JP2014132122A5 - - Google Patents

Download PDF

Info

Publication number
JP2014132122A5
JP2014132122A5 JP2014068059A JP2014068059A JP2014132122A5 JP 2014132122 A5 JP2014132122 A5 JP 2014132122A5 JP 2014068059 A JP2014068059 A JP 2014068059A JP 2014068059 A JP2014068059 A JP 2014068059A JP 2014132122 A5 JP2014132122 A5 JP 2014132122A5
Authority
JP
Japan
Prior art keywords
blast furnace
operating method
ton
partially reduced
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014068059A
Other languages
Japanese (ja)
Other versions
JP2014132122A (en
JP5693768B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014068059A priority Critical patent/JP5693768B2/en
Priority claimed from JP2014068059A external-priority patent/JP5693768B2/en
Publication of JP2014132122A publication Critical patent/JP2014132122A/en
Publication of JP2014132122A5 publication Critical patent/JP2014132122A5/ja
Application granted granted Critical
Publication of JP5693768B2 publication Critical patent/JP5693768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

(実施例1、参考例1
図1に示すような高炉(内容積:1600m)に、酸化鉄原料及びコークスを装入するとともに、羽口から酸素富化空気及び微粉炭を吹き込んで、溶銑の製造を行った。そして、部分還元鉄(金属化率:82%、炭素含有率:3.5%)を100kg/ton装入し、図3に示す操作を行って、高炉の安定操業が可能な運転条件を求めた。その結果を図4にプロットした。実施例1及び参考例1では、図4にプロットされたいくつかの運転条件のうち、酸素富化率:13.2%、微粉炭比:238kg/tonの運転条件で、出銑比を2.87ton/d/mにすることができた。
(Example 1 , Reference Example 1 )
A blast furnace (inner volume: 1600 m 3 ) as shown in FIG. 1 was charged with iron oxide raw material and coke, and oxygen-enriched air and pulverized coal were blown from the tuyere to produce hot metal. Then, partially reduced iron (metalization rate: 82%, carbon content: 3.5%) is charged at 100 kg / ton, and the operation shown in FIG. It was. The results are plotted in FIG. In Example 1 and Reference Example 1 , among several operating conditions plotted in FIG. 4, the output ratio was 2 under the operating conditions of oxygen enrichment rate: 13.2% and pulverized coal ratio: 238 kg / ton. .87 ton / d / m 3 .

(実施例2、参考例2
部分還元鉄の装入量を200kg/tonとしたこと以外は、実施例1及び参考例1と同様にして、高炉の安定操業が可能な運転条件を求めた。その結果を図4にプロットした。実施例2及び参考例2では、図4にプロットされたいくつかの運転条件のうち、酸素富化率:16%、微粉炭比:237kg/tonの運転条件で、出銑比を2.94ton/d/mにすることができた。
(Example 2 and Reference Example 2 )
The operating conditions under which stable operation of the blast furnace was possible were determined in the same manner as in Example 1 and Reference Example 1 except that the amount of partially reduced iron charged was 200 kg / ton. The results are plotted in FIG. In Example 2 and Reference Example 2 , among several operating conditions plotted in FIG. 4, the oxygen enrichment ratio: 16%, the pulverized coal ratio: 237 kg / ton, and the output ratio is 2.94 ton. / D / m 3 .

(実施例3、参考例3
部分還元鉄の装入量を300kg/tonとしたこと以外は、実施例1及び参考例1と同様にして、高炉の安定操業が可能な運転条件を求めた。その結果を図4にプロットした。実施例3及び参考例3では、図4にプロットされたいくつかの運転条件のうち、酸素富化率:16%、微粉炭比:225kg/tonの運転条件で、出銑比を3.09ton/d/mにすることができた。
(Example 3 , Reference Example 3 )
The operating conditions under which stable operation of the blast furnace was possible were determined in the same manner as in Example 1 and Reference Example 1 except that the amount of partially reduced iron charged was 300 kg / ton. The results are plotted in FIG. In Example 3 and Reference Example 3 , among several operating conditions plotted in FIG. 4, the oxygen enrichment ratio: 16%, the pulverized coal ratio: 225 kg / ton, and the output ratio is 3.09 ton. / D / m 3 .

(実施例4、参考例4
部分還元鉄の装入量を400kg/tonとしたこと以外は、実施例1及び参考例1と同様にして、高炉の安定操業が可能な運転条件を求めた。その結果を図4にプロットした。実施例4及び参考例4では、図4にプロットされたいくつかの運転条件のうち、酸素富化率:14%、微粉炭比:210kg/tonの運転条件で、出銑比を3.25ton/d/mにすることができた。
(Example 4 , Reference Example 4 )
The operating conditions under which stable operation of the blast furnace was possible were determined in the same manner as in Example 1 and Reference Example 1 except that the amount of partially reduced iron charged was 400 kg / ton. The results are plotted in FIG. In Example 4 and Reference Example 4 , among several operating conditions plotted in FIG. 4, the oxygen enrichment ratio: 14%, the pulverized coal ratio: 210 kg / ton, and the output ratio is 3.25 ton. / D / m 3 .

(実施例5、参考例5
部分還元鉄の装入量を500kg/tonとしたこと以外は、実施例1及び参考例1と同様にして、高炉の安定操業が可能な運転条件を求めた。その結果を図4にプロットした。実施例5及び参考例5では、図4にプロットされたいくつかの運転条件のうち、酸素富化率:14%、微粉炭比:198kg/tonの運転条件で、出銑比を3.44ton/d/mにすることができた。
(Example 5 , Reference Example 5 )
The operating conditions under which stable operation of the blast furnace was possible were determined in the same manner as in Example 1 and Reference Example 1 except that the amount of partially reduced iron charged was 500 kg / ton. The results are plotted in FIG. In Example 5 and Reference Example 5 , among several operating conditions plotted in FIG. 4, the oxygen enrichment ratio: 14%, the pulverized coal ratio: 198 kg / ton, and the output ratio is 3.44 ton. / D / m 3 .

(実施例6、参考例6
部分還元鉄の装入量を600kg/tonとしたこと以外は、実施例1及び参考例1と同様にして、高炉の安定操業が可能な運転条件を求めた。その結果を図4にプロットした。実施例6及び参考例6では、図4にプロットされたいくつかの運転条件のうち、酸素富化率:14%、微粉炭比:190kg/tonの運転条件で、出銑比を3.63ton/d/mにすることができた。
(Example 6 , Reference Example 6 )
The operating conditions under which stable operation of the blast furnace was possible were determined in the same manner as in Example 1 and Reference Example 1 except that the amount of partially reduced iron charged was 600 kg / ton. The results are plotted in FIG. In Example 6 and Reference Example 6 , among several operating conditions plotted in FIG. 4, the oxygen enrichment ratio: 14%, the pulverized coal ratio: 190 kg / ton, and the output ratio is 3.63 ton. / D / m 3 .

Claims (8)

高炉の炉頂から酸化鉄原料とコークスと部分還元鉄とを装入するとともに、前記高炉の羽口から微粉炭及び酸素富化空気を吹き込んで、前記酸化鉄原料を還元して溶銑を得る高炉の操業方法であって、
前記酸素富化空気の酸素富化率をx(%)、及び、溶銑1ton当たりの前記微粉炭の吹き込み量をy(kg/ton)としたときに、x及びyが、下記式(1)〜(3)を満たす高炉の操業方法。
25x−175<y<31x+31 (
y>130 (
x>8 (3)
A blast furnace in which iron oxide raw material, coke and partially reduced iron are charged from the top of the blast furnace, and pulverized coal and oxygen-enriched air are blown from the tuyere of the blast furnace to reduce the iron oxide raw material to obtain molten iron Operating method,
When the oxygen enrichment rate of the oxygen-enriched air is x (%) and the amount of the pulverized coal per 1 ton of hot metal is y (kg / ton), x and y are expressed by the following formula (1) Blast furnace operation method satisfying (3) .
25x-175 <y <31x + 31 ( 1 )
y> 130 ( 2 )
x> 8 (3)
前記微粉炭の吹き込み量が、溶銑1ton当たり130kgを超える、請求項に記載の高炉の操業方法。 The operating method of the blast furnace of Claim 1 with which the blowing amount of the said pulverized coal exceeds 130 kg per 1 ton of hot metal. 前記部分還元鉄の装入量が、溶銑1ton当たり100〜600kgである、請求項1又は2に記載の高炉の操業方法。 The operating method of the blast furnace of Claim 1 or 2 whose charging amount of the said partially reduced iron is 100-600 kg per 1 ton of hot metal. 前記酸素富化率を、8%を超え且つ16%以下の範囲内で調整する、請求項1〜3のいずれか一項に記載の高炉の操業方法。 The operating method of the blast furnace as described in any one of Claims 1-3 which adjusts the said oxygen enrichment in the range exceeding 8% and 16% or less. 前記部分還元鉄の炭素含有率が2.3〜5.9質量%である、請求項1〜4のいずれか一項に記載の高炉の操業方法。 The operating method of the blast furnace as described in any one of Claims 1-4 whose carbon content rate of the said partially reduced iron is 2.3-5.9 mass%. 前記高炉に装入される前記部分還元鉄の全体に対する粒径5mm未満の部分還元鉄の割合が10質量%以下である、請求項1〜5のいずれか一項に記載の高炉の操業方法。 The operating method of the blast furnace as described in any one of Claims 1-5 whose ratio of the partially reduced iron with a particle size of less than 5 mm with respect to the whole of the said partially reduced iron with which the said blast furnace is charged is 10 mass% or less. 前記高炉に装入される前記部分還元鉄の圧壊強度が30kg/cm以上である、請求項1〜6のいずれか一項に記載の高炉の操業方法。 The operation method of the blast furnace as described in any one of Claims 1-6 whose crushing strength of the said partially reduced iron charged in the said blast furnace is 30 kg / cm < 2 > or more. 請求項1〜7のいずれか一項に記載の高炉の操業方法によって前記溶銑を製造する溶銑の製造方法。 The manufacturing method of the hot metal which manufactures the said hot metal with the operating method of the blast furnace as described in any one of Claims 1-7 .
JP2014068059A 2012-12-07 2014-03-28 Blast furnace operating method and hot metal manufacturing method Active JP5693768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014068059A JP5693768B2 (en) 2012-12-07 2014-03-28 Blast furnace operating method and hot metal manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012268588 2012-12-07
JP2012268588 2012-12-07
JP2014068059A JP5693768B2 (en) 2012-12-07 2014-03-28 Blast furnace operating method and hot metal manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013214049A Division JP5546675B1 (en) 2012-12-07 2013-10-11 Blast furnace operating method and hot metal manufacturing method

Publications (3)

Publication Number Publication Date
JP2014132122A JP2014132122A (en) 2014-07-17
JP2014132122A5 true JP2014132122A5 (en) 2014-10-09
JP5693768B2 JP5693768B2 (en) 2015-04-01

Family

ID=51411303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068059A Active JP5693768B2 (en) 2012-12-07 2014-03-28 Blast furnace operating method and hot metal manufacturing method

Country Status (1)

Country Link
JP (1) JP5693768B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913109A (en) * 1995-06-29 1997-01-14 Kawasaki Steel Corp Operation of blowing large quantity of pulverized fine coal into blast furnace
JP3589016B2 (en) * 1998-04-03 2004-11-17 住友金属工業株式会社 Blast furnace operation method
JP2001073016A (en) * 1999-09-08 2001-03-21 Sumitomo Metal Ind Ltd Operation of blast furnace
JP2001131616A (en) * 1999-11-11 2001-05-15 Nkk Corp Method of operating blast and method of operating sintering furnace
JP2001234213A (en) * 2000-02-28 2001-08-28 Nippon Steel Corp Blast furnace operation method
JP2003247008A (en) * 2002-02-25 2003-09-05 Jfe Steel Kk Method for operating blast furnace injecting a large amount of pulverized fine coal
JP4061135B2 (en) * 2002-06-24 2008-03-12 新日本製鐵株式会社 Blast furnace operation method with pulverized coal injection
JP4910640B2 (en) * 2006-10-31 2012-04-04 Jfeスチール株式会社 Blast furnace operation method
JP5059379B2 (en) * 2006-11-16 2012-10-24 株式会社神戸製鋼所 Hot briquette iron for blast furnace charging raw material and method for producing the same
UA96505C2 (en) * 2007-09-14 2011-11-10 Ниппон Стил Корпорейшен Method for producing of reduced iron pellets and method for production of open-hearth pig iron

Similar Documents

Publication Publication Date Title
RU2015127097A (en) METHOD FOR OPERATING A DOMAIN FURNACE AND METHOD FOR PRODUCING MELTED IRON
UA117753C2 (en) Fluxing agent, process of its production, agglomeration mixture and use of slug from secondary metallurgy
PH12021550379A1 (en) Method for smelting oxide ore
SA519401685B1 (en) Direct Reduction Process and Shaft Furnace Utilizing an Extended Flow Diverter Cone
JPWO2016125487A1 (en) Raw material charging method to blast furnace
UA103533C2 (en) METHOD FOR PRODUCING agglomerate from the crushed ore particles containing metal oxide for use as a raw material for blast furnaces
WO2015045369A1 (en) Method for charging raw materials into blast furnace
WO2016108256A8 (en) Quasiparticles for sintering and method of producing same
JP6119700B2 (en) Blast furnace operation method
CN102492859A (en) Material charging method for laterite electric furnace smelting
WO2014027480A1 (en) Blast-furnace blowing coal and method for producing same
JP2014132122A5 (en)
IN2014DN11082A (en)
JP6260751B2 (en) Raw material charging method to blast furnace
JP5426997B2 (en) Blast furnace operation method
JP2015189988A (en) blast furnace operation method
TWI568855B (en) Compounded slag controlling method of producing carbothermic reaction of iron at tall pellets bed
JP6269549B2 (en) Blast furnace operation method
JP7167652B2 (en) Blast furnace operation method
RU2015140832A (en) METHOD FOR PRODUCING RENEWED IRON AGLOMERATE
JP6287916B2 (en) Blast furnace operation method
CN101550472B (en) Decreasing carbon method for producing high-purity silicon iron
CN106916976A (en) A kind of Al-V-Mo-Fe alloy preparation technology
RU2015121452A (en) METHOD FOR PROCESSING LOW AUTOGENEOUS RAW MATERIALS IN WEIGHED Smelting Furnaces
CN106917049A (en) A kind of W metallurgy preparation technology