JP2014175142A - 電極付き基材及び静電容量式タッチパネル - Google Patents

電極付き基材及び静電容量式タッチパネル Download PDF

Info

Publication number
JP2014175142A
JP2014175142A JP2013046326A JP2013046326A JP2014175142A JP 2014175142 A JP2014175142 A JP 2014175142A JP 2013046326 A JP2013046326 A JP 2013046326A JP 2013046326 A JP2013046326 A JP 2013046326A JP 2014175142 A JP2014175142 A JP 2014175142A
Authority
JP
Japan
Prior art keywords
substrate
transparent
electrode
expansion coefficient
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013046326A
Other languages
English (en)
Inventor
Takahisa Fujimoto
貴久 藤本
Fuminobu Hirose
文信 廣瀬
Yusuke Taguchi
祐介 田口
Takashi Kuchiyama
崇 口山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013046326A priority Critical patent/JP2014175142A/ja
Publication of JP2014175142A publication Critical patent/JP2014175142A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】パターニングされた透明導電層のパターン境界に沿った皺の発生を抑制することにより、パターンが視認され難い透明電極付き基材を提供する。
【解決手段】ロール・トゥ・ロールにより搬送される透明フィルム基材11に、透明誘電体層12と電極層13がこの順に製膜される電極付き基材において、電極付き基材(2)を150℃で30分間熱処理した基材(3)を熱歪み測定した際の30℃〜150℃の加熱中における各温度の搬送方向の熱膨張率(3)MDと搬送方向に直行する方向の熱膨張率(3)TDと、基材(3)を150℃で30分間熱処理した後に電極層13を全てエッチングした基材(5)を、熱歪測定した際の搬送方向における熱膨張率(5)MDと、搬送方向に直交する方向における熱膨張率(5)TDが以下の式を満たすことを特徴とする電極付き基材。|(3)MD−(5)MD|+|(3)TD−(5)TD|≦0.08%
【選択図】図1

Description

本発明は、透明フィルム基材上に透明電極層が形成され、タッチパネルや液晶、有機ELディスプレイ、太陽電池などに使用される透明電極付き基板に関し、特に、静電容量式タッチパネル用の透明電極付き基材に関する。
透明フィルム基材(基体)に形成された透明電極付き基材は、タッチパネルなどのディスプレイ材料に使用される。特に、上記透明電極付き基材を静電容量型タッチパネルに使用する場合には、透明電極層に対して微細なパターニングを施す必要があり、その際、パターニングした形跡が見えない、いわゆるパターンの非視認性が求められる。非視認性には、光学的な「エッチング部と非エッチング部の色目の差」と物理的な「パターンに沿った皺」の2つがある。エッチング部と非エッチング部の色目は、光学材料の選択や調整によってある程度は調整可能である一方、「パターンに沿った皺」は光学調整よって調整することは困難である上に、パターの非視認性を大きく低下させてしまう原因である。したがって、上記導電材用基材を電子部品(透明電極付き基材)として安定して利用するためには、パターニングによって発生するパターンに沿った皺を抑制することも必要である。
ここで、特許文献1には、透明導電性フィルムのパターン位置合わせの精度を向上させるために、パターニングする前に透明導電性フィルムを熱処理することにより収縮させることが記載されている。しかしながら、この技術は、透明電極を積層した後の透明電極積層体を加熱するのみで、透明電極付き基材と透明電極をエッチングした無機薄膜付き基材との膨張率の差については言及していない。また、薄膜付き基材の膨張に起因する応力の発生を抑制することができないため、パターンに沿った皺の発生を抑制することができない。
特許文献2には、透明高分子フィルムと透明導電性層の間の中間層の膨張率が記載されているが、この技術は、加熱処理時に発生するインジウム−スズ複合酸化物(ITO)の微細な波打ちを抑制するものであり、パターニング後に発生するパターンに沿った皺とは異なるものであって、パターニングすることを想定していない。さらに、上記中間層の膨張率を規定しており、透明電極積層体の加熱について言及し、透明電極付き基材と透明電極をエッチングした無機薄膜付き基材との膨張率の差については言及していない。
また、特許文献3には、MD方向(フィルムの搬送方向)、TD方向(搬送方向に直交する方向)の熱収縮率が0.5%以下に規定された透明導電フィルムについて記載されているが、この技術は摺動特性が良好なタッチパネル用導電性フィルムの提供を目的としており、パターンに沿った物理的な皺の発生については考慮していない。さらに、製膜前のフィルム基体についての収縮率しか記載されておらず、透明導電フィルムと透明フィルム基体の収縮率の差についての記載はなく、皺の発生を抑制できない。
さらに、特許文献4には、プラスティックフィルムの片面に透明導電膜を設け、その反対面に保護フィルムが設けられたフィルムにおいて、フィルムの反りやパターンずれを防ぐために、保護フィルムとして、150℃で30分間加熱した後の熱収縮率がMD方向及びTD方向ともに0.5%以下であるものを用いることが記載されているが、特許文献4では、パターンを形成した後に発生してしまう皺についてまでは言及しておらず、やはり皺の発生抑制は困難である。
特開2012−064546号 特開2002−150842号 特許第4754955号 特開平11−268168号
このように、これまで、「色目の差」を調整することや、透明電極を積層した後に熱収縮させること、反り防止のために熱収縮率を規定することは報告されてきた。しかし、本発明者らの検討によれば、上記手段を用い、電極形成部と電極非形成部との反射光および透過光の色差を低減させるのみでは、物理的要因による「パターンの視認」を十分に抑止することはできなかった。これは、透明導電層のパターン境界に沿って皺が発生しており、皺の形状に応じて光が反射されることに起因するものと考えられる。
そして、これまで、このパターン境界に沿った皺の発生原因や、その抑制方法に関する詳細な検討は行われていなかった。上記に鑑み、本発明は、パターニングされた透明導電層のパターン境界に沿った物理的な皺の発生を抑制することにより、パターンが視認され難い透明電極付き基材を提供することを目的とする。
本発明者らが上記課題について鋭意検討したところ、パターンの視認性と透明フィルム基材の熱歪み測定(TMA:Thermomechanical Analysis)結果との間に密接な関係があることを見出した。これまでは、パターンに沿った皺は課題とされておらず、当然、その解決方法についても報告がなされていなかった。そして、パターニング後の位置ずれを改善するためや摺動耐久性を向上させるために透明電極付き基材の収縮率を規定したものがあるのみであった。
本発明者らは鋭意検討の結果、この未解決であったパターンに沿った皺は、150℃30分の熱処理を行った透明導電膜付き基材のエッチング部と非エッチング部の30℃〜150℃の加熱領域における搬送方向、搬送方向に垂直な方向の膨張率差の和を一定範囲内に規定することによって解決できることを見出した。すなわち、本発明は、透明フィルムの上に積層された透明電極付き基材であり、150℃30分で熱処理した後の熱歪み測定において、搬送方向と搬送方向に垂直な方向のエッチング部と非エッチング部の膨張率差の和が0.08%以内である。
上記電極付き基材(2)を150℃で30分間熱処理した基材(3)を熱歪み測定した際の30℃〜150℃の加熱中における各温度における搬送方向の熱膨張率(3)MDと搬送方向に直行する方向の熱膨張率(3)TDと、前記基材(3)を150℃で30分間熱処理した後に前記電極層13を全てエッチングした基材(5)を、熱歪測定した際の搬送方向における熱膨張率(5)MDと、搬送方向に直交する方向における熱膨張率(5)TDの|(3)MD−(5)MD|+|(3)TD−(5)TD|が、0.08%以内、好ましくは0.07%以内、さらに好ましくは0.06%以内、さらに好ましくは0.05%以内、さらに好ましくは0.04%以内、さらに好ましくは、0.03%以内、さらに好ましくは、0.02%以内、さらに好ましくは、0.01%以内であるとき、加熱処理時に発生する透明導電膜および無機薄膜に発生する応力が抑制され、パターンに沿った皺の発生が抑制されると考えられる。
ここでの「膨張率」とは、150℃で30分間熱処理し終わった基材(3)、(5)について、それぞれを30℃から150℃まで、MD方向及びTD方向に一定の加重をかけて測定したときの膨張率の変化を意味し、30℃を基準として最も膨張したときの膨張率を最大の膨張率という。なお、前記記載の膨張率が負となる場合は、収縮していることを示すものとする。また、上記数式における膨張率の差の絶対値の最大値とは、例えば、120℃で基材(3)、(5)の膨張率の差が最大になったとすると、その120℃における膨張率の差の絶対値を意味する。
さらに、前記基材(3)と、前記基材(5)を、それぞれ、熱歪測定した際に|(3)MD−(5)MD|、または、|(3)TD−(5)TD|が0.06%以内、好ましくは、0.05%以内、さらに好ましくは、0.04%以内、さらに好ましくは、0.03%以内、さらに好ましくは、0.02%以内、さらに好ましくは、0.01%以内であるとき、加熱処理時に発生する透明導電膜および無機薄膜に発生する応力が抑制されたと考えられ、パターンに沿った皺の発生が抑制された。
さらに好ましくは、前記電極付き基材(2)を150℃で30分間熱処理した基材(3)を熱歪み測定したとき、150℃における膨張率が、30℃の熱膨張率を基準とし、搬送方向又は搬送方向に直行する方向において0%以上0.60%以下であり、さらに、前記基材(5)を搬送方向の熱歪み測定したとき、150℃における膨張率が、30℃の熱膨張率を基準とし、搬送方向又は搬送方向に直行する方向において0%以上0.60%以下であることが好ましい。
本発明の透明電極付き基材は、透明電極層が結晶化され、パターニングされた際に、透明導電層のパターン境界に沿った皺の発生が抑制される。そのため、パターン境界が視認され難く、静電容量方式のタッチパネルに用いられた際には、画面の視認性が向上する。
本発明の工程を説明するフローの代表図である。 TMA測定を説明する図であり、基板(3)と基板(5)の最大膨張率差を意味している。
以下に、本発明の好ましい実施の形態について図面を参照しつつ説明する。図1は、透明電極付き基材を製造する際の工程図を示している。ここで、本発明においては、透明フィルム基材を「基材」、誘電体層等の薄膜が透明フィルムに積層した基材を「薄膜付き基材」、電極層(透明導電膜や透明電極を含む))を積層した透明フィルム基材を「電極付き基材」という。
本発明に係る透明フィルム基材としては、少なくとも可視光領域で無色透明であれば特に限定されず、この上に透明電極等の電極層を形成可能なものであればよい。例えば、ポリエチレンテレフタレート(PET)やポリブチレンテレフテレート(PBT)、ポリエチレンナフタレート(PEN)などのポリエステル樹脂やシクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂などが挙げられるが、中でもポリエチレンテレフタレートやシクロオレフィン系樹脂などが好ましく用いられる。本発明では、熱収縮処理が施されていないものに対して効果が大きくなるが、熱収縮処理が施されているものに対しても効果を有する。透明フィルム基材の厚みは特に限定されないが、0.01〜4mmの厚みが好ましい。上記範囲内であれば透明フィルム基材の耐久性を十分に得ることができ、適度な柔軟性を有するため、生産性の良いロール・トゥ・ロール方式で製膜することができる。
本発明の製造方法では、基材準備室内の加熱部からの熱によって、透明フィルムが非接触で加熱される(図1の熱処理(1)参照)。加熱温度は、透明フィルムの表面の温度が70℃〜160℃となるように設定されることが好ましい。加熱工程におけるフィルムの表面温度は、70℃〜155℃がより好ましく、82℃〜120℃がさらに好ましい。また、加熱工程における加熱部の温度は、透明フィルムを上記温度に設定するためには、150℃〜500℃が好ましく、180℃〜400℃がより好ましく、200℃〜380℃がさらに好ましい。
本発明における非接触の加熱処理は以下のようにして行った。スパッタ製膜装置に導入された透明フィルムは、透明電極層が形成される前に基材準備室内で加熱処理される。加熱処理が行われる前に、基材準備室内の圧力が一旦0.01Pa以下に減圧されることが好ましい。加熱処理中の基材準備室内の圧力は、1.5Pa以下が好ましく、1.0Pa以下がより好ましく、0.8Pa以下がさらに好ましい。加熱部としては、例えば、電熱ヒータや赤外線ヒータなどを用いることができ、温度が150℃〜550℃が好ましく、180℃〜500℃がより好ましく、200℃〜480℃がさらに好ましい。
フィルムの表面温度は、フィルム表面にサーモラベルや熱電対を貼り付けて測定することができる。また、加熱部の温度は、フィルムの表面温度が前記範囲となるように適宜に調整することができる。加熱時間は0.1秒〜600秒が好ましく、0.5秒〜300秒がより好ましく、1秒〜180秒がさらに好ましい。加熱部と透明フィルムは接していないことが特徴であり、これにより高温・短時間での熱処理が可能となり、フィルム表面の改質やプロセス時間の短縮、およびフィルムの脱ガスが短時間で行え、分子量28の低減も短時間で可能となる。透明電極層および、または透明誘電体層の製膜前に透明フィルムが加熱されることにより、透明電極層の製膜界面の状態に変化が生じ、これが皺の抑制に寄与していると考えられる。
また、本発明における透明誘電体層は、例えばアクリル樹脂、シリコーン樹脂、酸化ケイ素・酸化チタン・酸化ニオブ・酸化ジルコニウム・酸化アルミニウム等の酸化物を主成分とする材料やフッ化カルシウム・フッ化マグネシウムを主成分とする材料を用いることができる。この際、例えば、透明フィルム基材の片面、あるいは両面には、タッチパネル用透明電極の耐久性を高めるなどの目的で透明誘電体層でもあるハードコート層が予め積層されていてもよい。ハードコート層の材料としては、アクリル樹脂、シリコーン樹脂などを用いることができる。ハードコート層の製膜方法としては、スピンコート法やロールコート法、スプレー塗布やディッピング塗布などにより塗布した後に紫外線や加熱により硬化させて形成するウェットコーティングが、数マイクロオーダーの膜を形成することができるため好ましい。ハードコートの膜厚は適度な耐久性と柔軟性を有することから3〜10μmのものを用いることが好ましい。
また、上記透明フィルム基材には、基材と透明電極の付着性を向上させる目的で、基材のハードコート層の表面上に表面処理を施すことができる。表面処理の手段はいくつかあるが、例えば、基材表面に電気的極性を持たせ、付着力を高める方法などがある。具体的にはコロナ放電、プラズマ法などが挙げられる。なお、透明フィルム基材を非接触で加熱する際、ハードコート層は、透明フィルム基材上に既に形成されていることが好ましく、上記表面処理は非接触での加熱後に行うことが好ましい。
透明誘電体層の積層方法としては、上記の内容から適宜選択することが可能であるが、スパッタリングにおいてSiOx層を少なくとも一層積層することが好ましく、上記透明誘電体層の製膜チャンバーの不活性ガスの分圧Pに対する質量数28のガス分圧P28の比P28/Pが5×10−4未満で、製膜圧力が0.4Pa以下であることがより好ましく、より好ましくは0.35Pa以下であり、さらに好ましくは0.3Pa以下である。
上記透明誘電体層の製膜工程において、製膜室内の不活性ガスの分圧Pに対する質量数28のガスの分圧P28の比P28/Pは、5×10−4未満であることが好ましい。P28/Pは、1.0×10−5〜5×10−4がより好ましく、5.0×10−5〜5×10−4がさらに好ましい。製膜雰囲気中の質量数28のガス分圧を低くすることで、透明誘電体層の応力状態が変化するために、透明電極層がパターニングされた際のシワの発生が抑制されると考えられる。質量数28のガス分圧は、オンライン四重極質量分析計(Q−mass)によりモニターできる。
製膜室内の質量数28のガスは、主に一酸化炭素および窒素であると考えられる。一酸化炭素ガスは、透明フィルムに透明電極層がスパッタ製膜される際のプラズマダメージ等により、製膜雰囲気中に放出されたものと考えられる。また、窒素ガスは、透明フィルムの表面に形成されたハードコート層から製膜雰囲気中に放出されたものと考えられる。
なお、透明誘電体層がスパッタリング法により形成される場合、透明電極層を形成するためのスパッタ製膜装置内に透明フィルムが導入された後、透明電極層が形成される前に透明誘電体層が形成されてもよい。また、2層以上の透明誘電体層が形成される場合、スパッタ製膜装置内に透明フィルムが導入される前に1層以上の透明誘電体層が形成され、スパッタ製膜装置内に透明フィルムが導入された後、透明電極層が形成される前に1層以上の透明誘電体層が形成されてもよい。
本発明及びその製造方法では、透明電極層の製膜前に加熱工程を設けることで、製膜室内の質量数28のガスの分圧を前記範囲とすることができる。すなわち、透明フィルムが比較的高温で短時間加熱されることにより、透明電極層の製膜前に、透明フィルム内部あるいは透明フィルム表面から一酸化炭素や窒素を発生させる原因となる有機物質が揮発し、製膜時のプラズマダメージ等による質量数28のガスの発生が抑制されると考えられる。
また、電極層としては、例えば、透明導電膜や金属膜を用いることができ、透明導電膜を使用することが好ましい。機能する透明電極層としては、屈折率が1.75〜2.50のものを用いる。このような材料としては、酸化インジウム、酸化亜鉛、酸化錫を主成分としたものなどが挙げられるが、中でも酸化インジウムを主成分としたものを好ましく用いることができる。透明電極層として酸化インジウムを主成分としたものを用いた場合、酸化インジウム以外にも添加物を含むことができる。添加物としては具体的には酸化錫、酸化亜鉛、酸化モリブデン、酸化タングステン、酸化ジルコニウム、酸化チタンなどを挙げることができ、中でも透過率・導電性の観点から錫を好ましく用いることが出来る。上記添加物として例えば錫を用いた場合、錫と酸化インジウムを合わせた重さに対し3〜15重量%含まれることが好ましい。中でも導電性の観点から3重量%以上がより好ましい。また、結晶化のしやすさ、耐久性向上の観点から15重量%以下がより好ましく、10重量%以下が特に好ましい。また、静電容量方式タッチパネル用透明電極付き基材として用いた場合においても、透明性の観点から3〜12重量%が好ましく、3〜10重量%がさらに好ましい。また、Agナノワイヤーやカーボンナノチューブ、グラフェン、導電性ポリマー等を使用することも可能である。さらに、金属電極としては、例えばCu、Ag、Au、Mo、Ni、Al、In等があげられる。
本発明の透明電極層の膜厚は、好適には、16〜40nmであることを特徴とするが、中でも導電性の観点から18nm以上が好ましく、20nm以上がさらに好ましい。また、透明性・色味の観点から38nm以下が好ましく、36nm以下が更に好ましい。上記範囲にすることでタッチパネル用透明電極付き基材に適した透明性、導電性などを得ることが出来る。
透明電極層の形成方法としては、均一な薄膜が形成される方法であれば特に限定されない。例えば、スパッタリングや蒸着などのPVD法や、各種CVD法などのドライコーティングなどの他に、透明電極層の原料を含む溶液をスピンコート法やロールコート法、スプレー塗布やディッピング塗布などにより塗布した後に加熱処理などで透明電極層を形成する方法が挙げられるが、ナノメートルレベルの薄膜を形成しやすいという観点からドライコーティングが好ましい。
本発明に係る透明電極層はスパッタリング法によって製膜されたものであることがより好ましい。上記製膜に用いられるガスとしては、アルゴンのような不活性ガスを主成分とするものが好ましい。使用するガスとしては上記アルゴンのような不活性ガス単独でも用いることができるが、2種類以上の混合ガスを用いることもできる。中でもアルゴンと酸素の混合ガスがより好ましく用いられる。この場合、酸素を0.1〜15.0体積%含むガスを用いることが好ましく、1.0〜10.0体積%含むガスを用いることがより好ましい。上記体積の酸素を供給することで透明性、導電性を向上させることができる。なお、使用するガスとしてアルゴンと酸素の混合ガスを用いた場合、本発明の機能を損なわない限り、その他のガスを含有していても良い。
また、上記スパッタリングによる透明導電体層の製膜の製膜工程において、前記透明導電体層の製膜チャンバーの不活性ガスの分圧Pに対する質量数28のガス分圧P28の比P28/Pが5×10−4以下が好ましい。上記タッチパネル用透明電極付き基材は、本発明の機能を損なわない限り、各層の間に他の層を有していてもよく、また透明電極層上や、基材の透明電極が無い表面上に他の層を有していてもよい。
本発明に係る透明電極付き基材の表面抵抗の値は、10〜400Ω/□であることが好ましい。中でも、静電容量方式タッチパネルに用いる場合、感度の観点から300Ω/□以下がより好ましく、270Ω/□以下がさらに好ましい。本発明に係る透明電極付き基材は透明電極層の表面の一部をエッチング処理(パターニング)することにより形成することができる。
パターニング方法としては、ウェットプロセス・ドライプロセスがあり、どちらの方法でも任意に選択することができるが、透明電極層のみを除去しやすいという観点からウェットプロセスが適している。ウェットプロセスはフォトリソグラフィに代表されるプロセスが適用される。ここで使用されるフォトレジスト・現像液・エッチング液・リンス剤は透明電極が侵されることなく、所定のパターンを形成するために透明電極層が除去されるものであれば任意に選択して用いることができる。
上記透明電極付き基材は、パターニング前に透明導電膜の結晶化させるために熱処理される。この際の熱処理方法は特に限定しないが、オーブンやIRヒータなどが挙げられる。熱処理の温度・時間は、フィルムが十分に収縮する温度であり、透明導電膜の抵抗が安定化する温度・時間であれば特に限定はない。オーブンであれば120〜170℃で10〜90分、IRヒータであれば150℃で5分などの例が挙げられる。
次に、図1、2を参照しながら、透明電極付き基材のTMA測定による評価について説明する。上記透明導電膜付き基材(2)を150℃で30分間熱処理した基材(3)と、前記透明導電膜付き基材(3)を150℃で30分間熱処理した後に前記電極層(13)を全てエッチングした無機薄膜付き基材(5)とを、それぞれ熱歪測定することで搬送方向と搬送方向に垂直な方向の各温度における熱膨張率の差を算出する。ここで、熱歪み測定とは、荷重0〜±0.1gにおける30℃〜150℃の昇温加熱の範囲の引っ張り試験モードでのTMA測定である。
この測定を、搬送方向に垂直な方向にも実施しすることで熱膨張率の差を算出する。前記搬送方向と搬送方向に垂直な方向の膨張率の差の和が大きいほど、加熱時の膨張挙動の差が大きいことを示しており、パターンに沿った皺の発生要因となる。
上記透明電極付き基材のTMA測定において、150℃まで加熱する段階に熱収縮点をもたないことが好ましい。前記熱収縮点とはTMA測定において昇温中に膨張率が減少し始める温度のことを指す。すなわち、収縮開始点をもたないとは、昇温にともない膨張率は0以上で増加し続けることを意味しており、膨張率一定の場合も含む。
[実施例]
以下に、実施例をもって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本発明において膜厚・屈折率・消衰係数は分光エリプソメトリー測定を行い、cauchyモデル及びtauc‐lorentzモデルでフィッティングを行った。なお、屈折率は波長550nmの光に対する屈折率を求めた。表面抵抗は低抵抗率計ロレスタGP(MCP‐T710)(三菱化学社製)を用いて四探針圧接測定により測定した。透過率および反射率の測定は分光光度計(U‐4000)(日立ハイテク社製)を用いて測定した。TMA測定は、BRUKER製(TMA4000SA)の引っ張り試験モード、昇温速度は10℃/分、0〜±0.1gの定荷重、サンプルは長手方向に20mm、短手方向に5mmのものを作成して測定した。元素濃度比はXPS(装置:Quantum2000[アルバック・ファイ製]、X線強度:AlKα/15kV・25KW、X線ビーム径100μmφ、パスエネルギー:187.85eV(ワイド)、58.70eV(ナロー))で表面をArスパッタで洗浄処理を行った後測定した。
本発明に係る透明電極付き基材は、ロール・トゥ・ロール方式の巻取り式スパッタリング装置を用いて製造した。
[評価方法]
ストライプパターンをパターニングしたサンプルに蛍光灯を反射させて、パターンに沿った皺、すなわち、蛍光灯の反射光がパターンに沿って曲がっているかどうかで皺の有無を目視で判断した。このとき、蛍光灯の反射像の屈折の度合いが最も大きい角度で目視確認を行い、A(良い)〜E(悪い)のランク分けを行った。
[実施例1]
透明フィルム基材1として100μmのPETフィルムを用い、透明フィルム基材の片面に6.5μmのハードコート層、他面に5.4μmのハードコート層を形成したハードコート付き基材を使用した。なお、ハードコート層はいずれもウレタン系樹脂からなり、屈折率は1.53であった。上記ハードコート透明フィルム基材1を装置内にセット後、圧力を0.1Pa以下として、連続して以下の製膜を行った。
まず、透明フィルム基材1の表面温度が82℃となるように非接触で約20秒間表面処理を行った。ボンバード処理(プラズマ処理)を行った後、連続して、Siをターゲットとして用い、基材温度を25℃、酸素/アルゴン比が2/5の混合ガス中、装置内圧力0.2Paにおいて1.4W/cmの電力密度でスパッタリングを行い、SiO層を形成した。得られたSiO層の膜厚は6nm、屈折率は1.71、XPS測定における元素濃度比Si/Oは、1.8であった。
透明誘電体層は、酸化ニオブ(Nb)をターゲットとして用い、基材温度を25℃、酸素/アルゴン比が2/5の混合ガス中、装置内圧力0.8Paにおいて、電力密度7.2W/cmでスパッタリングを行い、酸化ニオブ(Nb)層を形成した。得られたNb層の膜厚は8nm、屈折率は2.2であった。この透明誘電体層の上に、Siターゲットを用いて、基材温度25℃、酸素/アルゴン比が17/30の混合ガス中、装置内圧力0.2Paにおいて電力密度10W/cmでMF電源を用いてSiO層を形成した。得られたSiO層の膜厚は60nm、屈折率は1.47、XPS測定における元素濃度比Si/Oは、2.1であった。
透明電極層は、インジウム錫複合酸化物(錫酸化物含量5重量%)をターゲットとして用い、基材温度を25℃、アルゴン/酸素比が1/100の混合ガス中、装置内圧力0.5Paにおいて電力密度2.2W/cmスパッタリングを行い、ITO層を形成した。得られたITO層の膜厚は25nmであった。
パターニングは、透明電極層を形成後の透明電極をフォトリソグラフィにより形成した。まず、透明電極にフォトレジスト(製品名TSMR−8900(東京応化工業製))をスピンコートにより2μm程度の膜厚に塗布した。これを90℃のオーブンでプリベークした後、フォトマスクを当てて、40mJの紫外光を照射した。その後、110℃でポストベークした後、現像液(0.75%NaOHaq, 25℃)を用いてフォトレジストをパターニングした。さらに、エッチング液(製品名:ITO−02(関東化学製))を用いて透明電極層6をエッチングすることでパターニングした。最後に剥離液(2%NaOHaq, 40℃)を用いて残ったフォトレジストを除去した。その後、150℃で30分乾燥を行った。この時、パターンに沿った皺は目視確認においてAであった。
また、150℃30分熱処理を行った透明電極付き基材(3)と(3)の透明導電膜をエッチングした基材(5)において、荷重0〜0.1gにおけるTMA測定の30℃〜150℃の範囲での膨張率の差は最大でMD方向が0.01%、TD方向が0.00%であった。
[実施例2]
透明フィルム基材1として125μmのPETフィルムを用い、前処理加熱時間を25秒、加熱処理温度を90℃とした以外は実施例1と同様に前処理加熱、製膜、パターニングを行った。この時、パターンに沿った皺は目視確認においてAであった。150℃30分熱処理を行った透明電極付き基材(3)と(3)の透明導電膜をエッチングした基材(5)において、荷重0〜0.1gにおけるTMA測定の30℃〜150℃の範囲での膨張率の差は最大でMD方向が0.01%、TD方向が0.02%であった。
[実施例3]
前処理時間を80秒とし、加熱の温度を99℃にした以外は、実施例1と同様に、前処理加熱、製膜、パターニングを行った。この時、パターンに沿った皺は目視確認においてAであった。150℃30分熱処理を行った透明電極付き基材(3)と(3)の透明導電膜をエッチングした基材(5)において、荷重0〜0.1gにおけるTMA測定の30℃〜150℃の範囲での膨張率の差は最大でMD方向が0.01%、TD方向が0.02%であった。
[実施例4]
前処理加熱の温度を82℃にした以外は、実施例1と同様に、前処理加熱、製膜、パターニングを行った。この時、パターンに沿った皺は目視確認においてBであった。150℃30分熱処理を行った透明電極付き基材(3)と(3)の透明導電膜をエッチングした基材(5)において、荷重0〜0.1gにおけるTMA測定の30℃〜150℃の範囲での膨張率の差は最大でMD方向が0.03% TD方向が0.01%であった。
[実施例5]
透明フィルム基材1をあらかじめ熱収縮させたもの使用した以外は実施例4と同様に、前処理加熱、製膜、パターニングを行った。この時、パターンに沿った皺は目視確認においてBであった。150℃30分熱処理を行った透明電極付き基材(3)と(3)の透明導電膜をエッチングした基材(5)において、荷重0〜0.1gにおけるTMA測定の30℃〜150℃の範囲での膨張率の差は最大でMD方向が0.05%、TD方向が0.02%であった。
[比較例1]
SiOの製膜圧力を0.5PaとしてSiOを製膜した以外は、実施例4とほぼ同様に製膜、パターニングを行った。この時、パターンに沿った皺は目視確認においてDであった。150℃30分熱処理を行った透明電極付き基材(3)と(3)の透明導電膜をエッチングした基材(5)において、荷重0〜0.1gにおけるTMA測定の30℃〜150℃の範囲での膨張率の差は最大でMD方向が0.06%、TD方向が0.03%であった。
[比較例2]
前処理加熱を行わなかった以外は、実施例1とほぼ同様に、製膜、パターニングを行った。この時、パターンに沿った皺は目視確認においてEであった。150℃30分熱処理を行った透明電極付き基材(3)と(3)の透明導電膜をエッチングした基材(5)において、荷重0〜0.1gにおけるTMA測定の30℃〜150℃の範囲での膨張率の差は最大でMD方向が0.08%、TD方向が0.01%であった。
以上の検討のとおり、本発明者らは、パターンの視認性と透明フィルム基材のTMA(熱機械分析装置)測定結果との間に密接な関係について、150℃30分で熱処理した後の熱歪み測定においてエッチング部と非エッチング部のMD方向及びTD方向の膨張率差を一定範囲内に規定することによって解決できることを見出した。これにより、パターニング後の熱処理でのエッチング部と非エッチング部の不均一な膨張挙動を抑制することが可能となり、結果、パターンに沿った皺を抑制できた。
11 透明フィルム基材
12 透明誘電体層
13 電極層

Claims (8)

  1. ロール・トゥ・ロールにより搬送される透明フィルム基材11に、透明誘電体層12と電極層13がこの順に製膜される電極付き基材において、
    前記電極付き基材(2)を150℃で30分間熱処理した基材(3)を熱歪み測定した際の30℃〜150℃の加熱中における各温度の搬送方向の熱膨張率(3)MDと搬送方向に直行する方向の熱膨張率(3)TDと、前記基材(3)を150℃で30分間熱処理した後に前記電極層13を全てエッチングした基材(5)を、熱歪測定した際の搬送方向における熱膨張率(5)MDと、搬送方向に直交する方向における熱膨張率(5)TDが以下の式(1)を満たすことを特徴とする電極付き基材。
    |(3)MD−(5)MD|+|(3)TD−(5)TD|≦0.08% (1)
  2. 前記基材(3)と、前記基材(5)を、それぞれ、熱歪測定した際に
    |(3)MD−(5)MD|≦0.06%、又は、|(3)TD−(5)TD|≦0.06%
    である請求項1に記載の電極付き基材。
  3. 前記電極付き基材(2)を150℃で30分間熱処理した基材(3)を熱歪み測定したとき、150℃における膨張率が、30℃の熱膨張率を基準とし、搬送方向又は搬送方向に直行する方向において0%以上0.60%以下である請求項1又は2に記載の電極付き基材。
  4. 前記基材(5)を搬送方向の熱歪み測定したとき、150℃における膨張率が、30℃の熱膨張率を基準とし、搬送方向又は搬送方向に直行する方向において0%以上0.60%以下である請求項1又は2に記載の電極付き基材。
  5. 前記電極層が透明導電膜層である請求項1〜4のいずれかに記載の透明電極付き基材。
  6. 前記透明誘電体層の少なくとも一層がSiOx層(1.5<x<2.2)である請求項1〜5のいずれかに記載の透明電極付き基材。
  7. 前記電極付き基板が、酸化ケイ素、酸化ニオブ、酸化ケイ素、インジウム錫複合酸化物をこの順に積層した構成を含むものである請求項1〜6のいずれかに記載の電極付き基板。
  8. 請求項1〜7に記載の電極付き基材を用いた静電容量式タッチパネル。
JP2013046326A 2013-03-08 2013-03-08 電極付き基材及び静電容量式タッチパネル Pending JP2014175142A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046326A JP2014175142A (ja) 2013-03-08 2013-03-08 電極付き基材及び静電容量式タッチパネル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046326A JP2014175142A (ja) 2013-03-08 2013-03-08 電極付き基材及び静電容量式タッチパネル

Publications (1)

Publication Number Publication Date
JP2014175142A true JP2014175142A (ja) 2014-09-22

Family

ID=51696175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046326A Pending JP2014175142A (ja) 2013-03-08 2013-03-08 電極付き基材及び静電容量式タッチパネル

Country Status (1)

Country Link
JP (1) JP2014175142A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082815A1 (ja) * 2017-10-27 2019-05-02 日東電工株式会社 透明導電性フィルムおよびその製造方法
CN114526851A (zh) * 2022-04-25 2022-05-24 中国飞机强度研究所 一种飞机用金属-复合材料混合结构的热应力的测量方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082815A1 (ja) * 2017-10-27 2019-05-02 日東電工株式会社 透明導電性フィルムおよびその製造方法
JP2019083088A (ja) * 2017-10-27 2019-05-30 日東電工株式会社 透明導電性フィルムおよびその製造方法
CN111194471A (zh) * 2017-10-27 2020-05-22 日东电工株式会社 透明导电性薄膜及其制造方法
CN111194471B (zh) * 2017-10-27 2021-12-21 日东电工株式会社 透明导电性薄膜及其制造方法
JP7270334B2 (ja) 2017-10-27 2023-05-10 日東電工株式会社 透明導電性フィルムおよびその製造方法
CN114526851A (zh) * 2022-04-25 2022-05-24 中国飞机强度研究所 一种飞机用金属-复合材料混合结构的热应力的测量方法

Similar Documents

Publication Publication Date Title
JP6101214B2 (ja) 透明電極付き基板およびその製造方法
JP5543907B2 (ja) 透明導電性フィルムおよびその製造方法
JP6001943B2 (ja) 無機薄膜付き導電材用基板、透明電極付き基板及びその製造方法
TWI541369B (zh) 製造用在觸控面板之透明主體的方法與系統
JP5122670B2 (ja) 透明導電性フィルムの製造方法
KR102214745B1 (ko) 투명 도전성 기재 및 투명 도전성 기재의 제조방법
JP6553451B2 (ja) 透明樹脂フィルム、透明導電性フィルムおよびそれを用いたタッチパネル
TW201346675A (zh) 透明導電性薄膜、觸控面板及顯示裝置
CN108367556A (zh) 金属层层叠透明导电性薄膜及使用其的触摸传感器
WO2013115125A1 (ja) 透明電極付き基板の製造方法
US9903015B2 (en) Substrate with transparent electrode and method for manufacturing same
JP5992801B2 (ja) 透明電極付き基板及びその製造方法
JP2022133292A (ja) 透明導電性フィルム、および透明導電性フィルムの製造方法
JP2014168938A (ja) 透明積層体
JP6151950B2 (ja) 透明電極付き基板
WO2015151687A1 (ja) 透明導電フィルムの製造方法
Park et al. Laser processing of indium tin oxide thin film to enhance electrical conductivity and flexibility
JP2014175142A (ja) 電極付き基材及び静電容量式タッチパネル
JP5951372B2 (ja) タッチパネルおよびその製造方法
KR101165770B1 (ko) 고투과율 및 저저항 특성을 갖는 인듐-틴 옥사이드 박막의 제조방법
JP2014218726A (ja) 透明電極付き基板およびその製造方法、ならびにタッチパネル
Kim et al. Fabrication of Structurally Simple Index‐Matched ITO Films Using Roll‐to‐Roll Sputtering for Touch Screen Panel Devices
JP6097117B2 (ja) 積層体およびフイルム
TW202035128A (zh) 透明導電膜
JP2015193882A (ja) 透明導電フィルムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704