JP2014137104A - 車両の変速制御装置 - Google Patents

車両の変速制御装置 Download PDF

Info

Publication number
JP2014137104A
JP2014137104A JP2013005789A JP2013005789A JP2014137104A JP 2014137104 A JP2014137104 A JP 2014137104A JP 2013005789 A JP2013005789 A JP 2013005789A JP 2013005789 A JP2013005789 A JP 2013005789A JP 2014137104 A JP2014137104 A JP 2014137104A
Authority
JP
Japan
Prior art keywords
torque
shift
control
engagement
automatic transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013005789A
Other languages
English (en)
Inventor
Tsubasa Kato
翼 加藤
Yoshio Hasegawa
善雄 長谷川
Keisuke Ota
圭祐 太田
Seiji Masunaga
聖二 増永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013005789A priority Critical patent/JP2014137104A/ja
Publication of JP2014137104A publication Critical patent/JP2014137104A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】変速モデルを用いて自動変速機の所望の変速を実行する。
【解決手段】自動変速機の運動方程式の拘束条件としてトルク分担率を設定したので、変速制御において難しいとされる係合装置のトルクの受け渡しを制御するのに適しており、且つその運動方程式を解くことができる。更に、変速モデルで求められた解放側の係合装置B2の解放側クラッチトルクに対してその解放側の係合装置B2の実際のトルクを一時的にホールドすることによってその解放側の係合装置B2の実際の解放側クラッチトルクを2段階に制御し、出力軸20のトルクを2段階に立ち上げる制御を行うので、所望の制振効果を得ることができる。
【選択図】図4

Description

本発明は、自動変速機の変速制御を実行する車両の変速制御装置に係り、特に、変速モデルを用いて自動変速機の変速を実行する技術に関するものである。
駆動力源からの動力を受ける入力軸と駆動輪に動力を伝達する出力軸との間で回転とトルクとを伝達する複数の係合装置を有して、その係合装置の係合と解放との切替えによって変速が実行される自動変速機が良く知られている。一般的に、このような自動変速機では、実車にて評価しながら各ギヤ段毎に制御対象に対して操作する要素(例えばトルク等)の要求値(すなわち制御操作量)の適合を行い、その適合結果により各ギヤ段毎に予め求められた制御マップから決定される制御操作量を用いて変速が実行される。しかしながら、自動変速機の多段化が進む中では、適合作業に非常に多くの労力が必要となり、制御マップを基にした変速制御の態様を採用することが困難化してきている。その為、自動変速機を構成する各回転要素における運動方程式を基にした変速制御の態様である変速モデル制御が提案されている。このような変速モデル制御では、変速時に実現したい変化態様(変速目標値)に基づいて予め求められた運動方程式を解くことで制御操作量を一意に決定し、その決定された制御操作量を用いて変速が実行される。例えば、特許文献1には、イナーシャ相制御において、変速目標値として変速機の入力軸回転速度の目標値を設定すると共に、制御操作量として係合側のクラッチトルクの要求値を変速モデルを用いて算出して変速を実行する技術、及び変速目標値として変速機の入力軸回転速度と出力軸トルクとの各目標値を設定すると共に、制御操作量として係合側のクラッチトルクの要求値と解放側のクラッチトルクの要求値とを変速モデルを用いて算出して変速を実行する技術が記載されている。
特開2000−97325号公報
ところで、前記特許文献1に記載の技術は、1つの変速目標値に対して1つの制御対象を操作することで、或いは2つの変速目標値に対して2つの制御対象を操作することで変速を実行している。しかしながら、この特許文献1に記載の技術では、イナーシャ相中のイナーシャトルクを相殺する為に(換言すれば、イナーシャ相中の出力軸トルクが実質的に変化しないように)、解放側の係合装置の油圧を、解放に向けて減じた後に一時的に再度係合に向けて上昇させており、変速完了が遅くなってドライバビリティが悪化してしまう可能性がある。一方で、上記イナーシャトルクを相殺する為に、イナーシャ相中にてエンジントルクを一時的に減じる所謂エンジントルクダウン制御という手法が良く知られている。しかしながら、上記特許文献1に記載の技術では、エンジンが制御対象として運動方程式に組み込まれていない。つまり、特許文献1に記載の技術では、成り行きのエンジントルクに対して運動方程式を解いている為、特許文献1に記載の変速モデル制御では、解放側の係合装置の一時的な油圧上昇に替えて、エンジントルクダウン制御によってイナーシャトルクを相殺することができない。この際、変速モデル制御とは別にエンジントルクダウン制御を実行することは可能であるが、そうすると変速モデル制御の全体が崩れ再度運動方程式から解を導くこととなり、結局、変速完了が遅くなったり、変速ショックが増大してドライバビリティが悪化してしまう可能性がある。他方で、エンジントルクについても制御操作量として変速モデル制御にて一意に決定しようとすると、2つの変速目標値に対して3つの制御操作量となり、運動方程式を解くことができず、変速モデル制御を用いた自動変速機の変速が実行できなくなる。
尚、上述したような課題は未公知であり、2つの変速目標値に対して3つの制御操作量がある場合に、パワーオンアップシフト、パワーオフアップシフト、パワーオンダウンシフト、及びパワーオフダウンシフトといった何れの変速パターン(変速様式)にも所定の変速モデルにて対応できるように、運動方程式を解く為の拘束条件を適切に設定することについて、未だ提案されていない。これに対して、本発明は、拘束条件を適切に設定して運動方程式を解くという新たな技術を提案するものである(本件出願人が先に出願した、現時点で未公開の国際出願(国際出願番号:PCT/JP2012/069408)を参照)。加えて、本発明は、上記新たな技術を基礎として、その技術を更に改良する技術を提案するものである。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、2つの変速目標値に対して3つの制御操作量があったとしても変速モデルを用いて自動変速機の所望の変速を実行することができる車両の変速制御装置を提供することにある。
前記目的を達成する為の第1の発明の要旨とするところは、(a) 駆動力源からの動力を受ける入力軸と駆動輪に動力を伝達する出力軸との間で回転とトルクとを伝達する複数の係合装置を有して、その係合装置の係合と解放との切替えによって変速が実行される自動変速機を備え、変速目標値を実現させる制御操作量を決定する予め定められた変速モデルを用いて前記自動変速機の変速を実行する車両の変速制御装置であって、(b) 前記変速目標値を、前記出力軸側の回転部材上のトルクと、前記入力軸側の回転部材の速度変化量との2つの値で設定し、(c) 前記制御操作量を、前記入力軸側の回転部材上のトルクと、前記変速時における係合側の係合装置のトルク容量と、前記変速時における解放側の係合装置のトルク容量との3つの値で設定し、(d) 前記変速時に前記係合側の係合装置と前記解放側の係合装置とで受け持つ伝達トルクのトルク分担率を設定することで、(e) 前記変速モデルを用いて前記自動変速機の変速を実行するものであり、(f) 前記変速モデルで求められた前記解放側の係合装置のトルクに対してその解放側の係合装置の実際のトルクを一時的にホールドして、前記出力軸のトルクが2段階で立ち上がる制御とすることにある。上記トルク分担率は、前記変速時に前記係合側の係合装置と前記解放側の係合装置とで受け持つ伝達トルクを前記入力軸側の回転部材上のトルクに置き換えたときの両係合装置にて分担するその伝達トルクのトルク分担率である。
このようにすれば、2つの変速目標値を実現する為に3つの制御操作量を決定する必要がある場合に、何らかの拘束条件を設定しなければそれら制御操作量を決定することができないことに対して、解放側の係合装置と係合側の係合装置とで受け持つ伝達トルクのトルク分担率を拘束条件としたので、変速制御において難しいとされる解放側の係合装置と係合側の係合装置とのトルクの受け渡し(すなわち変速進行度)を制御するのに適しており、且つ3つの制御操作量を決定することができる。見方を換えれば、3つの制御操作量を決定する為に何れかの制御操作量を予め定めた所定の値とする場合には、その所定の値としては各変速パターン毎に合わせた値とするなど無数にある。これに対して、本発明では、トルクの受け渡しを表現した前記トルク分担率を拘束条件としたので、何れの変速パターンにも所定の変速モデルにて対応することができる。具体的には、係合側の係合装置のトルク容量及び解放側の係合装置のトルク容量の一方のみを拘束条件とすると、タイアップやある回転部材の吹き上がりが発生する可能性があるが、変速進行度を制御するのに適した前記トルク分担率を拘束条件とすることで、上記タイアップや吹き上がりの発生を抑制したり、反対に、敢えてタイアップや吹き上がりを発生させる制御の制御性が向上する。また、入力軸側の回転部材上のトルクを拘束条件とすると、駆動力源の出力トルクを一時的に変化させるような制御を実行できなくなる可能性があるが、本発明では、例えばイナーシャ相中にて駆動力源の出力トルクを一時的に減じるようなトルクダウン制御を適切に実行することができる。このように、本発明では、2つの変速目標値に対して3つの制御操作量があったとしても、変速モデルを用いて3つの制御操作量を適切に決定し、2つの変速目標値を実現するような自動変速機の所望の変速を実行することができる。
ところで、変速中にクラッチトルクによって前記出力軸のトルクを2段階に変化させることで制振制御を行うことが考えられる。すなわち、前記自動変速機の出力軸を含む動力伝達経路(パワートレーン)の固有振動の1/2周期で前記解放側の係合装置のトルクを2段階に制御することで制振制御を行うことが考えられる。しかしながら、前記変速モデルにおいて、前記解放側の係合装置のトルクを2段階に制御すると前記係合側の係合装置のトルクも2段階となってしまい、所望の制振効果を得ることができないという課題があった。このような課題に対して、前記第1の発明では、更に、前記変速モデルで求められた前記解放側の係合装置のトルクに対してその解放側の係合装置の実際のトルクを一時的にホールドして、前記出力軸のトルクが2段階で立ち上がる制御とすることにある。このため、前記変速モデルで求められた前記解放側の係合装置のトルクに対してその解放側の係合装置の実際のトルクを一時的にホールドすることによって前記解放側の係合装置の実際のトルクを2段階に制御し、前記出力軸のトルクを2段階に立ち上げる制御を行うことができるので、所望の制振効果を得ることができる。
ここで、第2の発明は、前記解放側の係合装置の実際のトルクのホールドを解除するタイミングは、前記自動変速機の出力軸を含む動力伝達経路の固有振動の1/2周期である。このようにすれば、前記出力軸のトルクの2段階の立ち上げにおいて、始めに立ち上げた時に発生する振動の逆位相の振動が前記解放側の係合装置の実際のトルクのホールドが解除された際に発生させられるので、振動が好適に低減される。
また、第3の発明は、前記第1の発明または第2の発明に記載の車両の変速制御装置において、前記変速モデルは、前記変速目標値と前記制御操作量とを含む前記自動変速機の運動方程式と、前記トルク分担率を表す関係とを用いて、前記変速目標値に基づいて前記制御操作量を算出するものである。このようにすれば、変速制御において難しいとされる解放側の係合装置と係合側の係合装置とのトルクの受け渡しに関連する制御を運動方程式に反映させることができ、3つの制御操作量を適切に決定することができる。
本発明が適用される車両における動力伝達経路の概略構成を説明する図であると共に、車両に設けられた制御系統の要部を説明する図である。 電子制御装置の制御機能の要部を説明する機能ブロック線図である。 変速パターン毎に予め定められたトルク分担率を変化させる時期の一例を示す図である。(a)はパワーオンアップシフトの場合であり、(b)はパワーオンダウンシフトの場合であり、(c)はパワーオフアップシフトの場合であり、(d)はパワーオフダウンシフトの場合である。 電子制御装置の制御作動の要部すなわち変速モデルを用いて変速中の制振制御を適切に実行する為の制御作動を説明するフローチャートである。 図4のフローチャートに示す制御作動を実行した場合のタイムチャートである。
本発明において、好適には、前記車両は、例えば前記駆動力源の動力を前記自動変速機などの動力伝達装置を介して前記駆動輪へ伝達するものである。また、前記自動変速機は、所定の係合装置の係合と解放との切替えによって各々異なる変速比(ギヤ比)を有する複数の変速段(ギヤ段)が択一的に形成される有段式自動変速機である。例えば、この有段式自動変速機は、公知の遊星歯車式自動変速機により構成される。この遊星歯車式自動変速機における係合装置としては、油圧アクチュエータによって係合させられる多板式、単板式のクラッチやブレーキ、或いはバンドブレーキ等の係合装置が広く用いられる。また、前記車両は、例えば複数の係合装置の油圧アクチュエータにそれぞれ油圧を供給する油圧制御回路を備えている。この油圧制御回路は、例えばリニアソレノイドバルブやON−OFFソレノイドバルブ等を備え、それらソレノイドバルブの出力油圧を直接的或いはシフトコントロールバルブ等を介して間接的に係合装置の油圧アクチュエータにそれぞれ供給する。尚、上記「油圧を供給する」とは、「油圧を作用させる」或いは「ある油圧に制御された作動油を供給する」ことを意味する。
また、好適には、前記駆動力源としては、例えばガソリンエンジンやディーゼルエンジン等のエンジンが用いられる。或いは、前記駆動力源としては、例えば電動機等の原動機が単独で或いは上記エンジンと組み合わせて用いられる。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明が適用される車両10に備えられたエンジン12から駆動輪26までの動力伝達経路の概略構成を説明する図であると共に、車両10に設けられた制御系統の要部を説明する図である。図1において、駆動力源としてのエンジン12により発生させられた動力は、トルクコンバータ14を経て入力軸16から自動変速機18に入力され、自動変速機18の出力軸20から差動歯車装置(ディファレンシャルギヤ)22や一対の車軸(ドライブシャフト)24等を順次介して左右の駆動輪26へ伝達される。
自動変速機18は、車体に取り付けられる非回転部材としてのトランスミッションケース内において1組乃至複数組の遊星歯車装置と複数の係合装置(係合要素)とを有し、その係合装置によって複数のギヤ段が択一的に成立させられる公知の遊星歯車式自動変速機である。例えば、自動変速機18は、複数の係合装置の何れかの掴み替えにより(すなわち係合装置の係合と解放との切替えにより)変速が実行される、所謂クラッチツゥクラッチ変速を行う有段変速機である。複数の係合装置はそれぞれ、エンジン12からの動力を受ける入力軸16と駆動輪26に動力を伝達する出力軸20との間で回転とトルクとを伝達する油圧式の摩擦係合装置である。この入力軸16は、自動変速機18の入力軸であるが、トルクコンバータ14のタービン翼車によって回転駆動されるタービン軸でもある。
前記油圧式の摩擦係合装置は、油圧制御回路28によってそれぞれ係合と解放とが制御され、その油圧制御回路28内のソレノイドバルブ等の調圧によりそれぞれのトルク容量すなわち係合力が変化させられて、それが介挿されている両側の部材を選択的に連結するクラッチやブレーキである。ここで、係合装置のトルク容量(以下、クラッチトルクという)は、例えば係合装置の摩擦材の摩擦係数や摩擦板を押圧する係合油圧によって決まるものである。係合装置を滑らすことなく(すなわち係合装置に差回転速度を生じさせることなく)入力軸16と出力軸20との間でトルク(例えば入力軸16に入力される変速機入力トルクTiすなわちタービントルクTt)を伝達する為には、そのトルクに対して各係合装置にて受け持つ必要がある伝達トルク分(すなわち係合装置の分担トルク)が得られるトルク容量が必要になる。但し、伝達トルク分が得られるトルク容量においては、トルク容量を増加させても伝達トルクは増加しない。尚、本実施例では、便宜上、クラッチトルクと係合油圧とを同義に取り扱うこともある。
自動変速機18におけるギヤ段の一例としては、例えばクラッチC1とブレーキB1との係合により低車速側ギヤ段(ローギヤ段例えば第2速ギヤ段)が成立させられ、クラッチC1とブレーキB2との係合により高車速側ギヤ段(ハイギヤ段例えば第3速ギヤ段)が成立させられる。従って、上記ローギヤ段とハイギヤ段との間の変速時には、ブレーキB1とブレーキB2とで掴み替えが行われる。本実施例では、変速時に掴み替えが行われる係合装置のうちで、ローギヤ段側の成立に関与する係合装置(例えばブレーキB1)をローギヤ段係合装置と称し、ハイギヤ段側の成立に関与する係合装置(例えばブレーキB2)をハイギヤ段係合装置と称する。ローギヤ段係合装置は、ローギヤ段からハイギヤ段へのアップシフト時には解放側の係合装置(以下、解放側クラッチという)となり、ハイギヤ段からローギヤ段へのダウンシフト時には係合側の係合装置(以下、係合側クラッチという)となる。一方で、ハイギヤ段係合装置は、上記アップシフト時には係合側クラッチとなり、上記ダウンシフト時には解放側クラッチとなる。
図1に戻り、車両10には、例えば自動変速機18の変速制御などに関連する変速制御装置を含む電子制御装置70が備えられている。電子制御装置70は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置70は、エンジン12の出力制御、自動変速機18の変速制御等を実行するようになっており、必要に応じてエンジン制御用や油圧制御用(変速制御用)等に分けて構成される。また、電子制御装置70には、各種センサ(例えば各回転速度センサ50,52,54、アクセル開度センサ56、スロットル弁開度センサ58、シフトセンサ60など)により検出された各種信号(例えばエンジン12の回転速度を表すエンジン回転速度ωe,入力軸16の回転速度を表すタービン回転速度ωtすなわち変速機入力回転速度ωi,車速Vに対応する出力軸20の回転速度を表す変速機出力回転速度ωo、車両10の駆動力(駆動トルク)に対する運転者の要求量を表すアクセル開度Acc、スロットル弁開度θth、シフトレバー或いはパドルスイッチによるシフト操作SHなど)が、それぞれ供給される。また、電子制御装置70からは、例えばエンジン12の出力制御の為のエンジン出力制御指令信号Se、自動変速機18の油圧アクチュエータを制御する油圧制御回路28を作動させる為の油圧指令信号Spなどが、それぞれ出力される。
図2は、電子制御装置70による制御機能の要部を説明する機能ブロック線図である。図2において、エンジン出力制御手段すなわちエンジン出力制御部72は、例えば要求されたエンジントルクTe(以下、要求エンジントルクTedem)が得られるように、スロットル制御の為にスロットルアクチュエータにより電子スロットル弁を開閉制御する他、燃料噴射量制御の為に燃料噴射装置による燃料噴射量を制御し、点火時期制御の為にイグナイタ等の点火装置を制御するエンジン出力制御指令信号Seを出力する。エンジン出力制御部72は、例えばアクセル開度Accをパラメータとして車速Vと要求駆動力Fdemとの予め記憶された不図示の関係(駆動力マップ)から実際のアクセル開度Acc及び車速Vに基づいて要求駆動力Fdemを算出する。そして、エンジン出力制御部72は、例えば駆動輪26のタイヤ有効半径、現在の自動変速機18のギヤ段におけるギヤ比、出力軸20よりも駆動輪26側の動力伝達経路における終減速比、及びトルクコンバータ14のトルク比tに基づいて、要求駆動力Fdemが得られる要求エンジントルクTedemを算出する。尚、トルクコンバータ14のトルク比tは、例えば速度比(=タービン回転速度ωt/ポンプ回転速度ωp(エンジン回転速度ωe))とトルク比t、効率、及び容量係数とのそれぞれの予め記憶された公知の関係(トルクコンバータ14の作動特性図)から実際の速度比eに基づいて算出される。
変速制御手段すなわち変速制御部74は、自動変速機18の変速制御を実行する。具体的には、変速制御部74は、車速V及びアクセル開度Accを変数として予め記憶された公知の関係(変速マップ、変速線図)から実際の車速V及びアクセル開度Accで示される車両状態に基づいて変速判断を行う。そして、変速制御部74は、自動変速機18の変速を実行すべきと判断した場合には、変速すべきギヤ段が得られるように自動変速機18の自動変速制御を実行する。例えば、変速制御部74は、判断したギヤ段が達成されるように、自動変速機18の変速に関与する係合装置を係合及び/又は解放させる油圧指令信号Spを油圧制御回路28へ出力する。この油圧指令信号Spとしては、例えば解放側クラッチのトルク容量(以下、解放側クラッチトルクという)を得る為の油圧指令値、及び係合側クラッチのトルク容量(以下、係合側クラッチトルクという)を得る為の油圧指令値である。
ここで、変速制御としては、例えば変速ショックや変速時間等が適切であるかを実車にて評価しつつ適合により予め定められた制御マップから、変速時のトルク容量(或いは油圧指令値)を決定して自動変速機18の変速を実行する手法がある。このような制御マップを用いる手法では、どの変速の種類での変速であるかによって、各々異なる制御マップを作成する必要がある。その為、自動変速機18のギヤ段が多段化される程、上記適合作業に多くの労力等が必要となってくる。上記変速の種類とは、例えばパワーオンアップシフト、パワーオフアップシフト、パワーオンダウンシフト、及びパワーオフダウンシフトといった各種の変速パターン(変速様式)と、1速−2速間などの各種のギヤ段間との組み合わせで表される各種の変速態様である。より具体的には、変速の種類は、1速→2速パワーオンアップシフト、2速→1速パワーオンダウンシフトなどとして表される。
そこで、本実施例では、変速制御として、上記制御マップを用いる手法に替えて、変速目標値を実現させる制御操作量を決定する予め定められた変速モデルを用いて自動変速機18の変速を実行する手法を採用する。上記変速目標値は、変速時に実現したい変化態様を定める要素(例えば変速時間、駆動力等)の目標値である。上記制御操作量は、制御対象に対して操作する要素(エンジントルク、クラッチトルク等)の要求値である。
以下において、変速モデルを用いた自動変速機18の変速制御について詳しく説明する。自動変速機18の変速中における運動方程式は、次式(1)及び次式(2)で表される。この式(1)及び式(2)は、自動変速機18を構成する相互に連結された各回転要素毎の運動方程式、及び自動変速機18を構成する遊星歯車装置における関係式から導き出されたものである。上記各回転要素毎の運動方程式は、各回転要素におけるイナーシャと回転速度時間変化率との積で表されるトルクを、遊星歯車装置の3つの部材(サンギヤ、キャリヤ、リングギヤ)、及び係合装置の両側の部材のうちで各回転要素に関与する部材に作用するトルクにて規定した運動方程式である。また、遊星歯車装置における関係式は、遊星歯車装置の歯車比(=サンギヤの歯数/リングギヤの歯数)を用いて、その遊星歯車装置の3つの部材におけるトルクの関係と回転速度時間変化率の関係とを各々規定した関係式である。この式(1)及び式(2)において、dωt/dtは、タービン回転速度ωt(すなわち変速機入力回転速度ωi)の時間微分すなわち時間変化率であり、入力軸16側の回転部材の速度変化量としての入力軸16の角加速度(以下、入力軸角加速度)を表している(図面乃至数式においては時間変化率をドットで示している、以下の説明において同じ)。dωo/dtは、変速機出力回転速度ωoの時間変化率であり出力軸角加速度を表している。Ttは、入力軸16側の回転部材上のトルクとしての入力軸16上のトルクであるタービントルクすなわち変速機入力トルクTiを表している。このタービントルクTtは、トルクコンバータ14のトルク比tを考慮すればエンジントルクTe(=Tt/t)と同意である。Toは、出力軸20側の回転部材上のトルクとしての出力軸20上のトルクである変速機出力トルクを表している。Tcaplは、係合側クラッチトルクであり、アップシフト時にはハイギヤ段側クラッチトルクとなり、ダウンシフト時にはローギヤ段側クラッチトルクとなる。Tcdrnは、解放側クラッチトルクであり、アップシフト時にはローギヤ段側クラッチトルクとなり、ダウンシフト時にはハイギヤ段側クラッチトルクとなる。a1,a2,b1,b2,c1,c2,d1,d2はそれぞれ、この式(1)及び式(2)を導き出した際に定数としたものであり、上記各回転要素におけるイナーシャ及び上記遊星歯車装置の歯車比から設計的に定められる係数である。この定数の具体的な数値は、例えば変速の種類(例えば変速パターンやギヤ段間)毎に異なる。従って、上記運動方程式としては1つの所定のものであるが、自動変速機18の変速には、変速の種類毎に異なる定数とされたそれぞれの変速の種類に対応する運動方程式が用いられる。
Figure 2014137104
前記式(1)及び式(2)は、変速目標値と制御操作量との関係を定式化した自動変速機18のギヤトレーン運動方程式である。ここでの変速目標値は、変速時間及び駆動力の各目標値を表現でき、ギヤトレーン運動方程式上で取り扱えるものである。本実施例では、変速時間を表現できる要素の一例として、入力軸角加速度dωt/dtを用いている。また、駆動力を表現できる要素の一例として、変速機出力トルクToを用いている。つまり、本実施例では、変速目標値を、入力軸角加速度dωt/dtと、変速機出力トルクToとの2つの値で設定している。一方で、本実施例では、それら変速目標値を成立させる制御操作量を、タービントルクTt(エンジントルクTeも同意)と、係合側クラッチトルクTcaplと、解放側クラッチトルクTcdrnとの3つの値で設定している。そうすると、運動方程式が前記式(1)及び式(2)の2式で構成されることに対して制御操作量が3つある為に、2つの変速目標値を成立させる制御操作量を一意に解くことはできない。その為、変速モデルを用いて、2つの変速目標値を実現するような自動変速機18の所望の変速を実行することができない。尚、出力軸角加速度dωo/dtは、回転速度センサ54の検出値である変速機出力回転速度ωoから算出される。
ところで、前記式(1)及び式(2)の運動方程式に、ある拘束条件を追加することで制御操作量を一意に解くことができると考えられる。ここで、自動変速機18の変速制御において難しいとされることは、解放側クラッチと係合側クラッチとのトルクの受け渡し(すなわち変速進行度)を制御することである。一方で、3つの制御操作量を決定する為に何れかの制御操作量を所定の値とする場合には、各変速パターン毎に合わせた所定の値とするなど無数の定め方がある。この所定の値に関し、例えば解放側クラッチトルクTcdrn及び係合側クラッチトルクTcaplのうちで一方のみを拘束条件とすると、変速中にタイアップや吹き上がりが発生し易くなったり、また、敢えて変速中にタイアップや吹き上がりを発生させる制御の制御性が低下したりする可能性がある。或いは、例えばエンジントルクの変化態様を拘束条件とすると、イナーシャ相中にエンジントルクを一時的に変化させるようなエンジントルクダウン制御を実行できなくなる可能性がある。そこで、本実施例では、変速中のトルクの受け渡しを表現したり制御するのに適しており、また、何れの変速パターンにも対応することができる、解放側クラッチと係合側クラッチとで受け持つ伝達トルクのトルク分担率を、上記拘束条件として設定することを見出した。つまり、変速中のトルクの受け渡しを運動方程式に組み込むことができ、且つ制御操作量を一意に解くことができる、伝達トルクのトルク分担率を上記拘束条件として設定することを見出した。上記トルク分担率は、自動変速機18の変速時に解放側クラッチと係合側クラッチとで受け持つ必要がある合計の伝達トルク(合計伝達トルク)を例えば入力軸16上のトルク(入力軸上合計伝達トルク)に置き換えたときに、その入力軸上合計伝達トルクに対して両係合装置が各々分担する伝達トルクの割合である。本実施例では、係合側クラッチのトルク分担率を「xapl」とし、解放側クラッチのトルク分担率を「xdrn」として、それぞれのトルク分担率を、変速中のトルクの受け渡しを反映するように時系列で変化するトルク分担率x(例えば0≦x≦1)を用いて次式(3)及び次式(4)のように定義する。
xapl = x ・・・(3)
xdrn = 1−x ・・・(4)
係合側クラッチトルクTcaplと解放側クラッチトルクTcdrnとの関係式は、入力軸16上のトルクに置き換えた「Tcapl」及び「Tcdrn」と、前記式(3)及び式(4)とに基づいて、「x」(=xapl)と「1−x」(=xdrn)とを用いて定義することができる。そして、前記式(1)、前記式(2)、及び「Tcapl」と「Tcdrn」との関係式から、制御操作量である、タービントルクTt、係合側クラッチトルクTcapl、及び解放側クラッチトルクTcdrnを算出する関係式が導き出される。タービントルクTt(エンジントルクTeも同意)は、「x」(=xapl)、「1−x」(=xdrn)、入力軸角加速度dωt/dt、及び変速機出力トルクToなどを用いた関係式にて表される。同様に、係合側クラッチトルクTcaplは、「x」(=xapl)、入力軸角加速度dωt/dt、及び変速機出力トルクToなどを用いた関係式にて表される。同様に、解放側クラッチトルクTcdrnは、「1−x」(=xdrn)、入力軸角加速度dωt/dt、及び変速機出力トルクToなどを用いた関係式にて表される。つまり、本実施例の変速モデルは、前記変速目標値と前記制御操作量とを含む自動変速機18の運動方程式(前記式(1),(2))と、前記トルク分担率を表す関係(前記式(3),(4))とを用いて、前記変速目標値に基づいて前記制御操作量を算出するものである。このように、本実施例では、前記式(1),(2)に、トルク分担率xにて設定した拘束条件を追加することで、変速モデルを用いて自動変速機18の変速を実行する。よって、2つの変速目標値に対して3つの制御操作量があったとしても、上記変速モデルを用いて3つの制御操作量を適切に決定することができる。この変速モデルとしては1つの所定のものであるが、上述したように変速の種類(例えば変速パターンやギヤ段間)毎に異なる定数とされたギヤトレーン運動方程式が用いられるので、自動変速機18の変速には、それぞれの変速の種類に対応する変速モデルが用いられることになる。
ここで、自動変速機18の変速制御においては、パワーオンアップシフト、パワーオフアップシフト、パワーオンダウンシフト、及びパワーオフダウンシフトといった様々な変速パターンがある。その為、各変速パターンに合わせてトルク分担率を設定することが望ましい。例えば、本実施例では、変速パターンに合わせて変速を適切に進行させる為に、変速パターンに基づいてトルク分担率を変化させる時期を変更する(すなわち変速パターンに基づいて解放側クラッチと係合側クラッチとのトルクを受け渡すタイミングを変更する)。以下に、各変速パターンに合わせたトルク分担率の設定について詳細に説明する。
パワーオンアップシフト或いはパワーオフダウンシフトでは、エンジントルクTe(パワーオン時の正トルク、或いはパワーオフ時の負トルク(エンジンフリクショントルク))によってタービン回転速度ωt(すなわち変速機入力回転速度ωi)が変化させられる方向と、変速に伴うタービン回転速度ωtの変化方向(変速によって進められる方向)とが異なる。すなわち、パワーオンアップシフト或いはパワーオフダウンシフトでは、エンジントルクTeにより自発的に変速を進行できない。従って、トルク分担率を変えないまま解放側クラッチトルクTcdrnの絶対値のみを低下させるだけでは(すなわち解放側クラッチを解放に向かわせるだけでは)変速を進行させられないので、係合側クラッチによりタービン回転速度ωtを変速に伴う変化方向へ変化させる必要がある。そこで、変速パターンがパワーオンアップシフト或いはパワーオフダウンシフトの場合には、図3の(a),(d)に示すように、変速を適切に進行させる為に、トルク分担率を変化させる時期をイナーシャ相開始前とする(すなわち解放側クラッチと係合側クラッチとのトルクの受け渡しをイナーシャ相開始前に実行する)。
一方で、パワーオフアップシフト或いはパワーオンダウンシフトでは、エンジントルクTeによってタービン回転速度ωtが変速に伴う変化方向へ変化させられる。すなわち、パワーオフアップシフト或いはパワーオンダウンシフトでは、エンジントルクTeにより自発的に変速を進行できる。従って、トルク分担率を変えないまま解放側クラッチトルクTcdrnの絶対値のみを低下させるだけで変速を進行させられるので、係合側クラッチによりタービン回転速度ωtを変速に伴う変化方向へ変化させる必要がない。パワーオフアップシフト或いはパワーオンダウンシフトでは、係合側クラッチにより変速を進行させようとすると、却ってイナーシャトルクが増大して変速ショックが悪化する可能性がある。そこで、変速パターンがパワーオフアップシフト或いはパワーオンダウンシフトの場合には、図3の(c),(b)に示すように、変速を適切に進行させる為に、トルク分担率を変化させる時期をイナーシャ相終了時とする。すなわち、パワーオフアップシフト或いはパワーオンダウンシフトの場合には、変速ショックが抑制された滑らかな変速を実現する為に、エンジントルクTeに合わせて解放側クラッチを解放することだけで変速を進行させた後、解放側クラッチと係合側クラッチとのトルクの受け渡しをイナーシャ相の終了に合わせるように実行することで係合側クラッチによりタービン回転速度ωtを変速後の同期回転に合わせる。ここでの、イナーシャ相終了時とは、例えばイナーシャ相が概ね終了したような、タービン回転速度ωtが変速後の同期回転に概ね近づいた時点である。つまり、イナーシャ相終了時とは、係合側クラッチを係合に向かわせなくとも、エンジントルクTeと解放側クラッチの解放とによりイナーシャ相が開始されて更に進行させられ、タービン回転速度ωtを変速後の回転速度に同期させるところだけ係合側クラッチを係合に向けて制御すれば良いような、イナーシャ相の終了間近の時点である。尚、エンジントルクTeと解放側クラッチの解放とによりイナーシャ相が進行させられて終了させられ得る場合には、イナーシャ相終了時をイナーシャ相終了後としても良い。
より具体的には、図2において、変速制御部74は、自動変速機18の変速中であるか否かを、例えば実行すべきと判断した変速が未だ終了していないか否かに基づいて判定する。
制御操作量算出手段すなわち制御操作量算出部76は、変速制御部74により自動変速機18の変速中であると判定された場合には、上記変速モデルを用いて、前記変速目標値に基づいて前記制御操作量を算出する。具体的には、制御操作量算出部76は、トルク分担率算出手段すなわちトルク分担率算出部78と、変速目標値算出手段すなわち変速目標値算出部80とを備えている。
トルク分担率算出部78は、例えばトルク分担率xを変化させる態様(例えば傾き等)が予め定められた関係(変速進行度マップ)から、変化開始時(或いは前回算出時)からの経過時間に基づいてトルク分担率xを算出する。そして、トルク分担率算出部78は、前記式(3)及び式(4)から、その算出したトルク分担率xに基づいて係合側クラッチのトルク分担率xaplと解放側クラッチのトルク分担率xdrnとを算出する。上記変速進行度マップは、例えば変速の種類(変速パターンやギヤ段間)毎に予め定められている。また、トルク分担率xの初期値は、「0」とされている。
変速目標値算出部80は、例えばイナーシャ相中のタービン回転速度ωt(=変速機入力回転速度ωi)の変化が変速ショックの抑制と変速時間とを両立させる所定変化となるように入力軸角加速度dωt/dtを変化させる態様が予め定められた関係(入力軸角加速度変化マップ)から、イナーシャ相開始時(或いは前回算出時)からの経過時間に基づいてイナーシャ相中の入力軸角加速度dωt/dtの目標値を算出する。また、変速目標値算出部80は、例えばイナーシャ相中以外では、タービン回転速度ωt(=変速機入力回転速度ωi)の変化に基づいて入力軸角加速度dωt/dtの目標値を算出する。加えて、変速目標値算出部80は、例えば変速機出力トルクToを変化させる態様が予め定められた関係(変速機出力トルク変化マップ)から、エンジン出力制御部72により算出された要求駆動力Fdem及び変速制御開始時(或いは前回算出時)からの経過時間に基づいて変速機出力トルクToの目標値を算出する。尚、上記入力軸角加速度変化マップ及び変速機出力トルク変化マップは、例えば変速の種類(変速パターンやギヤ段間)毎に予め定められている。
制御操作量算出部76は、前記制御操作量を算出する関係式から、トルク分担率算出部78により算出された係合装置のトルク分担率(x,xapl,xdrn)、及び変速目標値算出部80により算出された各変速目標値(dωt/dt、Toの各目標値)に基づいて、制御操作量としての、タービントルクTt(エンジントルクTeも同意)、係合側クラッチトルクTcapl、及び解放側クラッチトルクTcdrnの各要求値を算出する。
エンジン出力制御部72は、制御操作量算出部76により算出されたタービントルクTt(エンジントルクTeも同意)の要求値が得られるように、エンジン出力制御指令信号Seを出力する。変速制御部74は、判断した自動変速機18のギヤ段が達成されるように、制御操作量算出部76により算出された係合側クラッチトルクTcapl及び解放側クラッチトルクTcdrnの各要求値を得る為の油圧指令信号Spを油圧制御回路28へ出力する。
また、制御操作量算出部76は、制振制御実行判断手段すなわち制振制御実行判断部82と、解放側クラッチトルクホールド目標値算出手段すなわち解放側クラッチトルクホールド目標値算出部84とを備えている。
制振制御実行判断部82は、変速制御部74で自動変速機18の変速中であると判定されると、その変速中に制振制御の実行が必要であるか否かを判断する。すなわち、制振制御実行判断部82は、変速制御部74で自動変速機18の変速中であると判定されると、その変速の種類が、例えば車速Vおよびアクセル開度Accを変数として予め記憶された変速マップにおけるダウン変速線を跨ぐような出力軸20のトルクが比較的増大し振動が発生し易いパワーオンダウンシフトである時に制振制御の実行が必要であると判定し、それ以外の変速の種類、例えばパワーオンアップシフト、パワーオフアップシフト、及びパワーオフダウンシフトである時に制振制御の実行が必要でないと判定する。なお、本実施例では、上記パワーオンダウンシフトにおいて、ブレーキB2が解放側の係合装置となり、ブレーキB1が係合側の係合装置となる。
変速目標値算出部80は、制振制御実行判断部82で制振制御の実行が必要であると判断されると、出力軸20のトルクの目標値すなわち目標出力軸トルクが2段階に立ち上げられるような例えば後述する図5に示す一点鎖線の目標出力軸トルクとなるように各変速目標値(dωt/dt、Toの各目標値)を算出する。上記目標出力軸トルクの2段階の立ち上げとは、当初の立ち上げにより発生する動力伝達系のねじり振動に反転したタイミングで次のねじり振動を発生させるタイミングで第2の立ち上げを行うことである。なお、制御操作量算出部76では、制振制御実行判断部82で制振制御の実行が必要であると判断されると、上記変速目標値算出部80で算出された上記変速目標値およびトルク分担率算出部78で算出されたトルク分担率(x,xapl,xdrn)に基づいて前記制御操作量を算出する。
解放側クラッチトルクホールド目標値算出部84は、制御操作量算出部76で算出された解放側の係合装置B2の解放側クラッチトルクTcdrnの目標値に対して実際の解放側クラッチトルクTcdrnを一時的にホールドするように、その解放側クラッチトルクTcdrnの目標値を算出する。すなわち、解放側クラッチトルクホールド目標値算出部84は、制振制御実行判断部82で制振制御の実行が必要であると判断され、且つ、トルク分担率算出部78で解放側の係合装置B2のトルク分担率(xdrn)が予め実験等により設定値A(0<A<1)となると、その解放側の係合装置B2のトルク分担率(xdrn)がその設定値Aでホールドされるようにそのトルク分担率(xdrn)を設定値Aにし、トルク分担率算出部78で算出されたトルク分担率(xdrn)をその設定値Aに一時的に書き換える。なお、解放側クラッチトルクホールド目標値算出部84において、解放側の係合装置B2の実際の解放側クラッチトルクTcdrnのホールドを解除されるタイミング、すなわち設定値Aのトルク分担率(xdrn)のホールドが解除されるタイミングは、例えば解放側の係合装置B2のトルク分担率(xdrn)が変更されてから自動変速機18の出力軸20を含む動力伝達経路(パワートレーン)に生じるねじり振動(固有振動)の1/2周期後である。また、制御操作量算出部76では、解放側クラッチトルクホールド目標値算出部84で書き換えられたトルク分担率算出部78で算出されたトルク分担率(xdrn)のデータが保存されており、上記設定値Aのトルク分担率(xdrn)のホールドが解除された後は、上記制御操作量算出部76で保存されていたトルク分担率(xdrn)のデータが順に用いられるようになっている。
図4は、電子制御装置70の制御作動の要部すなわち前記変速モデルを用いて変速中の制振制御を適切に実行する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。なお、図5は、図4のフローチャートに示す制御作動を実行した場合のタイムチャートである。
図4において、先ず、変速制御部74に対応するステップ(以下、ステップを省略する)S1において、例えば自動変速機18の変速中であるか否かが判定される。このS1の判断が否定される場合は本ルーチンが終了させられるが肯定される場合(図5のt1時点)には、制振制御実行判断部82に対応するS2において、上記変速の種類がパワーオンダウンシフトであるか否かが判定される。このS2の判断が否定される場合には、トルク分担率算出部78、変速目標値算出部80、制御操作量算出部76、エンジン出力制御部72、および変速制御部74に対応するS3が実行される。
上記S3では、トルク分担率算出部78において、例えば前記変速進行度マップを用いて係合装置のトルク分担率(x,xapl,xdrn)が算出される。次いで、変速目標値算出部80において、各変速目標値(入力軸角加速度dωt/dt、変速機出力トルクToの各目標値)が算出される。次いで、制御操作量算出部76において、前記制御操作量を算出する関係式から、上記トルク分担率算出部78にて算出された各係合装置のトルク分担率、及び変速目標値算出部80にて算出された各変速目標値に基づいて、制御操作量(エンジントルクTe、係合側クラッチトルクTcapl、解放側クラッチトルクTcdrn)が算出される。次いで、エンジン出力制御部72及び変速制御部74において、制御操作量算出部76にて算出された各制御操作量が得られるように、エンジン出力制御指令信号Se及び油圧指令信号Spが出力されて、エンジン12、解放側クラッチ、係合側クラッチが制御される。
次に、上記S2の判断が肯定される場合(図5のt1時点)には、変速目標値算出部80およびトルク分担率算出部78に対応するS4において、例えば図5のt2乃至t4に示す出力軸20のトルクの目標値が2段階に立ち上げられている一点鎖線の目標出力軸トルクとなるように各変速目標値(dωt/dt、Toの各目標値)が算出され、且つ、係合装置のトルク分担率(x,xapl,xdrn)が算出される。
次に、解放側クラッチトルクホールド目標値算出部84に対応するS5では、上記S4(トルク分担率算出部78)で算出された解放側の係合装置B2のトルク分担率(xdrn)が予め定められた設定値A(図5のt3時点)となる前(図5のt2時点〜t3時点)では、そのS4で算出されたトルク分担率(xdrn)を変更せずに、後述するS6が実行される。この設定値Aは、当初の立ち上がりで動力伝達系に発生する固有振動を効率良くキャンセルする振幅を有する振動が生じるように、予め実験的に定められたものである。そして、上記S4で算出された解放側の係合装置B2のトルク分担率(xdrn)が設定値A(図5のt3時点)となると、そのトルク分担率(xdrn)が設定値Aにホールドされるように、上記S4で算出されたトルク分担率(xdrn)を解放側クラッチトルクホールド目標値算出部84で算出されたトルク分担率(xdrn)すなわち設定値Aに書き換えて、後述するS6が実行される。なお、上記S5では、設定値Aのトルク分担率(xdrn)のホールドが、例えば解放側の係合装置B2のトルク分担率(xdrn)が変更されてから自動変速機18の出力軸20を含む動力伝達経路(パワートレーン)に発生する固有振動の1/2周期後(図5のt4時点)に解除されるようになっている。
次に、制御操作量算出部76、エンジン出力制御部72、変速制御部74に対応するS6では、制御操作量算出部76において、前記制御操作量を算出する関係式から、上記S4にて算出された各係合装置のトルク分担率、及び変速目標値算出部80にて算出された各変速目標値に基づいて、制御操作量(エンジントルクTe、係合側クラッチトルクTcapl、解放側クラッチトルクTcdrn、他のクラッチトルクの各要求値)が算出される。次いで、エンジン出力制御部72及び変速制御部74において、上記制御操作量算出部76にて算出された各制御操作量が得られるように、エンジン出力制御指令信号Se及び油圧指令信号Spが出力されて、エンジン12、解放側クラッチ、係合側クラッチ、及び他の係合装置が制御される。なお、上記S6では、上記S5での設定値Aのトルク分担率(xdrn)のホールドが解除された後(図5のt4時点以降)は、解放側クラッチトルクホールド目標値算出部84で書き換えられた際に制御操作量算出部76で保存されていたトルク分担率(xdrn)のデータが順に用いられて、制御操作量(エンジントルクTe、係合側クラッチトルクTcapl、解放側クラッチトルクTcdrn、他のクラッチトルクの各要求値)が算出されるようになっている。
パワーオンダウンシフトを示す図5において、破線は図4のS3で実行された通常制御が実行された場合を示すものであり、実線は図4のS4乃至S6で実行された制振制御が実行された場合を示すものである。なお、図5において、Tとは自動変速機18の出力軸20を含む動力伝達経路(パワートレーン)の固有振動の1周期を示す。その図5に示すように、上記通常制御では、実際の出力軸20のトルクすなわち実出力軸トルクにオーバーシュートを含む脈動振動が含まれてしまう。これに対して、上記制振制御では、解放側の係合装置B2のトルク分担率(xdrn)を設定値Aで一時的にホールドさせて解放側の係合装置B2の実際のトルクを一時的にホールドさせ、図5のt3時点〜t4時点の間においてタイアップ率を増加させることにより、トルク相中に出力軸トルクを2段に立ち上げて当初の立ち上げで生じる固有振動に続いてそれの逆位相の振動を発生させているので、上記通常制御で発生した振動が好適に抑制されている。なお、解放側の係合装置B2の実際のトルクのホールドを解除するタイミングすなわち解放側の係合装置B2のトルク分担率(xdrn)のホールドを解除するタイミングは、トルク分担率を変化させられてから自動変速機18の出力軸20を含む動力伝達経路の固有振動の1/2周期後である。
上述のように、本実施例によれば、前記式(1)及び式(2)の運動方程式に何らかの拘束条件を設定しなければその式が解けないことに対して、トルク分担率xを拘束条件としたので、変速制御において難しいとされる係合装置のトルクの受け渡しを制御するのに適しており、且つその式を解くことができる。見方を換えれば、トルクの受け渡しを表現したトルク分担率xを拘束条件としたので、何れの変速パターンにも所定の変速モデルにて対応することができる。具体的には、変速進行度を制御するのに適したトルク分担率xを拘束条件とすることで、タイアップや吹き上がりの発生を抑制したり、反対に、敢えてタイアップや吹き上がりを発生させる制御の制御性が向上する。また、エンジントルクダウン制御を適切に実行することができる。このように、本実施例によれば、2つの変速目標値に対して3つの制御操作量があったとしても、変速モデルを用いて3つの制御操作量を適切に決定し、2つの変速目標値を実現するような自動変速機18の所望の変速を実行することができる。
また、本実施例によれば、更に、前記変速モデルで求められた解放側の係合装置B2の解放側クラッチトルクTcdrnに対してその解放側の係合装置B2の実際のトルクを一時的にホールドして、出力軸20のトルクが2段階で立ち上がる制御とすることにある。このため、前記変速モデルで求められた解放側の係合装置B2の解放側クラッチトルクTcdrnに対してその解放側の係合装置B2の実際のトルクを一時的にホールドすることによってその解放側の係合装置B2の実際の解放側クラッチトルクを2段階に制御し、出力軸20のトルクを2段階に立ち上げる制御を行うことができるので、所望の制振効果を得ることができる。
また、本実施例によれば、解放側の係合装置B2の実際の解放側クラッチトルクのホールドを解除するタイミングは、自動変速機18の出力軸20を含む動力伝達経路の固有振動の1/2周期である。このようにすれば、出力軸20のトルクの2段階の立ち上げにおいて、始めに立ち上げた時に発生する振動の逆位相の振動が解放側の係合装置B2の実際のトルクのホールドが解除された際に発生させられるので、振動が好適に低減される。
また、本実施例によれば、前記式(1)及び式(2)の運動方程式と、前記式(3)及び式(4)の関係とを用いて、変速目標値に基づいて制御操作量を算出するので、変速制御において難しいとされるトルクの受け渡しに関連する制御を上記運動方程式に反映させることができ、3つの制御操作量を適切に決定することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、その他の態様においても適用される。
例えば、前述の実施例において、図2の解放側クラッチトルクホールド目標値算出部84では、トルク分担率(xdrn)を設定値Aで一時的にホールドさせることによって、解放側の係合装置B2の実際のトルクを一時的にホールドさせていたが、例えば、トルク分担率(xdrn)を設定値Aで一時的にホールドさせずにトルク分担率算出部78で算出されたトルク分担率(xdrn)をそのまま用いて制御操作量算出部76で解放側クラッチトルクTcdrnを算出させ、その算出された解放側クラッチトルクTcdrnを予め定められた設定値で一時的にホールドさせても良い。
また、前述の実施例において、解放側の係合装置B2の実際のトルクのホールドを解除するタイミングは、自動変速機18の出力軸20を含む動力伝達経路の固有振動の1/2周期であったが、必ずしも厳密に1/2周期にする必要はなく一定の制振効果が得られるのであればたとえば1/16周期の範囲内で1/2周期に近い値でも良い。
また、前述の実施例において、図2の制振制御実行判断部82では、パワーオンダウンシフトである時に制振制御が必要であると判断したが、例えばパワーオンダウンシフトあり且つ出力軸20のトルク変化が予め定められた閾値以上であると予測される場合に、制振制御が必要であると判断しても良い。
また、前述の実施例では、出力軸20側の回転部材として出力軸20を例示したが、これに限らず、出力軸20側の回転部材は、出力軸20から駆動輪26までの動力伝達経路における回転部材であれば良い。入力軸16側の回転部材として入力軸16を例示したが、これに限らず、入力軸16側の回転部材は、エンジン12から入力軸16までの動力伝達経路における回転部材であれば良い。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
12:エンジン(駆動力源)
16:入力軸
18:自動変速機
20:出力軸
26:駆動輪
70:電子制御装置(変速制御装置)
B1,B2:ブレーキ(係合装置)
C1:クラッチ(係合装置)

Claims (3)

  1. 駆動力源からの動力を受ける入力軸と駆動輪に動力を伝達する出力軸との間で回転とトルクとを伝達する複数の係合装置を有して、該係合装置の係合と解放との切替えによって変速が実行される自動変速機を備え、変速目標値を実現させる制御操作量を決定する予め定められた変速モデルを用いて前記自動変速機の変速を実行する車両の変速制御装置であって、
    前記変速目標値を、前記出力軸側の回転部材上のトルクと、前記入力軸側の回転部材の速度変化量との2つの値で設定し、
    前記制御操作量を、前記入力軸側の回転部材上のトルクと、前記変速時における係合側の係合装置のトルク容量と、前記変速時における解放側の係合装置のトルク容量との3つの値で設定し、
    前記変速時に前記係合側の係合装置と前記解放側の係合装置とで受け持つ伝達トルクのトルク分担率を設定することで、
    前記変速モデルを用いて前記自動変速機の変速を実行するものであり、
    前記変速モデルで求められた前記解放側の係合装置のトルクに対して該解放側の係合装置の実際のトルクを一時的にホールドして、前記出力軸のトルクが2段階で立ち上がる制御とすることを特徴とする車両の変速制御装置。
  2. 前記解放側の係合装置の実際のトルクのホールドを解除するタイミングは、前記自動変速機の出力軸を含む動力伝達経路の固有振動の1/2周期であることを特徴とする請求項1に記載の車両の変速制御装置。
  3. 前記変速モデルは、前記変速目標値と前記制御操作量とを含む前記自動変速機の運動方程式と、前記トルク分担率を表す関係とを用いて、前記変速目標値に基づいて前記制御操作量を算出するものであることを特徴とする請求項1または2に記載の車両の変速制御装置。
JP2013005789A 2013-01-16 2013-01-16 車両の変速制御装置 Pending JP2014137104A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005789A JP2014137104A (ja) 2013-01-16 2013-01-16 車両の変速制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005789A JP2014137104A (ja) 2013-01-16 2013-01-16 車両の変速制御装置

Publications (1)

Publication Number Publication Date
JP2014137104A true JP2014137104A (ja) 2014-07-28

Family

ID=51414731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005789A Pending JP2014137104A (ja) 2013-01-16 2013-01-16 車両の変速制御装置

Country Status (1)

Country Link
JP (1) JP2014137104A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140880A (ja) * 2014-01-29 2015-08-03 トヨタ自動車株式会社 変速制御装置
JP2017044252A (ja) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 自動変速機の制御装置
JP2018017323A (ja) * 2016-07-28 2018-02-01 トヨタ自動車株式会社 車両の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140880A (ja) * 2014-01-29 2015-08-03 トヨタ自動車株式会社 変速制御装置
JP2017044252A (ja) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 自動変速機の制御装置
JP2018017323A (ja) * 2016-07-28 2018-02-01 トヨタ自動車株式会社 車両の制御装置

Similar Documents

Publication Publication Date Title
JP6015757B2 (ja) 車両の変速制御装置
JP5790672B2 (ja) 車両の変速制御装置
JP5724966B2 (ja) 車両の変速制御装置
JP5790669B2 (ja) 車両の変速制御装置
US9371905B2 (en) Gear shift control apparatus for vehicle
JP5949938B2 (ja) 車両の変速制御装置
JP5991165B2 (ja) 車両の変速制御装置
JP2014137104A (ja) 車両の変速制御装置
JP6499129B2 (ja) 車両の制御装置
JP6225727B2 (ja) 変速制御装置
JP2014137103A (ja) 車両の変速制御装置
US10487939B2 (en) Control device of automatic transmission for vehicle
JP5900232B2 (ja) 車両の変速制御装置
JP6465081B2 (ja) 自動変速機の制御装置
JP2014137102A (ja) 車両の変速制御装置
JP2017067281A (ja) 車両の変速制御装置