JP2014103403A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2014103403A
JP2014103403A JP2013266946A JP2013266946A JP2014103403A JP 2014103403 A JP2014103403 A JP 2014103403A JP 2013266946 A JP2013266946 A JP 2013266946A JP 2013266946 A JP2013266946 A JP 2013266946A JP 2014103403 A JP2014103403 A JP 2014103403A
Authority
JP
Japan
Prior art keywords
film
substrate
sample
layer
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013266946A
Other languages
Japanese (ja)
Other versions
JP5978199B2 (en
Inventor
Junya Maruyama
純矢 丸山
Toru Takayama
徹 高山
Yumiko Fukumoto
由美子 福本
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2013266946A priority Critical patent/JP5978199B2/en
Publication of JP2014103403A publication Critical patent/JP2014103403A/en
Application granted granted Critical
Publication of JP5978199B2 publication Critical patent/JP5978199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device in which a separation layer is transcribed without damaging the separation layer and the like and without irradiation with a laser beam with relatively high output.SOLUTION: In a light-emitting device in which a separation layer is transcribed to a plastic substrate provided with a barrier film, metal oxide remains selectively on the plastic substrate. The metal oxide remains after separation performed following heat treatment on the separation layer on the glass substrate.

Description

本発明は、機能性薄膜の剥離方法、特に様々な素子を有する膜や層の剥離方法に関する
。加えて本発明は、剥離した膜をフィルム基板に貼りつける転写方法、及び当該転写方法
を用いて形成された薄膜トランジスタ(以下、TFTという)
を有する半導体装置およびその作製方法に関する。
The present invention relates to a method for peeling a functional thin film, and particularly to a method for peeling a film or layer having various elements. In addition, the present invention provides a transfer method for attaching a peeled film to a film substrate, and a thin film transistor (hereinafter referred to as TFT) formed using the transfer method.
The present invention relates to a semiconductor device having the above and a manufacturing method thereof.

近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用
いてTFTを構成する技術が注目されている。TFTはICや電気光学装置のような電子
デバイスに広く応用され、特に表示装置のスイッチング素子やドライバ回路として開発が
行われている。
2. Description of the Related Art In recent years, attention has been focused on a technique for forming a TFT using a semiconductor thin film (having a thickness of about several to several hundred nm) formed on a substrate having an insulating surface. TFTs are widely applied to electronic devices such as ICs and electro-optical devices, and are particularly developed as switching elements and driver circuits for display devices.

このような表示装置においてはガラス基板や石英基板が多く使用されているが、割れや
すく、重いという欠点がある。そのため大量生産を行う上で、ガラス基板や石英基板は大
型化が困難である。そこで、可撓性を有する基板、代表的にはフレキシブルなプラスチッ
クフィルムの上にTFT素子を形成することが試みられている。
In such a display device, a glass substrate or a quartz substrate is often used, but there is a disadvantage that it is easily broken and heavy. For this reason, it is difficult to increase the size of a glass substrate or a quartz substrate in mass production. Therefore, attempts have been made to form TFT elements on a flexible substrate, typically a flexible plastic film.

しかしながら、TFTの活性層に高性能の多結晶シリコン膜を使用する場合、作製工程
において数百℃の高温プロセスが必要となってしまい、プラスチックフィルム上に直接形
成することができない。
However, when a high-performance polycrystalline silicon film is used for the active layer of a TFT, a high-temperature process of several hundred degrees Celsius is required in the manufacturing process, and it cannot be directly formed on a plastic film.

そのため、基板上に分離層を介して存在する被剥離層を前記基板から剥離する方法が提
案されている。例えば、非晶質シリコン、半導体、窒化物セラミックス、又は有機高分子
からなる分離層を設け、基板を通過させてレーザー光を照射して、分離層に層内剥離等を
生じさせて、基板を分離させるというものである(特許文献1参照)。加えて、この技術
を用いて被剥離層(公報では被転写層と呼んでいる)をプラスチックフィルムに貼りつけ
て液晶表示装置を完成させるという記載もある(特許文献2参照)。またフレキシブルデ
ィスプレイに関する記事をみると、各社の技術が紹介されている(非特許文献1参照)。
Therefore, a method has been proposed in which a layer to be peeled existing on a substrate via a separation layer is peeled from the substrate. For example, a separation layer made of amorphous silicon, a semiconductor, nitride ceramics, or an organic polymer is provided, and the substrate is irradiated with a laser beam to cause in-layer separation or the like in the separation layer. They are separated (see Patent Document 1). In addition, there is a description of using this technique to complete a liquid crystal display device by attaching a layer to be peeled (referred to as a layer to be transferred in the publication) to a plastic film (see Patent Document 2). Also, looking at articles on flexible displays, the technology of each company is introduced (see Non-Patent Document 1).

特開平10−125929号公報Japanese Patent Laid-Open No. 10-125929 特開平10−125930号公報Japanese Patent Laid-Open No. 10-125930

日経マイクロデバイス,日経BP社,2002年7月1日,2002年7月1日号, p.71−72Nikkei Microdevice, Nikkei Business Publications, July 1, 2002, July 1, 2002, p. 71-72

しかしながら、上記公報に記載の方法では、透光性の高い基板を使用することが必須で
あり、基板を通過させ、さらに非晶質シリコンに含まれる水素を放出させるに十分なエネ
ルギーを与えるため、比較的大きなレーザー光の照射が必要とされ、被剥離層に損傷を与
えてしまうという問題がある。また上記公報には、被剥離層への損傷を防ぐため、遮光層
または反射層を設ける記載もあるが、その場合、透過型液晶表示装置や下側に発光する発
光装置を作製することが困難である。更に上記方法では、大きな面積を有する被剥離層を
剥離するのは困難である。
However, in the method described in the above publication, it is essential to use a highly light-transmitting substrate, and in order to give sufficient energy to pass through the substrate and further release hydrogen contained in amorphous silicon, There is a problem that irradiation with a relatively large laser beam is required and the layer to be peeled is damaged. In addition, the above publication includes a description of providing a light shielding layer or a reflective layer in order to prevent damage to the peeled layer, but in that case, it is difficult to manufacture a transmissive liquid crystal display device or a light emitting device that emits light below. It is. Furthermore, in the above method, it is difficult to peel off a layer to be peeled having a large area.

上記課題を鑑み本発明は、基板上に設けられた金属膜と、金属膜上に設けられた当該金
属を有する酸化膜及び珪素を含む膜とを有する被剥離層と、を有する状態で、基板と被剥
離層とを物理的手段、機械的手段により剥離することを特徴とする。詳しくは、金属膜上
に当該金属を有する酸化物層が形成され、加熱処理を行うことにより当該酸化物層を結晶
化させ、酸化物層の層内、又は当該酸化物層の両面の界面から剥離を行って得られたTF
Tを形成することを特徴とする。
In view of the above problems, the present invention provides a substrate having a metal film provided over the substrate and a layer to be peeled that includes the metal-containing oxide film and the silicon-containing film provided over the metal film. And the layer to be peeled off by physical means or mechanical means. Specifically, an oxide layer containing the metal is formed over the metal film, and the oxide layer is crystallized by performing a heat treatment, and from within the oxide layer or from both interfaces of the oxide layer. TF obtained by peeling
T is formed.

本発明により形成されたTFTは、上面出射及び下面出射のいずれの発光装置、透過型
、反射型及び半透過型の液晶表示装置等のいずれにも採用することができる。
The TFT formed according to the present invention can be employed in any of top emission and bottom emission light emitting devices, transmissive, reflective, and transflective liquid crystal display devices.

本発明の剥離方法を用いることより、全面に剥離できるため歩留まりよく、フレキシブ
ルなフィルム基板上にTFT等を形成することができる。また本発明はTFT等にレーザ
ー等による負荷をかけることがない。そして当該TFT等を有する発光装置、液晶表示装
置その他の半導体装置は、薄くなり、落下しても割れにくく、軽量である。また曲面や異
形形状での表示が可能となる。
By using the peeling method of the present invention, it can be peeled over the entire surface, so that the yield can be improved and a TFT or the like can be formed on a flexible film substrate. Further, the present invention does not apply a load to the TFT or the like by a laser or the like. A light-emitting device, a liquid crystal display device, and other semiconductor devices each having the TFT are thin, are not easily broken even when dropped, and are lightweight. In addition, display with a curved surface or an irregular shape is possible.

本発明により形成されるフィルム基板上のTFTは、大量生産を行う上で表示装置の大
型化を達成することができる。また本発明では転写前にTFT等を形成する基板を再利用
することができ、且つ安価なフィルム基板を使用するため半導体装置の低コスト化を達成
することができる。
The TFT on the film substrate formed according to the present invention can achieve an increase in size of a display device in mass production. In the present invention, the substrate on which TFTs and the like are formed can be reused before transfer, and the cost of the semiconductor device can be reduced because an inexpensive film substrate is used.

本発明の剥離工程を示す図。The figure which shows the peeling process of this invention. 本発明における実験試料を示す図。The figure which shows the experimental sample in this invention. 本発明における実験試料AのTEM写真を示す図。The figure which shows the TEM photograph of the experiment sample A in this invention. 本発明における実験試料BのTEM写真を示す図。The figure which shows the TEM photograph of the experiment sample B in this invention. 本発明における実験試料CのTEM写真を示す図。The figure which shows the TEM photograph of the experiment sample C in this invention. 本発明における実験試料DのTEM写真を示す図。The figure which shows the TEM photograph of the experiment sample D in this invention. 本発明における実験試料EのTEM写真を示す図。The figure which shows the TEM photograph of the experimental sample E in this invention. 本発明における実験試料AのEDXスペクトル及び定量結果を示す図。The figure which shows the EDX spectrum and experimental result of the experimental sample A in this invention. 本発明における実験試料BのEDXスペクトル及び定量結果を示す図。The figure which shows the EDX spectrum and experimental result of the experimental sample B in this invention. 本発明における実験試料CのEDXスペクトル及び定量結果を示す図。The figure which shows the EDX spectrum and experimental result of the experimental sample C in this invention. 本発明における実験試料を示す図。The figure which shows the experimental sample in this invention. 本発明における実験試料イのTEM写真を示す図。The figure which shows the TEM photograph of the experimental sample (a) in this invention. 本発明における実験試料ロのTEM写真を示す図。The figure which shows the TEM photograph of the experiment sample 2 in this invention. 本発明における実験試料ハのTEM写真を示す図。The figure which shows the TEM photograph of the experimental sample C in this invention. 本発明における実験試料ニのTEM写真を示す図。The figure which shows the TEM photograph of the experiment sample D in this invention. 本発明における実験試料AからCのXPSを示す図。The figure which shows XPS of the experimental samples A to C in this invention. 図16に示すXPSを規格化した図。The figure which normalized XPS shown in FIG. 本発明における実験試料AからCのEPSを示す図。The figure which shows EPS of the experimental samples A to C in this invention. 本発明の剥離後の基板側のTEM写真を示す図。The figure which shows the TEM photograph by the side of the board | substrate after peeling of this invention. 本発明の剥離後の半導体膜側のTEM写真を示す図。The figure which shows the TEM photograph by the side of the semiconductor film after peeling of this invention. 本発明における試料AのSIMSを示す図。The figure which shows SIMS of the sample A in this invention. 本発明における試料BのSIMSを示す図。The figure which shows SIMS of the sample B in this invention. 本発明における試料CのSIMSを示す図。The figure which shows SIMS of the sample C in this invention. 本発明の剥離後のXPSを示す図。The figure which shows XPS after peeling of this invention. 図24に示すXPSを波形解析した図。The figure which analyzed the waveform of XPS shown in FIG. 本発明により形成される発光装置を示す図。The figure which shows the light-emitting device formed by this invention. 本発明により形成される液晶表示装置を示す図。The figure which shows the liquid crystal display device formed by this invention. 本発明により形成されるCPUを示す図。The figure which shows CPU formed by this invention. 本発明により形成される電子機器を示す図。FIG. 11 is a diagram showing an electronic device formed according to the present invention. 本発明の実験結果を示す図。The figure which shows the experimental result of this invention. 本発明の実験結果を示す図。The figure which shows the experimental result of this invention. 本発明の実験結果を示す図。The figure which shows the experimental result of this invention.

以下に、本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
まず図1(A)に示すように第1の基板10上に、金属膜11を形成する。なお、第1
の基板は後の剥離工程に耐えうる剛性を有していればよく、例えばガラス基板、石英基板
、セラミック基板、シリコン基板、金属基板またはステンレス基板を用いることができる
。金属膜としては、W、Ti、Ta、Mo、Nd、Ni、Co、Zr、Zn、Ru、Rh
、Pd、Os、Irから選ばれた元素または前記元素を主成分とする合金材料若しくは化
合物材料からなる単層、或いはこれらの積層を用いることができる。金属膜の作製方法と
してスパッタリング法を用い、金属をターゲットして、第1の基板上に形成すればよい。
なお金属膜の膜厚は、10nm〜200nm、好ましくは50nm〜75nmとする。
(Embodiment 1)
First, as shown in FIG. 1A, a metal film 11 is formed over a first substrate 10. The first
The substrate only needs to have rigidity enough to withstand a subsequent peeling step. For example, a glass substrate, a quartz substrate, a ceramic substrate, a silicon substrate, a metal substrate, or a stainless steel substrate can be used. Examples of metal films include W, Ti, Ta, Mo, Nd, Ni, Co, Zr, Zn, Ru, and Rh.
An element selected from Pd, Os, and Ir, or a single layer made of an alloy material or a compound material containing the element as a main component, or a stacked layer thereof can be used. A sputtering method may be used as a method for forming the metal film, and the metal may be targeted and formed over the first substrate.
The thickness of the metal film is 10 nm to 200 nm, preferably 50 nm to 75 nm.

また金属膜の代わりに、窒化された金属膜(窒化金属膜)を用いても構わない。また更
に、金属膜に窒素や酸素を添加してもよい。例えば、金属膜に窒素や酸素をイオン注入し
たり、成膜室を窒素や酸素雰囲気とし、スパッタリング法により金属膜を形成したり、更
にターゲットとして窒化金属を用いてもよい。
In place of the metal film, a nitrided metal film (metal nitride film) may be used. Furthermore, nitrogen or oxygen may be added to the metal film. For example, nitrogen or oxygen may be ion-implanted into the metal film, the film formation chamber may be nitrogen or oxygen atmosphere, the metal film may be formed by a sputtering method, and metal nitride may be used as a target.

このとき、金属膜に上記金属の合金(例えば、WとMoとの合金:WxMo1-X)を用い
る場合、成膜室内に第1の金属(W)及び第2の金属(Mo)といった複数のターゲット
、又は第1の金属(W)と第2の金属(Mo)との合金のターゲットを配置してスパッタ
リング法により形成すればよい。
At this time, when an alloy of the above metal (for example, an alloy of W and Mo: W x Mo 1-X ) is used for the metal film, the first metal (W) and the second metal (Mo) are formed in the film formation chamber. A plurality of targets, or a target of an alloy of the first metal (W) and the second metal (Mo) may be disposed and formed by a sputtering method.

またスパッタリング法を用いて金属膜を形成する場合、基板の周縁部の膜厚が不均一に
なるときがある。そのため、ドライエッチングによって周縁部の膜を除去することが好ま
しいが、その際、第1の基板がエッチングされないために、第1の基板10と金属膜11
との間にSiON膜やSiNO膜等の絶縁膜を100nm程度形成してもよい。
In addition, when a metal film is formed by using a sputtering method, the film thickness at the peripheral edge of the substrate may be nonuniform. For this reason, it is preferable to remove the peripheral film by dry etching. However, since the first substrate is not etched at this time, the first substrate 10 and the metal film 11 are removed.
Between them, an insulating film such as a SiON film or a SiNO film may be formed to about 100 nm.

このように、金属膜の形成を適宜設定することにより、剥離工程を制御することができ
、プロセスマージンが広がる。例えば、金属の合金を用いた場合、合金の各金属の組成比
を制御することにより、加熱処理の温度、更には加熱処理の要否を制御することができる
Thus, by appropriately setting the formation of the metal film, the peeling process can be controlled and the process margin is widened. For example, when a metal alloy is used, the temperature of the heat treatment and further the necessity of the heat treatment can be controlled by controlling the composition ratio of each metal of the alloy.

その後、金属膜11上に被剥離層12を形成する。この被剥離層は金属膜11上に当該
金属を有する酸化物層を形成するための酸化膜と半導体膜とを有している。なお被剥離層
の半導体膜は、所望の作製工程によりTFT、有機TFT、薄膜ダイオード、シリコンの
PIN接合からなる光電変換素子、シリコン抵抗素子又はセンサ素子(代表的にはポリシ
リコンを用いた感圧式指紋センサ)等を形成した状態であってもよい。
Thereafter, a layer to be peeled 12 is formed on the metal film 11. This layer to be peeled has an oxide film and a semiconductor film for forming an oxide layer containing the metal on the metal film 11. Note that the semiconductor film of the layer to be peeled may be a TFT, an organic TFT, a thin film diode, a photoelectric conversion element made of a silicon PIN junction, a silicon resistance element, or a sensor element (typically a pressure-sensitive type using polysilicon). A fingerprint sensor) or the like may be formed.

酸化膜は、スパッタリング法やCVD法により酸化シリコン、酸化窒化シリコン等を形
成すればよい。なお酸化膜の膜厚は、金属膜11の約2倍以上であることが望ましい。こ
こでは、シリコンターゲットを用いたスパッタリング法により、酸化シリコン膜を150
nm〜200nmの膜厚として形成する。
As the oxide film, silicon oxide, silicon oxynitride, or the like may be formed by a sputtering method or a CVD method. Note that the thickness of the oxide film is preferably about twice or more that of the metal film 11. Here, a 150-nm-thick silicon oxide film is formed by a sputtering method using a silicon target.
It is formed as a film thickness of nm to 200 nm.

なお本発明において、酸化膜を形成するときに、金属膜上に当該金属を有する酸化物層
が形成される(図示せず)。酸化物層の膜厚は、0.1nm〜1μm、好ましくは0.1
nm〜100nm、更に好ましくは0.1nm〜5nmとなるように形成すればよい。
In the present invention, when an oxide film is formed, an oxide layer containing the metal is formed on the metal film (not shown). The thickness of the oxide layer is 0.1 nm to 1 μm, preferably 0.1
What is necessary is just to form so that it may become nm-100 nm, More preferably, it is 0.1 nm-5 nm.

また上記以外の酸化物層の作製方法は、硫酸、塩酸或いは硝酸を有する水溶液、硫酸、
塩酸或いは硝酸と過酸化水素水とを混同させた水溶液又はオゾン水で処理することにより
形成される薄い酸化膜を用いることができる。更に他の方法としては、酸素雰囲気中での
プラズマ処理や、酸素含有雰囲気中で紫外線照射することによりオゾンを発生させて酸化
処理を行ってもよく、クリーンオーブンを用い200〜350℃程度に加熱して薄い酸化
膜を形成してもよい。
In addition, the oxide layer other than the above is prepared by using an aqueous solution containing sulfuric acid, hydrochloric acid or nitric acid, sulfuric acid,
A thin oxide film formed by treating with an aqueous solution in which hydrochloric acid or nitric acid and hydrogen peroxide water are mixed or ozone water can be used. Further, as another method, plasma treatment in an oxygen atmosphere or oxidation treatment may be performed by generating ozone by irradiating ultraviolet rays in an oxygen-containing atmosphere, and heating to about 200 to 350 ° C. using a clean oven. A thin oxide film may be formed.

被剥離層12において、特に半導体膜の下面には、金属膜や基板からの不純物やゴミの
侵入を防ぐためSiN、SiON、又は等の窒素を有する絶縁膜を下地膜として設けると
好ましい。
In the layer to be peeled 12, an insulating film containing nitrogen such as SiN, SiON, or the like is preferably provided as a base film in order to prevent intrusion of impurities and dust from the metal film or the substrate, particularly on the lower surface of the semiconductor film.

その後、400℃より高い温度で加熱処理を行う。この加熱処理により、酸化物層は結
晶化し、また被剥離層12が有する水素、特に半導体膜の水素が拡散する。加熱処理は、
半導体装置の作製と兼用させて工程数を低減させてもよい。例えば、非晶質半導体膜を形
成し、加熱炉やレーザー照射を用いて結晶性半導体膜を形成する場合、結晶化させるため
500℃以上の加熱処理を行えば、結晶性半導体膜を形成すると同時に水素の拡散を行う
ことができる。
Thereafter, heat treatment is performed at a temperature higher than 400 ° C. By this heat treatment, the oxide layer is crystallized, and hydrogen contained in the layer to be peeled 12, especially hydrogen in the semiconductor film is diffused. Heat treatment
The number of steps may be reduced by combining the manufacturing of a semiconductor device. For example, when an amorphous semiconductor film is formed and a crystalline semiconductor film is formed using a heating furnace or laser irradiation, heat treatment at 500 ° C. or higher is performed at the same time as the crystalline semiconductor film is formed for crystallization. Hydrogen diffusion can be performed.

次いで、図1(B)に示すように被剥離層12を固定する第2の基板13を第1の接着
しうる材料(接着材)14で貼りつける。なお、第2の基板13は第1の基板10よりも
剛性の高い基板を用いることが好ましい。第1の接着材14としては剥離可能な接着剤、
例えば紫外線により剥離する紫外線剥離型粘着剤、熱による剥離する熱剥離型粘着剤、水
溶性接着剤や両面テープ等を使用するとよい。
Next, as shown in FIG. 1B, a second substrate 13 for fixing the layer to be peeled 12 is attached with a first adhesive material (adhesive) 14. Note that the second substrate 13 is preferably a substrate having higher rigidity than the first substrate 10. As the first adhesive 14, a peelable adhesive,
For example, an ultraviolet peelable pressure-sensitive adhesive that peels off by ultraviolet rays, a heat peelable pressure-sensitive adhesive that peels off by heat, a water-soluble adhesive, a double-sided tape, or the like may be used.

次いで、金属膜11が設けられている第1の基板10を、物理的手段を用いて剥離する
(図1(C))。図面は模式図であるため記載していないが、このとき結晶化された酸化
物層の層内、又は酸化物層の両面の界面、すなわち酸化物層と金属膜との界面或いは酸化
物層と被剥離層との界面で剥がれる。こうして、被剥離層12を第1の基板10から剥離
することができる。
Next, the first substrate 10 provided with the metal film 11 is peeled off using physical means (FIG. 1C). Although the drawing is a schematic diagram, it is not described, but at this time the crystallized oxide layer or the interface on both sides of the oxide layer, that is, the interface between the oxide layer and the metal film or the oxide layer Peel off at the interface with the peeled layer. In this way, the layer to be peeled 12 can be peeled from the first substrate 10.

次いで図1(D)に示すように、剥離した被剥離層12を、第2の接着材15により転
写体となる第3の基板16に貼り付ける。第2の接着材15としては紫外線硬化樹脂、具
体的にはエポキシ樹脂系接着剤や樹脂添加剤等の接着材又は両面テープ等を用いればよい
。なお、第3の基板の表面に接着機能がある場合、第2の接着材は使用しなくてもよい。
また第3の基板で被剥離層12の側面まで覆ってもよい。また第3の基板と16しては、
ポリカーボネート、ポリアリレート、ポリエーテルスルフォン等のプラスチック基板、ポ
リテトラフルオロエチレン基板又はセラミック基板等の膜厚の薄い基板や可撓性のある(
フレキシブルな)基板(以下、このような基板をフィルム基板と表記する)を用いること
ができる。
Next, as shown in FIG. 1D, the peeled layer 12 to be peeled is attached to a third substrate 16 serving as a transfer body with a second adhesive 15. As the second adhesive 15, an ultraviolet curable resin, specifically, an adhesive such as an epoxy resin adhesive or a resin additive, a double-sided tape, or the like may be used. Note that when the surface of the third substrate has an adhesive function, the second adhesive may not be used.
Further, the third substrate may be covered up to the side surface of the layer to be peeled 12. The third substrate 16 is
Thin substrates such as plastic substrates such as polycarbonate, polyarylate, and polyethersulfone, polytetrafluoroethylene substrates or ceramic substrates, and flexible (
A flexible substrate (hereinafter, such a substrate is referred to as a film substrate) can be used.

次いで、第1の接着材14を除去し、第2の基板13を剥がす(図1(E))。具体的
には、第1の接着材を剥がすために紫外線照射を照射したり、加熱したり、水洗したりす
ればよい。また更に、アルゴンガス及び酸素ガスを用いたプラズマクリーニングやベルク
リン洗浄を行うと好ましい。
Next, the first adhesive material 14 is removed, and the second substrate 13 is peeled off (FIG. 1E). Specifically, in order to peel off the first adhesive, irradiation with ultraviolet light, heating, or washing with water may be performed. Furthermore, it is preferable to perform plasma cleaning or Bergrin cleaning using argon gas and oxygen gas.

また転写体となる第3の基板へ、各用途に応じたTFTが設けられた複数の被剥離層を
転写してもよい。例えば、画素部用のTFTと、駆動回路用のTFTとの被剥離層を形成
し、第3の基板の所定領域へ転写してもよい。
In addition, a plurality of layers to be peeled provided with TFTs corresponding to each application may be transferred to a third substrate serving as a transfer body. For example, a layer to be peeled of the TFT for the pixel portion and the TFT for the driver circuit may be formed and transferred to a predetermined region of the third substrate.

以上のようにして得られたフィルム基板上に形成されたTFT等を発光装置や液晶表示
装置の半導体素子として使用することができる。
A TFT or the like formed on the film substrate obtained as described above can be used as a semiconductor element of a light emitting device or a liquid crystal display device.

例えば、発光装置は、被剥離層12に発光素子を形成し、封止材となる保護膜を形成し
てなる。被剥離層12に発光素子を形成するとき、TFTが形成されたフィルム基板はフ
レキシブルなため、ガラス基板に接着材、例えばテープで固定して、真空蒸着により各発
光層を形成すればよい。なお、大気に曝さずに発光層、電極及び保護膜等を連続して形成
すると好ましい。
For example, the light emitting device is formed by forming a light emitting element on the layer to be peeled 12 and forming a protective film serving as a sealing material. When the light emitting element is formed on the layer to be peeled 12, the film substrate on which the TFT is formed is flexible. Therefore, each light emitting layer may be formed by vacuum deposition by fixing to a glass substrate with an adhesive, for example, tape. Note that it is preferable to continuously form a light emitting layer, an electrode, a protective film, and the like without being exposed to the atmosphere.

また発光装置を作製する順序は、特に限定されず、被剥離層に発光素子を形成した後、
第2の基板を接着し、発光素子を有する被剥離層を剥離し、その後、第3の基板であるフ
ィルム基板に貼りつけてもよい。また発光素子を形成後、第3の基板であるフィルム基板
を大きく設計しておき、フィルム基板で装置全体をくるんでもよい。
The order in which the light-emitting device is manufactured is not particularly limited, and after the light-emitting element is formed on the layer to be peeled,
The second substrate may be bonded, the layer to be peeled having the light emitting element may be peeled, and then attached to a film substrate which is a third substrate. Alternatively, after the light emitting element is formed, a film substrate which is a third substrate may be designed large, and the entire apparatus may be wrapped with the film substrate.

液晶表示装置を作製する場合は、第2の基板を剥離後、対向基板をシール剤により接着
し、液晶材料を注入すればよい。また液晶表示装置を作製する順序は、特に限定されず、
第2の基板を対向基板として接着し、第3の基板を接着後、液晶を注入してもよい。
In the case of manufacturing a liquid crystal display device, after peeling the second substrate, the counter substrate may be bonded with a sealant and a liquid crystal material may be injected. The order of manufacturing the liquid crystal display device is not particularly limited,
The second substrate may be bonded as a counter substrate, and liquid crystal may be injected after the third substrate is bonded.

また液晶表示装置を作製するとき、基板間隔を保持するためにスペーサを形成したり、
散布したりしているが、フレキシブルな基板の間隔を保持するため、通常より3倍程度多
くスペーサを形成又は散布するとよい。またスペーサは、通常のガラス基板に使用する場
合より柔らかく作製するとよい。また更にフィルム基板は可撓性を有しているため、スペ
ーサが移動しないよう固定する必要がある。
When manufacturing a liquid crystal display device, a spacer is formed in order to maintain the distance between the substrates,
However, in order to maintain a flexible space between the substrates, the spacers may be formed or spread about three times more than usual. The spacer is preferably made softer than that used for a normal glass substrate. Furthermore, since the film substrate has flexibility, it is necessary to fix the spacer so that the spacer does not move.

このような剥離方法を用いることより、全面に剥離でき、歩留まりよく、フレキシブル
なフィルム基板上にTFT等を形成することができる。また本発明はTFT等にレーザー
等による負荷をかけることがない。そして当該TFT等を有する発光装置、液晶表示装置
その他の表示装置は、薄くなり、落下しても割れにくく、軽量である。また曲面や異形形
状での表示が可能となる。また本発明により形成されるフィルム基板上のTFTは、大量
生産を行う上で表示装置の大型化を達成することができる。また本発明では第1の基板等
を再利用することができ、更に安価なフィルム基板を使用するため表示装置の低コスト化
を達成することができる。
By using such a peeling method, a TFT or the like can be formed over a flexible film substrate which can be peeled over the entire surface with high yield. Further, the present invention does not apply a load to the TFT or the like by a laser or the like. A light-emitting device, a liquid crystal display device, and other display devices having the TFT are thin, are not easily broken even when dropped, and are lightweight. In addition, display with a curved surface or an irregular shape is possible. Further, the TFT on the film substrate formed according to the present invention can achieve an increase in the size of the display device in mass production. Further, in the present invention, the first substrate and the like can be reused, and the cost of the display device can be reduced because an inexpensive film substrate is used.

以下に、本発明の実験結果、及び本発明を用いて作製される発光装置、液晶表示装置及
びその他の電子機器を説明する。
Hereinafter, experimental results of the present invention, and a light-emitting device, a liquid crystal display device, and other electronic devices manufactured using the present invention will be described.

本実施例では、剥離実験の結果及び透過型電子顕微鏡(TEM)の観察結果を説明す
る。
In this example, the results of a peeling experiment and the observation results of a transmission electron microscope (TEM) will be described.

まず図2に示す試料において、基板200にAN100ガラス基板(126×126m
m)、絶縁膜201にCVD法によりSiON膜、金属膜202にスパッタリング法によ
り形成したタングステン(W)膜、を積層して形成した。次いで、被剥離層を構成する保
護膜203にスパッタリング法により形成したSiO2膜、下地膜204にCVD法によ
り形成したSiON膜、半導体膜205にCVD法により形成した非晶質珪素膜をそれぞ
れ用いた。
First, in the sample shown in FIG. 2, an AN100 glass substrate (126 × 126 m) is used as the substrate 200.
m), an SiON film formed on the insulating film 201 by a CVD method, and a tungsten (W) film formed on the metal film 202 by a sputtering method were stacked. Next, a SiO 2 film formed by a sputtering method is used for the protective film 203 constituting the layer to be peeled, a SiON film formed by a CVD method is used for the base film 204, and an amorphous silicon film formed by a CVD method is used for the semiconductor film 205, respectively. It was.

上記試料に対して、加熱処理を行わないものを試料A、220℃/1時間加熱処理を行
ったものを試料B、500℃/1時間後更に550℃/4時間加熱処理を行ったものを試
料Cとし、それぞれにおいてTEMによる観察を行った。その結果を図3(A)〜図5(
A)に示し、それぞれTEM写真(TEM像)に対応する模式図を図3(B)〜図5(B
)に示す。
Sample A without heat treatment, Sample A with heat treatment at 220 ° C./1 hour, Sample B with heat treatment at 550 ° C./4 hours after 500 ° C./1 hour Samples C were used, and each was observed by TEM. The results are shown in FIGS.
A schematic diagram corresponding to each TEM photograph (TEM image) shown in FIG. 3A to FIG.
).

図3〜図5をみると、金属膜202であるW膜と保護膜203との界面に、ある層が形
成されていることがわかる。なお、ある層は完全な層にならず、散在している場合もあっ
た。
3 to 5, it can be seen that a layer is formed at the interface between the W film that is the metal film 202 and the protective film 203. In addition, a certain layer was not a complete layer and was sometimes scattered.

そして、ある層の組成等を特定するため、EDX測定を行った。図8〜図10には、試
料A〜CでのEDX測定のスペクトル及び定量結果を示す。なおEDXスペクトルにおけ
る、Al、Moのピークは測定時の試料固定ホルダによるものである。図8〜図10の結
果から、ある層はタングステンと、酸素とが存在していることがわかる(以下、ある層を
酸化物層と表記する)。
Then, EDX measurement was performed in order to specify the composition of a certain layer. 8 to 10 show spectra and quantitative results of EDX measurement on samples A to C. FIG. The peaks of Al and Mo in the EDX spectrum are due to the sample fixing holder at the time of measurement. From the results of FIGS. 8 to 10, it can be seen that a certain layer contains tungsten and oxygen (hereinafter, a certain layer is referred to as an oxide layer).

図3(A)〜図5(A)のTEM写真を比較すると、試料Cの酸化物層は、特定の方向
に配列された結晶格子を有していることがわかる。また試料A及びBの酸化物層の膜厚は
3nm程度であるのに対し、試料Cの酸化物層の膜厚は多少薄く(3nm以下)形成され
ていることがわかる。
3A to 5A, it can be seen that the oxide layer of Sample C has a crystal lattice arranged in a specific direction. In addition, it can be seen that the thickness of the oxide layer of Samples A and B is about 3 nm, whereas the thickness of the oxide layer of Sample C is slightly thinner (3 nm or less).

このような試料A〜Cにおける剥離実験の結果は、酸化物層が結晶格子を有している試
料Cのみ剥離することができた。
As a result of the peeling experiment in such samples A to C, only the sample C in which the oxide layer has a crystal lattice could be peeled off.

更に図6及び図7には、図2に示す試料に対して、400℃/1時間加熱処理を行った
試料Dと、430℃/1時間加熱処理を行った試料EのTEMの写真(A)、及びそれぞ
れTEM写真に対応する模式図(B)を示す。なお、試料Dの加熱温度400℃とは、結
晶化が行われうる境界温度と予測される温度、剥離しうる境界の温度である。
Further, FIG. 6 and FIG. 7 show TEM photographs (A) of Sample D that was subjected to heat treatment at 400 ° C./1 hour and Sample E that was subjected to heat treatment at 430 ° C./1 hour for the sample shown in FIG. ) And a schematic diagram (B) corresponding to each TEM photograph. Note that the heating temperature 400 ° C. of the sample D is a boundary temperature at which crystallization can be performed, a predicted temperature, and a boundary temperature at which separation can occur.

図6から、試料Dの酸化物層の一部には結晶格子が形成され、試料Eの酸化物層には全
体的に結晶格子が形成されていることがわかる。
6 that a crystal lattice is formed in part of the oxide layer of sample D, and a crystal lattice is formed as a whole in the oxide layer of sample E. FIG.

上記試料D、Eの剥離実験の結果は、試料Eのみ剥離することができた。   As a result of the peeling experiment of the samples D and E, only the sample E could be peeled.

以上の剥離実験及びTEM写真の結果から、金属膜と保護膜との界面には酸化物層が形
成されており、400℃程度から酸化物層の結晶化が起こりはじめることがわかる。そし
て酸化物層が結晶性を有している場合、剥離しうる状態となると考えられる。すなわち、
剥離するためには金属膜上に酸化物層、具体的にはW膜上にWを有する酸化物層が形成さ
れる必要があることがわかる。
From the results of the above peeling experiment and TEM photograph, it can be seen that an oxide layer is formed at the interface between the metal film and the protective film, and the crystallization of the oxide layer starts to occur from about 400 ° C. And when an oxide layer has crystallinity, it will be in the state which can peel. That is,
It can be seen that an oxide layer on the metal film, specifically, an oxide layer having W on the W film needs to be formed in order to peel off.

すなわち酸化物層が結晶化されている試料において剥離することができるため、加熱処
理による酸化物層の結晶化時に、結晶歪みや格子欠陥(点欠陥、線欠陥、面欠陥(例えば
、酸素空孔が集まってできる結晶学的せん断面による面欠陥)
、拡張欠陥)が生じ、それらの界面から剥離すると考えられる。
That is, since the oxide layer can be peeled off in a crystallized sample, crystal distortion or lattice defects (point defects, line defects, surface defects (for example, oxygen vacancies) during crystallization of the oxide layer by heat treatment) Surface defects caused by crystallographic shear planes
, Extended defects), and is considered to peel from their interface.

次に、金属膜上の酸化物層の形成状況に関する情報を得るため、W膜上の保護膜の有無
や保護膜の作製条件を変えて剥離の実験を行った。
Next, in order to obtain information on the formation state of the oxide layer on the metal film, a peeling experiment was performed by changing the presence or absence of the protective film on the W film and the production conditions of the protective film.

図11に示すように、基板300上にCVD法により形成されるSiON膜301、ス
パッタリング法により形成されるW膜302、とを順に積層して形成した試料イと、W膜
上に保護膜として、アルゴンガスを用いてスパッタリング法によりSi膜303を形成し
た試料ロと、Si膜に変えてアルゴンガスと酸素ガスとを用いてスパッタリング法により
SiO2膜304を形成した試料ハと、シランガスと窒素ガスとを用いてCVD法により
SiO2膜305を形成した試料ニとを用意した。
As shown in FIG. 11, a sample A formed by sequentially laminating a SiON film 301 formed by a CVD method on a substrate 300 and a W film 302 formed by a sputtering method, and a protective film on the W film. Sample B in which Si film 303 is formed by sputtering using argon gas, Sample C in which SiO 2 film 304 is formed by sputtering using argon gas and oxygen gas instead of Si film, Silane gas, and nitrogen A sample D in which a SiO 2 film 305 was formed by a CVD method using a gas was prepared.

図12(A)〜図15(A)には、それぞれ試料イ〜ニの断面をTEMで観察した写真
を示し、それぞれTEM写真に対応する模式図を図12(B)〜図15(B)に示す。
FIGS. 12A to 15A show photographs obtained by observing the cross sections of the samples A to D with TEM, and schematic diagrams corresponding to the TEM photographs are shown in FIGS. 12B to 15B, respectively. Shown in

まず図12(A)〜図14(A)をみると、試料ハにはW膜上に酸化物層が形成されて
いるが、その他の試料には酸化物層が形成されていないことがわかる。
なお試料イのW膜上には自然酸化膜が形成されているが、膜厚が薄いため、TEM写真に
ははっきりと見えてこなかった。
First, from FIGS. 12A to 14A, it can be seen that the oxide layer is formed on the W film in the sample C, but the oxide layer is not formed in the other samples. .
Although a natural oxide film is formed on the W film of Sample A, it is not clearly seen in the TEM photograph because of the thin film thickness.

これは試料ハの形成時に使用される酸素ガスにより、W膜上に酸化物層が形成されたと
考えられる。一方、試料ロにおける保護膜の形成時は、アルゴンガスしか使用しておらず
、W膜上に酸化物層が形成されなかったと思われる。また膜厚からみると、試料ハに形成
された酸化物層は、試料イに形成された自然酸化膜とは異なっていると考えられる。また
保護膜を形成し始めるときに、酸化物層は形成されると考えられる。
This is considered that the oxide layer was formed on the W film by the oxygen gas used when forming the sample C. On the other hand, when forming the protective film in sample B, only argon gas was used, and it seems that the oxide layer was not formed on the W film. From the viewpoint of the film thickness, the oxide layer formed on the sample C is considered to be different from the natural oxide film formed on the sample A. It is also considered that the oxide layer is formed when the protective film is formed.

また試料ニにおいては、W膜上には酸化物層が形成されうるCVD法によりSiO2
を形成しているが、図15(A)からわかるようにTEM写真では酸化物層を確認するこ
とができなかった。
In the sample D, the SiO 2 film is formed on the W film by the CVD method capable of forming an oxide layer. As can be seen from FIG. 15A, the oxide layer is confirmed in the TEM photograph. I could not.

ここで酸化物層が形成された試料ハと、試料ニとについて考えると、試料ニのSiO2
膜のCVD法に使用されるシランガスは、試料ハのSiO2膜の作製工程に用いられる原
料ガスと比較すると、水素を有していることがわかる。つまり水素の存在により、試料ニ
では酸化物層が形成されなかったと予測される。すなわち試料ニでは、水素により、W膜
上に酸化物層が形成されたとしても状態が変化したと考えることができる。
Considering the sample C on which the oxide layer is formed and the sample D, the SiO 2 of the sample D
It can be seen that the silane gas used in the CVD method of the film has hydrogen as compared with the raw material gas used in the production process of the SiO 2 film of the sample C. That is, it is predicted that no oxide layer was formed in Sample D due to the presence of hydrogen. That is, in Sample D, it can be considered that the state has changed even if an oxide layer is formed on the W film due to hydrogen.

以上の結果、金属膜上に保護膜を形成するときに、自然酸化膜とは異なる酸化物層が形
成されることが考えられる。なおW膜の場合、酸化物層の膜厚は3nm程度が好ましいと
考えられる。そして酸化物層を確実に形成するため、保護膜は水素を有さないように形成
することが好ましい。
As a result, it is conceivable that an oxide layer different from the natural oxide film is formed when the protective film is formed on the metal film. In the case of the W film, it is considered that the thickness of the oxide layer is preferably about 3 nm. And in order to form an oxide layer reliably, it is preferable to form so that a protective film may not have hydrogen.

以上の結果をみると、剥離を行うことができる条件は、金属層上に当該金属を有する酸
化物層(酸化金属層)を形成させることが必要と考えられる。
From the above results, it is considered that the conditions under which peeling can be performed are that an oxide layer (metal oxide layer) having the metal is formed on the metal layer.

また特に、金属膜にWを用いた場合、400℃以上の加熱処理を行い、3nm程度の酸
化物層を結晶化させることが必要であることがわかる。また本実験の結果から、430℃
以上で加熱処理を行うと酸化物層の結晶化が全体に渡って行われ、好ましいことがわかる
In particular, when W is used for the metal film, it is found that it is necessary to perform heat treatment at 400 ° C. or higher to crystallize the oxide layer of about 3 nm. From the results of this experiment, 430 ° C
When the heat treatment is performed as described above, it can be seen that crystallization of the oxide layer is performed over the entire area, which is preferable.

そして更に、金属層上の当該酸化金属層は、保護膜の作製時に形成され、保護膜は水素
を含まない、または水素濃度の低い状態で形成するとよいことがわかる。具体的にW膜の
場合、酸素ガスを有する原料ガスを用いてスパッタリング法で保護膜を形成すると好まし
いことがわかる。
Further, it can be seen that the metal oxide layer on the metal layer is formed when the protective film is formed, and the protective film does not contain hydrogen or is formed in a low hydrogen concentration state. Specifically, in the case of a W film, it can be seen that it is preferable to form a protective film by a sputtering method using a source gas containing oxygen gas.

本実施例では、剥離後の基板側と、半導体膜側における酸化物層をTEMにより観察した
結果を示す。
In this example, the result of observing the oxide layer on the substrate side after peeling and the semiconductor film side by TEM is shown.

ガラス基板上に、スパッタリング法でW膜を50nm、次いで保護膜としてスパッタリ
ング法で酸化珪素膜を200nm、続いて下地膜としてプラズマCVD法で酸化窒化珪素
膜を100nm、同じく半導体膜としてプラズマCVD法で非晶質珪素膜を50nm積層
形成した。その後500度1時間と550度4時間の熱処理を行い、ポリテトラフルオロ
エチレンテープなどの物理的手段により剥離した。このときの基板側のW膜と酸化物層の
TEM写真が図19、半導体膜側の酸化物層と酸化珪素膜のTEM写真が図20である。
On a glass substrate, a W film is formed by sputtering to a thickness of 50 nm, then a silicon oxide film is formed by sputtering as a protective film to a thickness of 200 nm. A 50 nm thick amorphous silicon film was formed. Thereafter, heat treatment was performed at 500 ° C. for 1 hour and 550 ° C. for 4 hours, and the film was peeled off by physical means such as a polytetrafluoroethylene tape. FIG. 19 shows a TEM photograph of the W film and oxide layer on the substrate side, and FIG. 20 shows a TEM photograph of the oxide layer and silicon oxide film on the semiconductor film side.

図19では、金属膜に接して酸化物層が不均一に残存している。同様に、図20でも、
酸化珪素膜に接して酸化物層が不均一に残存している。両TEM写真から、剥離は酸化物
層の層内及び両界面で行われたことが実証され、また酸化物層は金属膜及び酸化珪素膜に
密着して不均一に残存することがわかる。
In FIG. 19, the oxide layer remains non-uniformly in contact with the metal film. Similarly, in FIG.
The oxide layer remains nonuniformly in contact with the silicon oxide film. Both TEM photographs demonstrate that peeling was performed in the oxide layer and at both interfaces, and that the oxide layer remained in close contact with the metal film and the silicon oxide film.

本実施例では、酸化物層の組成をXPS(X線光電子分光法)を用いて調べた結果を示
す。
In this example, the result of examining the composition of the oxide layer using XPS (X-ray photoelectron spectroscopy) is shown.

図16(A)が試料A、図16(B)が試料B、図16(C)が試料Cの結果である。
図16(A)〜(C)において、横軸は深さ方向(イオンスパッタリングにより酸化物層
の内部を露出させ、タングステンが1(atomic%)検出されたときをpos.1、タング
ステンが2(atomic%)検出されたときをpos.2、タングステンが3(atomic%)検
出されたときをpos.3とする)、縦軸は結合占有比(%)である。
16A shows the result of sample A, FIG. 16B shows the result of sample B, and FIG.
16 (A) to (C), the horizontal axis indicates the depth direction (the inside of the oxide layer is exposed by ion sputtering, and when tungsten is detected 1 (atomic%), pos. 1 and tungsten is 2 ( atomic%) is detected as pos.2, and tungsten is detected as 3 (atomic%) as pos.3), and the vertical axis represents the bond occupancy ratio (%).

図16(A)〜(C)を比較すると、試料A、Bに比べて、試料Cは丸印で示すタング
ステン(W)の相対比が大きい。つまり、試料A、Bに比べて、試料Cはタングステンの
比率が高く、タングステン酸化物の比率が低い。
When comparing FIGS. 16A to 16C, sample C has a larger relative ratio of tungsten (W) indicated by a circle than samples A and B. That is, sample C has a higher ratio of tungsten and lower ratio of tungsten oxide than samples A and B.

続いて、図16のデータを規格化した結果が図17である。図17(A)(D)が試料
A、図17(B)(E)が試料B、図17(C)(F)が試料Cの結果である。図17(
A)〜(C)がWO3を1としその他の組成物の結合占有比を規格化したグラフ、図17
(D)〜(F)がWO2を1としその他の組成物の結合占有比を規格化したグラフである
Next, FIG. 17 shows the result of normalizing the data of FIG. FIGS. 17A and 17D show the results for sample A, FIGS. 17B and 17E show the results for sample B, and FIGS. 17C and 17F show the results for sample C. FIGS. FIG.
FIGS. 17A to 17C are graphs in which WO 3 is 1 and bond occupancy ratios of other compositions are normalized, FIG.
(D) to (F) are graphs in which WO 2 is 1 and the bond occupancy ratio of other compositions is normalized.

まず、図17(A)〜(C)を比較すると、試料A、Bに比べて、試料Cはバツ印で示
すWO2の相対比が大きい。つまり、試料A、Bに比べて、試料CはWO2の比率が高く、
更にpos.1からpos.3へと深さが増すにつれWO2の比率が高くなっていく。ま
た、試料CはWOXの比率が小さく、pos.1からpos.3へと深さが増すにつれ、
WOXの比率が小さくなることが分かる。一方、図17(D)〜(F)を比較すると、試
料A、Bは三角印で示すWO3の含有比が2%以上であるのに対し、試料Cではその含有
比が2%以下である。これは、WO3で規格化したグラフからも明らかなように、試料A
、Bに比べて、試料CのWO2の比率が高いことによる。
First, when FIGS. 17A to 17C are compared, sample C has a larger relative ratio of WO 2 indicated by crosses than samples A and B. That is, compared to samples A and B, sample C has a higher ratio of WO 2 ,
Furthermore, pos. 1 to pos. As the depth increases to 3, the ratio of WO 2 increases. Sample C has a small ratio of WO X and pos. 1 to pos. As the depth increases to 3,
It turns out that the ratio of WO X becomes small. On the other hand, when FIGS. 17D to 17F are compared, the content ratio of WO 3 indicated by triangles is 2% or more in Samples A and B, whereas the content ratio in Sample C is 2% or less. is there. This is evident from the graph normalized by WO 3 as shown in Sample A.
This is because the ratio of WO 2 of sample C is higher than that of B.

図18は、試料A〜Cにおいて、イオンスパッタリングにより酸化物層の内部を露出さ
せ、タングステンが1(atomic%)検出されたとき(Pos.1)の結合エネルギーとス
ペクトルの波形解析図である。図18(A)はスパッタリング処理を4.25分経た試料
Aの結果、図18(B)はスパッタリング処理を4分経た後の試料Bの結果、図18(C
)はスパッタリング処理を5分経た後の試料Cの結果を示す。図18(A)〜(C)にお
いて、W1(タングステンW)、W2(酸化タングステンWOX、Xはほぼ2)、W3(
酸化タングステンWOX、2<X<3)、W4(酸化タングステンWO3等)の4つの各状
態の面積比(%)
が組成比に相当する。
18 is a waveform analysis diagram of binding energy and spectrum when samples 1 to C are exposed by ion sputtering and 1 (atomic%) of tungsten is detected (Pos. 1). 18A shows the result of Sample A after 4.25 minutes of sputtering treatment, FIG. 18B shows the result of Sample B after 4 minutes of sputtering treatment, and FIG.
) Shows the result of Sample C after 5 minutes of sputtering treatment. 18A to 18C, W1 (tungsten W), W2 (tungsten oxide WO x , X is approximately 2), W3 (
Area ratio (%) of each of the four states of tungsten oxide WO X , 2 <X <3), W4 (tungsten oxide WO 3 etc.)
Corresponds to the composition ratio.

図18から得られた試料A〜Cの各W1からW4の面積比が表1である。また表1には、
W4(WO3)でW2及びW3を規格化した割合も示す。表1において、試料A、BのW
1の割合は約10%に対し、試料Cは35%であり、その割合が高い。つまり、試料Cは
タングステンの比率が高く、タングステン酸化物の比率が低いことがわかる。また規格化
した値から、試料Cは試料A、Bと比べて、タングステン酸化物のうちW2(WO2)の
割合が高いことがわかる。
Table 1 shows the area ratios of W1 to W4 of Samples A to C obtained from FIG. Table 1 also shows
The ratio of standardizing W2 and W3 with W4 (WO 3 ) is also shown. In Table 1, W of samples A and B
The ratio of 1 is about 10%, while that of Sample C is 35%, which is high. That is, sample C has a high tungsten ratio and a low tungsten oxide ratio. From the normalized values, it can be seen that Sample C has a higher proportion of W2 (WO 2 ) in the tungsten oxide than Samples A and B.

また試料Cでは、W2(WO2)の組成比が多くなっており、加熱処理を行うことによ
り酸化物層の組成に変化が生じていることが考えられる。すなわちW4(WO3)がW2
(WO2)またはW3(WOx)へと組成変化し、これらの結晶構造の違いから、異なる結
晶構造間で剥離されることが考えられる。
Also in Sample C, W2 (WO 2) has become a lot composition ratio of, it is considered that a change in the composition of the oxide layer occurs by performing heat treatment. That is, W4 (WO 3 ) is W2
It is conceivable that the composition changes to (WO 2 ) or W 3 (WO x ), and due to the difference in these crystal structures, separation occurs between different crystal structures.

Figure 2014103403
Figure 2014103403

次に、剥離後の基板側、及び剥離後の半導体膜側の剥離面をXPSにより測定した。そ
の結果スペクトル、及びスペクトルの波形解析を行ったものを図24、図25に示す。ま
た、酸化物層と自然酸化膜と比較するため、試料イをXPSにより測定した結果及び波形
解析を合わせて示す。
Next, the peeled surface on the substrate side after peeling and the peeled surface on the semiconductor film side after peeling were measured by XPS. As a result, the spectrum and the spectrum analysis of the spectrum are shown in FIGS. In addition, for comparison with the oxide layer and the natural oxide film, the result of measuring the sample A by XPS and the waveform analysis are also shown.

まず、XPSにより測定した剥離面のスペクトルが図24である。半導体膜側の剥離面
のスペクトルが図24(A)、基板側の剥離面のスペクトルが図24(B)である。
First, FIG. 24 shows the spectrum of the peeled surface measured by XPS. The spectrum of the peeling surface on the semiconductor film side is FIG. 24A, and the spectrum of the peeling surface on the substrate side is FIG. 24B.

そして図24から得られた検出元素と定量結果が表2である。表2より、基板側には、
半導体膜側の約10倍のオーダーでタングステンが残存していることがわかる。
Table 2 shows detection elements and quantitative results obtained from FIG. From Table 2, on the substrate side,
It can be seen that tungsten remains on the order of about 10 times that on the semiconductor film side.

Figure 2014103403
Figure 2014103403

続いて、半導体膜側のスペクトルの波形解析図が図25(A)、基板側のスペクトルの
波形解析図が図25(B)である。図25(A)(B)において、W1(タングステンW
)、W2(酸化タングステンWOX、Xはほぼ2)、W3(酸化タングステンWOX、2<
X<3)、W4(酸化タングステンWO3等)の4つの各状態の面積比(%)が組成比に
相当する。
Subsequently, FIG. 25A is a waveform analysis diagram of the spectrum on the semiconductor film side, and FIG. 25B is a waveform analysis diagram of the spectrum on the substrate side. 25A and 25B, W1 (tungsten W
), W2 (tungsten oxide WO x , X is approximately 2), W3 (tungsten oxide WO x , 2 <
The area ratio (%) of each of the four states X <3) and W4 (tungsten oxide WO 3 etc.) corresponds to the composition ratio.

また自然酸化膜が形成されている試料イをXPSにより測定したスペクトルが図31であ
り、スペクトルの波形解析図は、図32に示し、得られた試料イの各状態の面積比、及び
各試料におけるW4でW2及びW3を規格化した強度比を表3に示す。また更に、剥離後
の半導体膜側表面及び基板側表面を測定した結果を合わせて表3に示す。
Further, FIG. 31 shows a spectrum obtained by measuring the sample A on which the natural oxide film is formed by XPS, and the waveform analysis diagram of the spectrum is shown in FIG. 32, and the area ratio of each state of the obtained sample A and each sample Table 3 shows the intensity ratio obtained by standardizing W2 and W3 with W4. Furthermore, Table 3 shows the results of measuring the semiconductor film side surface and the substrate side surface after peeling.

Figure 2014103403
Figure 2014103403

また図30(A)には、表1及び表3に基づいて、W1〜W4の成分の強度比を表した
グラフを示し、図30(B)には、W4でW2及びW3を規格化した強度比を表したグラ
フを示す。
30A shows a graph showing the intensity ratio of the components W1 to W4 based on Tables 1 and 3, and FIG. 30B standardizes W2 and W3 with W4. The graph showing the intensity ratio is shown.

剥離後の半導体膜側では、W1とW2は0%、W3は16%、W4は84%であるのに
対し、基板側では、W1は44%、W2は5%、W3は10%、W4は42%である。ま
た自然酸化膜のスペクトルは、W1は70、W2は6、W3は1、W4は23であること
がわかる。
On the semiconductor film side after peeling, W1 and W2 are 0%, W3 is 16%, and W4 is 84%, whereas on the substrate side, W1 is 44%, W2 is 5%, W3 is 10%, W4 Is 42%. The spectrum of the natural oxide film shows that W1 is 70, W2 is 6, W3 is 1, and W4 is 23.

また試料イでは、他の試料と比較してW1(タングステン)の比率が高いことがわかる
。そして、W2〜W4(酸化物)の比率が低く、W3の比率がかなり少ないことがわかる
In Sample A, it can be seen that the ratio of W1 (tungsten) is higher than other samples. And it turns out that the ratio of W2-W4 (oxide) is low and the ratio of W3 is quite small.

更に、剥離後の半導体膜側と基板側とのWO2の総和は、試料CのWO2と比較して少な
くなっていることがわかる。これは剥離前の酸化物層との状態がエネルギー的に活性な(
不安定な)状態であって、剥離後には安定な状態になろうとし、自然酸化膜と同様にW4
(WO3)が主な構成となると考えられる。
Moreover, the sum of the WO 2 and the semiconductor film side and the substrate side after the separation is found to have become less compared to the WO 2 samples C. This means that the state with the oxide layer before peeling is energetically active (
It is an unstable state, and it tries to become stable after peeling.
(WO 3 ) is considered to be the main component.

図30から、剥離することのできる試料Cと、自然酸化膜が形成されている試料イとを
比べると、試料CはW2〜W4(酸化物)が多いことがわかる。
FIG. 30 shows that Sample C, which can be peeled off, and Sample A on which a natural oxide film is formed have a large amount of W2 to W4 (oxide).

従って、剥離が酸化物層と金属膜との界面或いは酸化物層と酸化珪素膜との界面、又は
酸化物層の層内で行われた際、W1(金属W)及びW2(WOX、Xはほぼ2)は全て基
板側に残存し、W4(WO3等)は2/3が半導体膜側に残存し、1/3が基板側に残存し
たことが分かる。また酸化物層と自然酸化膜とは酸化物の組成比が異なっていることがわ
かる。すなわち酸化物層の層内、特にWO2と、WOx又はWO3との境界から剥離されや
すいと考えられる。そのため本実験では半導体膜側にWO2がなく、基板側にWO2が付着
していたが、逆に半導体膜側にWO2が付着し、基板側にWO2はない場合も考えられうる
Therefore, when peeling is performed at the interface between the oxide layer and the metal film, the interface between the oxide layer and the silicon oxide film, or within the layer of the oxide layer, W1 (metal W) and W2 (WO X , X 2) all remain on the substrate side, and W4 (WO 3 etc.) remains 2/3 on the semiconductor film side and 1/3 remains on the substrate side. It can also be seen that the oxide layer and the natural oxide film have different oxide composition ratios. That is, it is considered that the oxide layer easily peels from the boundary between WO 2 and WO x or WO 3 . No WO 2 on the semiconductor film side at that reason this experiment, WO 2 was adhered to the substrate side, WO 2 adheres to the semiconductor film side conversely, it may also be considered when WO 2 is not on the substrate side.

本実施例では、試料A〜Cに対して二次イオン質量分析法(SIMS)を行った結果を
、図21〜図23を用いて説明する。
In this example, the results of performing secondary ion mass spectrometry (SIMS) on samples A to C will be described with reference to FIGS.

まず非晶質珪素膜中の水素のプロファイルに注目すると、試料A、Bでは水素の濃度が
約1.0×1022(atoms/cm3)であるのに対し、試料Cでは水素の濃度が約2.0×1
21(atoms/cm3)であり、約2倍となっている。また、酸化窒化珪素膜(SiON)及
び酸化珪素膜(SiO2)中の水素のプロファイルを観察すると、試料A、Bでは、深さ
が0.2μm付近で減少傾向を示しており、不均一な濃度分布である。一方、試料Cでは
、際だった減少傾向もなく、深さ方向に均一な濃度分布である。つまり試料Cでは、試料
A、Bに比べて水素が多く存在することがわかる。この結果から、水素のイオン化効率が
異なることが考えられ、試料Cと、試料A、Bとは表面の組成比が異なることが考えられ
る。
First, paying attention to the profile of hydrogen in the amorphous silicon film, the concentration of hydrogen is about 1.0 × 10 22 (atoms / cm 3 ) in samples A and B, whereas the concentration of hydrogen in sample C is about 1.0 × 10 22 (atoms / cm 3 ). 2.0 x 1
0 21 (atoms / cm 3 ), approximately double. Further, when the hydrogen profiles in the silicon oxynitride film (SiON) and the silicon oxide film (SiO 2 ) are observed, the samples A and B show a decreasing tendency when the depth is around 0.2 μm, which is not uniform. Concentration distribution. On the other hand, Sample C has a uniform concentration distribution in the depth direction without a marked decrease. That is, it can be seen that Sample C contains more hydrogen than Samples A and B. From this result, it is considered that the ionization efficiency of hydrogen is different, and it is considered that the composition ratio of the surface is different between the sample C and the samples A and B.

次に、酸化珪素膜(SiO2)とW膜の界面における窒素の濃度に注目すると、試料A、
Bでは窒素の濃度が約1.0×1021(atoms/cm3)であるのに対し、試料Cでは約1.
0×1022(atoms/cm3)であり、約1桁異なっている。従って、試料Cは、試料A、B
に比べて酸化珪素膜(SiO2)とW膜の界面における酸化物層の組成が異なることが分
かる。
Next, focusing on the concentration of nitrogen at the interface between the silicon oxide film (SiO 2 ) and the W film, sample A,
In B, the concentration of nitrogen is about 1.0 × 10 21 (atoms / cm 3 ), whereas in Sample C, about 1.times.10.sup.21 (atoms / cm.sup.3).
0 × 10 22 (atoms / cm 3 ), which is different by about one digit. Therefore, sample C is sample A, B
It can be seen that the composition of the oxide layer at the interface between the silicon oxide film (SiO 2 ) and the W film is different.

本実施例では、本発明の剥離方法によりフィルム基板上に作製されたTFTを備えた発
光装置について、図26を用いて説明する。
In this example, a light-emitting device including a TFT manufactured over a film substrate by the peeling method of the present invention will be described with reference to FIG.

図26(A)は発光装置の上面図を示し、フィルム基板1210上に信号線駆動回路1
201、走査線駆動回路1203、画素部1202が示されている。
FIG. 26A is a top view of the light-emitting device, and the signal line driver circuit 1 is formed over the film substrate 1210. FIG.
201, a scanning line driving circuit 1203, and a pixel portion 1202 are shown.

図26(B)は発光装置のA−A’の断面図を示し、フィルム基板1210上には接着
材1240を介して酸化物層1250が設けられている。なお酸化物層はフィルム基板の
裏面に層として存在するのではなく、点在していることもありうる。そして上記実施例の
ように金属膜としてW膜を用いた場合、酸化物層はタングステンを主成分とする酸化物、
具体的にはWO3となる。
FIG. 26B is a cross-sectional view taken along line AA ′ of the light-emitting device, and an oxide layer 1250 is provided over the film substrate 1210 with an adhesive 1240 interposed therebetween. The oxide layer is not present as a layer on the back surface of the film substrate, but may be scattered. When the W film is used as the metal film as in the above embodiment, the oxide layer is an oxide mainly composed of tungsten,
Specifically, it becomes WO 3 .

そしてフィルム基板1210上に、nチャネル型TFT1223とpチャネル型TFT
1224とを有するCMOS回路を備えた信号線駆動回路1201が示されている。また
、信号線駆動回路や走査線駆動回路を形成するTFTは、CMOS回路、PMOS回路又
はNMOS回路で形成しても良い。また本実施例では、基板上に信号線駆動回路及び走査
線駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、基板の外部に
形成することもできる。
On the film substrate 1210, an n-channel TFT 1223 and a p-channel TFT
A signal line driver circuit 1201 including a CMOS circuit having 1224 is shown. Further, the TFT forming the signal line driver circuit or the scanning line driver circuit may be formed of a CMOS circuit, a PMOS circuit, or an NMOS circuit. In this embodiment, the driver integrated type in which the signal line driver circuit and the scanning line driver circuit are formed on the substrate is shown, but it is not always necessary, and it can be formed outside the substrate.

また、スイッチング用TFT1221及び電流制御用TFT1212を有し、スイッチ
ング用TFT及び電流制御用TFTを覆い、所定の位置に開口部を有する絶縁膜1214
と、電流制御用TFT1212の一方の配線と接続された第1の電極1213と、第1の
電極上に設けられた有機化合物を含む層1215と、対向して設けられた第2の電極12
16を有する発光素子1218と、水分や酸素等による発光素子の劣化を防止するために
設けられた保護層1217を有する画素部1220が示されている。
The insulating film 1214 includes a switching TFT 1221 and a current control TFT 1212, covers the switching TFT and the current control TFT, and has an opening at a predetermined position.
A first electrode 1213 connected to one wiring of the current control TFT 1212; a layer 1215 containing an organic compound provided on the first electrode; and a second electrode 12 provided facing the first electrode 1213.
A pixel portion 1220 having a light emitting element 1218 having 16 and a protective layer 1217 provided to prevent deterioration of the light emitting element due to moisture, oxygen, or the like is shown.

第1の電極1213が電流制御用TFT1212のドレインと接している構成となって
いるため、第1の電極1213の少なくとも下面は、半導体膜のドレイン領域とオーミッ
クコンタクトのとれる材料とし、有機化合物を含む層と接する表面に仕事関数の大きい材
料を用いて形成することが望ましい。例えば、窒化チタン膜とアルミニウムを主成分とす
る膜と窒化チタン膜との3層構造とすると、配線としての抵抗も低く、且つ、良好なオー
ミックコンタクトがとれるよう機能させることができる。また、第1の電極1213は、
窒化チタン膜の単層としてもよいし、3層以上の積層を用いてもよい。また更に、第1の
電極1213として透明導電膜を用いれば両面発光型の発光装置を作製することができる
Since the first electrode 1213 is in contact with the drain of the current control TFT 1212, at least the lower surface of the first electrode 1213 is made of a material that can make ohmic contact with the drain region of the semiconductor film, and includes an organic compound. It is desirable to use a material having a high work function on the surface in contact with the layer. For example, when a three-layer structure of a titanium nitride film, a film containing aluminum as a main component, and a titanium nitride film is used, the resistance as a wiring is low and the function can be achieved so that a good ohmic contact can be obtained. In addition, the first electrode 1213 is
A single layer of a titanium nitride film may be used, or a stack of three or more layers may be used. Further, when a transparent conductive film is used for the first electrode 1213, a double-sided light-emitting device can be manufactured.

絶縁物1214は有機樹脂膜又は珪素を含む絶縁膜で形成すればよい。ここでは、絶縁
物1214として、ポジ型の感光性アクリル樹脂膜を用いて形成する。
The insulator 1214 may be formed using an organic resin film or an insulating film containing silicon. Here, the insulator 1214 is formed using a positive photosensitive acrylic resin film.

後に形成する電極や有機化合物を含む発光層のカバレッジを良好なものとするため、絶
縁物1214の上端部または下端部に曲率を有する曲面が形成されるようにすることが好
ましい。例えば、絶縁物1214の材料としてポジ型の感光性アクリルを用いた場合、絶
縁物1214の上端部のみに曲率半径(0.2μm〜3μm)を有する曲面を持たせるこ
とが好ましい。また、絶縁物1214として、感光性の光によってエッチャントに不溶解
性となるネガ型、又は光によってエッチャントに溶解性となるポジ型のいずれも使用する
ことができる。
In order to improve the coverage of a light-emitting layer that includes an electrode or an organic compound to be formed later, a curved surface having a curvature is preferably formed on the upper end portion or the lower end portion of the insulator 1214. For example, in the case where positive photosensitive acrylic is used as a material for the insulator 1214, it is preferable that only the upper end portion of the insulator 1214 has a curved surface with a radius of curvature (0.2 μm to 3 μm). As the insulator 1214, either a negative type that becomes insoluble in an etchant by photosensitive light or a positive type that becomes soluble in an etchant by light can be used.

また絶縁物1214を保護膜で覆ってもよい。この保護膜はスパッタリング法(DC方
式やRF方式)やリモートプラズマを用いた成膜装置により得られる窒化アルミニウム膜
、窒化酸化アルミニウム膜、又は窒化珪素膜といった窒化珪素或いは窒化酸化珪素を主成
分とする絶縁膜、又は炭素を主成分とする薄膜である。また、保護膜に発光を透過させる
ため、保護膜の膜厚は、可能な限り薄くすることが好ましい。
The insulator 1214 may be covered with a protective film. This protective film is mainly composed of silicon nitride or silicon nitride oxide such as an aluminum nitride film, an aluminum nitride oxide film, or a silicon nitride film obtained by a film formation apparatus using a sputtering method (DC method or RF method) or remote plasma. It is an insulating film or a thin film mainly composed of carbon. Moreover, in order to transmit light emission through the protective film, the protective film is preferably as thin as possible.

第1の電極1213上には、蒸着マスクを用いた蒸着法、またはインクジェット法によ
ってR、G、Bの発光が得られる有機化合物を含む層1215を選択的に形成する。さら
に、有機化合物を含む層1215上には第2の電極1216が形成される。
Over the first electrode 1213, a layer 1215 containing an organic compound that can emit R, G, and B light is selectively formed by a vapor deposition method using a vapor deposition mask or an inkjet method. Further, a second electrode 1216 is formed over the layer 1215 containing an organic compound.

また発光素子1218を白色発光とする場合、着色層とBMからなるカラーフィルタを
設ける必要がある。
When the light emitting element 1218 emits white light, it is necessary to provide a color filter including a colored layer and BM.

そして、第2の電極1216は、接続領域の絶縁膜1214に設けられた開口部(コン
タクト)を介して接続配線1208と接続され、接続配線1208は異方性導電樹脂(A
CF)によりフレキシブルプリントサーキット(FPC)1209に接続されている。そ
して、外部入力端子となるFPC1209からビデオ信号やクロック信号を受け取る。こ
こではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取
り付けられていてもよい。
The second electrode 1216 is connected to the connection wiring 1208 through an opening (contact) provided in the insulating film 1214 in the connection region. The connection wiring 1208 is connected to the anisotropic conductive resin (A
CF) is connected to a flexible printed circuit (FPC) 1209. Then, a video signal and a clock signal are received from the FPC 1209 serving as an external input terminal. Although only the FPC is shown here, a printed wiring board (PWB) may be attached to the FPC.

またACFを用いて加圧や加熱によりFPCを接続するときに、フィルム基板のフレキシ
ブル性や加熱による軟化のため、クラックが生じないように注意する。例えば、接着領域
に硬性の高い基板を補助として配置したりすればよい。
Also, when connecting an FPC using ACF by pressurization or heating, care should be taken not to cause cracks due to the flexibility of the film substrate and softening due to heating. For example, a highly rigid substrate may be disposed as an auxiliary in the adhesion region.

また基板の周縁部にはシール材1205が設けられ、第2のフィルム基板1204と張
り合わせられ、封止されている。シール材1205はエポキシ系樹脂を用いるのが好まし
い。
Further, a sealing material 1205 is provided on the peripheral edge of the substrate, and is bonded to the second film substrate 1204 and sealed. The sealing material 1205 is preferably an epoxy resin.

本実施例では第2のフィルム基板1204を構成する材料としてガラス基板や石英基板
の他、FRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、
マイラー、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができ
る。
In this embodiment, as a material constituting the second film substrate 1204, in addition to a glass substrate and a quartz substrate, FRP (Fiberglass-Reinforced Plastics), PVF (polyvinyl fluoride),
A plastic substrate made of Mylar, polyester, acrylic, or the like can be used.

図示していないが、フィルム基板から水や酸素が侵入しないように、ポリビニルアルコ
ール、エチレンビニルアルコール共重合体等の有機材料或いはポシリラザン、酸化アルミ
ニウム、酸化珪素、窒化珪素等の無機材料、又はそれらの積層でなるバリア膜で覆うとよ
い。
Although not shown, an organic material such as polyvinyl alcohol or an ethylene vinyl alcohol copolymer, or an inorganic material such as polysilazane, aluminum oxide, silicon oxide, silicon nitride, or the like so that water and oxygen do not enter from the film substrate. It is good to cover with the barrier film which consists of lamination.

また作製工程における薬品から保護するために、フィルム基板に保護層を設けてもよい
。保護層としては、紫外線硬化性樹脂又は熱硬化性樹脂を用いることができる。
Further, a protective layer may be provided on the film substrate in order to protect from chemicals in the manufacturing process. As the protective layer, an ultraviolet curable resin or a thermosetting resin can be used.

以上のようにして、フィルム基板上に設けられたTFTを備えた発光装置が完成される
。そして本発明のTFTを備えた発光装置は、落下しても割れにくく、軽量である。また
フィルム基板は、大量生産を行う上で発光装置の大型化を達成することができる。
As described above, the light emitting device including the TFT provided on the film substrate is completed. And the light-emitting device provided with the TFT of the present invention is hard to break even when dropped and is lightweight. Further, the film substrate can achieve an increase in size of the light emitting device in mass production.

本実施例では、本発明の剥離方法によりフィルム基板上に作製されたTFTを備えた液
晶表示装置について、図27を用いて説明する。
In this example, a liquid crystal display device including a TFT manufactured over a film substrate by the peeling method of the present invention will be described with reference to FIG.

図27(A)は液晶表示装置の上面図を示し、第1のフィルム基板1310上に信号線
駆動回路1301、走査線駆動回路1303、画素部1302が示されている。
FIG. 27A shows a top view of a liquid crystal display device, in which a signal line driver circuit 1301, a scanning line driver circuit 1303, and a pixel portion 1302 are shown over a first film substrate 1310. FIG.

図27(B)は液晶表示装置のA−A’の断面図を示し、フィルム基板1310上には
接着材1340を介して酸化物層1350が形成されている。なお酸化物層はフィルム基
板の裏面に層として存在するのではなく、点在していることもありうる。そして上記実施
例のように金属膜としてW膜を用いた場合、酸化物層はタングステンを主成分とする酸化
物、具体的にはWO3となる。
FIG. 27B is a cross-sectional view taken along the line AA ′ of the liquid crystal display device. An oxide layer 1350 is formed over the film substrate 1310 with an adhesive 1340 interposed therebetween. The oxide layer is not present as a layer on the back surface of the film substrate, but may be scattered. When the W film is used as the metal film as in the above embodiment, the oxide layer is an oxide containing tungsten as a main component, specifically WO 3 .

そしてフィルム基板1310上にnチャネル型TFT1323とpチャネル型TFT1
324とを有するCMOS回路を備えた信号線駆動回路1301が設けられている。なお
信号線駆動回路や走査線駆動回路を形成するTFTは、CMOS回路、PMOS回路又は
NMOS回路で形成してもよい。また本実施例では、基板上に信号線駆動回路及び走査線
駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、基板の外部に形
成することもできる。
Then, an n-channel TFT 1323 and a p-channel TFT 1 are formed on the film substrate 1310.
A signal line driver circuit 1301 including a CMOS circuit having 324 is provided. Note that the TFT forming the signal line driver circuit or the scanning line driver circuit may be formed of a CMOS circuit, a PMOS circuit, or an NMOS circuit. In this embodiment, the driver integrated type in which the signal line driver circuit and the scanning line driver circuit are formed on the substrate is shown, but it is not always necessary, and it can be formed outside the substrate.

また、スイッチング用TFT1321及び保持容量1312を有し、スイッチング用T
FT及び保持容量を覆い、所定の位置に開口部を有する層間絶縁膜1314と、有する画
素部1320が示されている。
In addition, a switching TFT 1321 and a storage capacitor 1312 are included, and the switching T
An interlayer insulating film 1314 that covers the FT and the storage capacitor and has an opening at a predetermined position, and a pixel portion 1320 having the opening are shown.

層間絶縁膜1314上には配向膜1317が設けられ、ラビング処理が施されている。   An alignment film 1317 is provided over the interlayer insulating film 1314 and is rubbed.

対向基板として第2のフィルム基板1304を用意する。第2のフィルム基板1304
は樹脂等によりマトリックス上に区分けられた領域にRGBのカラーフィルタ1330と
、対向電極1316と、ラビング処理が施された配向膜1317が設けられている。
A second film substrate 1304 is prepared as a counter substrate. Second film substrate 1304
Are provided with an RGB color filter 1330, a counter electrode 1316, and an alignment film 1317 that has been subjected to a rubbing process in a region partitioned on the matrix by a resin or the like.

また第1及び第2のフィルム基板には偏光板1331が設けられ、シール剤1305に
より接着されている。そして第1及び第2のフィルム基板に液晶材料1318が注入され
ている。なお図示はしないが、第1及び第2のフィルム基板間を保持するためスペーサが
適宜設けられている。
Further, a polarizing plate 1331 is provided on the first and second film substrates and is bonded with a sealant 1305. A liquid crystal material 1318 is injected into the first and second film substrates. Although not shown, a spacer is appropriately provided to hold the first and second film substrates.

図示していないが、フィルム基板から水や酸素が侵入しないように、ポリビニルアルコ
ールやエチレンビニルアルコール共重合体等の有機材料或いはポシリラザンや酸化珪素等
の無機材料、又はそれらの積層でなるバリア膜で覆うとよい。
Although not shown, a barrier film made of an organic material such as polyvinyl alcohol or ethylene vinyl alcohol copolymer, an inorganic material such as polysilazane or silicon oxide, or a laminate thereof so that water and oxygen do not enter from the film substrate. Cover it.

また作製工程において薬品から保護するために、保護層を設けてもよい。保護層として
は、紫外線硬化性樹脂又は熱硬化性樹脂を用いることができる。
Further, a protective layer may be provided in order to protect from chemicals in the manufacturing process. As the protective layer, an ultraviolet curable resin or a thermosetting resin can be used.

そして、図26と同様に異方性導電樹脂(ACF)により配線と、FPCとが接続され
、ビデオ信号やクロック信号を受け取る。なお、ACFを用いて加圧や加熱による接続に
は、クラックが生じないよう注意が必要である。
Then, as in FIG. 26, the wiring and the FPC are connected by anisotropic conductive resin (ACF) to receive a video signal and a clock signal. In addition, it is necessary to be careful not to cause cracks in connection by pressurization or heating using ACF.

このようにして、フィルム基板上に設けられたTFTを備えた液晶表示装置が完成され
る。そして本発明のTFTを備えた液晶表示装置は、落下しても割れにくく、軽量である
。またフィルム基板は、大量生産を行う上で液晶表示装置の大型化を達成することができ
る。
In this way, a liquid crystal display device including a TFT provided on the film substrate is completed. And the liquid crystal display device provided with the TFT of the present invention is hard to break even when dropped and is lightweight. Further, the film substrate can achieve an increase in size of the liquid crystal display device in mass production.

本発明の実施例について、図28を用いて説明する。本実施例では、同一の絶縁表面上
に画素部と該画素部を制御する駆動回路、記憶回路、及び制御装置と演算装置を有するCP
Uを搭載したパネルについて説明する。
An embodiment of the present invention will be described with reference to FIG. In this embodiment, a CP having a pixel portion, a driving circuit for controlling the pixel portion, a memory circuit, and a control device and an arithmetic device on the same insulating surface.
A panel equipped with U will be described.

図28はパネルの外観を示し、該パネルは、基板3009上に複数の画素がマトリクス
状に配置された画素部3000を有する。画素部3000の周辺には、画素部3000を
制御する走査線駆動回路3001、信号線駆動回路3002を有する。画素部3000で
は、駆動回路から供給される信号に従って画像を表示する。
FIG. 28 shows the appearance of a panel, which has a pixel portion 3000 in which a plurality of pixels are arranged in a matrix on a substrate 3009. Around the pixel portion 3000, a scan line driver circuit 3001 and a signal line driver circuit 3002 for controlling the pixel portion 3000 are provided. The pixel unit 3000 displays an image in accordance with a signal supplied from the drive circuit.

対向基板は、画素部3000及び駆動回路3001、3002上のみに設けてもよいし
、全面に設けてもよい。但し、発熱する恐れがあるCPU3008には、放熱板が接するよ
うに配置することが好ましい。
The counter substrate may be provided only on the pixel portion 3000 and the drive circuits 3001 and 3002, or may be provided on the entire surface. However, it is preferable that the CPU 3008 that may generate heat is disposed so that the heat radiating plate is in contact therewith.

また前記パネルは、駆動回路3001、3002を制御するVRAM3003(video r
andom access memory、画面表示専用メモリー)、VRAM3003の周辺には、VRAM
3003を制御するデコーダ3004、3005を有する。またRAM3006、RAM
3006の周辺には、RAM3006を制御するデコーダ3007、さらにCPU300
8を有する。
The panel also includes a VRAM 3003 (video r) that controls the drive circuits 3001 and 3002.
andom access memory, dedicated memory for screen display)
Decoders 3004 and 3005 for controlling 3003 are included. RAM 3006, RAM
In the vicinity of 3006, there are a decoder 3007 for controlling the RAM 3006 and a CPU 300.
8 has.

基板3009上の回路を構成する全ての素子は、非晶質半導体に比べて電界効果移動度
が高く、オン電流が大きい多結晶半導体(ポリシリコン)により形成されており、それ故
に同一の絶縁表面上における複数の回路の一体形成を実現している。また、画素部300
1及び駆動回路3001、3002、並びに他の回路はまず支持基板上に作製後、本発明
の剥離方法により剥離して貼り合わせることで、可撓性基板3009上における一体形成
を実現している。なお画素部に配置された複数の画素の構成は限定されないが、複数の画
素の各々にSRAMを配置することで、VRAM3003及びRAM3006の配置を省
略してもよい。
All elements constituting the circuit over the substrate 3009 are formed of a polycrystalline semiconductor (polysilicon) having a higher field-effect mobility and a higher on-current than an amorphous semiconductor, and hence the same insulating surface. The integrated formation of a plurality of circuits above is realized. In addition, the pixel portion 300
1 and the driving circuits 3001, 3002 and other circuits are first formed on a supporting substrate, and then peeled and bonded together by the peeling method of the present invention, so that they are integrally formed on the flexible substrate 3009. Note that although the configuration of the plurality of pixels arranged in the pixel portion is not limited, the arrangement of the VRAM 3003 and the RAM 3006 may be omitted by arranging an SRAM in each of the plurality of pixels.

本発明は様々な電子機器の表示部に適用することができる。電子機器としては、携帯情
報端末(携帯電話機、モバイルコンピュータ、携帯型ゲーム機又は電子書籍等)、ビデオ
カメラ、デジタルカメラ、ゴーグル型ディスプレイ、表示ディスプレイ、ナビゲーション
システム等が挙げられる。これら電子機器の具体例を図29に示す。
The present invention can be applied to display portions of various electronic devices. Examples of the electronic device include a portable information terminal (a mobile phone, a mobile computer, a portable game machine, an electronic book, etc.), a video camera, a digital camera, a goggle type display, a display display, a navigation system, and the like. Specific examples of these electronic devices are shown in FIGS.

図29(A)はディスプレイであり、筐体4001、音声出力部4002、表示部40
03等を含む。本発明は表示部4003に用いる。表示装置は、パソコン用、TV放送受
信用、広告表示用など全ての情報表示装置が含まれる。
FIG. 29A illustrates a display, which includes a housing 4001, an audio output unit 4002, and a display unit 40.
03 etc. are included. The present invention is used for the display portion 4003. The display device includes all information display devices such as a personal computer, a TV broadcast reception, and an advertisement display.

図29(B)はモバイルコンピュータであり、本体4101、スタイラス4102、表
示部4103、操作ボタン4104、外部インターフェイス4105等を含む。本発明の
表示装置は表示部4103に用いる。
FIG. 29B illustrates a mobile computer, which includes a main body 4101, a stylus 4102, a display portion 4103, operation buttons 4104, an external interface 4105, and the like. The display device of the present invention is used for the display portion 4103.

図29(C)はゲーム機であり、本体4201、表示部4202、操作ボタン4203
等を含む。本発明は表示部4202に用いる。図29(D)は携帯電話機であり、本体4
301、音声出力部4302、音声入力部4303、表示部4304、操作スイッチ43
05、アンテナ4306等を含む。本発明の表示装置は表示部4304に用いる。
FIG. 29C illustrates a game machine, which includes a main body 4201, a display portion 4202, and operation buttons 4203.
Etc. The present invention is used for the display portion 4202. FIG. 29D shows a mobile phone, and the main body 4
301, voice output unit 4302, voice input unit 4303, display unit 4304, operation switch 43
05, antenna 4306, and the like. The display device of the present invention is used for the display portion 4304.

図29(E)は電子ブックリーダーであり、表示部4401等を含む。本発明は表示部
4202に用いる。
FIG. 29E illustrates an electronic book reader which includes a display portion 4401 and the like. The present invention is used for the display portion 4202.

以上のように、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いること
が可能である。特に、薄型や軽量が実現する本発明は、図29(A)〜(E)の電子機器
に大変有効である。
As described above, the applicable range of the present invention is so wide that the present invention can be used for electronic devices in various fields. In particular, the present invention that realizes thinness and light weight is very effective for the electronic devices shown in FIGS.

Claims (4)

プラスチック基板と、
前記プラスチック基板のバリア膜と、を有し、
前記プラスチック基板に、選択的に金属酸化物が付着していることを特徴とする発光装置。
A plastic substrate,
A barrier film of the plastic substrate,
A light-emitting device, wherein a metal oxide is selectively attached to the plastic substrate.
プラスチック基板と、
前記プラスチック基板のバリア膜と、を有し、
前記プラスチック基板に、選択的に金属酸化物が付着しており、
前記金属酸化物は、結晶性を有することを特徴とする発光装置。
A plastic substrate,
A barrier film of the plastic substrate,
A metal oxide is selectively attached to the plastic substrate,
The light-emitting device, wherein the metal oxide has crystallinity.
請求項1又は請求項2において、
前記バリア膜は、窒化珪素、酸化珪素、又は酸化アルミニウムを有することを特徴とする発光装置。
In claim 1 or claim 2,
The light-emitting device, wherein the barrier film includes silicon nitride, silicon oxide, or aluminum oxide.
請求項1又は請求項2において、
前記バリア膜は、窒化珪素と酸化珪素との積層を有することを特徴とする発光装置。
In claim 1 or claim 2,
The light-emitting device, wherein the barrier film has a stack of silicon nitride and silicon oxide.
JP2013266946A 2013-12-25 2013-12-25 Light emitting device Expired - Fee Related JP5978199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266946A JP5978199B2 (en) 2013-12-25 2013-12-25 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013266946A JP5978199B2 (en) 2013-12-25 2013-12-25 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012093048A Division JP5577373B2 (en) 2012-04-16 2012-04-16 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014138592A Division JP5857094B2 (en) 2014-07-04 2014-07-04 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2014103403A true JP2014103403A (en) 2014-06-05
JP5978199B2 JP5978199B2 (en) 2016-08-24

Family

ID=51025598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266946A Expired - Fee Related JP5978199B2 (en) 2013-12-25 2013-12-25 Light emitting device

Country Status (1)

Country Link
JP (1) JP5978199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390281A (en) * 2017-08-11 2019-02-26 美光科技公司 Semiconductor device structure and its processing method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125929A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH10125930A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH11243209A (en) * 1998-02-25 1999-09-07 Seiko Epson Corp Transfer method of thin-film device, the thin-film device, thin-film integrated circuit device, active matrix substrate, liquid crystal display device, and electronic apparatus
JP2000156504A (en) * 1998-09-04 2000-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device with semiconductor circuit consisting of semiconductor element and its manufacture
JP2004214281A (en) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd Semiconductor device, method of manufacturing the same, peeling method, and transfer method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125929A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH10125930A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH11243209A (en) * 1998-02-25 1999-09-07 Seiko Epson Corp Transfer method of thin-film device, the thin-film device, thin-film integrated circuit device, active matrix substrate, liquid crystal display device, and electronic apparatus
JP2000156504A (en) * 1998-09-04 2000-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device with semiconductor circuit consisting of semiconductor element and its manufacture
JP2004214281A (en) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd Semiconductor device, method of manufacturing the same, peeling method, and transfer method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390281A (en) * 2017-08-11 2019-02-26 美光科技公司 Semiconductor device structure and its processing method and system
CN109390281B (en) * 2017-08-11 2023-08-08 美光科技公司 Semiconductor device structure and processing method and system thereof

Also Published As

Publication number Publication date
JP5978199B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP4373085B2 (en) Semiconductor device manufacturing method, peeling method, and transfer method
TW200420955A (en) Separating method
JP4610515B2 (en) Peeling method
JP4637477B2 (en) Peeling method
JP5857094B2 (en) Method for manufacturing light emitting device
JP5978199B2 (en) Light emitting device
JP2018073835A (en) Light-emitting device
JP5132722B2 (en) Peeling method
JP6297654B2 (en) Light emitting device
JP4267394B2 (en) Peeling method and manufacturing method of semiconductor device
JP6154442B2 (en) Light emitting device
JP5577373B2 (en) Light emitting device
KR101028394B1 (en) A method for manufacturing a semiconductor device, a method for manufacturing a photoelectric transducer, a method for manufacturing a light emitting device, a method for manufacturing a sensor, and a method for manufacturing a display unit in an electronic book reader
JP2020024425A (en) Light-emitting device
JP4602035B2 (en) Method for manufacturing semiconductor device
KR101005569B1 (en) A method for manufacturing a semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5978199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees