも適用することできる。   In the above-described embodiment, the liquid droplet ejection head according to the present invention has been described using an example in which the liquid droplet ejection head is applied to a recording head that ejects ink droplets of an ink jet recording apparatus. The present invention is not limited to this, and the present invention can also be applied to liquid droplets other than ink, for example, a droplet discharge head that discharges a liquid resist for patterning, and a droplet discharge head that discharges a gene analysis sample.

また、上述では個別液室3に圧力変動を発生させて、ノズル1からインク滴を吐出する圧力発生手段として、圧電素子15を用いた圧電アクチュエータ方式を採用している。しかし、これに限らず、静電アクチュエータ方式、また、ヒータなどを用いて個別液室3内に気泡を発生させて、個別液室を昇圧させてノズルからインク滴を吐出するサーマル方式を用いた液滴吐出ヘッドにも適用することができる。   Further, in the above description, a piezoelectric actuator system using the piezoelectric element 15 is employed as pressure generating means for generating pressure fluctuations in the individual liquid chamber 3 and ejecting ink droplets from the nozzle 1. However, the present invention is not limited to this, and an electrostatic actuator method, or a thermal method in which bubbles are generated in the individual liquid chamber 3 using a heater or the like, and the individual liquid chamber is pressurized to eject ink droplets from the nozzles is used. It can also be applied to a droplet discharge head.

以上に説明したものは一例であり、本発明は、次の態様ごとに特有の効果を奏する。
(態様A)
複数のノズル1に連通する複数の個別液室3と、各個別液室に圧力変動を発生する圧電素子15などの圧力発生手段とを形成した個別液室基板101と、個別液室の配列方向に沿って設けられ個別液室に連通してインクなどの液体を供給する共通液室4と、インクタンクなどの液体タンクから共通液室に液体を供給するためのインクポート107などの液体供給孔と、圧力発生手段を駆動する駆動IC105と、駆動ICに外部からの駆動制御信号を入力するための接続パッド109などの接続部とを備えた液滴吐出ヘッドにおいて、接続部を個別液室基板上の個別液室の配列方向の一端側に設け、液体供給孔を共通液室の接続部が配置された一端側の端部に液体を供給するよう配置する。 A plurality of individual liquid chambers 3 communicating with a plurality of nozzles 1, an individual liquid chamber substrate 101 forming a pressure generating means such as a piezoelectric element 15 that generates pressure fluctuation in each individual liquid chamber, and an arrangement direction of the individual liquid chambers. A common liquid chamber 4 that is provided along the line and supplies a liquid such as ink to the individual liquid chambers, and a liquid supply hole such as an ink port 107 for supplying a liquid from a liquid tank such as an ink tank to the common liquid chamber. In the droplet discharge head provided with the drive IC 105 for driving the pressure generating means and the connection portion such as the connection pad 109 for inputting the drive control signal from the outside to the drive IC, the connection portion is an individual liquid chamber substrate. It is provided on one end side of the above individual liquid chambers in the arrangement direction, and a liquid supply hole is arranged so as to supply liquid to one end side on which the connection portion of the common liquid chamber is arranged.
これによれば、上記実施形態に説明したように、液滴吐出ヘッドの小型化や低コスト化を図りつつ、駆動ICへの接続部の発熱による液滴吐出ヘッド内の温度ムラを抑制できる。 According to this, as described in the above-described embodiment, it is possible to suppress temperature unevenness in the droplet ejection head due to heat generation of the connection portion to the drive IC while reducing the size and cost of the droplet ejection head. What has been described above is merely an example, and the present invention has specific effects for each of the following modes. What has been described above is merely an example, and the present invention has specific effects for each of the following modes.
(Aspect A) (Aspect A)
An individual liquid chamber substrate 101 in which a plurality of individual liquid chambers 3 communicating with the plurality of nozzles 1 and pressure generating means such as piezoelectric elements 15 that generate pressure fluctuations in each individual liquid chamber are formed, and the arrangement direction of the individual liquid chambers And a liquid supply hole such as an ink port 107 for supplying a liquid from a liquid tank such as an ink tank to the common liquid chamber. And a connecting part such as a connecting pad 109 for inputting a driving control signal from the outside to the driving IC, and the connecting part is an individual liquid chamber substrate. The upper individual liquid chambers are provided on one end side in the arrangement direction, and the liquid supply holes are arranged so as to supply the liquid to the end portion on one end side where the connection portions of the common liquid chambers are arranged. An individual liquid chamber substrate 101 in which a plurality of individual liquid chambers 3 communicating with the plurality of nozzles 1 and pressure generating means such as piezoelectric elements 15 that generate pressure fluctuations in each individual liquid chamber are formed, and the arrangement direction of the individual liquid chambers And a liquid supply hole such as an ink port 107 for supplying a liquid from a liquid tank such as an ink tank to the common liquid chamber. And a connecting part such as a connecting pad 109 for inputting a driving control signal from the outside to the driving IC, and the connecting part is an individual liquid chamber substrate. The upper individual liquid chambers are provided on one end side in the arrangement direction, and the liquid supply holes are arranged so as to supply the liquid to the end portion portion. on one end side where the connection portions of the common liquid chambers are arranged.
According to this, as described in the above embodiment, it is possible to suppress temperature unevenness in the droplet discharge head due to heat generation at the connection portion to the drive IC while reducing the size and cost of the droplet discharge head. According to this, as described in the above embodiment, it is possible to suppress temperature unevenness in the droplet discharge head due to heat generation at the connection portion to the drive IC while reducing the size and cost of the droplet discharge head.

(態様B)
(態様A)において、液体供給口を設けた箇所と個別液室の配列方向に対して反対側の共通液室の端部に連通するインクポート108などの液体排出孔を設ける。これによれば、接続部に近い液体供給孔から反対側に向かって共通液室内で液体の流れを作ることで、反対側で液体流速が遅くなるのを防いで、液体の充填性を高めている。このように、温度分布を低減しつつ液体の充填性も高めることができる。
(Aspect B)

In (Aspect A), a liquid discharge hole such as an ink port 108 communicating with a portion where the liquid supply port is provided and an end of the common liquid chamber opposite to the arrangement direction of the individual liquid chambers is provided. According to this, by creating a liquid flow in the common liquid chamber from the liquid supply hole close to the connecting portion toward the opposite side, the liquid flow rate is prevented from slowing on the opposite side and the liquid filling property is improved. Yes. In this way, the liquid filling property can be improved while the temperature distribution is reduced. In (Aspect A), a liquid discharge hole such as an ink port 108 communicating with a portion where the liquid supply port is provided and an end of the common liquid chamber opposite to the arrangement direction of the individual liquid chambers is provided. According to this, by creating a liquid flow in the common liquid chamber from the liquid supply hole close to the connecting portion toward the opposite side, the liquid flow rate is prevented from slowing on the opposite side and the liquid filling property is improved. Yes. In this way, the liquid filling property can be improved while the temperature distribution is reduced.

(態様C)
(態様A)または(態様B)のいずれかの液滴吐出ヘッドを搭載する液滴吐出装置である。これによれば、吐出特性のバラツキが少なくなり、液滴吐出が安定する。
(Aspect C)

A droplet discharge apparatus equipped with either of the droplet discharge heads of (Aspect A) or (Aspect B). According to this, variation in ejection characteristics is reduced, and droplet ejection is stabilized. A droplet discharge apparatus equipped with either of the droplet discharge heads of (Aspect A) or (Aspect B). According to this, variation in ejection characteristics is reduced, and droplet ejection is stabilized.

(態様D)
(態様A)または(態様B)のいずれかの液滴吐出ヘッドを搭載し、液滴吐出ヘッドのノズルから記録液を媒体に吐出して画像を形成する画像形成装置である。これによれば、記録材への吐出特性のバラツキが少なくなり、印字ムラが抑制される。
(Aspect D)

An image forming apparatus that mounts the droplet discharge head of either (Aspect A) or (Aspect B) and forms an image by discharging a recording liquid from a nozzle of the droplet discharge head onto a medium. According to this, variation in ejection characteristics to the recording material is reduced, and printing unevenness is suppressed. An image forming apparatus that mounts the droplet discharge head of either (Aspect A) or (Aspect B) and forms an image by efficiently a recording liquid from a nozzle of the nozzle discharge head onto a medium. According to this, variation in ejection characteristics to the recording material is reduced, and printing unevenness is suppressed.

1 ノズル
2 ノズル板
3 個別液室
4 共通液室
10 ノズル列
11 下部電極
12 圧電素子
13 上部電極
14 振動板
15 圧電素子
20 接続パッド
50 液滴吐出ヘッド
101 個別液室形成基板
102 保持基板
103 共通液室形成基板
104 フレーム部材
105 駆動IC
107 インクポート(液体供給孔)
108 インクポート(液体排出孔)
109 接続パッド
110 FPC
201 インクジェット記録装置 210 インクカートリッジ 224 供給ユニット 233 キャリッジ 234 記録ヘッド 234a、b 液滴吐出ヘッド 235 サブタンク 236 供給チューブ 237 搬送ガイド 401 インクジェット記録装置 405 搬送機構 406 排紙トレイ 411 記録ヘッド 412 維持回復機構 413 ヘッドホルダDESCRIPTION OF SYMBOLS 1 Nozzle 2 Nozzle plate 3 Individual liquid chamber 4 Common liquid chamber 10 Nozzle row 11 Lower electrode 12 Piezoelectric element 13 Upper electrode 14 Vibrating plate 15 Piezoelectric element 20 Connection pad 50 Droplet discharge head 101 Individual liquid chamber formation board 102 Holding board 103 Common Liquid chamber forming substrate 104 Frame member 105 Drive IC 201 Ink Cartridge 210 Ink Cartridge 224 Supply Unit 233 Carriage 234 Recording Head 234a, b Droplet Discharge Head 235 Sub Tank 236 Supply Tube 237 Transport Guide 401 Inkjet Recording Device 405 Transport Mechanism 406 Paper Discharge Tray 411 Recording Head 412 Maintenance Recovery Mechanism 413 Head Holder DECRIPTION OF SYMBOLS 1 Nozzle 2 Nozzle plate 3 Individual liquid chamber 4 Common liquid chamber 10 Nozzle row 11 Lower electrode 12 Piezoelectric element 13 Upper electrode 14 Vibrating plate 15 Piezoelectric element 20 Connection pad 50 Droplet discharge head 101 Individual liquid chamber formation board 102 Holding board 103 Common Liquid chamber forming substrate 104 Frame member 105 Drive IC
107 Ink port (liquid supply hole) 107 Ink port (liquid supply hole)
108 Ink port (liquid discharge hole) 108 Ink port (liquid discharge hole)
109 Connection pad 110 FPC 109 Connection pad 110 FPC
201 Inkjet recording apparatus 210 Ink cartridge 224 Supply unit 233 Carriage 234 Recording head 234a, b Droplet discharge head 235 Sub tank 236 Supply tube 237 Conveying guide 401 Inkjet recording apparatus 405 Conveying mechanism 406 Discharge tray 411 Recording head 412 Maintenance recovery mechanism 413 Head holder 201 Inkjet recording apparatus 210 Ink cartridge 224 Supply unit 233 Carriage 234 Recording head 234a, b Droplet discharge head 235 Sub tank 236 Supply tube 237 Conveying guide 401 Inkjet recording apparatus 405 Conveying mechanism 406 Discharge tray 411 Recording head 412 Maintenance recovery mechanism 413 Head holder

特開2009−149056号公報JP 2009-149056 A 特開2011−167908号公報JP 2011-167908 A

Claims (4)

  1. 複数のノズルに連通する複数の個別液室と各個別液室に圧力変動を発生する圧力発生手段とを形成した個別液室基板と、該個別液室の配列方向に沿って設けられ該個別液室に連通して液体を供給する共通液室と、液体タンクから該共通液室に液体を供給するための液体供給孔と、該圧力発生手段を駆動する駆動ICと、該駆動ICに外部からの駆動制御信号を入力するための接続部とを備えた液滴吐出ヘッドにおいて、
    上記接続部を上記個別液室基板上の上記個別液室の配列方向の一端側に設け、上記液体供給孔を上記共通液室の該接続部が配置された一端側の端部に液体を供給するよう配置したことを特徴とする液滴吐出ヘッド。 The connection portion is provided on one end side of the individual liquid chamber substrate in the arrangement direction of the individual liquid chambers, and the liquid supply hole is provided at one end side of the common liquid chamber where the connection portion is arranged. A droplet ejection head characterized by being arranged so as to. An individual liquid chamber substrate formed with a plurality of individual liquid chambers communicating with a plurality of nozzles and a pressure generating means for generating pressure fluctuations in each individual liquid chamber, and the individual liquid provided along the arrangement direction of the individual liquid chambers A common liquid chamber for supplying liquid in communication with the chamber, a liquid supply hole for supplying liquid from the liquid tank to the common liquid chamber, a drive IC for driving the pressure generating means, and an external connection to the drive IC In a droplet discharge head provided with a connection portion for inputting a drive control signal of An individual liquid chamber substrate formed with a plurality of individual liquid chambers communicating with a plurality of nozzles and a pressure generating means for generating pressure fluctuations in each individual liquid chamber, and the individual liquid provided along the arrangement direction of the individual liquid chambers A common liquid chamber for supplying liquid in communication with the chamber, a liquid supply hole for supplying liquid from the liquid tank to the common liquid chamber, a drive IC for driving the pressure generating means, and an external connection to the drive IC In a droplet discharge head provided with a connection portion for inputting a drive control signal of
    The connection portion is provided on one end side in the arrangement direction of the individual liquid chambers on the individual liquid chamber substrate, and the liquid supply hole is supplied with liquid to the end portion on one end side where the connection portion of the common liquid chamber is disposed. A liquid droplet ejection head characterized by being arranged to perform. The connection portion is provided on one end side in the arrangement direction of the individual liquid chambers on the individual liquid chamber substrate, and the liquid supply hole is supplied with liquid to the end portion on one end side where the connection portion of the common liquid chamber is disposed. A liquid droplet ejection head characterized by being arranged to perform.
  2. 請求項1に記載の液滴吐出ヘッドにおいて、上記液体供給口を設けた箇所と上記個別液室の配列方向に対して反対側となる上記共通液室の端部に液体排出孔を設けたことを特徴とする液滴吐出ヘッド。   2. The liquid droplet ejection head according to claim 1, wherein a liquid discharge hole is provided at an end portion of the common liquid chamber opposite to a position where the liquid supply port is provided and an arrangement direction of the individual liquid chambers. A droplet discharge head characterized by the above.
  3. 請求項1または2のいずれかに記載の液滴吐出ヘッドを搭載することを特徴とする液滴吐出装置。 A liquid droplet ejection apparatus comprising the liquid droplet ejection head according to claim 1.
  4. 請求項1または2のいずれかに記載の液滴吐出ヘッドを搭載し、該液滴吐出ヘッドのノズルから記録液を媒体に吐出して画像を形成することを特徴とする画像形成装置。 An image forming apparatus comprising the droplet discharge head according to claim 1 and forming an image by discharging a recording liquid from a nozzle of the droplet discharge head onto a medium.
JP2013052387A 2013-03-14 2013-03-14 Droplet discharge head, droplet discharge apparatus, and image forming apparatus Active JP6164516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052387A JP6164516B2 (en) 2013-03-14 2013-03-14 Droplet discharge head, droplet discharge apparatus, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052387A JP6164516B2 (en) 2013-03-14 2013-03-14 Droplet discharge head, droplet discharge apparatus, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2014177029A true JP2014177029A (en) 2014-09-25
JP6164516B2 JP6164516B2 (en) 2017-07-19

Family

ID=51697471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052387A Active JP6164516B2 (en) 2013-03-14 2013-03-14 Droplet discharge head, droplet discharge apparatus, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6164516B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244670A (en) * 1997-03-05 1998-09-14 Brother Ind Ltd Method and device for controlling ink discharge in ink jet printer
JP2003145758A (en) * 2001-11-19 2003-05-21 Brother Ind Ltd Ink jet head and method for joining its constituting member
JP2005199443A (en) * 2004-01-13 2005-07-28 Brother Ind Ltd Inkjet printer head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244670A (en) * 1997-03-05 1998-09-14 Brother Ind Ltd Method and device for controlling ink discharge in ink jet printer
JP2003145758A (en) * 2001-11-19 2003-05-21 Brother Ind Ltd Ink jet head and method for joining its constituting member
JP2005199443A (en) * 2004-01-13 2005-07-28 Brother Ind Ltd Inkjet printer head

Also Published As

Publication number Publication date
JP6164516B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
US9028052B2 (en) Droplet discharging head and image forming apparatus
US8348407B2 (en) Liquid ejection head, liquid-droplet ejection device, and image forming apparatus
US8651631B2 (en) Liquid jet head, liquid jet apparatus, and method of manufacturing liquid jet head
JP5824895B2 (en) Inkjet head and inkjet recording apparatus
US9010907B2 (en) Liquid jet head, liquid jet apparatus, and method of manufacturing liquid jet head
KR20070073926A (en) Liquid discharge head, liquid discharge device, and image forming device
US8632161B2 (en) Liquid ejection head and image forming apparatus including the liquid ejection head
US8070279B2 (en) Liquid ejection head, liquid cartridge, and image forming apparatus
US9427968B2 (en) Liquid discharge head and image forming apparatus
JP5837978B2 (en) Liquid discharge head and recording apparatus using the same
US8985745B2 (en) Liquid jet head, liquid jet apparatus, and method of manufacturing liquid jet head
US20090179939A1 (en) Ink jet print head and ink jet printing apparatus
US9180669B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP5822624B2 (en) Liquid discharge head and recording apparatus using the same
JP5168934B2 (en) Liquid ejection head, liquid ejection apparatus, image forming apparatus, piezoelectric actuator
JP5760475B2 (en) Inkjet head
JP4222592B2 (en) Multilayer piezoelectric element and method for manufacturing the same, piezoelectric actuator, droplet discharge head, and ink jet recording apparatus
JP5115330B2 (en) Liquid ejecting head and liquid ejecting apparatus including the same
US8894185B2 (en) Liquid ejection head, ink cartridge, and image forming apparatus
US20130063522A1 (en) Inkjet head and inkjet recording apparatus
US9238367B2 (en) Droplet discharging head and image forming apparatus
US8919932B2 (en) Liquid ejection head and image forming apparatus including the liquid ejection head
JP2004001366A (en) Liquid ejection head and liquid ejector
JP2002292868A (en) Liquid drop ejection head, ink cartridge and ink jet recorder
JP2013063551A (en) Liquid ejection head, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R151 Written notification of patent or utility model registration

Ref document number: 6164516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250