JP2014172978A - Copolymerized polyimide precursor and copolymerized polyimide - Google Patents

Copolymerized polyimide precursor and copolymerized polyimide Download PDF

Info

Publication number
JP2014172978A
JP2014172978A JP2013046054A JP2013046054A JP2014172978A JP 2014172978 A JP2014172978 A JP 2014172978A JP 2013046054 A JP2013046054 A JP 2013046054A JP 2013046054 A JP2013046054 A JP 2013046054A JP 2014172978 A JP2014172978 A JP 2014172978A
Authority
JP
Japan
Prior art keywords
formula
unit structure
structure represented
polyimide precursor
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013046054A
Other languages
Japanese (ja)
Inventor
Hirotaka Nozaki
裕貴 野嵜
Kazuaki Ebisawa
和明 海老澤
Atsushi Izumi
篤士 和泉
Yumiko Yamanoi
裕美子 山野井
Shingo Yoshida
真吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2013046054A priority Critical patent/JP2014172978A/en
Publication of JP2014172978A publication Critical patent/JP2014172978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide resin that maintains light transmittance and has excellent heat resistance.SOLUTION: A copolymerized polyimide precursor comprises a unit structure represented by the formula (1), and a unit structure represented by the formula (2).

Description

本発明は、共重合ポリイミド前駆体および共重合ポリイミドに関するものである。 The present invention relates to a copolymerized polyimide precursor and a copolymerized polyimide.

ポリイミド樹脂は、高い機械的強度、耐熱性、絶縁性、耐溶剤性を有しているため、液晶表示素子や半導体における保護材料、絶縁材料、カラーフィルタ等の電子材料用薄膜として広く用いられている。 Polyimide resin has high mechanical strength, heat resistance, insulation, and solvent resistance, so it is widely used as a thin film for electronic materials such as protective materials, insulation materials, and color filters in liquid crystal display elements and semiconductors. Yes.

しかし、従来の全芳香族ポリイミド樹脂は、濃い琥珀色を呈して着色するため、高い透明性が要求される電子デバイス分野の厚膜においては問題が生じる。特許文献1は、ポリイミドフィルムの光透過性を改善し、特許文献2は、レジスト用途においてポリイミドの耐熱性及び低誘電率を改善している。 However, since the conventional wholly aromatic polyimide resin is colored with a deep amber color, there is a problem in the thick film of the electronic device field that requires high transparency. Patent Document 1 improves the light transmittance of a polyimide film, and Patent Document 2 improves the heat resistance and low dielectric constant of polyimide in resist applications.

しかし、さらに液晶ディスプレイやLED分野等においては、該用途に適したプロセスが適用でき、優れた光透過性を有し、耐熱性に優れるポリイミドが求められていた。 However, in the field of liquid crystal displays and LEDs, a process suitable for the application can be applied, and polyimide having excellent light transmittance and excellent heat resistance has been demanded.

特開2010−100698号公報JP 2010-1000069 A 国際公開第2007/111168号公報International Publication No. 2007/111168

本発明の目的は、光透過度を維持しつつ、かつ耐熱性に優れるポリイミド樹脂を提供することにある。 The objective of this invention is providing the polyimide resin which is excellent in heat resistance, maintaining light transmittance.

このような目的は、下記(1)〜(7)の本発明により達成される。
(1)式(1)で表される単位構造と、式(2)で表される単位構造とを有する共重合ポリイミド前駆体。


(2)式(1)で表される単位構造と、式(2)で表される単位構造との比率[式(1)の数/式(2)の数]が90/10〜99.9/0.01であることを特徴とする(1)に記載の共重合ポリイミド前駆体。
(3)溶剤中で、下記式(3)及び式(4)で表されるジアミン化合物、及び式(5)で表されるテトラカルボン酸化合物を重合反応させることにより得られる(1)または(2)に記載の共重合ポリイミド前駆体。




(4)(1)乃至(3)のいずれか1項に記載の共重合ポリイミド前駆体を重合反応させることにより得られる、式(6)で表される単位構造と、式(7)で表される単位構造を有する共重合ポリイミド。


(5)式(6)で表される単位構造と、式(7)で表される単位構造との比率[式(6)の数/式(7)の数]が90/10〜99.9/0.01であることを特徴とする(4)に記載の共重合ポリイミド。
(6)膜厚10μmのフィルムにした時のイエローインデックスが4.0未満であることを特徴とする(4)または(5)のいずれかに記載の共重合ポリイミド。
(7)膜厚10μmのフィルムにした時の動的粘弾性測定において、tanδの極大点から求めたガラス転移温度が400℃以上であることを特徴とする(4)乃至(6)のいずれか1項に記載の共重合ポリイミド。
Such an object is achieved by the present inventions (1) to (7) below.
(1) A copolymer polyimide precursor having a unit structure represented by the formula (1) and a unit structure represented by the formula (2).


(2) The ratio of the unit structure represented by formula (1) and the unit structure represented by formula (2) [number of formula (1) / number of formula (2)] is 90/10 to 99.99. The copolymer polyimide precursor according to (1), which is 9 / 0.01.
(3) (1) or (1) obtained by polymerizing a diamine compound represented by the following formula (3) and formula (4) and a tetracarboxylic acid compound represented by formula (5) in a solvent. Copolymer polyimide precursor according to 2).




(4) A unit structure represented by formula (6) obtained by polymerizing the copolymerized polyimide precursor according to any one of (1) to (3), and represented by formula (7) Copolymer polyimide having a unit structure.


(5) The ratio of the unit structure represented by formula (6) and the unit structure represented by formula (7) [number of formula (6) / number of formula (7)] is 90/10 to 99.99. The copolymerized polyimide according to (4), which is 9 / 0.01.
(6) The copolymerized polyimide according to any one of (4) and (5), wherein the yellow index when the film is 10 μm thick is less than 4.0.
(7) Any of (4) to (6), wherein the glass transition temperature obtained from the maximum point of tan δ is 400 ° C. or higher in dynamic viscoelasticity measurement when a film having a thickness of 10 μm is formed. The copolymerized polyimide according to item 1.

本発明によれば、光透過度が高く、かつ耐熱性に優れるポリイミド樹脂を提供することが可能となる。 According to the present invention, it is possible to provide a polyimide resin having high light transmittance and excellent heat resistance.

以下、本発明の光透過度が高く、かつ耐熱性に優れるポリイミド樹脂を提供する共重合ポリイミド前駆体および共重合ポリイミドについて好適実施形態に基づいて詳細に説明するが、これらは本発明の実施形態の一例であり、これらの内容のみに限定されない。 Hereinafter, the copolymer polyimide precursor and the copolymer polyimide that provide a polyimide resin having high light transmittance and excellent heat resistance according to the present invention will be described in detail based on preferred embodiments, which are embodiments of the present invention. It is an example and is not limited only to these contents.

本実施形態によれば、共重合ポリイミド前駆体は、ジアミン化合物とテトラカルボン酸化合物を重合反応して得られる下記の式(1)および式(2)で表わされる単位構造で構成されたものであり、この構成で作製される共重合体ポリイミドワニスは、高い透明性と耐熱性に優れた前駆体を有するためポリイミド共重合体を生成することができる。
このような共重合ポリイミド前駆体の作製方法には2つの方法がある。


According to this embodiment, the copolymer polyimide precursor is composed of a unit structure represented by the following formula (1) and formula (2) obtained by polymerization reaction of a diamine compound and a tetracarboxylic acid compound. In addition, the copolymer polyimide varnish produced with this configuration has a precursor having high transparency and excellent heat resistance, and therefore can produce a polyimide copolymer.
There are two methods for producing such a copolymerized polyimide precursor.


<共重合ポリイミド前駆体の説明1>
まず、第1の共重合ポリイミド前駆体の作製方法について述べる。
本発明の共重合ポリイミド前駆体は、溶剤中で、下記式(3)及び式(4)で表されるジアミン化合物、及び式(5)で表されるテトラカルボン酸無水物を重合反応させることにより得られる。




<Description 1 of copolymerized polyimide precursor>
First, a method for producing the first copolymer polyimide precursor will be described.
The copolymerized polyimide precursor of the present invention is obtained by polymerizing a diamine compound represented by the following formulas (3) and (4) and a tetracarboxylic acid anhydride represented by the formula (5) in a solvent. Is obtained.




本発明の共重合ポリイミド前駆体は、式(3)及び式(4)で表されるジアミン化合物、
及び式(5)で表されるテトラカルボン酸無水物を同時に有する溶液を重合反応して得られ、ワニス状で得られるものである。
The copolymer polyimide precursor of the present invention is a diamine compound represented by formula (3) and formula (4),
And a solution having a tetracarboxylic acid anhydride represented by the formula (5) at the same time as a polymerization reaction, and obtained in a varnish form.

共重合ポリイミド前駆体の重合反応は、まず反応温度は、通常−20〜150℃、好ましくは−5〜100℃の任意の温度を選択することができる。 As for the polymerization reaction of the copolymerized polyimide precursor, first, the reaction temperature can be selected from -20 to 150 ° C, preferably -5 to 100 ° C.

また、共重合ポリイミド前駆体の合成に用いられる溶媒としては、例えば、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)、m−クレゾール、N,N−ジメチルホルムアミド(DMF)、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ−ブチロラクトン等が挙げられ、特にN,N−ジメチルアセトアミド(DMAc)を好適に用いことができる。これらは、単独で使用しても、混合して使用してもよい。さらに、共重合ポリイミド前駆体を溶解しない溶媒であっても、均一な溶液が得られる範囲内で上記溶媒に加えて使用してもよい。 Examples of the solvent used for the synthesis of the copolymerized polyimide precursor include N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), m-cresol, N, N-dimethylformamide ( DMF), N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, γ-butyrolactone, etc., and particularly preferably N, N-dimethylacetamide (DMAc) is used. it can. These may be used alone or in combination. Furthermore, even if it is a solvent which does not melt | dissolve a copolymer polyimide precursor, you may use it in addition to the said solvent within the range in which a uniform solution is obtained.

その混合割合は式(1)で表される単位構造と、式(2)で表される単位構造との比率[式(1)の数/式(2)の数]が90/10〜99.9/0.01であることが好ましい。この比率の共重合ポリイミド前駆体を用いることで、光透過度が高く、かつ耐熱性に優れるという二つの特性を併せ持つ共重合ポリイミドを簡便に作成することが可能となる。具体的には前記比率[式(1)の数/式(2)の数]は、式(3)及び式(4)の仕込み比率から算出することができる。 The mixing ratio of the unit structure represented by formula (1) and the unit structure represented by formula (2) [number of formula (1) / number of formula (2)] is 90/10 to 99. .9 / 0.01 is preferable. By using a copolymerized polyimide precursor of this ratio, it is possible to easily prepare a copolymerized polyimide having both the characteristics of high light transmittance and excellent heat resistance. Specifically, the ratio [number of formulas (1) / number of formulas (2)] can be calculated from the charging ratios of formulas (3) and (4).

<共重合ポリイミド前駆体の説明2>
次に、もう一つの共重合ポリイミド前駆体の作製方法としては、下記の式(1)および式(2)で表わされる単位構造を別々に合成した後、混合させることで共重合体ポリイミドワニスを作製することができる



前記二種の単位構造の作製について述べる。
まず、式(1)で表わされる単位構造は、下記の式(5)であらわされるテトラカルボン酸と、式(3)であらわされるジアミン化合物を用い共重合させたポリイミド前駆体である。

<Description 2 of copolymerized polyimide precursor>
Next, as another method for preparing a copolymerized polyimide precursor, unit structures represented by the following formulas (1) and (2) are separately synthesized, and then mixed to obtain a copolymer polyimide varnish. Can be made



The production of the two types of unit structures will be described.
First, the unit structure represented by the formula (1) is a polyimide precursor copolymerized using a tetracarboxylic acid represented by the following formula (5) and a diamine compound represented by the formula (3).

もう一方の式(2)であらわされる単位構造は、下記の式(5)であらわされるテトラカルボン酸無水物と、式(4)であらわされるジアミン化合物を用い共重合させたポリイミド前駆体である。

The other unit structure represented by the formula (2) is a polyimide precursor copolymerized using a tetracarboxylic acid anhydride represented by the following formula (5) and a diamine compound represented by the formula (4). .

<重合方法>
前記二種のポリイミド前駆体の重合反応は、まず反応温度は、通常−20〜150℃、好ましくは−5〜100℃の任意の温度を選択することができる。
また、ポリイミド前駆体の合成に用いられる溶媒としては、例えば、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)、m−クレゾール、N,N−ジメチルホルムアミド(DMF)、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、
γ−ブチロラクトン等が挙げられ、特にN,N−ジメチルアセトアミド(DMAc)を好適に用いことができる。これらは、単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解しない溶媒であっても、均一な溶液が得られる範囲内で上記溶媒に加えて使用してもよい。
<Polymerization method>
In the polymerization reaction of the two kinds of polyimide precursors, first, the reaction temperature can be selected from -20 to 150 ° C, preferably -5 to 100 ° C.
Examples of the solvent used for the synthesis of the polyimide precursor include N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), m-cresol, N, N-dimethylformamide (DMF). N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethylphosphoramide,
Examples thereof include γ-butyrolactone, and N, N-dimethylacetamide (DMAc) can be particularly preferably used. These may be used alone or in combination. Furthermore, even if it is a solvent which does not melt | dissolve a polyimide precursor, you may use it in addition to the said solvent within the range in which a uniform solution is obtained.

本発明の共重合ポリイミド前駆体前記は、前述のポリイミド前駆体式(1)と式(2)で表される単位構造とを比率[式(1)の数/式(2)の数]が90/10〜99.9/0.01で混合したものであることが好ましく、この比率の共重合ポリイミド前駆体を用いることで、光透過度が高く、かつ耐熱性に優れる共重合ポリイミドを簡便に作成することが可能となる。 Copolymerized polyimide precursor of the present invention The ratio of the above-mentioned polyimide precursor formula (1) and unit structure represented by formula (2) is 90 [number of formula (1) / number of formula (2)]. / 10 to 99.9 / 0.01 is preferable. By using a copolymer polyimide precursor of this ratio, a copolymer polyimide having high light transmittance and excellent heat resistance can be easily obtained. It becomes possible to create.

<共重合ポリイミド>
本発明の共重合体ポリイミドは、上記の共重合ポリイミド前駆体をさらに重合反応させることにより得られる、式(6)で表される単位構造と、式(7)で表される単位構造を有する共重合ポリイミドである。


<Copolymerized polyimide>
The copolymer polyimide of the present invention has a unit structure represented by the formula (6) and a unit structure represented by the formula (7), which are obtained by further polymerizing the copolymer polyimide precursor. It is a copolymerized polyimide.


本発明のポリイミド共重合体は、共重合ポリイミド前駆体、式(1)で表される単位構造と、式(2)で表される単位構造との比率が[式(1)の数/式(2)の数]が90/10〜99.9/0.01であったことから、その比率がそのまま保存され[式(6)の数/式(7)の数]とすることができる。 In the polyimide copolymer of the present invention, the ratio of the copolymer polyimide precursor, the unit structure represented by the formula (1) and the unit structure represented by the formula (2) is [number of formulas (1) / formula Since the number of (2)] was 90/10 to 99.9 / 0.01, the ratio was preserved as it was and could be [number of formula (6) / number of formula (7)]. .

<共重合ポリイミドの作製>
具体的な共重合体ポリイミドは、以下の方法で作製することができる。
すなわち、先に作製した共重合ポリイミド前駆体ワニスを、基板上に塗布する工程、乾燥し溶媒を除去する工程、さらに昇温して熱イミド化する工程を経ることによって得ることができる。
<Preparation of copolymerized polyimide>
A specific copolymer polyimide can be produced by the following method.
That is, it can be obtained by applying the previously prepared copolymerized polyimide precursor varnish on the substrate, drying and removing the solvent, and further heating and imidizing.

共重合ポリイミド前駆体ワニスを、基板上に塗布する工程で用いる基板は特に限定するものではないが、ワニスに含まれる溶媒に侵されることがないように、例えば、ガラス基板
、シリコン基板(シリコンウェハ等)、または金属基板等が適しており、特にガラス基板が好適に使用される。
The substrate used in the step of applying the copolymerized polyimide precursor varnish on the substrate is not particularly limited. For example, a glass substrate or a silicon substrate (silicon wafer) is used so as not to be affected by the solvent contained in the varnish. Etc.), or a metal substrate is suitable, and a glass substrate is particularly preferably used.

さらに、共重合ポリイミド前駆体ワニスを塗布する前に、減圧化で脱泡させて用いることで気泡による欠損が生じることを抑制することができる。 Furthermore, before applying the copolymerized polyimide precursor varnish, it is possible to suppress the occurrence of defects due to bubbles by degassing under reduced pressure.

塗布作業の方法は、特に限定しない。基板上に共重合ポリイミド前駆体ワニスが塗布されればそれで良い The method of application | coating operation | work is not specifically limited. If the copolymerized polyimide precursor varnish is coated on the substrate, that's fine.

次に、乾燥し溶媒を除去する工程であるが、これに続く昇温して熱イミド化する工程を併せて行うことも可能である。
例として、真空下又は不活性ガス存在下で、開始時は室温以上で1時間以上加温、途中150℃〜200℃で1時間以上加温し、最終的に250℃以上で1時間以上することで、乾燥、および熱イミド化ができる。
使用する不活性ガスは、例えば、窒素、アルゴン等を使用することができる。
具体的には、真空下で、80℃で1時間、150℃で1時間、200℃で1時間、次いで最終的に300℃で1時間と段階的に昇温することで溶媒除去と熱イミド化を併せて行うことができる。
Next, although it is the process of drying and removing a solvent, it is also possible to perform the process which heats up and heat imidizes subsequent to this.
For example, in a vacuum or in the presence of an inert gas, at the beginning, warm at room temperature or higher for 1 hour or longer, heat at 150 ° C to 200 ° C for 1 hour or longer, and finally at 250 ° C or higher for 1 hour or longer. Thus, drying and thermal imidization can be performed.
As the inert gas used, for example, nitrogen, argon, or the like can be used.
Specifically, under vacuum, solvent removal and thermal imide are carried out by raising the temperature stepwise at 80 ° C. for 1 hour, 150 ° C. for 1 hour, 200 ° C. for 1 hour, and finally 300 ° C. for 1 hour. Can also be performed.

上記の様にして、得られたポリイミド共重合体は、以下に示す特性を有することを確認した。 As described above, it was confirmed that the obtained polyimide copolymer had the following characteristics.

本発明の実施形態において、透明性を有する事が必要であり、前記ポリイミド重合体は、光線透過率、ヘイズ、および黄色度(イエローインデックス、YI)において良好な測定値であることが重要である。特にポリイミド樹脂は黄色に着色する傾向が高く、そのため、YIが低ければ低いほど良好である。具体的には、膜厚10μmのフィルムにした時のYIが4.0未満であることが好ましい。
本実施形態において、前記条件でYIが4.0未満となることを確認した。
In an embodiment of the present invention, it is necessary to have transparency, and it is important that the polyimide polymer has good measured values in light transmittance, haze, and yellowness (yellow index, YI). . In particular, the polyimide resin has a high tendency to be colored yellow. Therefore, the lower the YI, the better. Specifically, it is preferable that YI when the film is 10 μm thick is less than 4.0.
In the present embodiment, it was confirmed that YI was less than 4.0 under the above conditions.

本発明のポリイミド共重合体は、耐熱性に優れることが重要であり、本発明の実施形態において、ガラス転移温度が400℃以上であることが確認できた。400℃未満においては、ガラス転移温度の測定は、膜厚10μmのフィルムにした時の動的粘弾性測定において、tanδの極大点から求めた。 It is important for the polyimide copolymer of the present invention to be excellent in heat resistance. In the embodiment of the present invention, it was confirmed that the glass transition temperature was 400 ° C. or higher. Below 400 ° C., the glass transition temperature was determined from the maximum point of tan δ in the dynamic viscoelasticity measurement when a film having a thickness of 10 μm was formed.

以下に記載のポリイミドフィルムの評価方法を具体的に記載した。 The evaluation method of the polyimide film described below was specifically described.

<光線透過率、ヘイズ、黄色度(YI)>
日本分光社製紫外可視分光光度計(V−650)を用い、フィルム(10μm厚)の400nmの波長の全光線透過率、ヘイズ、XYZ三刺激値を測定した。
YIの算出はXYZ三刺激値と、JIS K 7373の「標準イルミナントD65を使用しXYZ表色系を用いる場合」の式により行った。
<Light transmittance, haze, yellowness (YI)>
Using a UV-visible spectrophotometer (V-650) manufactured by JASCO Corporation, the total light transmittance, haze, and XYZ tristimulus values at a wavelength of 400 nm of the film (10 μm thick) were measured.
YI was calculated according to the XYZ tristimulus value and the formula of “when using standard illuminant D65 and XYZ color system” of JIS K 7373.

<弾性率>
エスアイアイ・ナノテクノロジー社製動的粘弾性測定装置(DMS6000)を用いて、動的粘弾性測定により、周波数1Hz、昇温速度5℃/分における貯蔵弾性率を求めた。
<Elastic modulus>
The storage elastic modulus at a frequency of 1 Hz and a heating rate of 5 ° C./min was determined by dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device (DMS6000) manufactured by SII Nanotechnology.

<ガラス転移温度の算出>
オリエンテック社製動的粘弾性測定装置(レオバイブロンDDV01FP型)を用いて、動的粘弾性測定により、周波数1Hz、昇温速度5℃/分におけるtanδピークからポリイミドフィルム(10μm厚)のガラス転移温度を求めた。
<Calculation of glass transition temperature>
Glass transition temperature of polyimide film (10 μm thickness) from tan δ peak at a frequency of 1 Hz and a heating rate of 5 ° C./min by dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device (Leovibron DDV01FP type) manufactured by Orientec. Asked.

<線膨張係数(CTE)>
エスアイアイ・ナノテクノロジー社製熱機械的分析装置(TMA/SS120C)を用いて、熱機械分析により、荷重15.68mN、昇温速度5℃/分における試験片の伸びより、30℃〜200℃の範囲での平均値としてポリイミドフィルム(10μm厚)の線膨張係数を求めた。
<Linear expansion coefficient (CTE)>
Using a thermomechanical analyzer (TMA / SS120C) manufactured by SII NanoTechnology Co., Ltd., the elongation of the test piece at a load of 15.68 mN and a heating rate of 5 ° C./min is 30 ° C. to 200 ° C. The linear expansion coefficient of the polyimide film (10 μm thickness) was determined as an average value in the range of

以下に本発明を実施例に続いて詳細に説明するが、本発明はこれに限定するものではない。 Hereinafter, the present invention will be described in detail following examples, but the present invention is not limited thereto.

(実施例1)
50mL三ツ口フラスコに窒素雰囲気下で2,2‘−ビス(トリフルオロメチル)ベンジジン(以下、TFDBと略記することがある)0.7499gと9,9−ビス(4−アミノフェニル)フルオレン(以下、FDAと略記することがある)0.0910gを入れ、ジメチルアセトアミド(以下、DMAcと略記することがある)5.1mLを加えて撹拌することにより溶解させた。
この三ツ口フラスコを室温のウォーターバス中で、撹拌しながら3,3,4,4−テトラカルボン酸二無水物(以下、BPDAと略記することがある)0.7664gを添加し、DMAc1.7mLでフラスコ内壁に付着したBPDAを洗い落とし、そのまま室温で14時間撹拌した。その後、DMAc1.0mLを追加してBPDAの溶け残りを溶解させ、室温で24時間撹拌し、均一で粘稠な共重合ポリイミド前駆体溶液組成物を得た。
Example 1
In a 50 mL three-necked flask, 0.7499 g of 2,2′-bis (trifluoromethyl) benzidine (hereinafter sometimes abbreviated as TFDB) and 9,9-bis (4-aminophenyl) fluorene (hereinafter, 0.0910 g (sometimes abbreviated as FDA) was added, and 5.1 mL of dimethylacetamide (hereinafter sometimes abbreviated as DMAc) was added and dissolved by stirring.
While stirring this three-necked flask in a water bath at room temperature, 0.7664 g of 3,3,4,4-tetracarboxylic dianhydride (hereinafter sometimes abbreviated as BPDA) was added, and the DMAc was 1.7 mL. BPDA adhering to the inner wall of the flask was washed off and stirred as it was at room temperature for 14 hours. Thereafter, 1.0 mL of DMAc was added to dissolve the undissolved residue of BPDA, and the mixture was stirred at room temperature for 24 hours to obtain a uniform and viscous copolymerized polyimide precursor solution composition.

得られた共重合ポリイミド前駆体溶液組成物を真空脱泡したのちガラス基板上に塗布、そのまま基板上で、真空下、80℃で1時間、150℃で1時間、200℃で1時間、次いで最終的に300℃で1時間と段階的に昇温して熱イミド化を行い、無色透明な共重合ポリイミド/ガラス積層体を得た。次いで、得られたポリイミド/ガラス積層体からカッターナイフを用いて剥離し、膜厚が約10マイクロメートルのポリイミドフィルムを得た。このフィルムの特性を測定した結果を表1に示す。 The resulting copolymerized polyimide precursor solution composition was vacuum degassed and then applied onto a glass substrate, as it was on the substrate, under vacuum, at 80 ° C. for 1 hour, 150 ° C. for 1 hour, 200 ° C. for 1 hour, then Finally, the temperature was raised stepwise at 300 ° C. for 1 hour to carry out thermal imidization to obtain a colorless and transparent copolymer polyimide / glass laminate. Subsequently, it peeled from the obtained polyimide / glass laminated body using the cutter knife, and obtained the polyimide film whose film thickness is about 10 micrometers. The results of measuring the properties of this film are shown in Table 1.

(比較例1)
FDAを投入しなかったこと以外は、実施例1と同じ。
結果を表1に示す。
(Comparative Example 1)
Same as Example 1 except that no FDA was introduced.
The results are shown in Table 1.

本発明により、光透過度を維持しつつ、かつ耐熱性に優れるポリイミドフィルムを得ることができた。このフィルムは、電気、電子、自動車および航空宇宙産業などの分野においてフィルム、コーティング剤、成形部品および絶縁材として幅広く使用することが可能である。
According to the present invention, a polyimide film having excellent heat resistance while maintaining light transmittance could be obtained. This film can be widely used as a film, a coating agent, a molded part and an insulating material in fields such as the electric, electronic, automobile and aerospace industries.

Claims (7)

下記式(1)で表される単位構造と、式(2)で表される単位構造とを有する共重合ポリイミド前駆体。


A copolymer polyimide precursor having a unit structure represented by the following formula (1) and a unit structure represented by the formula (2).


式(1)で表される単位構造と、式(2)で表される単位構造との比率[式(1)の数/式(2)の数]が90/10〜99.9/0.01であることを特徴とする請求項1に記載の共重合ポリイミド前駆体。 The ratio of the unit structure represented by formula (1) to the unit structure represented by formula (2) [number of formula (1) / number of formula (2)] is 90/10 to 99.9 / 0. The copolymer polyimide precursor according to claim 1, wherein the copolymer polyimide precursor is .01. 溶剤中で、下記式(3)及び式(4)で表されるジアミン化合物、及び式(5)で表されるテトラカルボン酸化合物を重合反応させることにより得られる請求項1または2に記載の共重合ポリイミド前駆体。


The solvent according to claim 1 or 2, which is obtained by polymerizing a diamine compound represented by the following formula (3) and formula (4) and a tetracarboxylic acid compound represented by formula (5) in a solvent. Copolymer polyimide precursor.


請求項1乃至3のいずれか1項に記載の共重合ポリイミド前駆体を重合反応させることにより得られる、式(6)で表される単位構造と、式(7)で表される単位構造を有する共重合ポリイミド。

A unit structure represented by the formula (6) and a unit structure represented by the formula (7) obtained by polymerizing the copolymerized polyimide precursor according to any one of claims 1 to 3. Copolymer polyimide.

式(6)で表される単位構造と、式(7)で表される単位構造との比率[式(6)の数/式(7)の数]が90/10〜99.9/0.01であることを特徴とする請求項4に記載の共重合ポリイミド。 The ratio of the unit structure represented by formula (6) to the unit structure represented by formula (7) [number of formula (6) / number of formula (7)] is 90/10 to 99.9 / 0. The copolymerized polyimide according to claim 4, which is 0.01. 膜厚10μmのフィルムにした時のイエローインデックスが4.0未満であることを特徴とする請求項4または5のいずれかに記載の共重合ポリイミド。 6. The copolymerized polyimide according to claim 4, wherein the yellow index when formed into a film having a thickness of 10 μm is less than 4.0. 膜厚10μmのフィルムにした時の動的粘弾性測定において、tanδの極大点から求めたガラス転移温度が400℃以上であることを特徴とする請求項4乃至6のいずれか1項に記載の共重合ポリイミド。
7. The glass transition temperature obtained from the maximum point of tan δ in a dynamic viscoelasticity measurement when a film having a thickness of 10 μm is formed is 400 ° C. or higher. 7. Copolyimide.
JP2013046054A 2013-03-08 2013-03-08 Copolymerized polyimide precursor and copolymerized polyimide Pending JP2014172978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046054A JP2014172978A (en) 2013-03-08 2013-03-08 Copolymerized polyimide precursor and copolymerized polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046054A JP2014172978A (en) 2013-03-08 2013-03-08 Copolymerized polyimide precursor and copolymerized polyimide

Publications (1)

Publication Number Publication Date
JP2014172978A true JP2014172978A (en) 2014-09-22

Family

ID=51694567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046054A Pending JP2014172978A (en) 2013-03-08 2013-03-08 Copolymerized polyimide precursor and copolymerized polyimide

Country Status (1)

Country Link
JP (1) JP2014172978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190787A (en) * 2017-04-28 2018-11-29 日東電工株式会社 Flexible wiring circuit board, manufacturing method thereof, and imaging device
WO2022118794A1 (en) * 2020-12-03 2022-06-09 三井化学株式会社 Polyamic acid, varnish including same, method for producing polyamic acid, polyimide, film including same, and display panel substrate
WO2023013453A1 (en) * 2021-08-02 2023-02-09 東洋紡株式会社 Electronic display apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310863A (en) * 1993-01-08 1994-05-10 International Business Machines Corporation Polyimide materials with improved physico-chemical properties
JP2006206825A (en) * 2005-01-31 2006-08-10 Jfe Chemical Corp Aromatic polyimide resin precursor and aromatic polyimide resin
JP2007046054A (en) * 2005-08-03 2007-02-22 E I Du Pont De Nemours & Co Low tinted polyimide resin composition useful in optical application field, as well as method and composition relating to the same
JP2010201625A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Laminate for flexible substrate and thermally conductive polyimide film
JP2010235641A (en) * 2009-03-30 2010-10-21 Sony Chemical & Information Device Corp Polyamic acid solution, polyimide, and optical device
JP2012503701A (en) * 2008-09-26 2012-02-09 コーロン インダストリーズ インク Polyimide film
JP2012040836A (en) * 2010-08-23 2012-03-01 Kaneka Corp Laminate, and utilization thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310863A (en) * 1993-01-08 1994-05-10 International Business Machines Corporation Polyimide materials with improved physico-chemical properties
JP2006206825A (en) * 2005-01-31 2006-08-10 Jfe Chemical Corp Aromatic polyimide resin precursor and aromatic polyimide resin
JP2007046054A (en) * 2005-08-03 2007-02-22 E I Du Pont De Nemours & Co Low tinted polyimide resin composition useful in optical application field, as well as method and composition relating to the same
JP2012503701A (en) * 2008-09-26 2012-02-09 コーロン インダストリーズ インク Polyimide film
JP2010201625A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Laminate for flexible substrate and thermally conductive polyimide film
JP2010235641A (en) * 2009-03-30 2010-10-21 Sony Chemical & Information Device Corp Polyamic acid solution, polyimide, and optical device
JP2012040836A (en) * 2010-08-23 2012-03-01 Kaneka Corp Laminate, and utilization thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARNOLD, FRED E ET AL: "The origin of β relaxation in segmented rigid-rod polyimide and copolyimide films", POLYMER ENGINEERING AND SCIENCE, vol. 33(21), JPN6016046151, 1993, pages 1373 - 1380, ISSN: 0003452531 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190787A (en) * 2017-04-28 2018-11-29 日東電工株式会社 Flexible wiring circuit board, manufacturing method thereof, and imaging device
JP6990987B2 (en) 2017-04-28 2022-01-12 日東電工株式会社 Flexible wiring circuit board, its manufacturing method and image pickup device
WO2022118794A1 (en) * 2020-12-03 2022-06-09 三井化学株式会社 Polyamic acid, varnish including same, method for producing polyamic acid, polyimide, film including same, and display panel substrate
WO2023013453A1 (en) * 2021-08-02 2023-02-09 東洋紡株式会社 Electronic display apparatus

Similar Documents

Publication Publication Date Title
JP6705840B2 (en) Polyamide-imide precursor, polyamide-imide film, and display device including the same
JP5667392B2 (en) Laminated body and use thereof
JP6694034B2 (en) Polyimide resin, method for producing the same, and thin film
JP5639259B2 (en) Polyimide film
TWI664212B (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing polyimide film and laminate
JP6016561B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
KR20180018307A (en) Polyamic acid resin and polyamideimide film
JP5695276B2 (en) Use of polyamic acid, polyimide, polyamic acid solution, and polyimide
JP2019513887A (en) COLORLESS TRANSPARENT POLYAMIDE-IMIDE FILM AND METHOD FOR PRODUCING THE SAME
JP6257302B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE SAME, POLYIMIDE FILM AND ITS MANUFACTURING METHOD, AND LAMINATE AND ITS MANUFACTURING METHOD
JP2019506478A (en) Polyamic acid composition having improved adhesion and polyimide film containing the same
CN110790929A (en) Colorless transparent high-modulus polyimide film and preparation method thereof
JPWO2012173126A1 (en) Polyamide acid, polyimide, polyamide acid solution, polyimide solution, polyimide film obtained from these solutions, and use of polyimide film
JP7157859B2 (en) Electronic device manufacturing method
TW201012852A (en) Polyimide film
JP2008045054A (en) Alicyclic polyimide copolymer and method for producing the same
WO2016166961A1 (en) Polyamide acid composition and polyimide composition
JP2013082774A (en) Transparent polyimide film and production process thereof
JP2020029486A (en) Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane
JP2006206825A (en) Aromatic polyimide resin precursor and aromatic polyimide resin
JP6687442B2 (en) Utilization of polyamic acid, polyimide, polyamic acid solution, and polyimide
WO2018207706A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, flexible device, and production method for polyimide film
TWI462952B (en) Low chroma polyimide film and manufacturing method thereof
JP2020505489A (en) Method for producing polyamide-imide film
KR20190044312A (en) Method for manufacturing transparent polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627