JP2014175075A - Metal ion secondary battery separator - Google Patents

Metal ion secondary battery separator Download PDF

Info

Publication number
JP2014175075A
JP2014175075A JP2013044148A JP2013044148A JP2014175075A JP 2014175075 A JP2014175075 A JP 2014175075A JP 2013044148 A JP2013044148 A JP 2013044148A JP 2013044148 A JP2013044148 A JP 2013044148A JP 2014175075 A JP2014175075 A JP 2014175075A
Authority
JP
Japan
Prior art keywords
separator
nonwoven fabric
ion secondary
pore diameter
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013044148A
Other languages
Japanese (ja)
Other versions
JP2014175075A5 (en
JP6018526B2 (en
Inventor
Nobuko Takahama
信子 高濱
Takao Masuda
敬生 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2013044148A priority Critical patent/JP6018526B2/en
Publication of JP2014175075A publication Critical patent/JP2014175075A/en
Publication of JP2014175075A5 publication Critical patent/JP2014175075A5/ja
Application granted granted Critical
Publication of JP6018526B2 publication Critical patent/JP6018526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a metal ion secondary battery separator ensuring excellent micro short circuit prevention and high rate characteristics, when manufacturing a metal ion secondary battery separator having especially excellent heat resistance.SOLUTION: In a metal ion secondary battery separator where an inorganic pigment is carried on a nonwoven fiber base material, melting point of the constituent fiber of the nonwoven fiber base material is 200°C or more, dehydration temperature of the inorganic pigment is 250°C or more, and the ratio s/n of the maximum pore diameter s of the separator for the maximum pore diameter n of the nonwoven fiber base is 1/5-1/20.

Description

本発明は、金属イオン二次電池セパレータに関する。   The present invention relates to a metal ion secondary battery separator.

電気化学素子の一つである金属イオン二次電池は、エネルギー密度が高いという特徴を有し、例えば、そのうちの一つであるリチウムイオン二次電池は携帯電話、携帯型音楽プレーヤー、ノート型パーソナルコンピューター等の携帯型電気機器の電源として広く利用されている。また、電気自転車、ハイブリッド自動車、電気自動車等の大型機器にも、リチウムイオン二次電池を利用する動きが広がっている。また、ナトリウムイオン二次電池等その他の金属イオン二次電池も注目されている。そのため、金属イオン二次電池にはハイレートでの放電特性(ハイレート特性)、繰り返し特性(サイクル特性)といった性能が求められているが、金属イオン二次電池は一般に非水系電池であるため、水系電池と比較して、発煙、発火、破裂等の危険性が高いことが知られており、安全性の向上も要求されている。   A metal ion secondary battery, which is one of electrochemical elements, has a feature of high energy density. For example, a lithium ion secondary battery, which is one of them, is a mobile phone, a portable music player, a notebook personal Widely used as a power source for portable electric devices such as computers. In addition, the movement to use lithium ion secondary batteries is spreading in large equipment such as electric bicycles, hybrid cars, and electric cars. In addition, other metal ion secondary batteries such as sodium ion secondary batteries have attracted attention. For this reason, metal ion secondary batteries are required to have high-rate discharge characteristics (high rate characteristics) and repetitive characteristics (cycle characteristics), but metal ion secondary batteries are generally non-aqueous batteries. It is known that there is a higher risk of smoke, ignition, rupture, etc., and there is a demand for improved safety.

金属イオン二次電池では、外熱による温度上昇、過充電、内部短絡、外部短絡等によって発煙等の危険性が高まる。これらは、外部保護回路によってある程度防ぐことが可能できる。また、金属イオン二次電池セパレータとして使用されているポリオレフィン系樹脂の多孔質フィルムが120℃付近で溶融し、孔が閉塞して電流やイオンの流れを遮断することによって、電池の温度上昇が抑制される。これは、シャットダウン機能と呼ばれている。しかし、外熱によって温度が上昇した場合や温度上昇によって電池内部で化学反応が起きた場合には、シャットダウン機能が働いても電池温度はさらに上昇し、電池温度が150℃以上にまで達すると、多孔質フィルムが収縮して内部短絡が起こり、発火等が起きることがあった。   In a metal ion secondary battery, the risk of smoke generation increases due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit, and the like. These can be prevented to some extent by an external protection circuit. In addition, the polyolefin resin porous film used as a metal ion secondary battery separator melts at around 120 ° C, and the pores are blocked to block current and ion flow, thereby suppressing battery temperature rise. Is done. This is called a shutdown function. However, when the temperature rises due to external heat or when a chemical reaction occurs inside the battery due to the temperature rise, the battery temperature further rises even if the shutdown function works, and when the battery temperature reaches 150 ° C or higher, The porous film contracted, causing an internal short circuit, which could cause ignition.

このように、セパレータのシャットダウン機能では電池の発火を抑制することができ難くなっている。そのため、ポリオレフィン系樹脂の多孔質フィルムよりも熱収縮温度を上げることによって、内部短絡を起こり難くして電池の発火を抑制することを目的として、ポリエステル系繊維で構成した不織布セパレータ、ポリエステル系繊維に耐熱繊維であるアラミド繊維を配合した不織布セパレータが提案されている(例えば、特許文献1〜3参照)。しかし、これら不織布セパレータは熱収縮性には優れるものの、孔径が大きく、両極活物質の接触による内部短絡、あるいは負極上に生成するデンドライトによる微小短絡が発生しやすく、実用的とは言い難かった。これら短絡を抑制し、また、耐熱性を更に向上させるため、不織布や織布等の基材に、顔料や樹脂を塗工することで担持させる例が開示されている(例えば、特許文献4〜6参照)。しかしながら、顔料や樹脂を塗工しても、基材の孔が大きい場合には、塗液の裏抜けや、ピンホールと呼ばれる塗工欠陥が生じやすく、微小短絡の防止効果が不十分になる場合があった。また、微小短絡を防止するために顔料や樹脂を厚く塗工することで、金属イオン通過性が低下し、不織布セパレータの利点であるハイレート特性が損なわれるという課題もあった。   As described above, it is difficult to suppress the ignition of the battery by the shutdown function of the separator. Therefore, by increasing the heat shrinkage temperature more than the polyolefin resin porous film, it is difficult to cause an internal short circuit and suppresses the ignition of the battery. Nonwoven fabric separators containing aramid fibers, which are heat resistant fibers, have been proposed (see, for example, Patent Documents 1 to 3). However, although these nonwoven fabric separators are excellent in heat shrinkability, the pore diameter is large, and internal short circuit due to contact of the bipolar active material or micro short circuit due to dendrite generated on the negative electrode is likely to occur, and it was difficult to say that it is practical. In order to suppress these short circuits and further improve the heat resistance, examples in which a pigment or resin is supported on a substrate such as a nonwoven fabric or a woven fabric are disclosed (for example, Patent Documents 4 to 4). 6). However, even if a pigment or resin is applied, if the hole in the substrate is large, it is easy to cause a back-through of the coating liquid or a coating defect called pinhole, and the effect of preventing a micro short circuit becomes insufficient. There was a case. In addition, by applying a thick pigment or resin in order to prevent a micro short circuit, there is a problem that the metal ion permeability is lowered, and the high rate characteristic which is an advantage of the nonwoven fabric separator is impaired.

特開2003−123728号公報JP 2003-123728 A 特開2007−317675号公報JP 2007-317675 A 特開2006−19191号公報JP 2006-19191 A 特表2005−536857号公報JP 2005-536857 A 特開2007−157723号公報JP 2007-157723 A 国際公開第2010/029994号パンフレットInternational Publication No. 2010/029994 Pamphlet

本発明の課題は、特に耐熱性に優れる金属イオン二次電池電池セパレータを製造するにあたり、微小短絡防止及びハイレート特性に優れる金属イオン二次電池セパレータを提供することである。   An object of the present invention is to provide a metal ion secondary battery separator that is excellent in prevention of minute short-circuiting and high-rate characteristics in manufacturing a metal ion secondary battery battery separator that is particularly excellent in heat resistance.

本発明者らは鋭意研究した結果、課題を解決できる金属イオン二次電池セパレータを発明するに至った。即ち、不織布基材に無機顔料を担持させた金属イオン二次電池セパレータにおいて、該不織布基材の構成繊維の融点が200℃以上であり、且つ該無機顔料の結晶水あるいは構造水の脱水温度が250℃以上であり、また、該不織布基材の最大ポア径nに対する該セパレータの最大ポア径sの比s/nが1/5〜1/20であることを特徴とする金属イオン二次電池セパレータである。   As a result of intensive studies, the present inventors have invented a metal ion secondary battery separator that can solve the problem. That is, in a metal ion secondary battery separator in which an inorganic pigment is supported on a nonwoven fabric substrate, the melting point of the constituent fibers of the nonwoven fabric substrate is 200 ° C. or higher, and the dehydration temperature of the crystal water or structural water of the inorganic pigment is The metal ion secondary battery having a temperature ratio of 250 ° C. or higher and a ratio s / n of the maximum pore diameter s of the separator to the maximum pore diameter n of the nonwoven fabric substrate is 1/5 to 1/20 It is a separator.

不織布基材に無機顔料を担持させた金属イオン二次電池セパレータにおいて、該不織布基材の構成繊維の融点が200℃以上であり、且つ該無機顔料の脱水温度が250℃以上であり、また、該不織布基材の最大ポア径nに対する該セパレータの最大ポア径sの比s/nが1/5〜1/20であることにより、特に耐熱性に優れ、且つ微小短絡抑止及びハイレート特性に優れる金属イオン二次電池セパレータを製造することができる。   In the metal ion secondary battery separator in which an inorganic pigment is supported on a nonwoven fabric substrate, the melting point of the constituent fibers of the nonwoven fabric substrate is 200 ° C. or higher, and the dehydration temperature of the inorganic pigment is 250 ° C. or higher. When the ratio s / n of the maximum pore diameter s of the separator to the maximum pore diameter n of the nonwoven fabric substrate is 1/5 to 1/20, it is particularly excellent in heat resistance, excellent in short-circuit suppression and high-rate characteristics. A metal ion secondary battery separator can be manufactured.

本発明に係る不織布基材を構成する繊維の融点は200℃以上である。融点が200℃以上であることで、電池内部で局所的な発熱が生じた際に、繊維の溶融に因るセパレータの収縮を抑制し、内部短絡に因る発火を防止することが可能である。なお、本発明における繊維の融点とは、JIS K 7121に規定された方法に基づき測定された融点ピーク温度を指す。   Melting | fusing point of the fiber which comprises the nonwoven fabric base material which concerns on this invention is 200 degreeC or more. When the melting point is 200 ° C. or more, when local heat generation occurs inside the battery, it is possible to suppress the shrinkage of the separator due to the melting of the fibers and to prevent the ignition due to the internal short circuit. . In addition, the melting point of the fiber in the present invention refers to a melting point peak temperature measured based on the method defined in JIS K7121.

本発明に係る不織布基材を構成する200℃以上の融点を有する繊維としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート等のポリエステル、ポリアクリロニトリル等のアクリル、6,6ナイロン、6ナイロン等のポリアミド等の各種合成繊維、木材パルプ、麻パルプ、コットンパルプ等の各種セルロースパルプ等が挙げられる。特に耐熱性、低吸湿性等の理由から、ポリエステルが好ましく用いられる。   Examples of the fiber having a melting point of 200 ° C. or higher constituting the nonwoven fabric substrate according to the present invention include polyesters such as polyethylene terephthalate, polyethylene isophthalate, and polyethylene naphthalate, acrylics such as polyacrylonitrile, 6,6 nylon, and 6 nylon. Examples include various synthetic fibers such as polyamide, and various cellulose pulps such as wood pulp, hemp pulp, and cotton pulp. Polyester is preferably used especially for reasons such as heat resistance and low hygroscopicity.

本発明に係る無機顔料は脱水温度が250℃以上である。もしくは結晶水あるいは構造水を有さない無機顔料を用いることも可能である。脱水温度が250℃以上であることで、電池内部で異常発熱が生じた際に無機顔料結晶の構造変化に基づくセパレータの変形が起こりにくくなる。不織布基材の熱収縮と無機顔料層の構造変化の双方が抑制されることで特に耐熱性に優れた金属イオン二次電池セパレータとなる。好ましい脱水温度は300℃以上であり、更に好ましくは350℃以上である。なお、本発明における無機顔料の脱水温度とは示差走査熱量測定(DSC)にて測定される。測定条件は、窒素ガス雰囲気下で、昇温速度10℃/min、温度範囲30〜900℃である。   The inorganic pigment according to the present invention has a dehydration temperature of 250 ° C. or higher. Alternatively, it is possible to use an inorganic pigment having no crystal water or structural water. When the dehydration temperature is 250 ° C. or higher, the separator is less likely to be deformed due to the structural change of the inorganic pigment crystal when abnormal heat generation occurs inside the battery. By suppressing both the heat shrinkage of the nonwoven fabric substrate and the structural change of the inorganic pigment layer, a metal ion secondary battery separator having particularly excellent heat resistance is obtained. A preferable dehydration temperature is 300 ° C. or higher, and more preferably 350 ° C. or higher. In the present invention, the dehydration temperature of the inorganic pigment is measured by differential scanning calorimetry (DSC). The measurement conditions are a temperature increase rate of 10 ° C./min and a temperature range of 30 to 900 ° C. in a nitrogen gas atmosphere.

上記無機顔料としては、α−アルミナ、β−アルミナ、γ−アルミナ等のアルミナ、ベーマイト等のアルミナ水和物、酸化マグネシウム、酸化カルシウム等が挙げられる。特に安定性の点から、α−アルミナ、もしくはベーマイトが好ましく用いられる。   Examples of the inorganic pigment include alumina such as α-alumina, β-alumina, and γ-alumina, alumina hydrate such as boehmite, magnesium oxide, and calcium oxide. In particular, α-alumina or boehmite is preferably used from the viewpoint of stability.

本発明に係る無機顔料を担持させたセパレータは、不織布基材の最大ポア径nに対するセパレータの最大ポア径sの比s/nが1/5〜1/20である。ハイレート特性のためには不織布基材の最大ポア径は大きい方が好ましいが、最大ポア径を大きくすることで、微小短絡が発生しやすくなる。無機顔料を担持させることにより、不織布基材の最大ポア径nに対するセパレータの最大ポア径sの比s/nを1/5〜1/20とすることで、ハイレート特性を損なうことなく、微小短絡を抑止することが可能となる。より好ましくは、不織布基材の最大ポア径nに対するセパレータの最大ポア径sの比s/nが1/6〜1/18である。なお、本発明における最大ポア径とはJIS K 3832に規定された方法に基づき測定された値である。   In the separator carrying the inorganic pigment according to the present invention, the ratio s / n of the separator's maximum pore diameter s to the maximum pore diameter n of the nonwoven fabric substrate is 1/5 to 1/20. Although it is preferable that the maximum pore diameter of the nonwoven fabric base material is large for high-rate characteristics, by increasing the maximum pore diameter, a micro short circuit is likely to occur. By carrying the inorganic pigment, the ratio s / n of the maximum pore diameter s of the separator to the maximum pore diameter n of the nonwoven fabric substrate is set to 1/5 to 1/20, so that the high rate characteristics are not impaired, and a short circuit is achieved. Can be suppressed. More preferably, the ratio s / n of the maximum pore diameter s of the separator to the maximum pore diameter n of the nonwoven fabric substrate is 1/6 to 1/18. The maximum pore diameter in the present invention is a value measured based on a method defined in JIS K3832.

不織布基材の最大ポア径nに対するセパレータの最大ポア径sの比s/nを1/5〜1/20に調節する方法は任意により選択されるが、例えば、以下のような方法が挙げられる。1つ目としては、例えば、不織布基材を構成する繊維を調整する方法がある。この方法では繊維径の選択により、不織布基材の最大ポア径を調整することができ、繊維径を太くすれば不織布基材の最大ポア径を大きく、繊維径を細くすれば不織布基材の最大ポア径を小さくすることが可能である。   A method for adjusting the ratio s / n of the maximum pore diameter s of the separator to the maximum pore diameter n of the nonwoven fabric substrate to 1/5 to 1/20 is arbitrarily selected, and examples thereof include the following methods. . As the first method, for example, there is a method of adjusting the fibers constituting the nonwoven fabric substrate. In this method, the maximum pore diameter of the nonwoven fabric substrate can be adjusted by selecting the fiber diameter. If the fiber diameter is increased, the maximum pore diameter of the nonwoven fabric substrate is increased, and if the fiber diameter is decreased, the maximum pore size of the nonwoven fabric substrate is increased. It is possible to reduce the pore diameter.

2つ目の方法としては、無機顔料の粒子径及び粒子構造を調整する方法がある。この方法では、無機顔料の粒子径を大きくすれば、セパレータの最大ポア径を大きくすることが可能であり、無機顔料の粒子径を小さくすれば、セパレータの最大ポア径を小さくすることが可能である。また、粒子の一次構造、二次構造によってもセパレータの最大ポア径の調節が可能である。なお、本発明における粒子径とはレーザー回折散乱法により測定される平均粒子径(D50)を指す。   As the second method, there is a method of adjusting the particle diameter and particle structure of the inorganic pigment. In this method, the maximum pore diameter of the separator can be increased by increasing the particle diameter of the inorganic pigment, and the maximum pore diameter of the separator can be decreased by decreasing the particle diameter of the inorganic pigment. is there. Also, the maximum pore diameter of the separator can be adjusted by the primary structure and secondary structure of the particles. In addition, the particle diameter in this invention refers to the average particle diameter (D50) measured by a laser diffraction scattering method.

3つ目の方法としては、塗工回数を調整する方法がある。この方法では最終的な塗工量が同一であったとしても、複数回に分けて塗工する、即ち塗工回数を増やすことで、セパレータの最大ポア径を小さくすることが可能である。塗工回数を増やすことでセパレータの最大ポア径が小さくなる理由は明確ではないが、1回の塗工では裏抜けが起きてしまい、被覆しきれないような大きなポアが不織布基材に存在する場合、塗層を重ねることで徐々にポアが小径化し、被覆可能になるためと思われる。   As a third method, there is a method of adjusting the number of times of coating. In this method, even if the final coating amount is the same, it is possible to reduce the maximum pore diameter of the separator by coating in multiple times, that is, by increasing the number of times of coating. The reason why the maximum pore diameter of the separator is reduced by increasing the number of coatings is not clear, but a single coating causes a back-through and there are large pores in the nonwoven fabric base that cannot be covered. In this case, it seems that pores are gradually reduced in diameter by covering the coating layers, so that the coating becomes possible.

4つ目の方法としては、不織布基材、あるいはセパレータにカレンダー処理する方法がある。カレンダー処理によりセパレータの密度が増し、不織布基材あるいはセパレータのポア径を小さくすることが可能である。   As a fourth method, there is a method in which a nonwoven fabric substrate or a separator is calendered. The density of the separator is increased by the calendar process, and the pore diameter of the nonwoven fabric substrate or the separator can be reduced.

これらの方法を適宜組み合わせることで、不織布基材及びセパレータの最大ポア径を調整することができ、不織布基材の最大ポア径nとセパレータの最大ポア径sの比s/nを1/5〜1/20にすることが可能となる。   By appropriately combining these methods, the maximum pore diameter of the nonwoven fabric substrate and the separator can be adjusted, and the ratio s / n of the maximum pore diameter n of the nonwoven fabric substrate and the maximum pore diameter s of the separator is 1/5. It becomes possible to make 1/20.

本発明に係る不織布基材は、従来公知の方法によって製造したものを用いることができる。例えば、スパンボンド法、メルトブロー法、乾式法、湿式法、エレクトロスピニング法などの方法によって製造したものを使用することができる。   What was manufactured by the conventionally well-known method can be used for the nonwoven fabric base material which concerns on this invention. For example, what was manufactured by methods, such as the spun bond method, the melt blow method, the dry method, the wet method, and the electrospinning method, can be used.

本発明において、不織布基材表面の平坦化や最大ポア径及び密度をコントロールする目的で、カレンダー処理や熱カレンダー処理をしても良い。   In the present invention, calendering or thermal calendering may be performed for the purpose of controlling the surface of the nonwoven fabric substrate and controlling the maximum pore diameter and density.

本発明に係る不織布基材としては、目付が5〜30g/mであるのが好ましく、より好ましくは7〜20g/mである。目付を5g/m以上とすることで不織布としての均一性を得やすくなり、また、30g/m以下とすることで金属イオン二次電池セパレータに適した厚みとなる。なお、目付はJIS P 8124に規定された方法に基づく坪量を意味する。また、密度は目付を厚みで除した値である。 As a nonwoven fabric base material which concerns on this invention, it is preferable that a fabric weight is 5-30 g / m < 2 >, More preferably, it is 7-20 g / m < 2 >. By setting the basis weight to 5 g / m 2 or more, it becomes easy to obtain uniformity as a nonwoven fabric, and by setting it to 30 g / m 2 or less, the thickness is suitable for a metal ion secondary battery separator. The basis weight means the basis weight based on the method defined in JIS P 8124. The density is a value obtained by dividing the basis weight by the thickness.

本発明に係る不織布基材の最大ポア径nとしては、5〜30μmであるのが好ましく、より好ましくは7〜25μmである。最大ポア径nを5μm以上とすることでレート特性が得やすくなり、30μm以下とすることで、塗工時塗液の裏抜けが抑制されやすく、ピンホールの発生が抑制されやすくなる。   The maximum pore diameter n of the nonwoven fabric substrate according to the present invention is preferably 5 to 30 μm, more preferably 7 to 25 μm. By setting the maximum pore diameter n to 5 μm or more, rate characteristics are easily obtained, and by setting the maximum pore diameter n to 30 μm or less, the back-through of the coating liquid during coating is easily suppressed, and the occurrence of pinholes is easily suppressed.

本発明に係る無機顔料の粒子径としては0.1〜10.0μmが好ましく用いられ、より好ましくは0.2〜7.5μm、更に好ましくは0.3〜5.0μmである。粒子径0.1μm以上とすることで、塗液の安定性が高くなりやすく、また粒子径10.0μm以下とすることで平坦な塗面が得やすくなる。熱安定性の点から,本発明のセパレータに含有される無機顔料は、セパレータの全固形分中の30〜70質量%であるのが好ましい。   The particle diameter of the inorganic pigment according to the present invention is preferably 0.1 to 10.0 μm, more preferably 0.2 to 7.5 μm, and still more preferably 0.3 to 5.0 μm. By setting the particle size to 0.1 μm or more, the stability of the coating liquid tends to be high, and by setting the particle size to 10.0 μm or less, a flat coating surface can be easily obtained. From the viewpoint of thermal stability, the inorganic pigment contained in the separator of the present invention is preferably 30 to 70% by mass in the total solid content of the separator.

本発明において、無機顔料を不織布基材に担持させる際に接着剤を使用してよい。接着剤としては、ラテックス高分子が好ましく用いられる。具体例としては、例えばスチレン/ブタジエン共重合体、アクリロニトリル/ブタジエン共重合体、アクリル酸メチル/ブタジエン共重合体、アクリロニトリル/ブタジエン/スチレン三元共重合体、ポリ酢酸ビニル、酢酸ビニル/アクリル酸エステル共重合体、エチレン/酢酸ビニル共重合体、ポリアクリル酸エステル、スチレン/アクリル酸エステル共重合体、ポリウレタン等のラテックス高分子が挙げられるが、これらに限定されるものではない。本発明においてはセパレータのハイレート特性の及び塗層強度の点から、塗層中の接着剤量は固形分中2〜15質量%とするのが好ましい。   In the present invention, an adhesive may be used when the inorganic pigment is supported on the nonwoven fabric substrate. As the adhesive, latex polymer is preferably used. Specific examples include, for example, styrene / butadiene copolymers, acrylonitrile / butadiene copolymers, methyl acrylate / butadiene copolymers, acrylonitrile / butadiene / styrene terpolymers, polyvinyl acetate, vinyl acetate / acrylate esters. Examples include, but are not limited to, latex polymers such as copolymers, ethylene / vinyl acetate copolymers, polyacrylates, styrene / acrylate copolymers, and polyurethanes. In the present invention, from the viewpoint of the high rate characteristics of the separator and the strength of the coating layer, the amount of the adhesive in the coating layer is preferably 2 to 15% by mass in the solid content.

本発明においては、発明の効果を損ねない範囲で分散剤、濡れ剤、増粘剤等の各種添加剤を用いることができる。   In the present invention, various additives such as a dispersant, a wetting agent, and a thickener can be used as long as the effects of the invention are not impaired.

本発明において、無機顔料を不織布基材に担持させる方法に特に制限はなく、公知の方法を用いることができるが、例えば、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーター等により塗液を塗工し、乾燥により担持させることができる。   In the present invention, the method for supporting the inorganic pigment on the nonwoven fabric substrate is not particularly limited, and a known method can be used. For example, an air doctor coater, a blade coater, a knife coater, a rod coater, a squeeze coater, and an impregnation coater. The coating liquid can be applied with a gravure coater, kiss roll coater, die coater, reverse roll coater, transfer roll coater, spray coater, etc. and supported by drying.

本発明において、無機顔料を含有する塗層の塗工量としては、5〜30g/mが好ましく、さらに好ましくは10〜20g/mである。塗工量が5g/m以上とすることで、不織布表面を十分に被覆しやすくなり、微小短絡を防止しやすくなる。また、塗工量30g/m以下とすることで、セパレータの厚み上昇を抑えることができやすくなる。 In this invention, as a coating amount of the coating layer containing an inorganic pigment, 5-30 g / m < 2 > is preferable, More preferably, it is 10-20 g / m < 2 >. When the coating amount is 5 g / m 2 or more, it becomes easy to sufficiently cover the nonwoven fabric surface, and it is easy to prevent a micro short circuit. Moreover, it becomes easy to suppress the thickness increase of a separator by setting it as the coating amount of 30 g / m < 2 > or less.

本発明の金属イオン二次電池セパレータにおいて、セパレータの坪量は10〜50g/mが好ましく、より好ましくは、17〜40g/mである。また、セパレータの厚みは10〜50μmが好ましく、より好ましくは15〜40μmである。セパレータの密度としては0.4〜1.2g/cmが好ましく、より好ましくは0.5〜1.0g/cmである。 In the metal ion secondary battery separator of the present invention, the basis weight of the separator is preferably 10 to 50 g / m 2 , and more preferably 17 to 40 g / m 2 . Moreover, 10-50 micrometers is preferable and, as for the thickness of a separator, More preferably, it is 15-40 micrometers. The density of the separator is preferably 0.4 to 1.2 g / cm 3 , more preferably 0.5 to 1.0 g / cm 3 .

本発明の金属イオン二次電池セパレータにおいて、セパレータの最大ポア径sとしては、0.5〜5.0μmであるのが好ましく、より好ましくは1.0〜4.0μmである。最大ポア径sを0.5μm以上とすることでレート特性が得やすくなり、5.0μm以下とすることで、内部短絡が抑制されやすくなる。   In the metal ion secondary battery separator of the present invention, the maximum pore diameter s of the separator is preferably 0.5 to 5.0 μm, more preferably 1.0 to 4.0 μm. By setting the maximum pore diameter s to 0.5 μm or more, rate characteristics can be easily obtained, and by setting the maximum pore diameter s to 5.0 μm or less, an internal short circuit is easily suppressed.

本発明において、塗工、乾燥後、塗工層表面の平坦化や厚み及び最大ポア径をコントロールする目的で、カレンダー処理により金属イオン二次電池セパレータを平滑化しても良い。   In the present invention, after coating and drying, the metal ion secondary battery separator may be smoothed by calendering for the purpose of controlling the surface of the coating layer and controlling the thickness and maximum pore diameter.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部は、特にことわりのない限り、すべて質量基準である。また塗工量は絶乾塗工量である。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples,% and parts are based on mass unless otherwise specified. The coating amount is an absolutely dry coating amount.

不織布基材Aの作製
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維40質量部と繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維20質量部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)40質量部とを一緒に混合し、パルパーにより水中で離解させ、アジテーターによる攪拌のもと、濃度1質量%の均一な抄造用スラリーを調製した。傾斜型抄紙機を用い、この抄造用スラリーを湿式方式で抄き上げ、130℃のシリンダードライヤーによって、バインダー用PET系短繊維を接着させて不織布強度を発現させ、目付12g/mの不織布とした。さらに、この不織布を誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度205℃、線圧100kN/m、処理速度40m/分の条件で熱カレンダー処理し、厚み17μmの不織布基材を作製した。
Production of Non-woven Fabric Base A Fineness 0.06 dtex (average fiber diameter 2.4 μm), oriented crystallized polyethylene terephthalate (PET) short fiber 40 mass parts with fiber length 3 mm and fineness 0.1 dtex (average fiber diameter 3.0 μm) , 20 mass parts of oriented crystallized PET short fibers with a fiber length of 3 mm, fineness of 0.2 dtex (average fiber diameter 4.3 μm), single component binder PET short fibers with a fiber length of 3 mm (softening point 120 ° C., melting point) (230 ° C.) and 40 parts by mass were mixed together, disaggregated in water by a pulper, and a uniform papermaking slurry having a concentration of 1% by mass was prepared under stirring by an agitator. Using an inclined type paper machine, raising the paper making the sheet-forming slurry by a wet method, the cylinder dryer of 130 ° C., and to adhere the PET-based short fibers binders were expressed nonwoven fabric strength, and basis weight 12 g / m 2 nonwoven did. Furthermore, this nonwoven fabric was used under the conditions of a heat roll temperature of 205 ° C., a linear pressure of 100 kN / m, and a processing speed of 40 m / min, using a 1-nip heat calender composed of a dielectric heating jacket roll (metal heat roll) and an elastic roll. A heat calender treatment was performed to prepare a nonwoven fabric substrate having a thickness of 17 μm.

不織布基材Bの作製
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維を60質量部とし、繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維を用いなかった以外は、不織布基材Aと同様にして、厚み16μmの不織布基材Bを作製した。
Fabrication of Non-woven Fabric Base B 60 μ parts of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, and a fineness of 0.1 dtex (average fiber diameter of 3. 0 μm), a nonwoven fabric substrate B having a thickness of 16 μm was prepared in the same manner as the nonwoven fabric substrate A, except that the oriented crystallized PET short fibers having a fiber length of 3 mm were not used.

不織布基材Cの作製
繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)の代わりに繊度0.8dtex(平均繊維径10.4μm)、繊維長5mmの芯鞘型バインダー用PP/PE系短繊維(芯部融点165℃、鞘部融点135℃)を用い、熱カレンダー処理の代わりに線圧200kN/mにてカレンダー処理した以外は、不織布基材Aと同様にして、厚み20μmの不織布基材Cを作製した。
Fabrication of Non-woven Fabric Base C Fineness of 0.8 dtex instead of PET short fibers for single component binder (softening point 120 ° C., melting point 230 ° C.) having a fineness of 0.2 dtex (average fiber diameter 4.3 μm) and a fiber length of 3 mm PP / PE short fibers for core-sheath binders (average fiber diameter 10.4 μm) and fiber length 5 mm (core melting point 165 ° C., sheath melting point 135 ° C.), linear pressure 200 kN / instead of thermal calendering A nonwoven fabric substrate C having a thickness of 20 μm was produced in the same manner as the nonwoven fabric substrate A except that the calendar treatment was performed with m.

塗液Aの作製
無機顔料として、平均粒子径2.3μm、脱水温度500℃のベーマイト100部を、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩0.3%水溶液120部に分散し、よく攪拌してベーマイト分散液を作製した。次いで、その1質量%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩0.5%水溶液200部を混合、攪拌し、更に、接着剤として、45%カルボキシ変性スチレン/ブタジエン共重合体のラテックス高分子10部を混合、攪拌して、塗液を作製した。
Preparation of Coating Liquid A As an inorganic pigment, 100 parts of boehmite having an average particle diameter of 2.3 μm and a dehydration temperature of 500 ° C., a 1% by weight aqueous solution of a 0.3% aqueous solution of carboxymethyl cellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. Dispersed in 120 parts and stirred well to prepare a boehmite dispersion. Subsequently, 200 parts of a 0.5% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1% by mass aqueous solution was mixed and stirred, and a 45% carboxy-modified styrene / butadiene copolymer was used as an adhesive. 10 parts of the latex polymer was mixed and stirred to prepare a coating solution.

塗液Bの作製
無機顔料として平均粒子径2.3μm、脱水温度500℃のベーマイト50部と平均粒子径0.4μm、脱水温度500℃のベーマイト50部を混合して用いた以外は塗液Aと同様にして塗液Bを作製した。
Preparation of Coating Liquid B Coating liquid A was used except that 50 parts of boehmite having an average particle size of 2.3 μm and a dehydration temperature of 500 ° C. and 50 parts of boehmite having an average particle diameter of 0.4 μm and a dehydration temperature of 500 ° C. were used as inorganic pigments. A coating solution B was prepared in the same manner as described above.

塗液Cの作製
無機顔料として平均粒子径0.4μm、脱水温度500℃のベーマイト100部を用いた以外は塗液Aと同様にして塗液Cを作製した。
Preparation of coating liquid C Coating liquid C was prepared in the same manner as coating liquid A, except that 100 parts of boehmite having an average particle size of 0.4 μm and a dehydration temperature of 500 ° C. was used as the inorganic pigment.

塗液Dの作製
無機顔料として平均粒子径2.5μm、脱水温度200℃の水酸化アルミニウム100部を用いた以外は塗液Aと同様にして塗液Dを作製した。
Preparation of coating liquid D Coating liquid D was prepared in the same manner as in coating liquid A, except that 100 parts of aluminum hydroxide having an average particle size of 2.5 μm and a dehydration temperature of 200 ° C. was used as the inorganic pigment.

セパレータAの作製
不織布基材Aのシリンダードライヤー側に接した面上に、塗液Aを絶乾塗工量が8g/mとなるように塗工、乾燥した後、更に同じ塗工面に再度塗液Aを絶乾塗工量が8g/mとなるように塗工、乾燥してセパレータAを作製した。
Production of Separator A On the surface of the nonwoven fabric substrate A that is in contact with the cylinder dryer side, the coating liquid A is applied and dried so that the dry coating amount is 8 g / m 2, and then again on the same coated surface. The separator A was produced by coating and drying the coating liquid A so that the dry coating amount was 8 g / m 2 .

セパレータBの作製
不織布基材Aのシリンダードライヤー側に接した面上に、塗液Bを絶乾塗工量が16g/mとなるように塗工、乾燥してセパレータBを作製した。
Production of Separator B On the surface of the nonwoven fabric substrate A in contact with the cylinder dryer, the coating liquid B was applied and dried so that the dry coating amount was 16 g / m 2 to produce a separator B.

セパレータCの作製
不織布基材Aのシリンダードライヤー側に接した面上に、塗液Aを絶乾塗工量が8g/mとなるように塗工、乾燥した後、更に同じ塗工面に塗液Cを絶乾塗工量が8g/mとなるように塗工、乾燥してセパレータCを作製した。
Preparation of Separator C On the surface of the nonwoven fabric substrate A that is in contact with the cylinder dryer side, the coating liquid A is applied and dried so that the dry coating amount is 8 g / m 2, and then applied to the same coated surface. The separator C was produced by coating and drying the liquid C so that the completely dry coating amount was 8 g / m 2 .

セパレータDの作製
不織布基材Aの代わりに不織布基材Bを用いた以外はセパレータAと同様にしてセパレータDを作製した。
Production of Separator D A separator D was produced in the same manner as the separator A except that the nonwoven fabric substrate B was used instead of the nonwoven fabric substrate A.

セパレータEの作製
不織布基材Aのシリンダードライヤー側に接した面上に、塗液Aを絶乾塗工量が16g/mとなるように塗工、乾燥してセパレータEを作製した。
Production of Separator E On the surface of the nonwoven fabric substrate A in contact with the cylinder dryer side, the coating liquid A was applied and dried so that the dry coating amount was 16 g / m 2 , thereby producing a separator E.

セパレータFの作製
不織布基材Aのシリンダードライヤー側に接した面上に、塗液Cを絶乾塗工量が8g/mとなるように塗工、乾燥した後、更に同じ塗工面に塗液Cを絶乾塗工量が8g/mとなるように塗工、乾燥してセパレータFを作製した。
Preparation of Separator F On the surface of the nonwoven fabric substrate A in contact with the cylinder dryer side, the coating liquid C was applied and dried so that the dry coating amount was 8 g / m 2, and then applied to the same coated surface. Liquid C was applied and dried so that the dry coating amount was 8 g / m 2 to prepare separator F.

セパレータGの作製
不織布基材Aのシリンダードライヤー側に接した面上に、塗液Dを絶乾塗工量が8g/mとなるように塗工、乾燥した後、更に同じ塗工面に塗液Dを絶乾塗工量が8g/mとなるように塗工、乾燥してセパレータGを作製した。
Preparation of Separator G On the surface of the nonwoven fabric substrate A in contact with the cylinder dryer side, the coating liquid D was applied and dried so that the dry coating amount was 8 g / m 2, and then applied to the same coated surface. The separator D was produced by coating and drying the liquid D so that the absolute dry coating amount was 8 g / m 2 .

セパレータHの作製
不織布基材Cのシリンダードライヤー側に接した面上に、塗液Aを絶乾塗工量が8g/mとなるように塗工、乾燥した後、更に同じ塗工面に塗液Aを絶乾塗工量が8g/mとなるように塗工、乾燥してセパレータHを作製した。
Production of Separator H On the surface of the nonwoven fabric substrate C in contact with the cylinder dryer side, coating liquid A was applied and dried so that the dry coating amount was 8 g / m 2, and then applied to the same coated surface. The separator A was prepared by coating and drying the liquid A so that the dry coating amount was 8 g / m 2 .

<評価> <Evaluation>

[最大ポア径]
各不織布基材及び各セパレータについて、PMI社製パームポロメーターCFP−1500Aを用いて最大ポア径を測定した。結果は表1に示した。
[Maximum pore diameter]
About each nonwoven fabric base material and each separator, the maximum pore diameter was measured using the palm porometer CFP-1500A by PMI. The results are shown in Table 1.

[耐熱性]
作製した各セパレータから50mm×50mmのシートサンプルを切り出し、シートサンプルのCD(クロスディレクション、横方向)辺をクリップで固定して耐熱ガラス板に挟んで、150℃及び180℃の恒温槽中に1時間保持した後に取り出してサンプルの幅を測定し、加熱前後での収縮率を算出した。評価は以下に従った。
◎:収縮率が2%未満でほとんど収縮は見られない。
○:収縮率が2〜5%で実用上問題ないレベルである。
△:収縮率が5〜8%で局所過熱による収縮がやや懸念される。
×:収縮率が8%以上で局所過熱時収縮が懸念される。
[Heat-resistant]
A sheet sample of 50 mm × 50 mm is cut out from each separator produced, and the CD (cross direction, lateral direction) side of the sheet sample is fixed with a clip and sandwiched between heat resistant glass plates, and 1 in a thermostatic chamber at 150 ° C. and 180 ° C. After holding for a period of time, the sample was taken out, the width of the sample was measured, and the shrinkage ratio before and after heating was calculated. The evaluation was as follows.
A: The shrinkage rate is less than 2% and almost no shrinkage is observed.
○: The shrinkage rate is 2 to 5%, which is a practically acceptable level.
(Triangle | delta): A shrinkage rate is 5 to 8%, and there is some concern about shrinkage by local overheating.
X: The shrinkage rate is 8% or more, and there is a concern about shrinkage during local overheating.

[初回充放電時のクーロン効率]
各セパレータを用い、正極活物質がマンガン酸リチウム、負極活物質が人造黒鉛、電解液がリチウムヘキサフルオロフォスフェートのエチレンカーボネートとジエチルカーボネートとジメチルカーボネートの1/1/1(容量比)混合溶媒溶液(1mol/L)である設計容量が100mAhのラミネート型リチウムイオン二次電池を作製した。
[Coulomb efficiency during initial charge / discharge]
Using each separator, the positive electrode active material is lithium manganate, the negative electrode active material is artificial graphite, the electrolyte is a lithium hexafluorophosphate ethylene carbonate / diethyl carbonate / dimethyl carbonate 1/1/1 (volume ratio) mixed solvent solution A laminate type lithium ion secondary battery having a design capacity of 100 mAh (1 mol / L) was produced.

その後、作製した各電池について、100mA定電流充電→4.4V定電圧充電→充電電流10mAになったら100mAで2.8Vまで定電流放電を行い、充電容量及び放電容量を測定し、(クーロン効率)=(放電容量)/(充電容量)を算出した。クーロン効率が小さいものは微小短絡が発生していると考えられる。   After that, for each battery manufactured, 100 mA constant current charge → 4.4 V constant voltage charge → charge current 10 mA, 100 mA, constant current discharge to 2.8 V, charge capacity and discharge capacity are measured, (Coulomb efficiency) ) = (Discharge capacity) / (charge capacity). Those with low Coulomb efficiency are considered to have a micro short circuit.

[電池のハイレート特性]
作製した各電池について、100mA定電流充電→4.2V定電圧充電→充電電流10mAになったら100mAで2.8Vまで定電流放電→100mA定電流充電→4.2V定電圧充電→充電電流10mAになったら3000mAで2.8Vまで定電流放電を行い、[(300mAにおける放電容量)/(100mAにおける放電容量)]×100(%)として放電容量比を求めハイレート特性とした。
[High-rate battery characteristics]
For each battery produced, 100 mA constant current charge → 4.2 V constant voltage charge → charge current 10 mA, 100 mA constant current discharge up to 2.8 V → 100 mA constant current charge → 4.2 V constant voltage charge → charge current 10 mA Then, constant current discharge was performed at 3000 mA up to 2.8 V, and the discharge capacity ratio was determined as [(discharge capacity at 300 mA) / (discharge capacity at 100 mA)] × 100 (%) to obtain high rate characteristics.

Figure 2014175075
Figure 2014175075

表1から明らかなように、不織布基材の構成繊維の融点が200℃以上であり、且つ該無機顔料の脱水温度が250℃以上であり、また、不織布基材の最大ポア径nに対する該セパレータの最大ポア径sの比s/nが1/5〜1/20である本発明のセパレータは、耐熱性に特に優れ、初回充放電時のクーロン効率及びハイレート特性に優れる。   As is clear from Table 1, the melting point of the constituent fibers of the nonwoven fabric base material is 200 ° C. or higher, the dehydration temperature of the inorganic pigment is 250 ° C. or higher, and the separator with respect to the maximum pore diameter n of the nonwoven fabric base material The separator of the present invention in which the ratio s / n of the maximum pore diameter s is 1/5 to 1/20 is particularly excellent in heat resistance, and is excellent in Coulomb efficiency and high rate characteristics at the first charge / discharge.

これに対し、不織布基材の最大ポア径nに対する該セパレータの最大ポア径sの比s/nが1/5超であるセパレータEでは、クーロン効率が低くなり、該比が1/20未満であるセパレータFでは、ハイレート特性が低くなった。また、無機顔料の脱水温度が250℃未満であるセパレータGでは、耐熱性が低くなり、不織布基材の構成繊維の融点が200℃未満であるセパレータHでも、耐熱性が低くなった。   On the other hand, in the separator E in which the ratio s / n of the maximum pore diameter s of the separator to the maximum pore diameter n of the nonwoven fabric substrate is more than 1/5, the Coulomb efficiency is low, and the ratio is less than 1/20. In some separators F, the high rate characteristics were low. Further, the separator G in which the dehydration temperature of the inorganic pigment was less than 250 ° C. had low heat resistance, and the separator H in which the melting point of the constituent fibers of the nonwoven fabric base material was less than 200 ° C. also had low heat resistance.

本発明の金属イオン二次電池セパレータは、金属イオン二次電池用途以外にも、金属イオンポリマー電池、金属イオンキャパシター等にも利用できる。   The metal ion secondary battery separator of the present invention can be used for metal ion polymer batteries, metal ion capacitors and the like in addition to metal ion secondary battery applications.

Claims (1)

不織布基材に無機顔料を担持させた金属イオン二次電池セパレータにおいて、該不織布基材の構成繊維の融点が200℃以上であり、且つ該無機顔料の脱水温度が250℃以上であり、また、該不織布基材の最大ポア径nに対する該セパレータの最大ポア径sの比s/nが1/5〜1/20であることを特徴とする金属イオン二次電池セパレータ。   In the metal ion secondary battery separator in which an inorganic pigment is supported on a nonwoven fabric substrate, the melting point of the constituent fibers of the nonwoven fabric substrate is 200 ° C. or higher, and the dehydration temperature of the inorganic pigment is 250 ° C. or higher. A metal ion secondary battery separator, wherein a ratio s / n of the maximum pore diameter s of the separator to the maximum pore diameter n of the nonwoven fabric substrate is 1/5 to 1/20.
JP2013044148A 2013-03-06 2013-03-06 Metal ion secondary battery separator Active JP6018526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044148A JP6018526B2 (en) 2013-03-06 2013-03-06 Metal ion secondary battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044148A JP6018526B2 (en) 2013-03-06 2013-03-06 Metal ion secondary battery separator

Publications (3)

Publication Number Publication Date
JP2014175075A true JP2014175075A (en) 2014-09-22
JP2014175075A5 JP2014175075A5 (en) 2015-08-27
JP6018526B2 JP6018526B2 (en) 2016-11-02

Family

ID=51696116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044148A Active JP6018526B2 (en) 2013-03-06 2013-03-06 Metal ion secondary battery separator

Country Status (1)

Country Link
JP (1) JP6018526B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288880A (en) * 2002-01-28 2003-10-10 Denso Corp Separator for battery and battery
JP2006507635A (en) * 2002-11-26 2006-03-02 デグサ アクチエンゲゼルシャフト Separator with asymmetric porous structure for electrochemical cells
JP2008503049A (en) * 2004-07-07 2008-01-31 エルジー・ケム・リミテッド Organic-inorganic composite porous film and electrochemical device using the same
JP2011154937A (en) * 2010-01-28 2011-08-11 Mitsubishi Paper Mills Ltd Porous separator film
JP2011238427A (en) * 2010-05-10 2011-11-24 Hitachi Maxell Energy Ltd Nonaqueous electrolyte battery
JP2012160279A (en) * 2011-01-31 2012-08-23 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288880A (en) * 2002-01-28 2003-10-10 Denso Corp Separator for battery and battery
JP2006507635A (en) * 2002-11-26 2006-03-02 デグサ アクチエンゲゼルシャフト Separator with asymmetric porous structure for electrochemical cells
JP2008503049A (en) * 2004-07-07 2008-01-31 エルジー・ケム・リミテッド Organic-inorganic composite porous film and electrochemical device using the same
JP2011154937A (en) * 2010-01-28 2011-08-11 Mitsubishi Paper Mills Ltd Porous separator film
JP2011238427A (en) * 2010-05-10 2011-11-24 Hitachi Maxell Energy Ltd Nonaqueous electrolyte battery
JP2012160279A (en) * 2011-01-31 2012-08-23 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
化学大辞典, vol. 第1版, JPN6016011149, 1989, pages 865, ISSN: 0003396546 *
表面技術協会 第99回講演大会 講演要旨集, JPN6015030583, 1999, pages 116 - 117, ISSN: 0003396547 *

Also Published As

Publication number Publication date
JP6018526B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5225173B2 (en) Separator for lithium ion secondary battery
JP6542343B2 (en) Non-woven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
JP5829557B2 (en) Method for producing metal ion secondary battery separator
US9614249B2 (en) Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6292625B2 (en) Lithium ion battery separator
JP2016502736A (en) Low shrinkage single layer lithium ion battery separator
JP2011154937A (en) Porous separator film
JP2014186857A (en) Separator base material for lithium ion secondary batteries, and separator for lithium ion secondary batteries
JP5841510B2 (en) Metal ion secondary battery separator coating liquid and metal ion secondary battery separator
JP2012155941A (en) Separator for electrochemical element, and electrochemical element using the same
JP2013084367A (en) Coating liquid for lithium ion battery separator, and lithium ion battery separator
JP5876375B2 (en) Metal ion secondary battery separator
JP7156819B2 (en) Base material for lithium ion battery separator and lithium ion battery separator
JP6018526B2 (en) Metal ion secondary battery separator
JP6765277B2 (en) Lithium ion battery
JP2012190622A (en) Separator for electrochemical element, and electrochemical element including the same
JP2019175703A (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP6581533B2 (en) Lithium ion battery separator
JP5850687B2 (en) Electrochemical element separator and electrochemical element
JP2012134135A (en) Base material for lithium secondary battery, and separator for lithium secondary battery
JP2018206671A (en) Lithium ion battery separator substrate, and lithium ion battery separator
JP2019212490A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP5690222B2 (en) Lithium secondary battery substrate and lithium secondary battery separator
JP2022133630A (en) Method for producing separator for lithium ion secondary battery
JP2014154527A (en) Lithium ion battery separator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160930

R150 Certificate of patent or registration of utility model

Ref document number: 6018526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250