JP2014164846A - 光電変換素子、光電変換素子の製造方法および色素増感太陽電池 - Google Patents

光電変換素子、光電変換素子の製造方法および色素増感太陽電池 Download PDF

Info

Publication number
JP2014164846A
JP2014164846A JP2013032945A JP2013032945A JP2014164846A JP 2014164846 A JP2014164846 A JP 2014164846A JP 2013032945 A JP2013032945 A JP 2013032945A JP 2013032945 A JP2013032945 A JP 2013032945A JP 2014164846 A JP2014164846 A JP 2014164846A
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
dye
conversion element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013032945A
Other languages
English (en)
Other versions
JP5972811B2 (ja
Inventor
Masaru Kobayashi
克 小林
Ryozo Kakiuchi
良蔵 垣内
Shigenori Yuya
重徳 祐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013032945A priority Critical patent/JP5972811B2/ja
Priority to EP14753984.5A priority patent/EP2960980A4/en
Priority to PCT/JP2014/054128 priority patent/WO2014129575A1/ja
Publication of JP2014164846A publication Critical patent/JP2014164846A/ja
Application granted granted Critical
Publication of JP5972811B2 publication Critical patent/JP5972811B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】軽量、フレキシブル、ガラス基板の太陽電池と比べても光電変換効率の低下が少なく、光電変換効率と耐久性のバラツキが小さい光電変換素子、光電変換素子の製造方法および色素増感太陽電池の提供。
【手段】基板上に、第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、該基板が、少なくとも、アルミニウム層と、該アルミニウム層の少なくとも一方の表面を陽極酸化してなるポーラス構造を有する絶縁層とからなり、該絶縁層が室温で圧縮方向の歪みを有する光電変換素子、光電変換素子の製造方法および色素増感太陽電池。
【選択図】図1

Description

本発明は、出力電圧と光電変換効率が高い光電変換素子、光電変換素子の製造方法および色素増感太陽電池に関する。
光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。中でも、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵なクリーンエネルギーとして、その本格的な実用化が大いに期待されている。この点、シリコン系太陽電池は古くから研究開発が進められてきた。各国の政策的な配慮もあって普及が進んではいる。しかし、シリコン系太陽電池はシリコンの精製プロセスに比較的高いコストがかかることや重いガラスを基板に用いて設置の作業性が悪く設置にかかるコストも高く、発電コストの更なる低下の障害になっている。
上記のような課題を解決可能な太陽電池として、色素増感太陽電池が有望な方式の一つとして考えられている。印刷を用いた安価プロセスによる製造が可能であり、更に基板に軽量フレキシブルな樹脂性基板を用いることで、roll to rollプロセス(ロールツーロール方式)が実現すれば、大幅な製造コスト及び設置コストダウンが期待できことから、軽量フレキシブルな樹脂性基板を用いた色素増感太陽電池の実用化のための検討が行われている。しかしながら、色素増感太陽電池の製造プロセスでは、酸化チタンナノ粒子のペーストを印刷した後に450℃以上での高温の焼成プロセスが必要となり、ガラス基板を用いた色素増感太陽電池ではこれが可能であるが、樹脂基板では変形が生じるなどの問題から、150℃以上の温度での加熱ができず、樹脂基板を用いた色素増感太陽電池はガラス基板を用いたものに比べて光電変換効率が低い(特許文献1〜3参照)。
特開2002−280587号公報 特開2002−184475号公報 特開2003−98977号公報
茅島正資、莚正勝、東京都立産業技術研究所,研究報告,第3号2000年12月,p21
上記のように、樹脂基板を用いた色素増感太陽電池はガラス基板を用いたものに比べて光電変換効率が低い。また、樹脂基板を用いた場合は、ガラスに比べガスバリア性も小さく耐久性の低さが問題になっている。さらに、樹脂基板を用いた場合は、伸縮しやすいことなどから製造において光電変換効率や耐久性などの性能にバラツキが生じやすいという問題がある。
そこで、軽量、フレキシブル、ガラス基板の太陽電池と比べても光電変換効率の低下が少なく、印刷精度が高く、光電変換効率と耐久性のバラツキが小さい色素増感太陽電池の開発が望まれていた。
上記状況を鑑み、本発明は、軽量、フレキシブル、ガラス基板の太陽電池と比べても光電変換効率の低下が少なく、光電変換効率と耐久性のバラツキが小さい光電変換素子、光電変換素子の製造方法および色素増感太陽電池を提供することを課題とする。
本発明者等は、鋭意検討を重ねた結果、特定の陽極酸化膜を有する絶縁層付金属基盤を特定の層構成とすることで、光電変換効率の高い光電変換素子を提供することができることを見出した。本発明はこの知見に基づきなされるに至ったものである。
すなわち、本発明の課題は、以下の手段によって達成された。
(1)基板上に、第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、該基板が、少なくとも、アルミニウム層と、該アルミニウム層の少なくとも一方の表面を陽極酸化してなるポーラス構造を有する絶縁層とからなり、該絶縁層が室温で圧縮方向の歪みを有する光電変換素子。
(2)前記基板上に、該基板側から順に、前記第1電極、色素が吸着された多孔質半導体微粒子層を有する前記感光体、前記電荷移動体、および前記対極が積層されてなる光電変換素子である(1)に記載の光電変換素子。
(3)前記多孔質半導体微粒子層が、酸化チタン、酸化スズまたは酸化亜鉛である(1)または(2)に記載の光電変換素子。
(4)前記多孔質半導体微粒子層が、酸化チタンである(1)〜(3)のいずれか1項に記載の光電変換素子。
(5)前記色素が、金属錯体色素である(1)〜(4)のいずれか1項に記載の光電変換素子。
(6)前記金属錯体色素が、RuまたはOs元素を含む金属錯体色素である(5)に記載の光電変換素子。
(7)前記絶縁層の圧縮方向の歪みが、0.005〜0.25%である(1)〜(6)のいずれか1項に記載の光電変換素子。
(8)前記絶縁層付き金属基板を構成する金属部分が、アルミニウムよりも、線熱膨張係数が小さく、かつ剛性が高く、かつ耐熱性が高い金属からなる基材の少なくとも一方の面に、加圧接合によりアルミニウム材が一体化されてなる(1)〜(7)のいずれか1項に記載の光電変換素子。
(9)前記基材を構成する金属部分の金属が、フェライト系ステンレス鋼からなる(8)に記載の光電変換素子。
(10)基板上に、第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子の製造方法であって、少なくともアルミニウム基材を備える金属基板の該アルミニウム基材の少なくとも一方の表面を、室温で圧縮方向の歪みを有するアルミニウムのポーラス型陽極酸化皮膜の絶縁層を形成する工程を含む工程で該基板を作製し、該基板上に、該第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造を設ける光電変換素子の製造方法。
(11)前記(1)〜(9)のいずれか1項に記載の光電変換素子を具備する色素増感太陽電池。
本発明により、軽量、フレキシブル、ガラス基板の太陽電池と比べても光電変換効率の低下が少なく、光電変換効率と耐久性のバラツキが小さい光電変換素子、光電変換素子の製造方法および色素増感太陽電池が提供できる。
本発明の光電変換素子の一実施態様について模式的に示した断面図である。 本発明の一実施形態に係る絶縁層付金属基板の(a)、(b)および(c)の3種類の形態例を示す模式的断面図である。 従来の陽極酸化皮膜、および圧縮歪みが0.09%、0.16%の陽極酸化皮膜に加わる歪み量を模式的に示すグラフである。 従来の陽極酸化皮膜、および複合基板の線熱膨張係数が17ppm/K、10ppm/Kの場合に、陽極酸化皮膜に加わる歪み量を模式的に示すグラフである。 縦軸にアニール温度をとり、横軸にアニール時間をとって、加熱処理条件を模式的に示すグラフである。 従来の陽極酸化皮膜に加わる歪み量を模式的に示すグラフである。
本発明の光電変換素子は、基板上に、第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなり、該基板が、少なくとも、アルミニウム層と、該アルミニウム層の少なくとも一方の表面を陽極酸化してなるポーラス構造を有する絶縁層とからなり、該絶縁層が室温で圧縮方向の歪みを有する。
<<光電変換素子>>
本発明の光電変換素子の好ましい一実施態様を、図面を参照して説明する。
図1に示すように、光電変換素子100は、基板1、第1電極2、色素が吸着された多孔質半導体微粒子を有する感光体3、電荷移動体4、および対向電極基板9からなる。対向電極基板9は第2電極5、および透明基板6からなる。感光体3が形成された第1電極2は光電変換素子100において作用電極として機能する。この光電変換素子100を外部回路8で仕事をさせる電池用途に使用できるようにして、色素増感太陽電池を利用したシステムとして示している。ここで、受光電極7は、基板1、第1電極2、色素が吸着された多孔質半導体微粒子を有する感光体3よりなる電極である。
本発明の光電変換素子に用いる材料について詳述する。
<基板>
本発明の光電変換素子100において、基板1は、図2に示すように、基材12と、アルミニウム層(以後、Al層と称す)14と、絶縁層16とから構成される。
基材12とAl層14とは、一体的に形成されている。さらに、絶縁層16は、Al層14の表面を陽極酸化してなる、アルミニウム(以後同様にAlと称す)のポーラス構造の陽極酸化膜である。なお、基材12とAl層14とが積層されて一体化されたものを金属基板15という。
基板1において、基材12には、アルミニウムやアルミニウムとは異なる金属が用いられる。アルミニウムとは異なる金属が用いられる場合は、図2(a)に示すような構造となる。
この異なる金属としては、例えば、アルミニウムおよびアルミニウム合金よりもヤング率が大きな金属または合金が用いられる。さらには、基材12は、熱膨張係数が絶縁層16を構成する陽極酸化皮膜よりも大きく、かつアルミニウムよりも小さいことが好ましい。さらにまた、基材12は、ヤング率が絶縁層16を構成する陽極酸化皮膜よりも大きく、かつアルミニウムよりも大きいことが好ましい。
上述のことを考慮すると、図2(a)においては、基材12に、例えば、炭素鋼およびフェライト系ステンレス鋼等の鋼材が用いられる。しかも、基材12に用いられる前述の鋼材は、アルミニウム合金よりも300℃以上での耐熱強度が高いため、耐熱性が良好な基板1が得られる。
上述の基材12に用いられる炭素鋼は、例えば、炭素含有量が0.6質量%以下の機械構造用炭素鋼が用いられる。機械構造用炭素鋼としては、例えば、一般的にSC材と呼ばれるものが用いられる。
また、フェライト系ステンレス鋼としては、SUS430、SUS405、SUS410、SUS436、SUS444等を用いることができる。
鋼材としては、これ以外にも、一般的にSPCC(冷間圧延鋼板)と呼ばれるものが用いられる。
なお、基材12は、上記以外にも、コバール合金(5ppm/K)、チタンまたはチタン合金により構成してもよい。チタンとしては、純Ti(9.2ppm/K)が用いられ、チタン合金としては、展伸用合金であるTi−6Al−4V、Ti−15V−3Cr−3Al−3Snが用いられる。これらの金属も、平板状または箔状で用いられる。
基材12の厚さは、可撓性に影響するので、過度の剛性不足を伴わない範囲で薄くすることが好ましい。
図2(a)においては、基材12の厚さは、例えば、10〜800μmであり、好ましくは30〜300μmである。より好ましくは50〜150μmである。基材12の厚さを薄くすることは、原材料コストの面からも好ましい。
基材12をフレキシブルなものとする場合、基材12は、フェライト系ステンレス鋼が好ましい。
Al層14は、主成分がアルミニウムで構成されるものであり、主成分がアルミニウムとは、アルミニウム含有量が90質量%以上であることをいう。
Al層14としては、例えば、アルミニウムまたはアルミニウム合金が用いられる。
Al層14には、例えば、アルミニウムハンドブック第4版(軽金属協会(1990))に記載の公知の素材のもの、具体的には、JIS1050材、JIS1100材などの1000系合金、JIS3003材、JIS3004材、JIS3005材などの3000系合金、JIS6061材、JIS6063材、JIS6101材などの6000系合金、国際登録合金3103A等を用いることができる。
Al層14に用いられるアルミニウムまたはアルミニウム合金は、不要な金属間化合物を含まないことが好ましい。具体的には不純物の少ない、99質量%以上の純度のアルミニウムであることが好ましい。純度としては、例えば、99.99質量%Al、99.96質量%Al、99.9質量%Al、99.85質量%Al、99.7質量%Al、99.5質量%Al等が好ましい。このように、Al層14のアルミニウムの純度を高めることにより、析出物に起因する金属間化合物を避けることができ、絶縁層16の健全性を増すことができる。これは、アルミニウム合金の陽極酸化を行った場合、金属間化合物が起点となって、絶縁不良を起こす可能性があり、金属間化合物が多いと、その可能性が増えることによるものである。
特に、Al層14は、純度が99.5質量%、99.99質量%以上のものを用いた場合、後述する陽極酸化皮膜の微細孔が規則的に形成されていること(以下、規則化ともいう)を乱すことが抑制されるため好ましい。なお、陽極酸化皮膜の規則化が乱されると、熱歪みがかかった際に、割れの起点になる。このため、Al層14は、純度の高い方が耐熱性に優れる。
また、上述のように、Al層14には、コストの点で有利な工業用アルミニウムも利用することができる。しかしながら、絶縁層16の絶縁性の観点から、Al層14中にSiが析出していないものが好ましい。
基板1において、絶縁層16は、電気絶縁性とハンドリング時の機械衝撃による損傷を防止するためのものである。この絶縁層16は、アルミニウムの陽極酸化によって形成される陽極酸化皮膜(アルミナ膜、Al膜)により構成されるものである。
絶縁層16を形成する陽極酸化皮膜は、室温(23℃)で、圧縮方向Cの歪み(以下、圧縮歪みともいう)を有しており、この歪みの大きさは、0.005〜0.25%である。通常、アルミニウムの陽極酸化皮膜には、引張歪みが生じている。
圧縮歪みが0.005%未満では、圧縮歪みはあるものの実質的には殆ど圧縮力が絶縁層16となる陽極酸化皮膜に作用していないことになり、耐クラック性の効果が得られにくい。一方、圧縮歪みの上限値は、絶縁層16となる陽極酸化皮膜が剥離したり、陽極酸化皮膜に強い圧縮歪みが加わることにより、クラックが発生したり、陽極酸化皮膜が盛り上がって平坦性が低下したり、剥離したりすることを考慮すると0.25%である。更に好ましくは、0.20%以下であり、特に好ましくは、0.15%以下である。
従来から、陽極酸化皮膜が絶縁層として金属基板15に形成された絶縁層付金属基板において、光電変換素子製造時の耐熱性、ロールトゥロールでの製造時、および可撓性基板としての耐曲げ性、長期にわたっての耐久性、強度が課題となっている。
耐熱性の課題は、高温に曝すと金属基板15の伸びに、陽極酸化皮膜が耐え切れず、陽極酸化皮膜が破断してしまうことに起因する。これは、金属基板15と陽極酸化皮膜の熱膨張係数の差が大きいことによる。
例えば、アルミニウムであれば、熱膨張係数は23ppm/Kであり、陽極酸化皮膜の熱膨張係数は4〜5ppm/Kである。このため、熱膨張係数の差によって伸び量に差が出てしまう高温時において、基材金属の伸びに陽極酸化皮膜が耐え切れず陽極酸化皮膜が破断するほどの引張力がかかってしまう。
耐曲げ性の課題は、陽極酸化皮膜を外側にして曲げた場合に与えられる引張応力に、陽極酸化皮膜が耐え切れず、陽極酸化皮膜が破断してしまうことに起因する。
耐久性、強度の課題は、以下のような外乱に伴う応力変化に、陽極酸化皮膜が耐え切れず、陽極酸化皮膜が破断してしまうことに起因する。具体的な外乱としては、陽極酸化皮膜に与長期間にわたる運転・停止などに伴う温度上昇・低下による基板の熱膨張・収縮、外部からの応力、湿度・温度・酸化などに伴う陽極酸化皮膜・半導体層・封止層などの変質・体積変化に伴う応力などがある。
本発明者は、鋭意実験研究の結果、室温において陽極酸化皮膜に、圧縮方向の歪みを与えておくことで、半導体素子製造時の耐熱性、ロールトゥロールでの製造時、および可撓性基板としての耐曲げ性、長期にわたっての耐久性、強度を有する陽極酸化皮膜を実現できることを見出した。
室温において、陽極酸化皮膜に圧縮方向の歪みが与えられることにより、耐クラック性が向上する理由は、次のように説明できる。ここでは、例として耐熱クラック耐性向上の機構を模式的に説明するが、引張り力に対して陽極酸化皮膜の破断が抑制されるという点で、曲げ、温度変化といった外部からの応力に対する耐クラック性の向上全般にわたって同様の機構が働くことが推定される。
前述のように、従来技術による陽極酸化皮膜は、室温において、内部歪みが0.005%〜0.06%程度の引張り歪みである。また、陽極酸化皮膜の線熱膨張係数が5ppm/K程度であること、アルミニウムの線熱膨張係数は23ppm/Kであることから、アルミニウム基板上の陽極酸化皮膜の場合、温度上昇によって、陽極酸化皮膜には18ppm/Kの割合で引張歪みが加えられることになる。陽極酸化皮膜の破断限界である、0.16〜0.23%の引張歪みが加わると、クラックが発生する。この温度は、従来技術による陽極酸化皮膜では、120℃〜150℃である。
一方、本発明における陽極酸化皮膜は、室温において、内部歪みが圧縮歪みである。ここで、陽極酸化皮膜の線熱膨張係数は、皮膜の種類によらず、ほぼ5ppm/K程度であることが発明者によって確認されており、本発明における陽極酸化皮膜も5ppm/K程度である。従って、温度上昇によって、陽極酸化皮膜には18ppm/Kの割合で引張歪みが加えられることになる。陽極酸化皮膜の破断限界は、皮膜の種類に因らず、0.16〜0.23%程度と推定され、この大きさの引張歪みが加わると、クラックが発生すると考えられる。
好ましい範囲である、室温において0.005〜0.25%の圧縮歪みを有する陽極酸化皮膜の場合、18ppm/Kの割合で引張歪みが加えられると仮定すると、0.16〜0.23%の引張歪みは、170〜340℃で加わる。図3には、従来の陽極酸化皮膜、圧縮歪みが0.09%、0.16%の場合について、陽極酸化皮膜に加わる引張歪み量を模式的に示した。図3に示すように、圧縮歪みの量を多くすることによって、クラック発生温度をさらに高めることができる。実際には、陽極酸化皮膜の線熱膨張係数が必ずしも一定ではないこと、陽極酸化皮膜に含まれる水分の脱水に伴う収縮があること、アルミニウムの軟化に伴って基板の剛性が失われること、などの要因で、モデル計算と完全には一致しないが、実験的にも、クラック発生温度を高めることができることが確認されている。
また、基板1を、アルミニウムと異種金属との複合基板とすることによって、さらにクラック発生温度を高めることができる。複合基板の線熱膨張係数は、構成金属材料の線熱膨張係数、ヤング率、および構成金属材料の厚さにより、平均値として求めることができる。アルミニウムの線熱膨張係数23ppm/Kより小さく、陽極酸化皮膜の線熱膨張係数5ppm/K以上の金属材料と、アルミニウムとの複合基板を用いた場合、ヤング率、厚さにも依存するが、複合基板の線熱膨張係数を23ppm/Kより小さくすることができる。図4には、複合基板の線熱膨張係数が17ppm/Kの場合、10ppm/Kの場合について、陽極酸化皮膜に加わる引張歪み量を模式的に示した。室温で同じ圧縮歪みを有する陽極酸化皮膜であっても、基板1の線熱膨張係数を小さくすることによって、クラック発生温度をさらに高めることができる。実際には、陽極酸化皮膜の線熱膨張係数が必ずしも一定ではないこと、陽極酸化皮膜に含まれる水分の脱水に伴う収縮があること、などの要因で、モデル計算と完全には一致しないが、実験的にも、クラック発生温度をさらに高めることができることが確認されている。
室温において圧縮方向の歪みを有する陽極酸化皮膜は、具体的には以下に記載するような方法によって得られる。もちろん、これらの手法のみにとどまるものでないことはいうまでもない。
圧縮方向の歪みを与える方法の一つは、金属基板15を室温における使用状態よりも伸長させた状態で金属基板のAl層14を陽極酸化する手法である。例えば、弾性変形する範囲内の引張方向に引張力を与えるか、または曲率を与えた状態とすることができれば、特に限定されるものではない。例えば、ロールトゥロール方式を用いる場合、搬送時の張力を調整して金属基板15に引張力を与えるか、または陽極酸化槽内の搬送路の形状を曲面として金属基板15に曲率を与える。このような状態で陽極酸化処理を行うことにより、室温(23℃)での圧縮歪みの大きさが0.005〜0.25%の陽極酸化皮膜を得ることができる。この方法では、陽極酸化皮膜全体が圧縮歪みとなる。すなわち、バリア層とポーラス層がいずれも圧縮歪みになる。
また、以下のような方法もある。温度が50〜98℃の水溶液を用いて金属基板15を室温における使用状態よりも伸長させた状態で陽極酸化することにより、室温に戻した際、陽極酸化皮膜に圧縮歪みがかかった状態に変化する。この方法では、陽極酸化に用いる水溶液の温度は100℃程度が上限値であるため、金属基板15の伸長量は0.1%が限界である。このため、陽極酸化皮膜の圧縮歪みの量も0.1%になる。このことから、温度が50〜98℃の水溶液を用いて、陽極酸化皮膜に圧縮歪みを与える場合には、圧縮歪みの上限値は0.1%程度である。この手法では、陽極酸化皮膜全体が圧縮歪みとなる。すなわち、バリア層とポーラス層がいずれも圧縮歪みになる。
さらにまた、以下のような方法もある。陽極酸化皮膜を形成したアルミニウム材を、陽極酸化皮膜が割れない程度の温度にまで昇温してアニール処理を施すことにより、室温に戻した際、陽極酸化皮膜に圧縮歪みがかかった状態に変化する。これは、高温時に陽極酸化皮膜が伸張状態において、その構造変化を生じて引張歪みが緩和し、温度が下がる際のアルミニウム材の収縮に伴って陽極酸化皮膜に圧縮歪みが生じる。このように、陽極酸化皮膜は作製したままの状態で引張歪みが生じている陽極酸化皮膜全体を、圧縮歪みに変化させることができる。すなわち、バリア層とポーラス層がいずれも圧縮歪みに変化する。以下、このように、引張歪みを圧縮歪みに変化させる効果を圧縮化効果という。
この圧縮化効果は、図5に模式的示すように領域αで発現しやすく、この領域αにおいて、矢印A方向に進むにつれて圧縮化効果が大きくなる。すなわち、アニール処理において、高温かつ長時間になる程、圧縮化効果が大きくなる。
なお、このアニール処理による陽極酸化皮膜の圧縮化効果は、陽極酸化条件に依らず得られるものである。すなわち、陽極酸化に用いる電解液は、無機酸、有機酸、アルカリ、緩衝液、これらの混合液などの水系電解液、および有機溶媒、溶融塩などの非水系電解液を用いることができる。さらに、その電解液の濃度、電圧、温度などによって陽極酸化皮膜の構造を制御することが可能であるが、いずれの陽極酸化皮膜においてもアニール処理によって陽極酸化皮膜に生じている引張歪みを圧縮歪みに変化させることが可能である。
さらには、このアニール処理時の雰囲気は、真空中でも大気雰囲気中であっても、同様に陽極酸化皮膜の歪みを圧縮歪みに変化させる圧縮化効果が得られることを確認している。
なお、本発明においては、圧縮歪みが付与された陽極酸化皮膜と記載しているが、歪みと応力は、材料のヤング率を係数として、弾性範囲内であれば一次の関係にあるので、圧縮応力のかかった陽極酸化皮膜としても同義である。陽極酸化皮膜のヤング率は、本発明者等により、50GPa〜150GPaであることが分かっている。この値と、前述の好ましい圧縮歪みの範囲から、好ましい圧縮応力の範囲は、以下である。
基板1において、絶縁層16には、室温で圧縮方向の応力(以下、圧縮応力という)が作用しており、この圧縮応力の大きさは、2.5〜300MPaである。好ましくは、圧縮応力の大きさは、5〜300MPaであり、更に好ましくは、5〜150MPaであり、特に好ましくは、5〜75MPaである。
圧縮応力が2.5MPa未満では、実質的には殆ど圧縮応力が絶縁層16となる陽極酸化皮膜に作用していないことになり、耐クラック性の効果が得られにくい。一方、圧縮応力の上限値は、絶縁層16となる陽極酸化皮膜が剥離したり、陽極酸化皮膜にクラックが発生したりすることを考慮すると300MPaである。
また、上述のように、温度が50℃〜98℃の水溶液を用いて、金属基板15を室温における使用状態よりも伸長させた状態で陽極酸化皮膜に圧縮歪みを与える場合には、大きな圧縮歪みを与えることが難しい。このため、その上限値は150MPa程度である。
基板1において、絶縁層16の厚さは、好ましくは3μm以上20μm以下、さらに好ましくは5μm以上20μm以下、特に好ましくは5μm以上15μm以下である。絶縁層16の厚さが過度に厚い場合、可撓性が低下すること、および絶縁層16の形成に要するコスト、および時間がかかるため好ましくない。また、絶縁層16の厚さが、極端に薄い場合、電気絶縁性とハンドリング時の機械衝撃による損傷を防止することができない虞がある。
また、絶縁層16の表面18aの表面粗さは、例えば、算術平均粗さRaで1μm以下であり、好ましくは、0.5μm以下、より好ましくは、0.1μm以下である。
なお、基板1は、基材12、Al層14および絶縁層16のいずれも可撓性を有するもの、すなわち、フレキシブルなものとすることにより、基板1全体として、フレキシブルなものになる。これにより、例えば、ロールトゥロール方式で、基板1の絶縁層16に、光電変換素子を形成することができる。
また、本実施形態の基板1においては、図2(a)に示すように、基材12の両面にAl層14および絶縁層16を設ける構成を記述したが、本発明においては、図2(b)に示すように、基材12の片面だけにAl層14および絶縁層16を設ける構成としてもよい。このように、基板1aにおいて、金属基板15aを、ステンレス鋼の基材12とAl層14との2層クラッド構造とすることにより、より薄く低コストなものとすることができる。
さらには、本実施形態では、基材12とAl層14の2層構造の金属基板15としたが、本発明においては、少なくともAl層14があればよいため、基材12がAl層14と同一のAl層14からなってもよいため、金属基板15がAl層14のみからなっていてもよく、図2(c)に示す基板1bのように、金属基板15bはAl層14のみからなってもよい。また、金属基板15、15aの基材12は、複数層でもよい。
次に、絶縁層16となる陽極酸化皮膜の歪みの測定方法について説明する。
なお、以下において、陽極酸化皮膜の歪みは、厳密にはポーラス層の歪みとバリア層の歪みの両者を合わせたものであり、材料力学の公式から、両者に対して、ヤング率と膜厚を加味した加重平均となる。しかしながら、実際には、以下における歪み量をポーラス層の歪み量とみなして問題ない。ここで、ポーラス層とバリア層は、構造のみ異なる同一の化合物であることから、ヤング率は同一と推定される。従って、陽極酸化皮膜の歪みは、ポーラス層の歪みとバリア層の歪みに対して、膜厚を加味した加重平均とみなせる。バリア層の膜厚は、陽極酸化電圧に対して、1.4nm/V程度の係数を乗じた厚さになることが知られており、厚くても数百nm程度である。したがって、ポーラス層は、通常バリア層より数倍ないし数十倍以上の厚さとなる。本発明のように好ましくは3μm以上の厚さのポーラス層では、10倍以上である。そのため、陽極酸化皮膜全体の歪みに対して、バリア層の歪みの影響はほとんど現れない。従って、以下の方法で測定した陽極酸化皮膜の歪みは、ポーラス層の歪みとみなせる。
本発明においては、まず、基板1の状態で陽極酸化皮膜の長さを測定する。
次に、金属基板15を溶解して、金属基板15を除去し、基板1から陽極酸化皮膜を取り出す。その後、陽極酸化皮膜の長さを測定する。
この金属基板15の除去前後の長さから、歪みを求める。
陽極酸化皮膜の長さが、金属基板15が除去後に長くなる場合、陽極酸化皮膜に圧縮力が付与されている。すなわち、陽極酸化皮膜には圧縮方向の歪みがかかっている。一方、陽極酸化皮膜の長さが金属基板15の除去後に短くなる場合、陽極酸化皮膜に引張力が付与されている。すなわち、陽極酸化皮膜には引張方向の歪みがかかっている。
なお、金属基板15の除去前後の陽極酸化皮膜の長さは、陽極酸化皮膜の全体の長さでもよく、陽極酸化皮膜の一部分の長さでもよい。
金属基板15を溶解する場合、例えば、塩化銅塩酸水溶液、塩化水銀塩酸水溶液、塩化スズ塩酸水溶液、ヨードメタノール溶液などが用いられる。なお、金属基板15の組成に応じて、溶解するための溶液は適宜選択される。
本発明においては、金属基板15を除去する以外にも、例えば、平面性の高い基材12の反り・たわみ量を測定し、その後、この基材12の片面だけに陽極酸化皮膜を形成して、陽極酸化皮膜の形成後の基材12の反り・たわみ量を測定する。陽極酸化皮膜の形成前後の反り・たわみ量を用いて歪み量に換算する。
上述の基材12の反り・たわみ量は、例えば、レーザを用いて光学的に精密に計測する方法により測定される。具体的には、「表面技術」58,213(2007)および「豊田中央研究所R&Dレビュー」34,19(1999)に記載されている各種の測定方法を、基材12の反り・たわみ量の測定に用いることができる。
また、以下のように、絶縁層16となる陽極酸化皮膜の歪みを測定してもよい。この場合、まず、アルミニウムの薄膜の長さを測定する。次に、アルミニウムの薄膜に陽極酸化皮膜を形成し、このときのアルミニウムの薄膜の長さを測定する。陽極酸化皮膜形成前後のアルミニウムの薄膜の長さから縮み量を求め、更に歪み量に換算する。
なお、金属基板15を除去する方法以外は、金属基板15を残したままの状態で陽極酸化皮膜の歪み量を計測する方法であるため、金属基板15の影響を完全に排除し切れているとは言い難い。このため、金属基板15を除去する方法であれば、金属基板15の影響を受けずに陽極酸化皮膜そのものの歪み量を直接計測できる。このため、本発明における歪み量の計測は、正確に陽極酸化皮膜の歪み量を計測することができる金属基板15を除去する方法を用いることが好ましい。
また、陽極酸化皮膜の内部応力は、陽極酸化皮膜のヤング率と、陽極酸化皮膜に存在する歪み量から材料力学の公式より算出することができる。なお、歪み量は、上述のようにして求めればよい。
一方、陽極酸化皮膜のヤング率は、基板1のままの状態で陽極酸化皮膜に対して、押し込み試験機、ナノインデンター等を用いた圧子押し込み試験により求めることができる。
また、陽極酸化皮膜のヤング率は、基板1から金属基板15を除去し、陽極酸化皮膜を取り出し、この取り出した陽極酸化皮膜について、押し込み試験機、ナノインデンター等を用いた圧子押し込み試験によっても求めることができる。
さらには、アルミニウム等の金属薄膜に陽極酸化皮膜を形成した試料、または基板1から陽極酸化皮膜だけを取り出し、この取り出した陽極酸化皮膜に対して、引張試験をするか、または動的粘弾性を測定する等によって陽極酸化皮膜のヤング率を求めてもよい。
なお、押し込み試験で薄膜のヤング率を計測する場合、金属基板15の影響を受けることがあるため、一般的には押し込み深さを薄膜の厚さの3分の1程度以内に抑える必要がある。このため、厚さが数十μm程度の陽極酸化皮膜のヤング率を正確に計測するためには、押し込み深さが数百nm程度でもヤング率が測定できるナノインデンターを用いてヤング率を測定することが好ましい。
なお、上述以外の方法を用いてヤング率の測定を行ってもよいことは言うまでもない。
<<基板の製造方法>>
次に、本発明の基板1の製造方法について説明する。
まず、基材12を準備する。この基材12は、形成する基板1の大きさにより、所定の形状および大きさに形成されている。
次に、基材12の表面12aおよび裏面12bに、Al層14を形成する。これにより、金属基板15が構成される。
基材12の表面12aおよび裏面12bに、Al層14を形成する方法としては、基材12とAl層14との密着性が確保できる一体化結合ができていれば、特に限定されるものではない。このAl層14の形成法としては、例えば、蒸着法、スパッタ法等の気相法、メッキ法、および表面清浄化後の加圧接合法を用いることができる。Al層14の形成法としては、コストと量産性の観点からロール圧延等による加圧接合が好ましい。例えば、厚さが50μmのAl層14を厚さが150μmのステンレス鋼の基材12に圧接により、クラッド加工して金属基板15を形成した場合、得られた金属基板15は、熱膨張係数を約10ppm/Kにまで下げることができる。
次に、金属基板15を伸長させ、この状態で金属基板15のAl層14の表面14aおよび裏面12bに絶縁層16として陽極酸化皮膜を形成する。
以下に、絶縁層16である陽極酸化皮膜の形成方法について説明する。
なお、陽極酸化処理については、例えば、公知のいわゆるロールトゥロール方式の陽極酸化処理装置により行うことができる。
絶縁層16である陽極酸化皮膜を形成する場合、基材12を陽極とし、陰極と共に電解液に浸漬させ、陽極陰極間に電圧を印加することにより陽極酸化皮膜を形成することができる。このとき、基材12が電解液に接触すると、Al層14と局部電池を形成するため、電解液に接触する基材12をマスキングフィルム(図示せず)により、マスクして絶縁しておく必要がある。すなわち、Al層14の表面14a以外の金属基板15の端面および裏面をマスキングフィルム(図示せず)を用いて絶縁しておく必要がある。なお、陽極酸化処理時のマスクの方法は、マスキングフィルムを用いるものに限定されるものではない。マスクの方法としては、例えば、Al層14の表面14a以外の金属基板15の端面および裏面をジグで保護する方法、ゴムを用いて水密を確保する方法、レジストを用いて保護する方法等を用いることができる。
陽極酸化処理前には、必要に応じてAl層14の表面14aに洗浄処理・研磨平滑化処理等を施す。
陽極酸化処理を、金属基板15を室温における使用状態よりも伸長させた状態で行うこともできる。金属基板15を室温における使用状態よりも伸長させる方法としては、金属基板15に、弾性変形する範囲内の引張方向E(図2(a)参照)に引張力を与えるか、または曲率を与えた状態とすることができれば、特に限定されるものではない。例えば、ロールトゥロール方式を用いる場合、搬送時の張力を調整して金属基板15に引張力を与えるか、または陽極酸化槽内の搬送路の形状を曲面として金属基板15に曲率を与える。このような状態で陽極酸化処理を行うことにより、室温(23℃)での圧縮歪みの大きさが0.005〜0.25%の陽極酸化皮膜を得ることができる。この場合、陽極酸化皮膜に作用する圧縮応力の大きさは、2.5〜300MPaである。
なお、室温における使用状態とは、基板1が、色素増感太陽電池の最終製品として利用される場合における、室温での金属基板15の状態のことである。
陽極酸化処理後に、マスキングフィルム(図示せず)を剥がすことにより、上述の基板1を得ることができる。
また、枚葉処理する場合には、治具を用いて陽極酸化槽に金属基板15を固定して金属基板15を伸長させた状態にし、陽極酸化処理を行うことが好ましい。
陽極酸化処理は、この分野で従来行われている方法を用いることができる。陽極酸化に用いる電解液は、無機酸、有機酸、アルカリ、緩衝液、これらの混合液等の水系電解液、ならびに有機溶媒、溶融塩等の非水系電解液を用いることができる。具体的には、硫酸、シュウ酸、クロム酸、ギ酸、リン酸、マロン酸、ジグリコール酸、マレイン酸、シトラコン酸、アセチレンジカルボン酸、リンゴ酸、酒石酸、クエン酸、グリオキシル酸、フタル酸、トリメリト酸、ピロメリット酸、スルファミン酸、ベンゼンスルホン酸、およびアミドスルホン酸等の酸浴液の単独のまたは2種以上を組み合わせた水溶液または非水溶液の中で、Al層14に直流または交流を流すと、Al層14の表面14aに、陽極酸化皮膜を形成することができる。陽極酸化時の陰極としてはカーボンまたはAl等が使用される。
また、陽極酸化処理には、上述の酸浴液以外に、アルカリ溶液を用いることができる。このアルカリ溶液としては、水酸化ナトリウム、水酸化アンモニウム、リン酸ナトリウム等を用いることができる。さらには、陽極酸化処理に、非水系を用いることができる。この非水系のものとしては、ホルムアミド−ホウ酸浴、NMF(N−メチルホルムアミド)−ホウ酸浴、エタノール−酒石酸浴、DMSO(ジメチルスルホキシド)−サリチル酸浴等を用いることができる。なお、NMF−ホウ酸浴とは、N−メチルホルムアミドにホウ酸を溶解させた電解液のことである。
陽極酸化処理時には、各Al層14の表面14aから略垂直方向に酸化反応が進行し、各Al層14の表面14aに陽極酸化皮膜が生成される。陽極酸化皮膜は、多数の平面視略正六角形状の微細柱状体が隙間なく配列し、各微細柱状体の中心部には丸みを帯びた底面を有する微細孔が形成され、微細柱状体の底部にはバリア層(通常、厚さ0.02〜0.1μm)が形成されたポーラス型となる。
このようなポーラス構造を有する陽極酸化皮膜は、非ポーラス構造の酸化アルミニウム単体膜と比較して膜のヤング率が低いものとなり、曲げ耐性および高温時の熱膨張差により生じるクラック耐性が高いものとなる。
また、上述のような物理的に金属基板15を室温における使用状態よりも伸長させた状態で陽極酸化処理を行う以外に、実使用温度よりも高い温度である50〜98℃の水溶液中で、陽極酸化を行う方法がある。この場合、金属基板50が室温における使用状態よりも伸長されて、この伸長状態を保ったまま陽極酸化できる。
このように50〜98℃の水溶液中で、陽極酸化を行う場合、水溶液は温度25℃におけるpKa(酸解離定数)が2.5〜3.5の酸からなるものを用いることが好ましい。
なお、陽極酸化処理に用いる水溶液は、沸点が100℃+沸点上昇分となるものの、水溶液の沸点で陽極酸化処理を行うのは現実的ではなく、しかも、温度が高い程、副生成物(ベーマイト)が生じる。このため、水溶液の温度の上限値は、沸点よりも低い98℃であり、好ましくは、水溶液の温度の上限値は95℃以下である。
25℃におけるpKaが2.5以上の酸からなる水溶液であることが好ましい理由は、陽極酸化皮膜の、酸による溶解速度との関係で説明できる。pKa、すなわち、酸の強さと、陽極酸化皮膜の溶解速度にはある程度の相関があることが知られている〔例えば、金属表面技術,20,506(1969)〕。実際の陽極酸化皮膜の成長は、電気化学反応による陽極酸化皮膜の生成と、酸による陽極酸化皮膜の溶解が同時に起こりながら進む複雑な反応であるため、陽極酸化皮膜の溶解速度は、膜形成に関する主要因の一つである。
pKaが2.5未満であると、高温においては、陽極酸化皮膜の生成に対して、溶解速度が高すぎ、陽極酸化皮膜が安定に成長しなかったり、比較的薄い膜厚で限界膜厚に達してしまったり、絶縁層16としては不十分な陽極酸化皮膜となる場合がある。
一方、25℃におけるpKaは3.5以下の酸からなる水溶液が好ましく、3.0以下の酸からなる水溶液が特に好ましい。25℃におけるpKaが3.5を超えると、高温においても、陽極酸化皮膜の生成に対して、溶解速度が遅すぎ、陽極酸化皮膜の形成に極めて長時間がかかったり、バリア型と呼ばれる陽極酸化皮膜が形成して厚膜化ができなかったり、絶縁層16としては不十分な陽極酸化皮膜となる場合がある。
バリア型の陽極酸化皮膜は、本発明のポーラス型の陽極酸化皮膜とは異なり、緻密な構造を有している。その膜厚は、陽極酸化電圧にほぼ比例することが知られている。1000Vを超えるような電圧で陽極酸化を行うと、陽極酸化中に絶縁破壊が生じるため、厚さが2μmを超えるような陽極酸化皮膜を得ることは難しく、また、大気中で絶縁性を確保しづらい。さらに、緻密な膜であることから、応力を受けた際に、破断が生じやすく、ポーラス型陽極酸化皮膜に比べて耐クラック性が低い。
pKa(酸解離定数)が2.5〜3.5の酸としては、例えば、マロン酸:2.60、ジグリコール酸:3.0、リンゴ酸:3.23、酒石酸:2.87、クエン酸:2.90、グリオキシル酸:2.98、フタル酸:2.75、トリメリト酸:2.5を用いることができる。陽極酸化に用いる溶液としては、これらのpKa(酸解離定数)が2.5〜3.5の酸と、他の酸、塩基、塩、添加剤などの混合溶液を用いてもよい。
pKaが2.5〜3.5のカルボン酸類で陽極酸化を行うと、陽極酸化皮膜中にカルボン酸のアニオン(酸根と呼ばれる)が含有されて、炭素が含まれる陽極酸化皮膜が形成される。
本実施形態において、金属基板15に、温度が50℃〜98℃で、その水溶液の25℃におけるpHが2.5〜3.5である酸性水溶液を用いて陽極酸化処理を行うことにより、室温(23℃)での圧縮歪みの大きさが0.005〜0.1%の陽極酸化皮膜を得ることができる。
この場合、陽極酸化皮膜に作用する圧縮応力の大きさは、2.5〜150MPaである。
陽極酸化処理後に、マスキングフィルム(図示せず)を剥がすことにより、上述の基板1を得ることができる。
絶縁層16である陽極酸化皮膜の好ましい厚さは、上述のように、3μm〜20μm、さらに好ましくは5μm〜20μm、特に好ましくは5μm〜15μmである。
この厚さは、定電流電解、定電圧電解の電流、電圧の大きさおよび電解時間により制御可能である。
なお、ホウ酸等の中性電解液で電解処理すると、ポーラスな微細柱状体が配列した陽極酸化皮膜でなく緻密な陽極酸化皮膜(非ポーラスな酸化アルミニウム単体膜)となる。酸性電解液でポーラスな陽極酸化皮膜を生成後に、中性電解液で再電解処理するポアフィリング法によりバリア層の層厚を大きくした陽極酸化皮膜を形成してもよい。バリア層を厚くすることにより、より絶縁性の高い皮膜とすることができる。
ポアフィリング処理に用いる電解液はホウ酸水溶液が好ましく、ホウ酸水溶液にナトリウムを含むホウ酸塩を添加した水溶液が好ましい。ホウ酸塩としては、八ほう酸二ナトリウム、テトラフェニルほう酸ナトリウム、テトラフルオロほう酸ナトリウム、ペルオキソほう酸ナトリウム、四ほう酸ナトリウム、メタほう酸ナトリウムなどがある。これらのホウ酸塩は、無水または水和物として入手することができる。
ポアフィリング処理に用いる電解液として、0.1〜2mol/Lのホウ酸水溶液に、0.01〜0.5mol/Lの四ほう酸ナトリウムを添加した水溶液を用いることが特に好ましい。アルミニウムイオンは0〜0.1mol/L溶解していることが好ましい。アルミニウムイオンは、電解液中へポアフィリング処理により化学的または電気化学的に溶解するが、予めホウ酸アルミニウムを添加して電解する方法が特に好ましい。また、アルミニウム合金中に含まれる微量元素が溶解していても良い。
本実施形態において、ポーラス構造の陽極酸化皮膜は、微細孔が規則的に形成されていること、すなわち、規則化されたポーラス構造であってもよい。
ポーラス構造の陽極酸化皮膜において、微細孔を規則的に形成するには、例えば、以下に示す自己規則化法と呼ばれる陽極酸化処理により形成することができる。
この自己規則化法は、陽極酸化皮膜の微細孔(マイクロポア)が規則的に配列する性質を利用し、規則的な配列をかく乱する要因を取り除くことで、規則性を向上させる方法である。具体的には、高純度のアルミニウムを使用し、電解液の種類に応じた電圧で、長時間(例えば、数時間から十数時間)かけて、低速で陽極酸化皮膜を形成させ、その後、脱膜処理を行う。
この自己規則化法においては、微細孔の径は、印加電圧に依存するので、印加電圧を制御することにより、ある程度所望の微細孔の径を得ることができる。
自己規則化法の代表例としては、J.Electrochem.Soc.,Vol,144,No.5,May 1997,p.L128、Jpn.J.Appl.Phys.,Vol,35(1996)Pt.2,No.1B,L126、Appl.Phys.Lett,Vol.71,No.19,10 Nov 1997,p.2771が知られている。
また、これらの公知文献に記載されている方法では、陽極酸化皮膜を溶解させて除去する脱膜処理に、50℃程度のクロム酸とリン酸の混合水溶液を用いて、12時間以上をかけている。なお、沸騰した水溶液を用いて処理すると、規則化の起点が破壊され、乱れるので、沸騰させないで用いる。
微細孔が規則的に形成された陽極酸化皮膜は、アルミニウム部分に近くなるほど規則性が高くなってくるので、一度、脱膜して、アルミニウム部分に残存した陽極酸化皮膜の底部分を表面に出して、規則的な窪みを得る。従って、脱膜処理においては、アルミニウムは溶解させず、酸化アルミニウムである陽極酸化皮膜のみを溶解させる。
その結果、これらの公知文献に記載されている方法では、微細孔の微細孔径は種々異なるが、微細孔径のばらつき(変動係数)は3%以下となっている。
例えば、自己規則化法による陽極酸化処理としては、酸濃度1〜10質量%の溶液中で、アルミニウム部材を陽極として通電する方法を用いることができる。陽極酸化処理に用いられる溶液としては、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等を単独でまたは2種以上を組み合わせて用いることができる。
陽極酸化処理後に、絶縁層16となる陽極酸化皮膜が形成された金属基板15をアニール処理する。これにより、絶縁層16に、0.005〜0.25%の圧縮歪みが付与された基板1を形成することができる。
なお、アニール処理は、例えば、陽極酸化皮膜に対して、600℃以下の温度で行う。また、アニール処理は、加熱温度が100〜600℃、保持時間が1秒〜100時間のアニール条件で行うことが好ましい。この場合、アニール処理の加熱温度は、Al層14の軟化温度以下である。アニール条件を変えることにより、所定の圧縮歪みとすることができる。上述の如く、図6に示すように、アニール条件としては、加熱温度を高く、保持時間を長くすることにより、陽極酸化皮膜の圧縮歪みを大きくすることができる。
アニール処理の加熱温度は、100℃未満では、実質的に圧縮化効果を得ることができない。一方、アニール処理の加熱温度が、600℃を超えると、金属基板15と陽極酸化皮膜との熱膨張係数の差により陽極酸化皮膜が割れてしまう虞がある。このように、アニール処理は、陽極酸化皮膜が破壊しない程度の温度で行う必要がある。金属基板15にアルミニウム材を用いる場合は、高温ほどアルミニウムの軟化が甚だしく、基材12の変形を引き起こす虞があるため、好ましくは、300℃以下、さらに好ましくは200℃以下、特に好ましくは150℃以下である。一方、アルミニウムとは異なる金属からなる基材12の少なくとも片面にAl層14が設けられている金属基板15を用いる場合は、高温ほどアルミニウムと基材12の界面に金属間化合物が形成され、甚だしい場合には界面の剥離にいたる虞があるため、好ましくは500℃以下、さらに好ましくは400℃以下、特に好ましくは300℃以下である。
また、アニール処理の保持時間は、わずかでも圧縮化効果を得ることができるため、1秒以上とする。一方、アニール処理の保持時間は、100時間を超えて行っても圧縮化効果が飽和してしまうため、上限を100時間とする。
金属基板15にアルミニウム材を用いる場合は、長時間ほどアルミニウムの軟化、クリープ現象が甚だしく、基材の変形を引き起こす虞があり、また、生産性の点からも、好ましくは、50時間以下、さらに好ましくは10時間以下、特に好ましくは1時間以下である。一方、アルミニウムとは異なる金属からなる基材12の少なくとも片面にアルミニウム基材が設けられている金属基板15を用いる場合は、長時間ほどアルミニウムと基材12の界面に金属間化合物が形成され、甚だしい場合には界面の剥離にいたる虞があり、また、生産性の点からも、好ましくは10時間以下、さらに好ましくは2時間以下、特に好ましくは30分以下である。
なお、図2(c)に示すように、基板1で金属基板15bをAl層14単体で構成した場合、Al層14の加熱温度が軟化温度を超えると、陽極酸化皮膜が基板1の伸び量を支配してしまい、金属基板15が伸びなくなる。このため、圧縮化効果を得ることが困難になるとともに、一定の強度に維持することができなくなる。このことから、金属基板がAl層単体である場合、アニール処理の加熱温度はAl層14の軟化温度以下とするのが良い。
本実施形態の基板1においては、室温時に陽極酸化皮膜の内部応力を圧縮状態とし、その歪みの大きさを0.005〜0.25%とすることによって、絶縁層16の陽極酸化皮膜に圧縮歪みがかかっていることから、クラックの発生につながりにくく、耐クラック性が優れる。絶縁層付金属基板を得ることができる。
しかも、基板1は、絶縁層16としてアルミニウムの陽極酸化皮膜を用いており、このアルミニウムの陽極酸化皮膜は、セラミックスであることから、高温でも化学変化を起こしづらく、クラックが発生しなければ信頼性の高い絶縁層16として用いることができる。このため、基板1は、熱歪みに強く、耐熱性基板として用いることができる。
また、基板1において、絶縁層16の陽極酸化皮膜を圧縮歪み状態にすることによって、ロールトゥロールプロセスでの一貫生産を経験してもクラックが発生にしにくく、耐曲げ歪み性を有する。
なお、室温で引張歪みが作用している場合には、一旦、割れ、クラックが生じてしまうと、その割れ、クラックを開くように引張力が作用するため、割れ、クラックが開いた状態となってしまう。これにより、基板1は絶縁性を保つことができなくなる。
基板1を用いた色素増感太陽電池を屋外に設置して、過酷な温度変化、外部からの衝撃、または経時変化によるAl層14、絶縁層16の陽極酸化皮膜の欠陥の発生等があっても、絶縁性に対する長期の信頼性を得ることができる。
また、基板1を、例えば、500℃以上の高温環境下に曝した場合、金属基板15が引張方向E(図2(a)参照)に伸びて、絶縁層16の陽極酸化皮膜と金属基板15の熱膨張係数の差によって陽極酸化皮膜が受ける引張応力が低減されて、割れ、クラック等の不良が生じなくなる。これにより、耐熱温度の向上を図ることができる。このように、500℃以上の高温環境下に曝されても、性能劣化のない基板1を得ることができる。このため、半導体微粒子のペーストを印刷した後のさらなる高温での焼成プロセスが可能となり、光電変換効率の高い色素増感太陽電池を作製することができる。
また、基板1を用いることにより、色素増感太陽電池の製造をロールトゥロールで行えるようになり、生産性を大きく向上させることができる。
また、基板1において、金属基板15を、ステンレス鋼材の基材12とAl層14との2層クラッド構造とした場合、陽極酸化処理はステンレス鋼材の基材12を保護して処理することになり、絶縁層16の陽極酸化皮膜は、Al層14の表面14aにのみ形成され、金属基板15の裏面はステンレス鋼材がむき出しとなる。しかし、大気雰囲気でアニール処理することによって、ステンレス鋼材のむき出しの面にFeが主体の鉄系酸化物膜が形成される。
また、基板1を用いた色素増感太陽電池を屋外に設置して、過酷な温度変化、外部からの衝撃を受けた場合であっても、絶縁層16が圧縮応力状態であるので損傷を生じ難い。すなわち、色素増感太陽電池の使用状態における長期の信頼性を得ることができる。
<第1電極>
第1電極2は、金属(例えば、チタン、パラジウム、白金、鉄、ステンレス鋼、銀、銅、アルミ、ニッケル、亜鉛、モリブデン、タンタル、ニオブ、ジルコニウム、もしくはそれらの合金)、ならびに導電性ポリマー(ポリ(3,4−エチレンジオキシチオフェン)、ポリチオフェン誘導体、ポリアニリン)などを含むがこれらに限定されない。金属はニッケル、スズ等でメッキされていても良い。
第1電極2として好ましくは、チタン、パラジウム、白金、ステンレス鋼であり、更に好ましくはチタン、ステンレス鋼である。ステンレス鋼としては、例えば316ステンレス鋼、332ステンレス鋼などが好ましい。
第1電極2の厚みは1μm以上400μm以下であることが好ましく、さらに好ましくは10μm以上200μm以下である。
<半導体微粒子>
本発明における半導体微粒子層は、例えば、半導体微粒子分散液を、前記基材1に、塗布し加熱して、多孔質半導体微粒子層を得ることができる。
半導体微粒子は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子が用いられる。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましく、酸化チタン(チタニア)が最も好ましい。
半導体には伝導に関わるキャリアーが電子であるn型とキャリアーが正孔であるp型が存在するが、本発明の素子ではn型を用いることが光電変換効率の点で好ましい。n型半導体には、不純物準位をもたず伝導帯電子と価電子帯正孔によるキャリアーの濃度が等しい固有半導体(あるいは真性半導体)の他に、不純物に由来する構造欠陥により電子キャリアー濃度の高いn型半導体が存在する。本発明で好ましく用いられるn型の無機半導体は、TiO、TiSrO、ZnO、Nb、SnO、WO、Si、CdS、CdSe、V、ZnS、ZnSe、SnSe、KTaO、FeS、PbS、InP、GaAs、CuInS、CuInSeなどである。これらのうち最も好ましいn型半導体はTiO、ZnO、SnO、WO、ならびにNbである。また、これらの半導体の複数を複合させた半導体材料も好ましく用いられる。
半導体微粒子の粒径は、半導体微粒子分散液の粘度を高く保つ目的で、一次粒子の平均粒径が2nm以上50nm以下であることが好ましく、また一次粒子の平均粒径が2nm以上30nm以下の超微粒子であることがより好ましい。粒径分布の異なる2種類以上の微粒子を混合してもよく、この場合小さい粒子の平均サイズは5nm以下であるのが好ましい。また、入射光を散乱させて光捕獲率を向上させる目的で、上記の超微粒子に対して平均粒径が50nmを越える大きな粒子を、低含率で添加することもできる。この場合、大粒子の含率は、平均粒径が50nm以下の粒子の質量の50%以下であることが好ましく、20%以下であることがより好ましい。上記の目的で添加混合する大粒子の平均粒径は、100nm以上が好ましく、250nm以上がより好ましい。
半導体微粒子の作製法としては、作花済夫の「ゾル・ゲル法の科学」,アグネ承風社(1998年)、技術情報協会の「ゾル・ゲル法による薄膜コーティング技術」(1995年)等に記載のゾル・ゲル法、杉本忠夫の「新合成法ゲル−ゾル法による単分散粒子の合成とサイズ形態制御」,第35巻,第9号,1012〜1018頁(1996年)に記載のゾル・ゲル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。半導体微粒子が酸化チタンの場合、上記ゾル・ゲル法、ゲル・ゾル法、塩化物の酸水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」,技報堂出版(1997年)に記載の硫酸法および塩素法を用いることもできる。さらにゾル・ゲル法として、バルべらのジャーナル・オブ・アメリカン・セラミック・ソサエティー,第80巻,第12号,3157〜3171頁(1997年)に記載の方法や、バーンサイドらのケミストリー・オブ・マテリアルズ,第10巻,第9号,2419〜2425頁に記載の方法も好ましい。
この他に、半導体微粒子の製造方法として、例えば、チタニアナノ粒子の製造方法として好ましくは、四塩化チタンの火炎加水分解による方法(特表平06−511113号公報)、四塩化チタンの燃焼法(特開2003−327432号公報)、安定なカルコゲナイド錯体の加水分解(特開2001−85076号公報)、オルトチタン酸の加水分解(特開2004−161589号公報、特開2004−238213号公報)、可溶部と不溶部から半導体微粒子を形成後に可溶部を溶解除去する方法(特開2002−246620号公報)、過酸化物水溶液の水熱合成(特開2003−92154号公報)、またはゾル・ゲル法によるコア/シェル構造の酸化チタン微粒子の製造方法(特開2004−10403号公報)が挙げられる。
チタニアの結晶構造としては、アナターゼ型、ブルッカイト型またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。好ましい例として、特開平11−339867号公報、特開2001−43907号公報、特開2001−43907号公報に記載の例が挙げられる。また、好ましい酸化チタンの物性としては、欧州特許出願公開第1338563(A2)号明細書、米国特許出願公開第2004/0161380号公報、米国特許第6075203号明細書、米国特許第6,444,189号明細書、米国特許第6,720,202号明細書、中国特許出願公開第1540772(A)号明細書、特開2001−283942号公報および特開2001−212457号公報に記載の例などが挙げられる。
チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合してもよい。好ましい例としては、特開2003−168495号公報、特開2003−251194号公報、特開2004−175586号公報、特開2004−175587号公報、特開2004−175588号公報、特開2004−311354号公報、特開2004−311355号公報、特開2004−319661号公報および特開2005−162584号公報に記載の例が挙げられる。
チタニアは、非金属元素などによりドーピングされていても良い。好ましい例としては、特開2000−235874号公報、特開2003−252624号公報、特開2002−25637号公報、特開2003−187881号公報、特開2003−187882号公報、特開2003−179244号公報、特開2004−87148号公報、特開2004−119279号公報、特開2005−93944号公報、特開2005−64493号公報、特開2003−257507号公報および特開2003−323920号公報に記載の例などが挙げられる。チタニアへの添加剤としてド―パント以外に、ネッキングを改善するためのバインダーや逆電子移動防止の為に表面へ添加剤を用いても良い。好ましい添加剤の例としては、ITO、SnO粒子(特開平11−283682号公報、特開2001−345125号公報)、ウイスカー(特開2003−163037号公報)、繊維状グラファイト・カーボンナノチューブ(特開2003−163037号公報)、酸化亜鉛ネッキング結合子(特開2003−273381号公報)、セルロース等の繊維状物質(特開2003−123861号公報)、金属(特開2000−285975号公報、特開2001−35551号公報)、有機シリコン(特開2000−294304号公報)、ドデシルベンゼンスルホン酸(特開2000−260493号公報)、シラン化合物等の電荷移動結合分子(特開2000−323192号公報、特開2001−102103号公報)、及び電位傾斜型デンドリマー(特開2004−213908号公報)などが挙げられる。
チタニア上の表面欠陥を除去するなどの目的で、色素吸着前にチタニアを酸塩基または酸化還元処理しても良い。酸塩基処理の例としては、例えば特開2000−101106号公報、特開2002−293541号公報、特開2003−297441号公報、特開2003−297442号公報、特開2004−235240号公報などが挙げられる。また、特開平08−81222号公報、特開2000−285980号公報、特開2004−158243号公報および特開2004−247104号公報等に記載のようにエッチング、酸化処理、過酸化水素処理、脱水素処理、UV−オゾン、酸素プラズマなどで処理してもよい。
半導体微粒子分散液を作製する方法としては、前述のゾル−ゲル法の他に、半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法、微粒子に超音波などを照射して超微粒子に粉砕する方法、あるいはミルや乳鉢などを使って機械的に粉砕しすり潰す方法、等が挙げられる。分散溶媒としては、水および/または各種の有機溶媒を用いることができる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール、シトロネロール、ターピネオールなどのアルコール類、アセトンなどのケトン類、酢酸エチルなどのエステル類、ジクロロメタン、アセトニトリル等が挙げられる。
分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸またはキレート剤等を分散助剤として少量用いてもよい。
半導体微粒子分散液の粘度が高すぎると分散液が凝集してしまい製膜することができず、逆に半導体微粒子分散液の粘度が低すぎると液が流れてしまい製膜することができない。
従って、分散液の粘度は、25℃で10〜300N・s/mが好ましい。さらに好ましくは、25℃で50〜200N・s/mである。
半導体微粒子分散液の塗布方法としては、アプリケーション系の方法としてローラ法、ディップ法等を使用することができる。またメータリング系の方法としてエアーナイフ法、ブレード法等を使用することができる。またアプリケーション系の方法とメータリング系の方法を同一部分にできるものとして、特公昭58−4589号公報に開示されているワイヤーバー法、米国特許第2,681,294号明細書、同第2,761,419号明細書、同第2,761,791号明細書等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機を使用してスピン法やスプレー法で塗布するのも好ましい。湿式印刷方法としては、凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。また本発明の半導体微粒子分散液は粘度が高く、粘稠性を有するため、凝集力が強いことがあり、塗布時に支持体とうまく馴染まない場合がある。このような場合に、UVオゾン処理で表面のクリーニングと親水化を行うことにより、塗布した半導体微粒子分散液と導電性支持体表面の結着力が増し、半導体微粒子分散液の塗布が行い易くなる。
半導体微粒子層全体の好ましい厚さは0.1〜100μmである。半導体微粒子層の厚さはさらに1〜30μmが好ましく、2〜25μmがより好ましい。半導体微粒子の第1電極1m当りの担持量は0.5g〜400gが好ましく、5〜100gがより好ましい。
塗布した半導体微粒子層に対し、半導体微粒子同士の電子的接触の強化と、第1電極との密着性の向上のため、また塗布した半導体微粒子分散液を乾燥させるために、加熱処理が施される。この加熱処理により多孔質半導体微粒子層を形成することができる。
加熱条件としては、100〜650℃で0.1〜20時間とすることが好ましい。さらに好ましくは、150〜600℃で0.5〜15時間である。
なお、高分子材料層と導電性層を積層して第1電極2とする場合には、加熱条件としては、100〜500℃で0.1〜20時間とすることが好ましい。さらに好ましくは、100〜450℃で0.2〜15時間である。
また、加熱処理に加えて光のエネルギーを用いることもできる。例えば、半導体微粒子として酸化チタンを用いた場合に、紫外光のような半導体微粒子が吸収する光を与えることで表面を活性化してもよいし、レーザ光などで半導体微粒子表面のみを活性化することができる。半導体微粒子に対して該微粒子が吸収する光を照射することで、粒子表面に吸着した不純物が粒子表面の活性化によって分解され、上記の目的のために好ましい状態とすることができる。半導体微粒子を光励起することによって、微粒子層内に混入した不純物を光分解により洗浄するとともに、微粒子の間の物理的接合を強めることができる。
また、半導体微粒子分散液を前記の第1電極2に塗布し、加熱や光を照射する以外に他の処理を行ってもよい。好ましい方法として例えば、通電、化学的処理などが挙げられる。
塗布後に圧力をかけても良く、圧力をかける方法としては、特表2003−500857号公報、特開2002−93475号公報、特開2003−282160号公報、及び特開2004−214129号公報が挙げられる。光照射の例としては、特開2001−357896号公報、特開平11−219734号公報、特開2004−314313号公報、特開2005−142446号公報、特開2001−247314号公報が挙げられる。プラズマ・マイクロ波・通電の例としては、特開2002−353453号公報、特開2003−308893号公報、特開2004−265662号公報、特開2004−327369号公報、特開2004−342319号公報、特開2005−116415号公報、特開2005−139498号公報および特開2004−273770号公報が挙げられる。化学的処理としては、例えば特開2001−357896号公報、特開2002−280327号公報、特開2003−281947号公報、特表2005−520314号公報、特開2003−297442号公報が挙げられる。
上述の半導体微粒子を第1電極2上に塗設する方法は、半導体微粒子分散液を第1電極2上に塗布する方法、特許第2664194号公報に記載の半導体微粒子の前駆体を第1電極2上に塗布し空気中の水分によって加水分解して半導体微粒子膜を得る方法などの(1)湿式法に含まれる。湿式法の製造方法としては、上述の方法のほかに、半導体微粒子の分散液を作成する方法としては乳鉢ですり潰す方法、ミルを使って粉砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法等が挙げられるが、好ましくは、特開平11−144772号公報、特開2005−100792号公報、欧州特許出願公開第1300897(A1)号明細書、特開2002−324591号公報、特開2002−145615号公報、特開2003−176130号公報および特開2004−79610号公報が挙げられる。
(1)湿式法の塗布液の分散媒としては水または各種の有機溶媒(例えばメタノール、エタノール、t−ブタノール、ジクロロメタン、アセトン、アセトニトリル、酢酸エチル等)が挙げられるが、好ましくは、特表平06−511113号公報、中国特許出願公開第144292号明細書、特開平11−11912号公報、特開2000−294814号公報、特開2000−319018号公報、特開2000−319018号公報、特開2000−319018号公報、特開2002−145614号公報、特開2002−75477号公報、特開2004−193321号公報、国際公開第02/067357号、特開2004−207205号公報、特開2004−111348号公報、特開2004−186144号公報、特開2003−282162号公報、特開2005−142011号公報、特開2005−174695号公報、特開2005−85500号公報、特開平11−343118号公報、特開平11−354169号公報、特開2000−106222号公報、特開2003−246621号公報、特開2003−51345号公報、特開2004−158551号公報、特開2001−358348号公報、特開2003−217693号公報などが挙げられる。分散の際、必要に応じてポリマー、界面活性剤、酸、もしくはキレート剤などを分散助剤として少量であれば用いてもよい。
半導体微粒子を第1電極2上に塗設する方法として、上述の(1)湿式法とともに、(2)乾式法、(3)その他の方法を併用しても良い。
(2)乾式法として好ましくは、特開2000−231943号公報、特開2002−170602号公報、特開2001−345124号公報、特開2003−197280号公報、特開2003−123854号公報、特開2003−123852号公報、特開2003−123853号公報、特開2005−39013号公報、特開2004−39286号公報、特開2005−104760号公報が挙げられる。
(3)その他の方法として、好ましくは、特開2002−134435号公報、米国特許出願公開第2004/0123896号明細書、特開2004−327265号公報、特公表2003−500857号公報、特開2005−85491号公報、特開2003−98977号公報、特開2002−299665号公報、特開2003−243053号公報、特開2004−253331号公報、特開平11−310898号公報、特開2003−257507号公報、特開2003−323920号公報、米国特許出願公開第2004/0084080号明細書、米国特許出願公開第2004/0121068号明細書、特開2004−319873号公報、特開平10−112337号公報、特開平11−6098号公報、特開2000−178791号公報、特開2000−178792号公報、特開2004−103420号公報および特開2003−301283号公報が挙げられる。
半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を第1電極2上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。好ましい半導体微粒子の構造としては、特開2001−93591号公報、特開2001−257012号公報、特開2001−196106号公報、特開2001−273936号公報および欧州特許出願公開第1207572(A1)明細書が挙げられる。
一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体微粒子層の好ましい厚みは素子の用途によって異なるが、典型的には0.1〜100μmである。光電気化学電池として用いる場合は1〜50μmであることが好ましく、3〜30μmであることがより好ましい。
湿式法とは、半導体微粒子層またはその前駆体を湿式で塗布し、それを更に活性化する方法であり、例えば、特開平10−290018号公報に記載の半導体と導電性化合物の混合物を低温で加熱する方法、前駆体を用いる方法(前駆体として例えば、特開2001−110462号公報に記載の(NHTiF、特開2001−247314号公報に記載の過酸化チタン、特開平11−219734号公報に記載の金属アルコキシド・金属錯体・金属有機酸塩が挙げられる。)、特表2005−520314号公報に記載の金属有機酸化物(アルコキシドなど)を共存させたスラリーを塗布し加熱処理、光処理などで半導体膜を形成する方法、特開2003−2819847号公報に記載の無機系前駆体を共存させたスラリー、及び特開2005−056627号公報に記載のスラリーのpHと分散させたチタニア粒子の性状を特定した方法が挙げられる。
これらスラリーには、少量であればバインダーを添加しても良く、バインダーとしては、例えば、特開2003−109678号公報または特開2003−123861号公報記載のセルロース、特開2003−272722号公報に記載のフッ素ポリマー、特開2004−47261号公報に記載の架橋ゴム、特表2005−516365号公報に記載のポリブチルチタネートおよび特開2005−135798号公報に記載のカルボキシメチルセルロースなどが挙げられる。
半導体もしくはその前駆体層の形成に関する技術としては、特開2003−308890号公報に記載のコロナ放電、プラズマ、UVなどの物理的な方法で親水化する方法、アルカリ(特開2004−119120号公報)やポリエチレンジオキシチオフェンとポリスチレンスルホン酸(特開2005−169228号公報)などによる化学処理、特開2003−297443号公報に記載のポリアニリンなどの接合用中間膜の形成などが挙げられる。
乾式法としては、蒸着やスパッタリング、エアロゾルデポジション法などが挙げられ、好ましくは、特開2005−39013号公報、特開2004−074609号公報、特許第3265481号公報、特開2003−100359号公報および特開2004−39286号公報に記載の方法が挙げられる。
また、特開2002−100146号公報および特開2004−311354号公報に記載の電気泳動法・電析法を用いても良い。
また、耐熱基盤上でDSCを一旦作成した後、第1電極2に転写する方法を用いても良い。好ましくは、特開2002−184475号公報に記載のEVAを介して転写する方法、特開2003−98977号公報に記載の紫外線、水系溶媒で除去可能な無機塩を含む犠牲基盤上に半導体層・導電層を形成後、有機基盤に転写後、犠牲基盤を除去する方法などが挙げられる。
<感光体>
本発明の光電変換素子は、前記第1電極2上に、例えば、半導体微粒子分散液を塗布し加熱して得られた多孔質半導体微粒子層に、色素を吸着することにより、感光体(感光層とも称す)を得ることができる。感光体は目的に応じて設計され、単層構成でも多層構成でもよい。一層の感光体中の色素は一種類でも多種の混合でもよいが、そのうちの少なくとも1種は、後述の色素を用いる。本発明の方法により製造される光電変換素子の感光体には、この色素が吸着した半導体微粒子を含む。
<色素>
本発明の光電変換素子に使用できる色素としては、特に制限はないが、有機色素、錯体色素が挙げられ、なかでも金属錯体色素が好ましい。好ましい金属錯体色素としては、Ru、Os、Zn金属元素を含む錯体色素が挙げられ、なかでもRu、Os金属元素を含む金属錯体色素が好ましく、特に、Ru金属元素を含む金属錯体色素が好ましい。
色素としては、例えば、特許第3731752号、特公表2002−512729号、特開2001−59062号、特開2001−6760号、特許第3430254号、特開2003−212851号、国際公開第2007/91525号、特開2001−291534号、特開2012−12570号、特願2012−211587号、特願2012−232400号の各公報もしくは明細書などに開示のRu錯体色素、特開平11−214730号、特開2012−144688号、特開2012−84503号等の各公報に記載のスクアリリウムシアニン色素、特開2004−063274号、特開2005−123033号、特開2007−287694号、特開2008−71648号、特開2007−287694号、国際公開第2007/119525号の各公報もしくは明細書に記載の有機色素、Angew.Chem.Int.Ed.,49,1〜5(2010)などに記載のポルフィリン色素、Angew.Chem.Int.Ed.,46,8358(2007)などに記載のフタロシアニン色素が挙げられる。
半導体微粒子に色素を吸着させるには、溶液と色素よりなる色素吸着用色素溶液の中に、よく乾燥した半導体微粒子を長時間浸漬するのが好ましい。色素吸着用色素溶液に使用される溶液は、色素が溶解できる溶液なら特に制限なく使用することができる。例えば、エタノール、メタノール、イソプロパノール、トルエン、t-ブタノール、アセトニトリル、アセトン、n−ブタノールなどを使用することができる。その中でも、エタノール、トルエンを好ましく使用することができる。
溶液と色素よりなる色素吸着用色素溶液は必要に応じて50〜100℃に加熱してもよい。色素の吸着は半導体微粒子の塗布前に行っても塗布後に行ってもよい。また、半導体微粒子と色素を同時に塗布して吸着させてもよい。未吸着の色素は洗浄によって除去する。塗布膜の焼成を行う場合は色素の吸着は焼成後に行うことが好ましい。焼成後、塗布膜表面に水が吸着する前にすばやく色素を吸着させるのが特に好ましい。吸着する色素は1種類でもよいし、数種混合して用いてもよい。例えば、米国特許第4,927,721号、同第4,684,537号、同第5,084,365号、同第5,350,644号、同第5463057号、同第5525440号の各明細書および特開平7−249790号公報に記載の錯体色素を混合してもよい。光電変換の波長域をできるだけ広くするように、混合する色素が選ばれる。色素を混合する場合は、全ての色素が溶解するようにして、色素吸着用色素溶液とすることが必要である。
色素の使用量は、全体で、支持体1m当たり0.01〜100ミリモルが好ましく、より好ましくは0.1〜50ミリモル、特に好ましくは0.1〜10ミリモルである。この場合、本発明の色素の使用量は5モル%以上とすることが好ましい。
また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001〜1ミリモルが好ましく、より好ましくは0.1〜0.5ミリモルである。
このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体微粒子に付着していない色素が浮遊し増感効果を低減させる原因となる。
また、会合など色素同士の相互作用を低減する目的で無色の化合物を共吸着させてもよい。共吸着させる疎水性化合物としてはカルボキシル基を有するステロイド化合物(例えばコール酸、ピバロイル酸)等が挙げられる。
色素を吸着した後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としては4−tert−ブチルピリジン、ポリビニルピリジン等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
<電荷移動体>
以下に、電荷移動体について説明する。
電荷移動体4は、色素の酸化体に電子を補充する機能を有する層であり、受光電極7と対極電極9との間に設けられる。代表的な例としては、酸化還元対を有機溶媒に溶解した液体、酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質、酸化還元対を含有する溶融塩などが挙げられる。
酸化還元対としては、例えばヨウ素とヨウ化物(例えばヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム等)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせが好ましい。これらを溶かす有機溶媒としては、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3−ジメチルイミダゾリノン、3−メチルオキサゾリジノン等)、特開2002−110262号公報に記載の含水電解液、特開2000−36332号公報、特開2000−243134号公報および再公表WO/00−54361号公報に記載の電解質溶媒などが挙げられるが、アセトニトリル、メトキシプロピオニトリル、プロピレンカーボネート、γ−ブチロラクトンが好ましい。
電解質への添加物として、前述の4−tert−ブチルピリジンのほか、特開2003−331986号公報に記載のピリジンおよびピリジン系化合物、特開2004−47229号公報、特開2004−171821号公報などに記載のアミノピリジン系化合物、特開2004−273272号公報に記載のベンズイミダゾール系化合物、特開2005−38711号公報に記載のアミノトリアゾール系化合物及びアミノチアゾール系化合物、特開2005−108663号公報に記載のイミダゾール系化合物、キノリン系化合物(特開2005−135782号公報)、アミノトリアジン系化合物(特開2005−183166号公報)、尿素誘導体(特開2003−168493号公報)、アミド化合物(特開2004−103404号公報)、ピリミジン系化合物(特開2004−247158号公報)、および窒素を含まない複素環(特開2005−166612号公報、特開2005−166613号公報、および特開2005−16615号公報)が挙げられる。
また、効率を向上するために、電解液の水分を制御する方法をとっても良い。水分を制御する好ましい方法としては、濃度を制御する方法(特開2000−323189号公報、特開2001−76774号公報)、脱水剤を共存させる方法(特開2002−237335号公報、特開2002−237335号公報)などが挙げられる。
特開2004−235011号公報に記載のごとくヨウ素の毒性軽減のために、ヨウ素とシクロデキストリンの包摂化合物を使用してもよく、特開2003−25709号公報記載のように逆に水分を常時補給する方法を用いても良い。特許第3462115号公報に記載のように環状アミジンを用いても良く、酸化防止剤(特開2004−39292号公報)、加水分解防止剤(特開2004−111276号公報)、分解防止剤(特開2004−111277号公報)、およびヨウ化亜鉛(特開2004−152613号公報)を加えてもよい。
電解質として溶融塩を用いても良く、好ましい溶融塩としては、イミダゾリウムまはトリアゾリウム型陽イオンを含むイオン性液体(特表平09−507334号公報、特開平08−259543号公報、特開2003−031270号公報、特開2005−112733号公報、特開2005−116367号公報、特開2005−112733号公報、特開2003−68374号公報、特開2003−92153号公報、特開2004−241378号公報、特開2005−85587号公報、特開2004−87387号公報)、オキサゾリウム系(特開2000−53662号公報)、ピリジニウム系(特開2000−58891号公報、特開2001−23705号公報、特開2001−167630号公報、特開2001−256828号公報、特開2001−266962号公報)、グアニジウム系(特開2001−35253号公報)、およびこれらの組み合わせ(特開2000−90991号公報、特開2001−35552号公報)が挙げられる。これらカチオン系に対して特定のアニオンと組み合わせても良く、例えば、特開2002−75442号公報、特開2001−75443号公報、特開2002−170426号公報、特開2002−298913号公報、特開2002−367426号公報、特開2003−017148号公報などが挙げられる。これらの溶融塩に対しては添加物を加えても良く、好ましい添加物としては、特開2001−67931号公報、特開2001−160427号公報、特開2002−289267号公報、特開2002−289268号公報、特開2000−90991号公報、特開2000−100485号公報、特開2001−283943号公報)などに記載のものなどが挙げられる。特開2002−319314号公報又は特開2002−343440号公報のごとく液晶性の置換基を持っていてもよい。また、特開2005−104845号公報、特開2005−104846号公報、特開2005−179254号公報などに記載の四級アンモニウム塩系の溶融塩を用いても良い。
これら以外の溶融塩としては、例えば特開2005−139100号公報、特開2005−145927号公報に記載のもの、およびヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1〜50質量%である。また、γ−ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり変換効率が向上する。
電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化しても良い。ゲル化剤としては、分子量1000以下の有機化合物(特開平11−185836号公報、特開2000−36608号公報、特開2000−58140号公報)、分子量500−5000の範囲のSi含有化合物(特開2003−203520号公報)、特定の酸性化合物と塩基性化合物から得られる有機塩(特開2003−203520号公報)、ソルビトール誘導体(特開2003−346928号公報)、ポリビニルピリジン(特開2004−227920号公報、特開2005−093370号公報)が挙げられる。
また、マトリックス高分子、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いても良い。
マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体(特開平11−126917号公報、特開2000−86724号公報など)、トリアジン構造を持つ高分子、ウレイド構造をもつ高分子(特開2000−251532号公報)、液晶性化合物を含むもの(特開2000−319260号公報、特開2002−246066号公報)、エーテル結合を有する高分子(特開2000−150006号公報、特開2002−63813号公報、特開2001−338700号公報、特開2002−75480号公報)、ポリフッ化ビニリデン系(特開2003−303628号公報)、メタクリレート・アクリレート系(特開2001−28276号公報、特開2001−210390号公報)、熱硬化性樹脂(特開2002−363414号公報、特開2002−305041号公報)、架橋ポリシロキサン(特開2002−216861号公報)、PVA(特開2002−175841号公報)、ポリアルキレングリールとデキストリンなどの包摂化合物(特開2004−327271号公報)、含酸素または含硫黄高分子(特開2005−108845号公報)を添加した系、天然高分子(特開2005−71688号公報)などが挙げられる。これらにアルカリ膨潤型高分子(特開2002−175482号公報)、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子(特開2005−63791号公報)などを添加しても良い。
マトリックスポリマーとして2官能以上のイソシアネートを一方の成分として、ヒドロキシル基、アミノ基、カルボキシル基などの官能基と反応させた架橋ポリマーを含む系を用いても良い。例えば、特開2000−228234号公報、特開2002−184478号公報、特開2002−289271号公報および特開2003−303630号公報)が挙げられる。また、ヒドロシリル基と二重結合性化合物による架橋高分子(特開2003−59548号公報)、ポリスルホン酸またはポリカルボン酸などを2価以上の金属イオン化合物と反応させる架橋方法(特開2003−86258号公報)などを用いても良い。
上記擬固体の電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル(特開2000−100486号公報、特開2003−16833号公報)、エチレンカーボネートを含む混合溶媒(特開2004−87202号公報)、特定の比誘電率を持つ溶媒(特開2004−335366号公報)、及び特開2003−16833号公報及び特開2003−264011号公報に記載の溶媒などが挙げられる。
固体電解質膜あるいは細孔に液体電解質溶液を保持させても良く、その方法として好ましくは、導電性高分子膜(特開平11−339866号公報)、繊維状固体(特開2000−357544号公報)、フィルタなどの布上固体(特開2001−345125号公報)が挙げられる。特開2003−157914号公報に記載のゲル電解質と導電性樹脂対極の特定の組み合わせを用いても良い。
以上の液体電解質及び擬固体電解質の代わりにp型半導体あるいは正孔輸送材料などの固体電荷輸送系を用いても良い。P型半導体として好ましくは、CuI(特開2001−156314号公報、特開2001−185743号公報、特開2001−185743号公報、特開2001−230434号公報、特開2003−273381号公報、特開2003−234485号公報、特開2003−243681号公報、特開2003−234486号公報)、CuSCNおよびp−SbAl(特開2003−258284号公報)が挙げられる。これら正孔輸送材料の製造方法として好ましくは、特開2003−331938号公報、特開2001−168359号公報、特開2001−196612号公報、特開2001−257370号公報、特開2002−246623号公報、特開2002−246624号公報および特開2003−289151号公報が挙げられる。
本発明の色素を吸着させた半導体微粒子の感光層に隣接して、正孔輸送体が設けられた積層体を用いることにより、光電変換効率が高い色素増感太陽電池を得ることができる。正孔輸送体としては特に制限されないが、有機正孔輸送材を使用することができる。正孔輸送体として好ましくは、ポリチオフェン(特開2000−106223号公報、特開2003−364304号公報)、ポリアニリン(特開2003−264304号公報)、ポリピロール(特開2000−106224号公報、特開2003−264304号公報)およびポリシラン(特開2001−53555号公報、特開2001−203377号公報)などの導電性高分子および2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物(特表平11−513522号公報、特表2001−525108号公報)、トリアリールアミンなどの芳香族アミン誘導体(特開平11−144773号公報、特開平11−339868号公報、特開2003−123856号公報、特開2003−197942号公報、特開2004−356281号公報)、トリフェニレン誘導体(特開平11−176489号公報)、含窒素複素環誘導体(特開2001−85077号公報、特開2001−85713号公報)、液晶性シアノ誘導体(特許第3505381号公報)が挙げられる。
酸化還元対は、電子のキャリアになるので、ある程度の濃度が必要である。好ましい濃度としては合計で0.01モル/l以上であり、より好ましくは0.1モル/lであり、特に好ましくは0.3モル/l以上である。この場合の上限には特に制限はないが、通常5モル/l程度である。
<対向電極基板>
対向電極基板9は第2電極5および透明基板6からなる。
透明基板6はガラスもしくはプラスチック基板が好ましい。透明基板6は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。透明基板6上には、表面に光マネージメント機能を施してもよく、例えば、特開2003―123859号公報に記載の高屈折膜および低屈性率の酸化物膜を交互に積層した反射防止膜、特開2002―260746号公報に記載のライトガイド機能が挙げられる。
使用することが可能なプラスチックとしては、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を例示することができる。
第2電極5は、導電性の金属酸化物をスパッタしたもの、またはメッシュ電極であることが好ましい。金属酸化物としてはスズ酸化物が好ましく、インジウム-スズ酸化物、フッ素ドープド酸化物が特に好ましい。このときの導電性の金属酸化物の量は、ガラスもしくはプラスチック基板1m当たりの0.1〜100gが好ましい。金属酸化物の厚さは0.01〜30μmであることが好ましく、0.03〜25μmであることが更に好ましく、特に好ましくは0.05〜20μmである。
メッシュ電極は導電性メッシュ材料からなる。好ましいメッシュ材料としては、金属(ステンレス、チタン、パラジウム、白金、銅、銀、アルミニウム、ニッケルおよびそれらの合金など)および導電性ポリマー(ポリ(3,4−エチレンジオキシチオフェン)、ポリチオフェン誘導体、ポリアニリン)を含む。メッシュ電極0.1μm〜500μmの範囲の平均直径で、約40%〜95%の範囲の開口面積を有する。
対向電極基板9上には、紫外光を遮断する機能を持たせることが好ましい。例えば、特開2001−185242号公報に記載の紫外光を可視光に変えることができる蛍光材料を前記透明基板6であるプラスチック基板の内部または表面に存在させる方法が挙げられる。また、別の好ましい方法して、紫外線吸収剤を用いる方法も挙げられる。好ましい態様として例えば、特開平11−345991号公報、特開2002−25634号公報、特開2003−21769号公報、特開2004−227843号公報、特開2004−349129号公報、特開2002−134178号公報および特開2003−100358号公報に開示のものが挙げられる。
対向電極基板9上には、特開平11−250944号公報、特開2003−308892号公報および特開2003−282163号公報に記載の機能を付与してもよい。
導電膜の抵抗値はセル面積が大きくなると大きくなるため、集電電極を配置してもよい。好ましい集電電極の形状および材質としては、特開平11−266028号公報、特開2005−108467号公報、特開2003−203681号公報、特開2004−146425号公報、特開2004−128267号公報、特開2004−164970号公報、特開2004−327226号公報、特開2004−164950号公報、特開2005−78857号公報、特開2005−197176号公報、特開2004−164950号公報、特開2000−285977号公報、特開2002−314108号公報および特開2003−123858号公報に記載のものが挙げられる。
特開2000−285974号公報に記載のように、透明基板6であるプラスチック基板と対向電極基板9の間にガスバリア膜および/またはイオン拡散防止膜を配置しても良い。ガスバリア層としては、樹脂膜(例えば、特開2000−282163号公報、特開2005−142086号公報)または、無機膜(特開2005−142086号公報)のどちらでもよい。
本発明は、特許第4260494号公報、特開2004−146425号公報、特開2000−340269号公報、特開2002−289274号公報、特開2004−152613号公報、特開平9−27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004−152613号公報、特開2000−90989号公報、特開2003−217688号公報、特開2002−367686号公報、特開2003−323818号公報、特開2001−43907号公報、特開2000−340269号公報、特開2005−85500号公報、特開2004−273272号公報、特開2000−323190号公報、特開2000−228234号公報、特開2001−266963号公報、特開2001−185244号公報、特表2001−525108号公報、特開2001−203377号公報、特開2000−100483号公報、特開2001−210390号公報、特開2002−280587号公報、特開2001−273937号公報、特開2000−285977号公報、特開2001−320068号公報等に記載の光電変換素子、色素増感太陽電池に適用することができる。
<<光電変換素子、色素増感太陽電池の製造方法>>
本発明の光電変換素子とそれを具備した色素増感太陽電池は、前述のようにして、少なくとも、アルミニウム層と、該アルミニウム層の少なくとも一方の表面を陽極酸化してなるポーラス構造を有する絶縁層16とからなり、該絶縁層16が室温で圧縮方向の歪みを有する基板を作製する。
作製した基板1上に、第1電極2、色素が吸着された多孔質半導体微粒子層を有する感光体3、電荷移動体4、および対極9を含む各材料を設け、積層構造とすることで、光電変換素子100とそれを具備した色素増感太陽電池を作製する。
このとき、受光電極7は、色素、好ましくは金属錯体色素を含有する色素溶液を使用して色素吸着電極を製造することが好ましい。
このような色素溶液には、色素が溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。
共吸着剤としては酸性基(好ましくは、カルボキシル基もしくはその塩の基)を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えばブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
色素溶液に使用する溶媒としては、特開2001−291534号公報に記載の溶媒が挙げられるが特に限定されない。本発明においては有機溶媒が好ましく、さらにアルコール類、アミド類、ニトリル類、アルコール類、炭化水素類および、これらの2種以上の混合溶媒が好ましい。混用溶媒としては、アルコール類と、アミド類、ニトリル類、アルコール類又は炭化水素類から選択される溶媒との混合溶媒が好ましい。さらに好ましくはアルコール類とアミド類、アルコール類と炭化水素類の混合溶媒、特に好ましくはアルコール類とアミド類の混合溶媒である。具体的にはメタノール、エタノール、プロパノール、ブタノール、ジメチルホルムアミド、ジメチルアセトアミドが好ましい。
色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、ステロイド骨格を有する化合物が好ましい。
ここで、色素溶液は、光電変換素子や色素増感太陽電池を作製する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤が濃度調整されているものが好ましい。本発明においては、色素を0.001〜0.1質量%含有することが好ましい。
色素溶液は、水分含有量を調整することが特に好ましく、従って、本発明においては水の含有量(含有率)を0〜0.1質量%に調整することが重要である。
同様に、光電変換素子や色素増感太陽電池における電解液の水分含有量の調整も、本発明の効果を効果的に奏するために重要であり、このため、この電解液の水分含有量(含有率)を0〜0.1質量%に調整することが好ましい。この電解液の調整は、色素溶液で行なうのが特に好ましい。
以下、本発明を実施例に基づき、更に詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
下記の手順で光電変換素子を含む色素増感太陽電池を製作し、色素増感太陽電池の出力〔Pmax(mW)〕について評価した。
〔基板の作製〕
(1)基板の作製
以下に示す2種類の金属基板15に対して、下記表1に示す条件(電解液濃度と温度)で行い、一定電圧で定電圧電解することにより、金属基板の両面に陽極酸化処理を行い、絶縁層16として陽極酸化皮膜を形成した。その後、下記表1に示すアニール条件(温度と時間)でアニール処理を行った。なお、アニール処理は、空気中で赤外線ランプにより行い、加熱昇温速度1℃/秒で、一定時間保持した。このように、陽極酸化皮膜にアニール処理を行うことにより、下記表1に示す本発明の基板No.101〜113および比較の基板No.c01〜c04の各基板1を作製した。
金属基板[A]:単材
厚み40μmの高純度Al(Al純度:4N)
金属基板[B]:クラッド材
高純度Al(Al純度:4N)/フェライト系ステンレス鋼(材質:SUS430)/高純度Al(Al純度:4N)=30μm厚/60μm厚/30μm厚
上記ののようにして作製した各基板1について、絶縁層16を形成する陽極酸化皮膜の歪みの大きさ、ヤング率を測定し、内部応力を算出した。また、絶縁破壊試験を行い、絶縁破壊電圧を評価した。
(歪み量)
歪みの大きさは、絶縁層16を形成する陽極酸化皮膜の長さを計測し、その後、金属基板15を溶解して取り除いた後の陽極酸化皮膜の長さを測定し、金属基板15を取り除く前後の陽極酸化皮膜の長さに基づいて歪みの大きさを求めた。
(ヤング率)
ヤング率は、フィッシャーインスツルメンツ社製 PICODENTOR(登録商標) HM500Hを用いて、陽極酸化膜表面から0.5μm、圧子を推し込むことにより測定した。
(内部応力)
上記で得られた歪みの大きさとヤング率を用いて、内部応力(=歪み量×ヤング率)を求めた。
(絶縁破壊電圧)
基板1の絶縁性については、ロールツーロールハンドリング耐性を含めて評価するため、アニール後の各試料を、予め曲率半径80mmの治具に、絶縁破壊試験を行う面が凸面となるように沿わせ、直交する2方向で、各々10回ずつ曲げ歪を加えた後に絶縁試験を行った。
上記の曲げ試験を行った後に、各基板1について、それぞれ5cm×5cmの大きさに試験片を切り出し、各試験片に直径が3cmの上部金電極を形成した。
各試験片に、上部金電極を形成した後、上部電極とアルミ基板の間に電圧を印加し、10V刻みで徐々に印加電圧を上昇させた。絶縁破壊が起こった電圧を絶縁破壊電圧とした。
なお、印加電圧が1000Vの段階でも絶縁破壊を起こさなかった基板1は、絶縁破壊電圧の欄に1000V以上と記載した。
得られた結果をまとめて表1に示す。
曲げ試験を行った後に、絶縁破壊試験を行っており、本発明の基板はいずれも絶縁性が優れているが、比較の基板はいずれも絶縁性を失っている。これは、本発明の基板例は圧縮応力が働いて、曲げ試験後もクラックが入らないが、比較の基板は曲げ試験によってクラックが発生したものと推定される。圧縮応力があることで、曲げてもクラックが入りにくく、フレキシブルな基板となり、ロールツーロールハンドリングが可能となる。
Figure 2014164846
〔光電変換素子の作製〕
以下に示す手順により、光電変換素子を作成した。
(ペーストの調製)
(ペーストA)球形のTiO粒子(アナターゼ、平均粒径;25nm、以下、球形TiO粒子Aという)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストを調製した。
(ペースト1)球形TiO粒子Aと、球形のTiO粒子(アナターゼ、平均粒径;200nm、以下、球形TiO粒子Bという)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト(TiO粒子Aの質量:TiO粒子Bの質量=30:70)を調製した。
(ペースト2)ペーストAに、棒状TiO粒子(アナターゼ、直径;100nm、アスペクト比;5、以下、棒状TiO粒子Cという)を混合し、棒状TiO粒子Cの質量:ペーストAの質量=30:70のペーストを調製した。
(半導体電極の作製)
前述の方法で作製した本発明の基板No.101〜113および比較の基板No.c01〜c04に対して、ロールツーロールハンドリング耐性を含めて評価するため、前述の曲げ試験を行った後に、第1電極としてチタン電極を付与し、そして、このチタン電極上に、上述のペースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト2を用いてこのスクリーン印刷と焼成とを繰り返すことにより、第1電極上に半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子Cの含有率;30質量%)を形成し、色素を含有していない光電極を作製した。
(比較半導体電極の作製)
基板[A]、[B]とチタン電極の代わりにITOをスパッタしたPEN(ポリエチレンテレフタレート)を用いて、この上に上述のペースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、150℃の条件のもとで焼成した。なお、150℃よりも高い温度で焼成したものは基盤に変形を生じ、セルの作製に用いることができなかった。更に、ペースト2を用いてこのスクリーン印刷と焼成とを繰り返すことにより、第1電極上に半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子Cの含有率;30質量%)を形成し、色素を含有していない光電極を作製した。
これらの半導体電極を用いて以下の手順に従って作製したセルを比較セルRとした。
(色素吸着)
次に、半導体電極(色素吸着電極の前駆体)に下記色素R−1を以下のようにして吸着させた。先ず、マグネシウムエトキシドで脱水した無水ブタノールとジメチルホルムアミドの1:1(体積比)の混合物を溶媒として、下記表1に記載の金属錯体色素を3×10−4モル/Lとなるように溶解し、さらに共吸着剤として、ケノデオキシコール酸とコール酸の等モル混合物を金属錯体色素1モルに対して20モル加え、各色素溶液を調製した。次に、この溶液に半導体電極を40℃で10時間浸漬し、引き上げ後50℃で乾燥させることにより、半導体電極に色素が約2×10−7mol/cm吸着した光電極40をそれぞれ完成させた。
Figure 2014164846
(光電変換素子の組み立て)
次に、対極として上記の光電極と同様の形状と大きさを有する塩化白金酸で処理したITOをスパッタしたPEN(ポリエチレンナフタレート)シート、電解液として、ヨウ素0.1M、ヨウ化リチウム0.05M、4−t−ブチルピリジン0.25Mを含むヨウ素系レドックスプロピオニトリル溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備し、光電極40と対極CEを、スペーサーSを介して対向、熱圧着させ、内部に上記の電解質を充填して各光電変換素子(電池No.101〜113、c01〜c04)をそれぞれ完成させた。これらの光電変換素子の色素増感太陽電池の性能を下記のようにして評価した。
(評価実験1)
電池特性試験を行い、上記色素増感太陽電池の短絡電流密度(Jsc 単位mA/cm)、開放電圧(Voc 単位v)、フィルファクター(FF)を求め、電池出力を入射エネルギーで除することにより光電変換効率〔η(%)〕を測定した。電池特性試験は、ソーラーシミュレーター(ペクセル・テクノロジーズ株式会社製PEC−L12)を用いた。特性評価はペクセル・テクノロジーズ株式会社製I−V特性計測装置(PECK2400−N)を用いた。評価は同一条件に付き、5個のセルを作製し、光電変換効率評価結果はこれらの平均値として示した。また、バラツキは標準偏差によって評価した。得られた結果を下記の評価基準で評価した。
初期変換効率評価基準
A:光電変換効率が比較セルRに対し1.3倍以上のもの
B:1.1倍以上1.3倍未満のもの
C:1.1倍未満のもの
なお、下記表2には初期性能として示す。
初期効率バラツキ評価基準
A:0.07未満 のもの
B:0.07以上0.15未満のもの
C:0.15以上のもの
なお、下記表2には性能のバラツキとして示す。
(評価実験2)
ナガセケムテック製レジンXNR−5516を用いて作製した光電変換素子の色素増感太陽電池の外周および電解液注入口を封止し、硬化した。この色素増感太陽電池を、65℃の環境下に200時間放置する前後の光電変換効率を測定し、その比を劣化率とした。評価は同一条件に付き、5個のセルを作成し、劣化率の評価結果はこれらの平均値として示した。また、バラツキは標準偏差によって評価した。得られた結果を下記の評価基準で評価した。
劣化率評価基準
A:劣化率がマイナスのもの(良化したもの)
B:100〜90%のもの
C:90%未満のもの
なお、表2には熱耐久性として示す。
劣化率バラツキ評価基準
A:2%未満のもの
B:2%以上5%未満のもの
C:5%以上のもの
なお、表2には熱耐久性のバラツキとして示す。
各々の色素増感太陽電池に対して得られた結果をまとめて下記表2に示す。
Figure 2014164846
上記表2から明らかなように、本発明の光電変換素子の色素増感太陽電池はいずれも、光電変換効率が優れ(初期の光電変換効率)、しかも耐久性が高く、特にそれらのバラツキが小さいことがわかる。
これは、曲げ試験を経た基板に、色素増感太陽電池素子を作製したところ、絶縁性が優れた本発明の基板は、クラックがないと思われるために性能が良く、バラツキも殆どないが、絶縁性がなく、クラックが生じていると思われる比較例の基板は、性能のバラツキが大きいと推定される。
1 基板
2 第1電極
3 感光体
4 電荷移動体
5 第2電極
6 透明基板
7 受光電極
8 外部回路
12 基材(金属基材)
14 アルミニウム基材(Al基材)
15 金属基板
16 絶縁層
100 光電変換素子

Claims (11)

  1. 基板上に、第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、該基板が、少なくとも、アルミニウム層と、該アルミニウム層の少なくとも一方の表面を陽極酸化してなるポーラス構造を有する絶縁層とからなり、該絶縁層が室温で圧縮方向の歪みを有する光電変換素子。
  2. 前記基板上に、該基板側から順に、前記第1電極、色素が吸着された多孔質半導体微粒子層を有する前記感光体、前記電荷移動体、および前記対極が積層されてなる光電変換素子である請求項1に記載の光電変換素子。
  3. 前記多孔質半導体微粒子層が、酸化チタン、酸化スズまたは酸化亜鉛である請求項1または2に記載の光電変換素子。
  4. 前記多孔質半導体微粒子層が、酸化チタンである請求項1〜3のいずれか1項に記載の光電変換素子。
  5. 前記色素が、金属錯体色素である請求項1〜4のいずれか1項に記載の光電変換素子。
  6. 前記金属錯体色素が、RuまたはOs元素を含む金属錯体色素である請求項5に記載の光電変換素子。
  7. 前記絶縁層の圧縮方向の歪みが、0.005〜0.25%である請求項1〜6のいずれか1項に記載の光電変換素子。
  8. 前記絶縁層付き金属基板を構成する金属部分が、アルミニウムよりも、線熱膨張係数が小さく、かつ剛性が高く、かつ耐熱性が高い金属からなる基材の少なくとも一方の面に、加圧接合によりアルミニウム材が一体化されてなる請求項1〜7のいずれか1項に記載の光電変換素子。
  9. 前記基材を構成する金属部分の金属が、フェライト系ステンレス鋼からなる請求項8に記載の光電変換素子。
  10. 基板上に、第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子の製造方法であって、少なくともアルミニウム基材を備える金属基板の該アルミニウム基材の少なくとも一方の表面を、室温で圧縮方向の歪みを有するアルミニウムのポーラス型陽極酸化皮膜の絶縁層を形成する工程を含む工程で該基板を作製し、該基板上に、該第1電極、色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造を設ける光電変換素子の製造方法。
  11. 請求項1〜9のいずれか1項に記載の光電変換素子を具備する色素増感太陽電池。
JP2013032945A 2013-02-22 2013-02-22 光電変換素子、光電変換素子の製造方法および色素増感太陽電池 Expired - Fee Related JP5972811B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013032945A JP5972811B2 (ja) 2013-02-22 2013-02-22 光電変換素子、光電変換素子の製造方法および色素増感太陽電池
EP14753984.5A EP2960980A4 (en) 2013-02-22 2014-02-21 PHOTOELECTRIC CONVERSION ELEMENT, METHOD FOR PRODUCING THE PHOTOELECTRIC CONVERSION ELEMENT AND COLOR-SENSITIZED SOLAR CELL
PCT/JP2014/054128 WO2014129575A1 (ja) 2013-02-22 2014-02-21 光電変換素子、光電変換素子の製造方法および色素増感太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032945A JP5972811B2 (ja) 2013-02-22 2013-02-22 光電変換素子、光電変換素子の製造方法および色素増感太陽電池

Publications (2)

Publication Number Publication Date
JP2014164846A true JP2014164846A (ja) 2014-09-08
JP5972811B2 JP5972811B2 (ja) 2016-08-17

Family

ID=51391356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032945A Expired - Fee Related JP5972811B2 (ja) 2013-02-22 2013-02-22 光電変換素子、光電変換素子の製造方法および色素増感太陽電池

Country Status (3)

Country Link
EP (1) EP2960980A4 (ja)
JP (1) JP5972811B2 (ja)
WO (1) WO2014129575A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152766A1 (ja) * 2015-03-20 2016-09-29 積水化学工業株式会社 フレキシブル太陽電池
JP2018125522A (ja) * 2017-01-27 2018-08-09 積水化学工業株式会社 フレキシブル太陽電池
JP2019220708A (ja) * 2015-03-18 2019-12-26 株式会社リコー 光電変換素子及び二次電池
JP2021129086A (ja) * 2020-02-17 2021-09-02 富士フイルム株式会社 圧電膜付き基板、圧電素子及び振動発電素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490364B (zh) * 2020-11-26 2024-09-03 苏州科技大学 基于可控氧化铁纳米粒子的钙钛矿电池及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228129A (ja) * 2010-04-20 2011-11-10 Mitsubishi Alum Co Ltd 色素増感型太陽電池電極用アルミニウム材及び色素増感型太陽電池

Family Cites Families (371)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE513714A (ja) 1951-08-23 1900-01-01
CA554506A (en) 1955-02-23 1958-03-18 A. Russell Theodore Simultaneous deposition of a plurality of fluid coating materials
JPS584589B2 (ja) 1976-08-12 1983-01-27 富士写真フイルム株式会社 塗布方法
JPS61502402A (ja) 1984-04-30 1986-10-23 エル エ− シユテイツフツング 酸化/還元光反応触媒の増感方法および光反応触媒
CH674596A5 (ja) 1988-02-12 1990-06-15 Sulzer Ag
WO1991016719A2 (en) 1990-04-17 1991-10-31 Michael Graetzel Photovoltaic cells
DE4207659A1 (de) 1992-03-11 1993-09-16 Abb Patent Gmbh Verfahren zur herstellung einer photoelektrochemischen zelle sowie eine demgemaess hergestellte zelle
GB9217811D0 (en) 1992-08-21 1992-10-07 Graetzel Michael Organic compounds
JP2853902B2 (ja) 1993-02-03 1999-02-03 帝人株式会社 プロスタサイクリン類を活性成分として含有する外用皮膚血流量増加剤
JP3579078B2 (ja) 1994-03-11 2004-10-20 石原産業株式会社 光電変換材料用半導体
JP2824749B2 (ja) 1994-07-15 1998-11-18 石原産業株式会社 表面改質された酸化チタン膜およびその製造方法ならびにそれを用いた光電変換素子
ES2244958T3 (es) 1994-12-21 2005-12-16 Hydro Quebec Sales hidrofobicas liquidas, su prepracion y su aplicacion en electroquimica.
JP3599859B2 (ja) 1994-12-29 2004-12-08 石原産業株式会社 多孔性物質−高分子固体電解質複合体およびその製造方法ならびにそれを用いた光電変換素子
DE19533850A1 (de) 1995-09-13 1997-03-27 Hoechst Ag Photovoltaische Zelle
JPH10112337A (ja) 1996-08-09 1998-04-28 Nikon Corp 湿式太陽電池
DE19711713A1 (de) 1997-03-20 1998-10-01 Hoechst Ag Photovoltaische Zelle
JPH10290018A (ja) 1997-04-11 1998-10-27 Fuji Photo Film Co Ltd 光電変換材料用半導体およびそれを用いた化学電池
ES2212286T3 (es) 1997-05-07 2004-07-16 Ecole Polytechnique Federale De Lausanne Fotosensibilizador de complejo metalico y celula fotovoltaica.
JPH116098A (ja) 1997-06-18 1999-01-12 Nikon Corp 金属元素含有酸化チタン皮膜の製造方法
JP3309785B2 (ja) 1997-11-06 2002-07-29 富士ゼロックス株式会社 半導体電極およびその製造方法、ならびにそれを用いた光電池
JP3743123B2 (ja) 1997-06-24 2006-02-08 富士ゼロックス株式会社 金属酸化物微粒子凝集体及びその製造方法
JP4148374B2 (ja) 1997-07-18 2008-09-10 富士フイルム株式会社 光電変換素子および光電気化学電池
JPH11144773A (ja) 1997-09-05 1999-05-28 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JPH11126917A (ja) 1997-10-23 1999-05-11 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JPH11176489A (ja) 1997-12-10 1999-07-02 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JPH11185836A (ja) 1997-12-16 1999-07-09 Fuji Photo Film Co Ltd 光電変換素子および光再生型光電気化学電池
JPH11219734A (ja) 1998-01-30 1999-08-10 Sekisui Chem Co Ltd 光電変換材料用半導体及びこの半導体を用いた積層体並びにこれらの製造方法及び光電池
JPH11250944A (ja) 1998-02-26 1999-09-17 Nikon Corp 湿式太陽電池
JP3505381B2 (ja) 1998-03-11 2004-03-08 株式会社東芝 光化学電池
JP3441361B2 (ja) 1998-03-17 2003-09-02 株式会社東芝 光電変換素子
JP4076620B2 (ja) 1998-03-30 2008-04-16 住友大阪セメント株式会社 色素増感型太陽電池
JPH11310898A (ja) 1998-04-28 1999-11-09 Sekisui Chem Co Ltd 結晶性酸化チタン膜の形成方法
US6075203A (en) 1998-05-18 2000-06-13 E. I. Du Pont Nemours And Company Photovoltaic cells
US6444189B1 (en) 1998-05-18 2002-09-03 E. I. Du Pont De Nemours And Company Process for making and using titanium oxide particles
JPH11339866A (ja) 1998-05-28 1999-12-10 Sharp Corp 光電変換素子及び色素増感型太陽電池
JPH11339868A (ja) 1998-05-29 1999-12-10 Fuji Photo Film Co Ltd 電荷輸送材料、光電変換素子及び光再生型光電気化学電池
JP3952103B2 (ja) 1998-05-29 2007-08-01 触媒化成工業株式会社 光電気セルおよび光電気セル用金属酸化物半導体膜の製造方法
JPH11343118A (ja) 1998-06-01 1999-12-14 Minnesota Mining & Mfg Co <3M> 酸化チタン膜、その製造方法、それをもった物品及びそれを備えた光化学電池
JPH11354169A (ja) 1998-06-01 1999-12-24 Minnesota Mining & Mfg Co <3M> 光電池
JP4097786B2 (ja) 1998-06-02 2008-06-11 株式会社リコー 太陽電池
JP2000036608A (ja) 1998-07-17 2000-02-02 Fuji Photo Film Co Ltd ゲル電解質、光電変換素子および光再生型光電気化学電池
JP2000036332A (ja) 1998-07-17 2000-02-02 Fuji Photo Film Co Ltd 電解液、光電変換素子および光再生型光電気化学電池
JP2000100486A (ja) 1998-09-21 2000-04-07 Fuji Photo Film Co Ltd 電解質および光電気化学電池
JP4111360B2 (ja) 1998-08-11 2008-07-02 富士フイルム株式会社 ゲル電解質、光電気化学電池用ゲル電解質および光電気化学電池
JP2000053662A (ja) 1998-08-11 2000-02-22 Fuji Photo Film Co Ltd 電解質、光電気化学電池用電解質および光電気化学電池、ならびにオキサゾリウム化合物
JP2000058891A (ja) 1998-08-11 2000-02-25 Fuji Photo Film Co Ltd 電解質、光電気化学電池用電解質および光電気化学電池、ならびにピリジニウム化合物
JP3252136B2 (ja) 1998-08-21 2002-01-28 有限会社環境デバイス研究所 可視光型光触媒及びその製造方法
JP2000090991A (ja) 1998-09-09 2000-03-31 Fuji Photo Film Co Ltd 光電気化学電池
JP4103975B2 (ja) 1998-09-10 2008-06-18 富士フイルム株式会社 電解質、光電気化学電池、及び電解質層を形成する方法
JP4024942B2 (ja) 1998-09-16 2007-12-19 株式会社東芝 色素増感型光化学電池
JP2000100483A (ja) 1998-09-22 2000-04-07 Sharp Corp 光電変換素子及びその製造方法及びこれを用いた太陽電池
JP2000100485A (ja) 1998-09-22 2000-04-07 Fuji Photo Film Co Ltd 電解質および光電気化学電池
JP2000101106A (ja) 1998-09-25 2000-04-07 Fuji Photo Film Co Ltd 光電変換素子用半導体膜の製造方法、光電変換素子用半導体膜および光電気化学電池
JP2000106222A (ja) 1998-09-28 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子用半導体膜および光電気化学電池
JP2000106224A (ja) 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000106223A (ja) 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd 光電変換素子
JP2000150006A (ja) 1998-11-06 2000-05-30 Daiso Co Ltd 高分子固体電解質を用いた光電変換素子
JP3506080B2 (ja) 1998-12-08 2004-03-15 株式会社豊田中央研究所 半導体電極およびその製造方法
JP2000178791A (ja) 1998-12-11 2000-06-27 Nikon Corp 多孔質酸化チタン皮膜の製造方法
JP2000178792A (ja) 1998-12-11 2000-06-27 Nikon Corp 酸化物膜の製造方法
JP4360569B2 (ja) 1999-02-05 2009-11-11 富士フイルム株式会社 光電変換素子および光電気化学電池
JP2000235874A (ja) 1999-02-15 2000-08-29 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000243134A (ja) 1999-02-22 2000-09-08 Fuji Photo Film Co Ltd 電解質、光電変換素子および光電気化学電池
JP4360575B2 (ja) 1999-03-01 2009-11-11 富士フイルム株式会社 液晶化合物、液晶混合物、液晶組成物、電解質、電気化学電池および光電気化学電池
JP2000251532A (ja) 1999-03-01 2000-09-14 Fuji Photo Film Co Ltd 電解質、光電変換素子および光電気化学電池
WO2000054361A1 (fr) 1999-03-10 2000-09-14 Daiso Co., Ltd. Dispositifs de conversion photoelectrique fabriques au moyen d'electrolytes etheres
JP2000323192A (ja) 1999-03-10 2000-11-24 Fuji Xerox Co Ltd 半導体電極及びそれを用いた光電変換素子
JP2000260493A (ja) 1999-03-12 2000-09-22 Tayca Corp 太陽電池
JP2000340269A (ja) 1999-03-25 2000-12-08 Showa Denko Kk 色素増感型光電変換素子
JP3462115B2 (ja) 1999-03-29 2003-11-05 三洋化成工業株式会社 色素増感型太陽電池用非水電解液およびそれを用いた太陽電池
JP2000282163A (ja) 1999-03-30 2000-10-10 Kobe Steel Ltd 張出し成形性及び曲げ成形性に優れたAl−Mg−Si系合金板
JP2000285975A (ja) 1999-03-30 2000-10-13 Aisin Seiki Co Ltd 光電変換用半導体および光電変換素子
JP2000285974A (ja) 1999-03-30 2000-10-13 Toshiba Corp 光増感型太陽光発電素子
JP2000285977A (ja) 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2000285980A (ja) 1999-04-01 2000-10-13 Idemitsu Kosan Co Ltd 色素増感型光半導体およびそれを用いた色素増感型太陽電池
JP2000294304A (ja) 1999-04-02 2000-10-20 Idemitsu Kosan Co Ltd 色素増感型光半導体およびそれを用いた色素増感型太陽電池
JP2000294814A (ja) 1999-04-08 2000-10-20 Idemitsu Kosan Co Ltd 色素増感型光半導体およびそれを用いた色素増感型太陽電池
JP4812055B2 (ja) 1999-04-14 2011-11-09 日本化薬株式会社 高分子電解質の製造方法及び光電変換素子
JP2000357544A (ja) 1999-04-16 2000-12-26 Idemitsu Kosan Co Ltd 色素増感型太陽電池
JP3265481B2 (ja) 1999-04-23 2002-03-11 独立行政法人産業技術総合研究所 脆性材料超微粒子成形体の低温成形法
JP4285671B2 (ja) 1999-06-14 2009-06-24 富士フイルム株式会社 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2000319018A (ja) 1999-04-30 2000-11-21 Ricoh Co Ltd 多孔質酸化チタン薄膜及びそれを用いた光電変換素子
JP2000323189A (ja) 1999-05-13 2000-11-24 Idemitsu Kosan Co Ltd 色素増感型太陽電池
JP4363553B2 (ja) 1999-05-14 2009-11-11 富士フイルム株式会社 電解質組成物、光電変換素子および光電気化学電池
SE514600C2 (sv) 1999-05-25 2001-03-19 Forskarpatent I Uppsala Ab Metod för tillverkning av nanostrukturerade tunnfilmselektroder
JP4077594B2 (ja) 1999-05-27 2008-04-16 触媒化成工業株式会社 光電気セルおよび金属酸化物半導体膜形成用塗布液、光電気セル用金属酸化物半導体膜の製造方法
JP4162106B2 (ja) 1999-06-17 2008-10-08 富士フイルム株式会社 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001023705A (ja) 1999-07-08 2001-01-26 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2001035253A (ja) 1999-07-19 2001-02-09 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子および光電気化学電池
JP4514251B2 (ja) 1999-07-21 2010-07-28 住友金属鉱山株式会社 色素増感型太陽電池
JP2001035552A (ja) 1999-07-23 2001-02-09 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子および光電気化学電池
JP4620224B2 (ja) 1999-08-04 2011-01-26 富士フイルム株式会社 電解質組成物
JP3431545B2 (ja) 1999-08-17 2003-07-28 ローム株式会社 パワードライブ回路
JP2001067931A (ja) 1999-08-25 2001-03-16 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子および光電気化学電池
JP2001076774A (ja) 1999-09-07 2001-03-23 Idemitsu Kosan Co Ltd 色素増感型太陽電池
JP4009397B2 (ja) 1999-09-08 2007-11-14 株式会社リコー 画像形成装置
JP2001085076A (ja) 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001085077A (ja) 1999-09-14 2001-03-30 Fuji Xerox Co Ltd 光電変換素子およびその製造方法
JP2001085713A (ja) 1999-09-14 2001-03-30 Fuji Photo Film Co Ltd 光電変換素子および太陽電池
JP4620838B2 (ja) 2000-06-16 2011-01-26 キヤノン株式会社 光電変換装置
JP3946947B2 (ja) 1999-09-24 2007-07-18 株式会社東芝 光増感型太陽電池用電解質組成物、光増感型太陽電池及び光増感型太陽電池の製造方法
JP2001093591A (ja) 1999-09-28 2001-04-06 Toshiba Corp 光電変換素子
JP2001167630A (ja) 1999-09-29 2001-06-22 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子及び光電気化学電池
JP4026285B2 (ja) 1999-09-30 2007-12-26 富士ゼロックス株式会社 半導体電極、その製造方法、及び、光電変換素子
JP4320869B2 (ja) 1999-10-04 2009-08-26 パナソニック電工株式会社 光電変換素子の製造方法
JP4415481B2 (ja) 1999-11-04 2010-02-17 パナソニック電工株式会社 光電変換素子及びその製造方法
JP2001156314A (ja) 1999-11-26 2001-06-08 Fuji Photo Film Co Ltd 光電変換素子および太陽電池
JP4299960B2 (ja) 1999-12-10 2009-07-22 富士フイルム株式会社 光電変換素子および太陽電池
JP2001168359A (ja) 1999-12-10 2001-06-22 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001185743A (ja) 1999-12-22 2001-07-06 Fuji Photo Film Co Ltd 光電変換素子および太陽電池
JP2001185242A (ja) 1999-12-24 2001-07-06 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP4414036B2 (ja) 1999-12-27 2010-02-10 シャープ株式会社 色素増感型太陽電池の作製方法
JP2001196106A (ja) 2000-01-11 2001-07-19 Yazaki Corp 圧接端子
JP2001196612A (ja) 2000-01-14 2001-07-19 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP4616958B2 (ja) 2000-03-10 2011-01-19 富士フイルム株式会社 光電変換素子の製造方法
JP4477729B2 (ja) 2000-01-19 2010-06-09 シャープ株式会社 光電変換素子及びそれを用いた太陽電池
JP4602526B2 (ja) 2000-09-05 2010-12-22 シャープ株式会社 色素増感型太陽電池
JP4805442B2 (ja) 2000-05-26 2011-11-02 シャープ株式会社 色素増感型太陽電池
JP3982968B2 (ja) 2000-01-26 2007-09-26 シャープ株式会社 高分子電解質を用いた色素増感型太陽電池およびその作製方法
JP4874454B2 (ja) 2000-01-31 2012-02-15 富士フイルム株式会社 光電変換素子および光電池
JP2001247314A (ja) 2000-03-07 2001-09-11 Ricoh Co Ltd 薄膜形成方法及び光電変換素子
JP2001257012A (ja) 2000-03-10 2001-09-21 Fuji Photo Film Co Ltd 光電変換素子および太陽電池
JP3430254B2 (ja) 2000-03-13 2003-07-28 独立行政法人産業技術総合研究所 β−ジケトナートを有する金属錯体及びその製法、光電変換素子並びに、光化学電池
JP4392773B2 (ja) 2000-03-16 2010-01-06 富士フイルム株式会社 光電変換素子及び光電気化学電池
JP4443713B2 (ja) 2000-03-24 2010-03-31 富士フイルム株式会社 半導体微粒子、光電変換素子および光電池
JP4638973B2 (ja) 2000-03-27 2011-02-23 富士フイルム株式会社 光電変換素子および光電池
JP4643791B2 (ja) 2000-03-27 2011-03-02 富士フイルム株式会社 光電変換素子の製造方法、および太陽電池
JP4423735B2 (ja) 2000-03-30 2010-03-03 パナソニック電工株式会社 光電変換素子
JP4643792B2 (ja) 2000-03-31 2011-03-02 富士フイルム株式会社 光電変換素子及び光電気化学電池
JP2001320068A (ja) 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd 透明光電変換素子、及びこれを用いた光電池、光センサー並びに窓ガラス
JP2001345124A (ja) 2000-05-31 2001-12-14 Fuji Xerox Co Ltd 化学修飾半導体電極、並びに、その製造方法及びそれを用いた光電池
JP5081345B2 (ja) 2000-06-13 2012-11-28 富士フイルム株式会社 光電変換素子の製造方法
JP4038963B2 (ja) 2000-07-03 2008-01-30 三菱化学株式会社 光電変換素子
JP2002025637A (ja) 2000-07-10 2002-01-25 Japan Science & Technology Corp 電極用フッ素ドープ二酸化チタン多孔質結晶膜
JP2002063813A (ja) 2000-08-22 2002-02-28 Daiso Co Ltd エーテル化合物からなるゲル電解質及びそれを用いた電気化学素子
JP4799776B2 (ja) 2000-08-22 2011-10-26 富士フイルム株式会社 電解質組成物及びそれを用いた電気化学電池
JP4790105B2 (ja) 2000-08-29 2011-10-12 富士フイルム株式会社 電解質組成物及びそれを用いた電気化学電池
JP2002075477A (ja) 2000-08-31 2002-03-15 Tdk Corp 光電変換膜、光電変換用電極、および光電変換素子
JP4659954B2 (ja) 2000-09-19 2011-03-30 大日本印刷株式会社 色素増感型太陽電池セルの製造方法及び色素増感型太陽電池モジュールの製造方法
JP2002100146A (ja) 2000-09-25 2002-04-05 Fuji Photo Film Co Ltd 磁気ディスクカートリッジ
JP2002110262A (ja) 2000-10-03 2002-04-12 Nippon Kayaku Co Ltd 含水電解液を用いた光電変換素子
JP2002134435A (ja) 2000-10-20 2002-05-10 Fuji Photo Film Co Ltd 半導体電極の製造方法、半導体電極、およびその用途
JP4100863B2 (ja) 2000-10-23 2008-06-11 触媒化成工業株式会社 光電気セル
JP2002145615A (ja) 2000-11-08 2002-05-22 Japan Science & Technology Corp TiO2薄膜及び色素増感太陽電池用作用電極の作製方法
JP4521795B2 (ja) 2000-11-08 2010-08-11 多木化学株式会社 酸化チタンゾル組成物
EP1207572A1 (en) 2000-11-15 2002-05-22 Dr. Sugnaux Consulting Mesoporous electrodes for electrochemical cells and their production method
JP2002170602A (ja) 2000-11-30 2002-06-14 Hitachi Maxell Ltd 光電変換素子
JP2002175482A (ja) 2000-12-05 2002-06-21 Nec Soft Ltd 個人情報管理サービスシステム、個人情報管理サービス方法、個人情報管理サーバ、記録媒体
JP2002175841A (ja) 2000-12-06 2002-06-21 Nippon Kayaku Co Ltd 含水電解体
JP4850338B2 (ja) 2000-12-12 2012-01-11 リンテック株式会社 半導体電極の製造方法及び光化学電池
JP2002184478A (ja) 2000-12-15 2002-06-28 Fuji Xerox Co Ltd 電解質、光電変換素子、光電気化学電池および電解質の製造方法
JP2002216861A (ja) 2001-01-15 2002-08-02 Fujikura Ltd 色素増感型太陽電池及びその製法
JP4185285B2 (ja) 2002-01-18 2008-11-26 シャープ株式会社 色素増感型光電変換素子およびそれを用いた太陽電池
JP4479108B2 (ja) 2001-02-08 2010-06-09 パナソニック電工株式会社 光電変換素子
JP4578695B2 (ja) 2001-02-13 2010-11-10 富士フイルム株式会社 光電変換素子の作成方法
JP4926325B2 (ja) 2001-02-15 2012-05-09 富士フイルム株式会社 電解質組成物、電気化学電池、光電気化学電池及び非水二次電池
JP2002246624A (ja) 2001-02-20 2002-08-30 Sharp Corp 色素増感型太陽電池およびその作製方法
JP2002246623A (ja) 2001-02-20 2002-08-30 Sharp Corp 色素増感型太陽電池およびその作製方法
JP4285627B2 (ja) 2001-02-21 2009-06-24 昭和電工株式会社 色素増感型太陽電池用光活性電極及びその製造方法
JP3702430B2 (ja) 2001-02-21 2005-10-05 昭和電工株式会社 色素増感型太陽電池用金属酸化物分散液、光活性電極及び色素増感型太陽電池
JP4965032B2 (ja) 2001-06-27 2012-07-04 Jx日鉱日石エネルギー株式会社 固体電解質
JP4213355B2 (ja) 2001-02-28 2009-01-21 株式会社豊田中央研究所 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP5102921B2 (ja) 2001-03-21 2012-12-19 リンテック株式会社 半導体電極の製造方法
JP4617014B2 (ja) 2001-03-21 2011-01-19 富士フイルム株式会社 光電変換素子の製造方法
JP2002289268A (ja) 2001-03-22 2002-10-04 Toshiba Corp 光増感型太陽電池
JP4008669B2 (ja) 2001-03-22 2007-11-14 株式会社東芝 光増感型太陽電池
JP2002289271A (ja) 2001-03-26 2002-10-04 Sharp Corp 色素増感型太陽電池
JP4812956B2 (ja) 2001-03-27 2011-11-09 株式会社豊田中央研究所 光電極及びこれを備えた色素増感型太陽電池
JP2002299665A (ja) 2001-03-29 2002-10-11 Toshiba Corp 色素増感型太陽電池の製造方法
JP2002298913A (ja) 2001-03-29 2002-10-11 Fuji Photo Film Co Ltd ポリシロキサン塩、電解質組成物、電気化学電池、非水二次電池及び光電気化学電池
JP2002293541A (ja) 2001-04-03 2002-10-09 Sony Corp 酸化チタン膜およびその製造方法と光電変換素子
JP2002305041A (ja) 2001-04-04 2002-10-18 Seiko Epson Corp 太陽電池
JP2002314108A (ja) 2001-04-13 2002-10-25 Seiko Epson Corp 太陽電池
JP2002319314A (ja) 2001-04-20 2002-10-31 Fuji Photo Film Co Ltd 電解質組成物、電気化学電池、光電気化学電池、及び非水二次電池
JP2002343440A (ja) 2001-05-11 2002-11-29 Fuji Photo Film Co Ltd 電解質組成物、電気化学電池、光電気化学電池、非水二次電池
US20020187310A1 (en) 2001-05-16 2002-12-12 Kabalnov Alexey S. Compositions and methods for printing on specialty media
JP4620286B2 (ja) 2001-06-05 2011-01-26 富士フイルム株式会社 電解質組成物、光電変換素子及び光電気化学電池
JP2002363414A (ja) 2001-06-12 2002-12-18 Asahi Kasei Corp 籠状シルセスキオキサン含有組成物
JP5050301B2 (ja) 2001-06-12 2012-10-17 アイシン精機株式会社 色素増感型太陽電池及びその製造方法
JP4222466B2 (ja) 2001-06-14 2009-02-12 富士フイルム株式会社 電荷輸送材料、それを用いた光電変換素子及び光電池、並びにピリジン化合物
US7323635B2 (en) 2001-06-15 2008-01-29 University Of Massachusetts Photovoltaic cell
JP3977696B2 (ja) 2001-06-28 2007-09-19 株式会社東芝 電解質組成物用原料キット、電解質組成物及び光増感型太陽電池
JP2003017148A (ja) 2001-07-04 2003-01-17 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子及び光電気化学電池
JP2003021769A (ja) 2001-07-09 2003-01-24 Canon Inc 光学素子保持装置、露光装置、デバイス製造方法及びデバイス
JP4453889B2 (ja) 2001-07-12 2010-04-21 富士フイルム株式会社 電解液組成物、光電変換素子及び光電池
JP2003051345A (ja) 2001-08-08 2003-02-21 Mitsubishi Paper Mills Ltd 光電変換素子
JP2003176130A (ja) 2001-08-09 2003-06-24 Masaharu Kaneko TiO2薄膜及び色素増感太陽電池用電極の作製方法並びに色素増感太陽電池用電極
US6699597B2 (en) 2001-08-16 2004-03-02 3M Innovative Properties Company Method and materials for patterning of an amorphous, non-polymeric, organic matrix with electrically active material disposed therein
JP2003059548A (ja) 2001-08-21 2003-02-28 Mitsubishi Paper Mills Ltd 湿式太陽電池
DE60132450T2 (de) 2001-09-04 2008-04-17 Sony Deutschland Gmbh Solarzelle und Herstellungsmethode
EP1289030A1 (en) 2001-09-04 2003-03-05 Sony International (Europe) GmbH Doping of a hole transporting material
JP2003092153A (ja) 2001-09-18 2003-03-28 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子及び光電池
JP2003092154A (ja) 2001-09-18 2003-03-28 Nec Corp 色素増感光電変換素子に用いられる酸化物多孔質電極の製造方法
JP2003098977A (ja) 2001-09-19 2003-04-04 Sony Corp 素子の転写方法、素子の配列方法、及び画像表示装置の製造方法
JP4865171B2 (ja) 2001-09-21 2012-02-01 アイシン精機株式会社 色素増感型太陽電池
JP2003100359A (ja) 2001-09-25 2003-04-04 Fuji Xerox Co Ltd 機能性膜及びその製造方法、並びに、それを用いた光半導体電極、光電変換素子
JP2003109678A (ja) 2001-09-28 2003-04-11 Art Works:Kk 色素増感型太陽電池の電極及び作製法
EP1300897A1 (en) 2001-10-02 2003-04-09 Francois Sugnaux Segmented mesoporous ceramic electrodes for electrochemical devices and devices made thereof
JP2003123853A (ja) 2001-10-11 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びその製造方法、並びにこの半導体電極を有する太陽電池
JP2003123858A (ja) 2001-10-19 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2003123852A (ja) 2001-10-11 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びその製造方法、並びにこの半導体電極を有する太陽電池
JP2003123854A (ja) 2001-10-11 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びその製造方法、並びにこの半導体電極を有する太陽電池
JP2003123859A (ja) 2001-10-19 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2003123856A (ja) 2001-10-18 2003-04-25 Seiko Epson Corp 光電変換素子
JP2003123861A (ja) 2001-10-19 2003-04-25 Nec Corp 光電変換素子及び光電変換素子の製造方法
JP4294245B2 (ja) 2001-11-30 2009-07-08 日揮触媒化成株式会社 光電気セルおよび光触媒
JP2003157914A (ja) 2001-11-22 2003-05-30 Fuji Photo Film Co Ltd 光電変換素子、光電変換素子の製造方法、及び光電池
JP2003163037A (ja) 2001-11-27 2003-06-06 Nippon Sheet Glass Co Ltd 色素増感型光電気化学電池用電極およびそれを用いた色素増感型光電気化学電池
JP4095289B2 (ja) 2001-11-30 2008-06-04 Tdk株式会社 色素増感型太陽電池
JP2003246621A (ja) 2001-12-20 2003-09-02 Ube Ind Ltd 酸化チタン薄膜、光電変換素子、及び光化学電池
JP2003187881A (ja) 2001-12-21 2003-07-04 Fuji Photo Film Co Ltd 光電変換素子の作製方法、光電変換素子及び光電池
JP2003187882A (ja) 2001-12-21 2003-07-04 Fuji Photo Film Co Ltd 光電変換素子の作製方法、光電変換素子及び光電池
JP4096555B2 (ja) 2001-12-25 2008-06-04 コニカミノルタホールディングス株式会社 光電変換材料用半導体、光電変換材料用半導体の製造方法、光電変換素子及び太陽電池
JP3735570B2 (ja) 2001-12-28 2006-01-18 株式会社東芝 電解質組成物用原料キット、光増感型太陽電池のゲル電解質用電解質組成物、光増感型太陽電池及び光増感型太陽電池の製造方法
JP2003203681A (ja) 2001-12-28 2003-07-18 Fujikura Ltd 光電変換素子用導電性ガラス
JP3985040B2 (ja) 2002-01-22 2007-10-03 独立行政法人産業技術総合研究所 増感剤として有用なルテニウム錯体、酸化物半導体電極及びそれを用いた太陽電池
CA2474494A1 (en) 2002-01-25 2003-08-07 Savvas E. Hadjikyriacou Photovoltaic cell components and materials
JP4100491B2 (ja) 2002-01-25 2008-06-11 富士フイルム株式会社 半導体微粒子層、光電変換素子及び光電池
KR20030065957A (ko) 2002-02-02 2003-08-09 한국전자통신연구원 폴리비닐리덴 플로라이드 함유 겔형 고분자 전해질을포함하는 염료감응 태양전지
JP2003234485A (ja) 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子
JP2003234486A (ja) 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子
JP2003243053A (ja) 2002-02-14 2003-08-29 Canon Inc 光電変換装置の製造方法
JP2003251194A (ja) 2002-02-28 2003-09-09 Japan Science & Technology Corp 光機能物品
JP2003243681A (ja) 2002-02-18 2003-08-29 Fujikura Ltd 電荷移送膜
DE10206558A1 (de) 2002-02-18 2003-08-28 Creavis Tech & Innovation Gmbh Titandioxidpartikel, Verfahren zur Herstellung von Titandioxidpartikeln sowie Verwendung von Titandioxidpartikeln
JP4260494B2 (ja) 2002-02-26 2009-04-30 株式会社フジクラ 透明電極用基材の製法、光電変換素子の製法、及び色素増感太陽電池の製法
JP2003252624A (ja) 2002-02-27 2003-09-10 Fuji Photo Film Co Ltd 酸化チタン微粒子の作製方法及び光電変換素子
JP4776871B2 (ja) 2002-02-28 2011-09-21 富士フイルム株式会社 半導体微粒子膜、光電変換素子及び光電池
JP4072891B2 (ja) 2002-02-28 2008-04-09 富士フイルム株式会社 光電変換素子の作製方法及び光電池
JP2003258284A (ja) 2002-03-01 2003-09-12 Sharp Corp 色素増感型光電変換装置およびその製造方法
JP4027249B2 (ja) 2002-03-06 2007-12-26 昭和電工株式会社 低ハロゲン低ルチル型超微粒子酸化チタン及びその製造方法
JP2003264304A (ja) 2002-03-07 2003-09-19 Seiko Epson Corp 光電変換素子
JP4187984B2 (ja) 2002-03-12 2008-11-26 独立行政法人科学技術振興機構 完全固体型色素増感太陽電池
JP4050535B2 (ja) 2002-03-15 2008-02-20 株式会社東芝 色素増感型太陽電池の製造方法
JP2003282160A (ja) 2002-03-20 2003-10-03 Himeka Engineering Kk 酸化チタン製膜方法及び色素増感太陽電池素子
JP2003282162A (ja) 2002-03-22 2003-10-03 Toto Ltd 金属酸化物半導体分散液組成物およびそれを用いた色素増感型光半導体電極
JP3692472B2 (ja) 2002-03-25 2005-09-07 テイカ株式会社 導電性酸化チタンポーラス厚膜の低温合成
JP4310961B2 (ja) 2002-03-26 2009-08-12 凸版印刷株式会社 色素増感太陽電池
JP2003289151A (ja) 2002-03-28 2003-10-10 Canon Inc 光電変換装置の製造方法
JP4291542B2 (ja) 2002-03-29 2009-07-08 Tdk株式会社 光電変換用酸化物半導体電極および色素増感型太陽電池
JP4291541B2 (ja) 2002-03-29 2009-07-08 Tdk株式会社 光電変換用酸化物半導体電極および色素増感型太陽電池
JP3788948B2 (ja) 2002-03-29 2006-06-21 三菱電機株式会社 絶縁ゲート型半導体装置
JP4280020B2 (ja) 2002-03-29 2009-06-17 Tdk株式会社 光電変換用酸化物半導体電極および色素増感型太陽電池
JP4329302B2 (ja) 2002-04-08 2009-09-09 ソニー株式会社 光電変換素子
JP4010170B2 (ja) 2002-04-11 2007-11-21 ソニー株式会社 光電変換素子の製造方法
JP2003301283A (ja) 2002-04-12 2003-10-24 Keio Gijuku 多孔質金属酸化物半導体薄膜の製造方法
JP2003308890A (ja) 2002-04-15 2003-10-31 Bridgestone Corp 太陽電池及びその製造方法
JP4384389B2 (ja) 2002-04-18 2009-12-16 株式会社ブリヂストン 金属酸化物半導体膜の形成方法、有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2003308892A (ja) 2002-04-18 2003-10-31 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及び有機色素増感型太陽電池
JP2003331938A (ja) 2002-05-10 2003-11-21 Masaharu Kaneko 色素増感型太陽電池
JP3768171B2 (ja) 2002-05-14 2006-04-19 山一電機株式会社 Icカード用コネクタのイジェクト機構
JP4116825B2 (ja) 2002-05-29 2008-07-09 株式会社豊田中央研究所 色素増感型太陽電池
JP2004010403A (ja) 2002-06-05 2004-01-15 Fuji Photo Film Co Ltd 多重構造酸化チタン微粒子、及びその作製方法、及びそれを含有する光電変換素子並びに光電池
JP2004161589A (ja) 2002-06-17 2004-06-10 Fuji Photo Film Co Ltd 酸化チタンゾル及び酸化チタン微粒子の製造方法、並びに光電変換素子
US7291782B2 (en) 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
JP4339555B2 (ja) 2002-06-28 2009-10-07 株式会社豊田中央研究所 色素増感型太陽電池
JP2004039286A (ja) 2002-06-28 2004-02-05 Toto Ltd 光半導体電極の作製方法及び光電変換素子
JP4019140B2 (ja) 2002-07-10 2007-12-12 独立行政法人産業技術総合研究所 アミノピリジン系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池
JP2004047261A (ja) 2002-07-11 2004-02-12 Nippon Zeon Co Ltd 光電極、光電極の製造方法および太陽電池
JP4559035B2 (ja) 2002-07-24 2010-10-06 関西ペイント株式会社 半導体微粒子分散液、半導体微粒子分散液の製造方法、半導体微粒子膜の形成方法、及び光電極
JP4187476B2 (ja) 2002-07-29 2008-11-26 三菱製紙株式会社 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004079610A (ja) 2002-08-12 2004-03-11 Masaharu Kaneko TiO2薄膜及び色素増感太陽電池用電極の作製方法並びに色素増感太陽電池用電極
JP4032873B2 (ja) 2002-08-20 2008-01-16 凸版印刷株式会社 積層体及びその製造方法並びにそれを用いた製品
JP4344120B2 (ja) 2002-08-23 2009-10-14 シャープ株式会社 色素増感型太陽電池
JP4085421B2 (ja) 2002-08-23 2008-05-14 ソニー株式会社 色素増感型光電変換装置及びその製造方法
JP2004087387A (ja) 2002-08-28 2004-03-18 Nisshinbo Ind Inc 電解質組成物および光電気化学電池
JP2004103404A (ja) 2002-09-10 2004-04-02 Tokuyama Corp イオン導電性組成物
JP4356865B2 (ja) 2002-09-10 2009-11-04 富士フイルム株式会社 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池
JP4220205B2 (ja) 2002-09-19 2009-02-04 株式会社豊田中央研究所 色素増感型太陽電池
JP4677704B2 (ja) 2002-09-19 2011-04-27 株式会社豊田中央研究所 色素増感型太陽電池
JP2004119120A (ja) 2002-09-25 2004-04-15 Canon Inc デバイスの製造方法
JP3984137B2 (ja) 2002-09-27 2007-10-03 株式会社東芝 色素増感型太陽電池及びその製造方法
JP4672973B2 (ja) 2002-09-30 2011-04-20 昭和電工株式会社 酸化チタンを含む金属酸化物構造体及びその製造方法ならびにその用途
JP4515061B2 (ja) 2003-08-28 2010-07-28 株式会社フジクラ 色素増感太陽電池の製造方法
JP2004164970A (ja) 2002-11-12 2004-06-10 Fujikura Ltd 電極基板および光電変換素子
JP4503226B2 (ja) 2002-10-22 2010-07-14 株式会社フジクラ 電極基板、光電変換素子、並びに色素増感太陽電池
JP4416997B2 (ja) 2002-11-12 2010-02-17 株式会社フジクラ 色素増感太陽電池用電極基板、光電変換素子、並びに色素増感太陽電池
JP2004128267A (ja) 2002-10-03 2004-04-22 Fujikura Ltd 光電変換素子用の導電性ガラス基板並びにその製造方法
JP2004152613A (ja) 2002-10-30 2004-05-27 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2004158551A (ja) 2002-11-05 2004-06-03 Ube Ind Ltd 酸化物半導体ペースト、多孔質酸化物半導体薄膜、光電変換素子および太陽電池
JP2004158243A (ja) 2002-11-05 2004-06-03 Ube Ind Ltd 多孔質酸化物半導体薄膜、光電変換素子および太陽電池
JP2004186144A (ja) 2002-11-05 2004-07-02 Ube Ind Ltd 酸化物半導体ペースト、多孔質酸化物半導体薄膜、光電変換素子および太陽電池
JP2004207205A (ja) 2002-11-07 2004-07-22 Central Glass Co Ltd 半導体電極膜形成用塗布剤及び半導体電極膜付基材並びに色素増感型太陽電池
JP4238350B2 (ja) 2002-11-18 2009-03-18 独立行政法人産業技術総合研究所 アミノピリミジン系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池
JP2004175586A (ja) 2002-11-25 2004-06-24 Fujikura Ltd 酸化チタンナノチューブの製造方法
JP2004175587A (ja) 2002-11-25 2004-06-24 Fujikura Ltd 酸化チタンナノチューブの製造方法
JP2004175588A (ja) 2002-11-25 2004-06-24 Fujikura Ltd 酸化チタンナノチューブ成形体の製造方法
JP2004193321A (ja) 2002-12-11 2004-07-08 Central Glass Co Ltd 半導体電極膜付基材及び塗布剤並びに色素増感型太陽電池
JP4460825B2 (ja) 2002-12-26 2010-05-12 財団法人神奈川科学技術アカデミー 光電変換素子とその製造方法ならびにそれを用いた太陽電池
US20040123896A1 (en) 2002-12-31 2004-07-01 General Electric Company Selective heating and sintering of components of photovoltaic cells with microwaves
JP4470370B2 (ja) 2003-01-08 2010-06-02 ソニー株式会社 光電変換素子の製造方法
CN1249819C (zh) 2003-01-09 2006-04-05 中国科学院等离子体物理研究所 纳米多孔薄膜
JP2004241378A (ja) 2003-01-15 2004-08-26 Nippon Shokubai Co Ltd 色素増感型太陽電池
JP2004227843A (ja) 2003-01-21 2004-08-12 Mitsubishi Rayon Co Ltd 色素増感型太陽電池保護用アクリル樹脂フィルム
JP4119267B2 (ja) 2003-01-23 2008-07-16 株式会社東芝 光増感型太陽電池
JP2004235240A (ja) 2003-01-28 2004-08-19 Seiko Epson Corp 光電変換素子の製造方法
JP2004235011A (ja) 2003-01-30 2004-08-19 Mitsubishi Paper Mills Ltd ヨウ素−シクロデキストリン包接化物用いた電解液、並びにそれを用いた光電変換素子
JP2004238213A (ja) 2003-02-03 2004-08-26 Fuji Photo Film Co Ltd 酸化チタン粒子の製造方法、及びそれを用いた光電変換素子
JP4247820B2 (ja) 2003-02-12 2009-04-02 富士フイルム株式会社 光電変換素子の作製方法及び光電変換素子
JP4493921B2 (ja) 2003-02-13 2010-06-30 株式会社豊田中央研究所 色素増感型太陽電池
US20040161380A1 (en) 2003-02-19 2004-08-19 Degussa Ag Titanium dioxide particles, their preparation and use
JP2004253331A (ja) 2003-02-21 2004-09-09 Central Glass Co Ltd 半導体電極膜の改質方法
JP4461691B2 (ja) 2003-02-28 2010-05-12 東洋インキ製造株式会社 光電変換用無機酸化物半導体電極の製造方法
JP4235728B2 (ja) 2003-03-07 2009-03-11 独立行政法人産業技術総合研究所 ベンズイミダゾール系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池
JP2004273770A (ja) 2003-03-10 2004-09-30 Toyo Ink Mfg Co Ltd 光電変換用無機酸化物半導体電極の製造方法
JP2004342319A (ja) 2003-03-19 2004-12-02 Kansai Paint Co Ltd 高分子フィルム表面に半導体微粒子分散液を焼結する方法、及び光電池
JP2004311355A (ja) 2003-04-10 2004-11-04 Fujikura Ltd 電極用基材の製造方法
JP2004311354A (ja) 2003-04-10 2004-11-04 Fujikura Ltd 電極用基材の製造方法
JP2004314313A (ja) 2003-04-11 2004-11-11 Toppan Printing Co Ltd 積層体及びその製造方法並びにそれを用いた製品
JP2004319661A (ja) 2003-04-15 2004-11-11 Fujikura Ltd 光電変換素子用基材およびその製造方法ならびに光電変換素子およびその製造方法
JP4317381B2 (ja) 2003-04-18 2009-08-19 Tdk株式会社 光電変換用酸化物半導体電極の製造方法
JP2004327226A (ja) 2003-04-24 2004-11-18 Fujikura Ltd 電極基板および光電変換素子
JP2004327265A (ja) 2003-04-25 2004-11-18 Mitsubishi Paper Mills Ltd 半導体電極の製造方法、並びにそれを用いた光電変換素子
JP2004327271A (ja) 2003-04-25 2004-11-18 Toyo Ink Mfg Co Ltd 高分子ゲル電解質、およびそれを用いた光電変換素子
JP4380214B2 (ja) 2003-04-28 2009-12-09 株式会社ブリヂストン 色素増感型太陽電池の製造方法
JP2004335366A (ja) 2003-05-09 2004-11-25 Sharp Corp 色素増感太陽電池
JP4401683B2 (ja) 2003-05-22 2010-01-20 株式会社豊田中央研究所 色素増感型太陽電池
JP2004356281A (ja) 2003-05-28 2004-12-16 Tri Chemical Laboratory Inc 色素増感光電変換素子
JP2005016615A (ja) 2003-06-25 2005-01-20 Honda Motor Co Ltd フリクションディスク組立体
JP4264507B2 (ja) 2003-07-15 2009-05-20 独立行政法人産業技術総合研究所 光電変換素子及びそれを用いた色素増感型太陽電池
JP2005039013A (ja) 2003-07-18 2005-02-10 Bridgestone Corp 多孔質金属化合物薄膜の成膜方法及び有機色素増感型太陽電池
JP4576544B2 (ja) 2003-07-31 2010-11-10 学校法人桐蔭学園 フィルム型色素増感光電池
JP2005064493A (ja) 2003-07-31 2005-03-10 Kyocera Corp 光電変換装置およびそれを用いた光発電装置
JP2005063791A (ja) 2003-08-11 2005-03-10 Toyo Ink Mfg Co Ltd 色素増感型光電変換素子用電解質高分子添加剤、それを用いた光電変換素子、及び電解質の製造方法
JP4514420B2 (ja) 2003-08-21 2010-07-28 コーア株式会社 固体型色素増感太陽電池の製造方法
JP2005085491A (ja) 2003-09-04 2005-03-31 Nissin Electric Co Ltd 色素増感太陽電池及びその製造方法
JP3671183B2 (ja) 2003-09-04 2005-07-13 司 吉田 色素増感型太陽電池の製造方法
JP4459578B2 (ja) 2003-09-08 2010-04-28 株式会社フジクラ 色素増感太陽電池
JP4379865B2 (ja) 2003-09-19 2009-12-09 独立行政法人産業技術総合研究所 光電極およびその製造方法、並びにこれを用いた太陽電池
JP4230867B2 (ja) 2003-09-19 2009-02-25 株式会社東芝 光増感型太陽電池
JP2005100792A (ja) 2003-09-25 2005-04-14 Chubu Electric Power Co Inc 光電変換素子
JP2005104845A (ja) 2003-09-26 2005-04-21 Tosoh Corp 4級アンモニウム系常温溶融塩及び製造法
JP2005108467A (ja) 2003-09-26 2005-04-21 Mitsui Chemicals Inc 透明導電性シートおよびそれを用いた光増感太陽電池。
JP2005104846A (ja) 2003-09-26 2005-04-21 Tosoh Corp 4級アンモニウム系常温溶融塩及びその製造法
JP4264511B2 (ja) 2003-09-30 2009-05-20 独立行政法人産業技術総合研究所 光電変換素子及びそれを用いた色素増感型太陽電池
KR100540157B1 (ko) 2003-10-01 2006-01-10 한국과학기술연구원 복합 고분자 전해질을 포함하는 고체상 염료감응 태양전지
JP4500523B2 (ja) 2003-10-03 2010-07-14 株式会社トクヤマ オニウム塩
JP4420645B2 (ja) 2003-10-08 2010-02-24 リンテック株式会社 低温型有機溶融塩、光電変換素子及び光電池
JP4637470B2 (ja) 2003-10-09 2011-02-23 エスケー化研株式会社 積層体の製造方法
JP2005123033A (ja) 2003-10-16 2005-05-12 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
CN100369272C (zh) 2003-10-27 2008-02-13 中国科学院物理研究所 纳米晶太阳能电池及其光阳极的制造方法
JP4919448B2 (ja) 2003-10-31 2012-04-18 株式会社巴川製紙所 光電池用半導体膜、積層体および半導体膜作製用塗料
JP4370398B2 (ja) 2003-10-31 2009-11-25 独立行政法人産業技術総合研究所 光電変換素子及びそれを用いた色素増感型太陽電池
JP2005139100A (ja) 2003-11-05 2005-06-02 Tosoh Corp 常温溶融塩
JP4479221B2 (ja) 2003-11-05 2010-06-09 株式会社ブリヂストン 薄膜の処理方法
JP2005142011A (ja) 2003-11-06 2005-06-02 Central Glass Co Ltd 色素増感型太陽電池の製法
JP4680490B2 (ja) 2003-11-07 2011-05-11 大日本印刷株式会社 多孔質半導体層の形成方法及び色素増感型太陽電池用電極基板の製造方法
JP4601284B2 (ja) 2003-11-07 2010-12-22 大日本印刷株式会社 色素増感型太陽電池用電極基板及びその製造方法並びに色素増感型太陽電池
JP4520727B2 (ja) 2003-11-19 2010-08-11 リンテック株式会社 ピロリジニウム塩、電解質組成物、光電変換素子及び光化学電池
JP4537693B2 (ja) 2003-12-05 2010-09-01 シャープ株式会社 色素増感太陽電池
JP4392231B2 (ja) 2003-12-05 2009-12-24 日本特殊陶業株式会社 長繊維状ナノ酸化チタン
JP4455868B2 (ja) 2003-12-05 2010-04-21 シャープ株式会社 色素増感太陽電池
JP2005174695A (ja) 2003-12-10 2005-06-30 Central Glass Co Ltd 色素増感型太陽電池の製法
JP2005169228A (ja) 2003-12-10 2005-06-30 Sony Corp 塗布方法、及び積層電極構造の製造方法
JP4328857B2 (ja) 2003-12-19 2009-09-09 独立行政法人産業技術総合研究所 光電変換素子及びそれを用いた色素増感型太陽電池
JP2005179254A (ja) 2003-12-19 2005-07-07 Kanto Denka Kogyo Co Ltd 常温溶融塩およびその製造方法
JP4797324B2 (ja) 2004-01-09 2011-10-19 株式会社ブリヂストン 色素増感型太陽電池用電極
JP2006054421A (ja) * 2004-07-13 2006-02-23 Toray Ind Inc 半導体膜
JP2006114350A (ja) * 2004-10-14 2006-04-27 Canon Inc 光電変換装置の製造方法
JP2006120418A (ja) * 2004-10-20 2006-05-11 Norio Shimizu 色素増感型太陽電池
AU2007213123B2 (en) 2006-02-08 2011-03-10 Shimane Prefectural Government Photosensitizer dye
WO2007119525A1 (ja) 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology 有機化合物及びそれを用いた半導体薄膜電極、光電変換素子、光電気化学太陽電池
US8653279B2 (en) 2006-04-17 2014-02-18 Samsung Sdi Co., Ltd. Dye for dye-sensitized solar cell, and solar cell prepared from same
JP5185518B2 (ja) 2006-09-14 2013-04-17 三菱製紙株式会社 光電変換材料、半導体電極並びにそれを用いた光電変換素子
US7866234B2 (en) 2007-08-15 2011-01-11 General Electric Company Manual core rotation device
JP4629153B1 (ja) * 2009-03-30 2011-02-09 富士フイルム株式会社 太陽電池および太陽電池の製造方法
JP5473885B2 (ja) * 2010-02-08 2014-04-16 富士フイルム株式会社 絶縁層付金属基板およびその製造方法、半導体装置およびその製造方法ならびに太陽電池およびその製造方法
JP5620314B2 (ja) 2010-05-31 2014-11-05 富士フイルム株式会社 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
JP4980479B2 (ja) 2010-06-02 2012-07-18 富士フイルム株式会社 金属錯体色素、光電変換素子及び色素増感太陽電池
JP5620316B2 (ja) 2010-09-09 2014-11-05 富士フイルム株式会社 光電変換素子、光電気化学電池及び色素
TWI434745B (zh) 2011-05-06 2014-04-21 Luren Prec Co Ltd Straight scraper

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228129A (ja) * 2010-04-20 2011-11-10 Mitsubishi Alum Co Ltd 色素増感型太陽電池電極用アルミニウム材及び色素増感型太陽電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220708A (ja) * 2015-03-18 2019-12-26 株式会社リコー 光電変換素子及び二次電池
WO2016152766A1 (ja) * 2015-03-20 2016-09-29 積水化学工業株式会社 フレキシブル太陽電池
JP2017092489A (ja) * 2015-03-20 2017-05-25 積水化学工業株式会社 フレキシブル太陽電池
JP2018125522A (ja) * 2017-01-27 2018-08-09 積水化学工業株式会社 フレキシブル太陽電池
JP2021129086A (ja) * 2020-02-17 2021-09-02 富士フイルム株式会社 圧電膜付き基板、圧電素子及び振動発電素子
JP7237032B2 (ja) 2020-02-17 2023-03-10 富士フイルム株式会社 圧電膜付き基板、圧電素子及び振動発電素子

Also Published As

Publication number Publication date
EP2960980A1 (en) 2015-12-30
EP2960980A4 (en) 2016-03-09
WO2014129575A1 (ja) 2014-08-28
JP5972811B2 (ja) 2016-08-17

Similar Documents

Publication Publication Date Title
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
Hashmi et al. Review of materials and manufacturing options for large area flexible dye solar cells
Lee et al. Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes
Bella et al. Novel electrode and electrolyte membranes: towards flexible dye-sensitized solar cell combining vertically aligned TiO2 nanotube array and light-cured polymer network
Sun et al. Growth of single-crystalline rutile TiO 2 nanowire array on titanate nanosheet film for dye-sensitized solar cells
JP4446011B2 (ja) 色素増感型太陽電池用光電極の製造方法および色素増感型太陽電池用光電極、並びに色素増感型太陽電池
JP2009146625A (ja) 色素増感光電変換素子モジュールおよびその製造方法ならびに光電変換素子モジュールおよびその製造方法ならびに電子機器
Wang et al. The use of Ti meshes with self‐organized TiO2 nanotubes as photoanodes of all‐Ti dye‐sensitized solar cells
JP5972811B2 (ja) 光電変換素子、光電変換素子の製造方法および色素増感太陽電池
KR20120084529A (ko) 플렉서블 광전극과 그 제조방법, 및 이를 이용한 염료감응 태양전지
Fu et al. A novel low-cost, one-step and facile synthesis of TiO2 for efficient fiber dye-sensitized solarcells
Momeni Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes
JP2008251517A (ja) 色素増感型太陽電池モジュール、およびこれに用いる光電極の製造方法
JP5122099B2 (ja) 対極の製造方法
Chai et al. High-performance flexible dye-sensitized solar cells by using hierarchical anatase TiO 2 nanowire arrays
US20090101198A1 (en) Dye-sensitized solar cell and method of fabricating the same
Feng et al. A ZnO/TiO2 composite nanorods photoanode with improved performance for dye‐sensitized solar cells
JP4710251B2 (ja) 金属酸化物膜の製造方法
JP2004319661A (ja) 光電変換素子用基材およびその製造方法ならびに光電変換素子およびその製造方法
JP5084170B2 (ja) 色素増感太陽電池用透明電極基板の製造方法
Miao et al. Enhancement of the efficiency of dye-sensitized solar cells with highly ordered Pt-decorated nanostructured silicon nanowires based counter electrodes
JPWO2005122322A1 (ja) 色素増感型太陽電池及びその製造方法
Klein et al. Flexible dye-Sensitized solar cells based on Ti/TiO2 nanotubes photoanode and Pt-Free and TCO-Free counter electrode system
Vibavakumar et al. Synergistic effect and enhanced charge transfer in Nb2O5-rGO/TiO2 photoanode for dye-sensitized solar cells
Wang et al. Constructing synergetic trilayered TiO2 photoanodes based on a flexible nanotube array/Ti substrate for efficient solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 5972811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees