JP2014087147A - Power amplification apparatus - Google Patents

Power amplification apparatus Download PDF

Info

Publication number
JP2014087147A
JP2014087147A JP2012233461A JP2012233461A JP2014087147A JP 2014087147 A JP2014087147 A JP 2014087147A JP 2012233461 A JP2012233461 A JP 2012233461A JP 2012233461 A JP2012233461 A JP 2012233461A JP 2014087147 A JP2014087147 A JP 2014087147A
Authority
JP
Japan
Prior art keywords
power
electromagnetic
side
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012233461A
Other languages
Japanese (ja)
Inventor
Kunitoshi Kosoba
邦敏 小蕎
Original Assignee
Kunitoshi Kosoba
邦敏 小蕎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunitoshi Kosoba, 邦敏 小蕎 filed Critical Kunitoshi Kosoba
Priority to JP2012233461A priority Critical patent/JP2014087147A/en
Publication of JP2014087147A publication Critical patent/JP2014087147A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a power amplification apparatus in which stable power is supplied, without incurring any environmental problem, by a new approach paying attention to a magnetic force which forms a magnetic field, in components of an electric field and the magnetic field of an electromagnetic wave, and a manufacturing method thereof.SOLUTION: An apparatus is provided in which, with respect to supplied power (consumed power) of 1, demanded power (take-out power) is made equal to or more than 1 by using a non-contact power transmission system which supplies power while utilizing electromagnetic induction generated between coils. Namely, a power amplification apparatus is provided in which, at a secondary side (power demand side) where electromagnetic waves transmitted from a primary side (power supply side) are recovered as an electromotive force by the electromagnetic induction, a plurality of coils or reception elements formed from coils and ferromagnetic substances are disposed and the electromagnetic force is recovered in multiple directions.

Description

本発明は、電磁誘導による非接触型電力伝達方法において、2次側(受信側)に複数の受信素子を配置する方式を採用した電力増幅装置及びその製造方法に関するものである。 The present invention provides a contactless power transfer method by electromagnetic induction, to a secondary electric power amplifying device and a manufacturing method thereof employ a method of placing a plurality of receiving elements (reception side).

電力は、水力や風力などの運動エネルギー、太陽電池における光エネルギー、また石油、石炭、地熱、原子力などの熱エネルギーを、電気エネルギーに変換して取り出されるのが一般的な発電方法による電力である。 Power, kinetic energy, such as hydro and wind, light energy, also oil in a solar cell, coal, geothermal, thermal energy, such as nuclear power is the power according to a general power generation method that is taken out is converted into electric energy .

しかしながら、化石燃料を用いた発電方法では、資源の高騰による発電コスト高の問題の他、CO2排出による地球温暖化の環境問題が指摘されている。 However, in the power generation method using fossil fuels, other power generating cost of the problems due to soaring of resources, environmental problems of global warming due to CO2 emissions have been pointed out.

これに対して、原子力発電は、CO2の排出がゼロであると言われるが、使用済み核廃棄物の最終処理問題がいまだ充分に解決されていないといった課題がある。 In contrast, nuclear power is emissions of CO2 is said to be zero, there is a problem final disposal problems of spent nuclear waste has not yet been adequately resolved.

また、水力、風力、太陽光は、再生可能で且つ環境にやさしいエネルギーではあるが、安定した電力供給において、自然界の気候や気象条件に左右されるといった課題がある。 Further, water, wind, sunlight, albeit at friendly energy renewable and environmentally, in stable power supply, there is a problem depends on the nature of the climate and weather conditions.

このように、従来の発電方法や技術においては、環境にやさしく、且つ安定した電力供給を提供している訳ではない。 Thus, in the conventional power generation methods and techniques, environmentally friendly, not offering and stable power supply.

本発明は、電磁波の電界と磁界の成分のうち、磁界を形成する磁力に注目した新しいアプローチにより、環境上に問題が発生せず、尚且つ、安定した電力を供給する電力増幅装置及びその製造方法を提供する。 The present invention, among the electric and magnetic fields of the components of the electromagnetic wave, the new approach that focuses the magnetic force to form a magnetic field, without the occurrence of a problem on environment, besides, stable power amplifying device and a manufacturing supplying electric power to provide a method.

本発明は、コイル間に発生する電磁誘導を利用して給電する非接触型電力伝送方式を用いて、供給電力(消費電力)1に対し需給電力(取出し電力)が1以上となるようにした装置を提供する。 The present invention uses a non-contact power transmission system that supplies power using electromagnetic induction generated between the coils, the supply power (power consumption) 1 to supply power (extraction power) was set to be 1 or more to provide a device.

すなわち、1次側(電力供給側)から発信された電磁波を、電磁誘導により起電力として回収する2次側(電力需給側)に、コイル、または、コイルと強磁性体からなる受信素子を複数個配置し、多方向から起電力として回収することを最も主要な特徴とする。 That is, an electromagnetic wave originating from the primary side (power supply side), multiple secondary side (power supply side) recovering, coils, or, a receiving element comprising a coil and a ferromagnetic member by electromagnetic induction as electromotive force pieces disposed to the most important feature to recover from multiple directions as the electromotive force.

従来の方法による電磁誘導作用を用いた電磁調理器、又、非接触電力伝送方式によるコードレス充電器などにおいて、2次側に発生する起電力は1次側で使用される電力より少ないことは周知である。 Electromagnetic range using the electromagnetic induction effect by conventional methods, and, in the cordless charger according contactless power transmission system, it electromotive force generated on the secondary side is less than the power used in the primary side known it is. つまり、電力の増幅は発生しない。 In other words, the amplification of the power is not generated.

ここで、磁力線とは磁極から発して反対の性質を持つもう一方の磁極で終わる仮想の線である。 Here, the field lines are virtual lines ending with the other magnetic pole having a property opposite emanating from the magnetic poles. また、磁場中のある一定面積を通りぬける磁力線の垂直成分を足し合わせたものが磁束である。 Further, those obtained by adding a vertical component of the passing magnetic field lines through a certain area with a magnetic field is magnetic flux.

ファラディーの電磁誘導の法則では、磁速密度の時間的な変化、すなわち、磁束密度を時間で割った値がゼロでない状態では必ず電界が発生する。 The Faraday's law of electromagnetic induction, temporal changes in 磁速 density, i.e., always an electric field is generated in the state value obtained by dividing the magnetic flux density at the time is not zero.

電界と磁界は静電界・静磁界の状態では独立に存在できるが、一方が少しでも時間的に変化するともう一方が発生する。 While electric and magnetic fields can exist independently in the form of an electrostatic field-static magnetic fields, one of the other is generated when changes even a little time. この状態が電磁波であり、電磁波発生の基礎である。 This condition is an electromagnetic wave, is the basis of the electromagnetic wave generator. 電界と磁界の状態変化が交互に起きて、それが全方向に広がってゆくのが電磁波の特長のひとつである。 Happening alternately state changes in the electric field and magnetic field, it is one of the electromagnetic waves of the features that Yuku spread in all directions. すなわち、1次側から放出される電磁波は、全方向、つまり3次元方向に広がっていることは周知のことである。 That is, electromagnetic waves emitted from the primary side, it is well known that extends in all directions, i.e. in the three-dimensional directions.

電磁誘導は、磁束が変動する環境下に存在する導体に電位差、つまり電圧が生じる現象である。 Electromagnetic induction is a phenomenon in which the potential difference, i.e. voltage is generated in the conductor existing in the environment in which the magnetic flux varies. このとき発生する電流を誘導電流という。 That the current generated at this time induced current. また、発生する電力を起電力という。 In addition, the power generated as electromotive force. 起電力の大きさは、コイルを貫く磁束の変化の割合とコイルの巻き数との相乗積に比例するというファラディーの法則で示されている。 Magnitude of the electromotive force is indicated by the Law of Faraday that is proportional to the synergistic product of the turns ratio and the coil of the change in magnetic flux penetrating the coil.

1次側から放出された電磁波を、複数個所で回収することにより、トータルとしてより多くの磁束線を電磁誘導に導くことで、従来の方法よる起電力の発生量と、本発明の方法による各受信素子での起電力の合計値を総量として、消費電力と取出し電力の収支を見た場合、本発明による装置では、従来の方法よる起電力より大きな起電力の取出しが可能となることを発見し、本発明に想到した。 The electromagnetic waves emitted from the primary side, by recovering at a plurality of locations, by directing the more magnetic flux lines as a total electromagnetic induction, and the generation amount of the conventional method by the electromotive force, each according to the method of the present invention If the total sum value of the electromotive force in the receiving element, viewed balance between power consumption and power extraction, in the device according to the present invention, it found that extraction of large electromotive force than the conventional method by the electromotive force is made possible and, it was conceived with the present invention.

すなわち、発信する電磁波の周波数や、受信素子の大きさ、及び強磁性体の透磁率による材質特性、また、受信距離と受信角度、更にはコイルの巻き数、及び受信素子の個数などのパラメーターを適宜選択し組み合わせることで、多方向に配置された複数個の受信素子で発生する起電力をまとめて回収する。 That is, the frequency and the outgoing electromagnetic wave, the size of the receiving element, and material characteristics of the magnetic permeability of the ferromagnetic material, also receives the distance and the reception angle, even number of turns of the coil, and parameters such as the number of receiving elements by suitably selected combination, to collectively collect the electromotive force generated by the plurality of receiving elements arranged in multiple directions. このことにより、1次側の消費電力1に対して2次側の取出し電力が1以上となることを可能とした電力増幅装置を提供する。 This allows extraction power of the secondary side of the power 1 on the primary side to provide a power amplifying device that allows the one or more.

以上説明したように、本発明のコイル、または、コイルと磁性体からなる受信素子を複数個備えた非接触型電力伝送方式による電力増幅装置によれば、気象条件や設置条件に左右されず、環境負荷の少ない電気エネルギーを増幅して1日中安定供給できる。 As described above, the coil of the present invention or, according to the power amplification device according contactless power transmission system provided with a plurality of receiving elements consisting of coils and the magnetic body, regardless of the weather conditions and installation conditions, amplifies the small electrical energy environmental impact stably supply day. また、本発明の電力増強装置は、現行の技術と既存の電気機器製造工場などの設備を利用して製作することができることから、あらゆる電気機器の省エネルギー効率を高める効果が期待できる。 The power augmentation system of the present invention, because it can be fabricated utilizing facilities such as existing technology and existing electrical equipment manufacturing plant, the effect of increasing the energy-saving efficiency of any electrical device can be expected. このことにより国内電力供給の安定化に寄与することも期待できる。 Thus it is also expected to contribute to the stabilization of the domestic power supply.

本発明の電力増幅装置の1実施方法を示した説明図である。 It is an explanatory diagram showing one implementation of a power amplifier of the present invention. 本発明の電力増幅装置の受信用コイルの形状を示したものである。 It shows the shape of the receiving coil of the power amplifier of the present invention.

1次側の電磁波発信素子は、市販の電磁調理器などで採用されている一般的な発信回路を採用することができる。 Electromagnetic wave transmitter element on the primary side can adopt a general oscillation circuit that is employed in such as the commercially available induction heating cooker. また、2次側の電磁波受信コイルは、空心コイル、又は強磁性体をコアとしたコイルであって磁束を効率よく受信するものであれば形状や材質は問わない。 Further, the electromagnetic wave receiving coil of the secondary side may be either air-core coils, or if the ferromagnetic body in which a coil and a core receiving efficiently flux shape and material.

1次側コイルから空中に発信された電磁波を2次側で効率よく受信するという目的を損なわなければ、受信素子の数や発信素子と受信素子の配置する位置を自由に選択することができる。 Unless impairing the object of efficiently receive electromagnetic waves originating in the air from the primary side coil at the secondary side, it is possible to freely select the arrangement position of the number or transmitting element and the receiving element of the receiving element.

受信コイルは、図2のような渦巻き状の空芯コイルで、直径が18cmであって空芯部の直径を8cm とした。 Receive coil is a spiral air core coil as in Figure 2, was 8cm diameter of the air-core portion a 18cm diameter. コイルは、太さ0.1Φmmの銅線を50本よりあわせたリッツ線を8メートル使用し、20回巻いたものを使用した。 Coil, the copper wire thickness 0.1Φmm litz wire is used 8 meters together than fifty, it was used as wound 20 times.

また、受信用コイルは、発信コイルから放出される電磁波を2方向から回収するように、受信表コイルと受信裏コイルを各1個として合計2個採用した。 The receiving coil is an electromagnetic wave emitted from the transmitter coil to recover from two directions, was a receive table coil received back coil employs a total of two as each one.

2次側の受信表コイルと受信裏コイルは、その中心が発信コイルの中心位置と重なるように配置し、発信コイルからの距離をそれぞれ20mm開けて、両面で発信コイルを挟むように設置した。 Receiving table coil and receiving back coil of the secondary side, the center is disposed to overlap with the center position of the transmitter coil, the distance from the transmitter coil opening 20mm respectively, was placed so as to sandwich the transmitter coil on both sides. 受信表コイルと受信裏コイルには計測用にそれぞれ10オームの負荷抵抗を付した。 To a receiving table coil receiving back coil denoted by the load resistance of 10 ohms each for the measurement.

電磁波を発生する1次側コイル駆動回路は、電磁調理器用の回路構成と同様なものを採用した。 Primary coil drive circuit for generating an electromagnetic wave was adopted those similar to the circuit configuration of an electromagnetic cooker.

発信コイルは、受信コイルと同じ太さで同じ材質のリッツ線を2本並行に並べて束ね、大きさ、形状、巻き数とも受信コイルと同じものを採用した。 Transmitting coil is bundled side by side litz wire of the same material at the same thickness as the receiving coil to two parallel, size, shape, adopted the same as with the winding number of reception coils.

前記電力増幅装置に対して、入力電圧を13.0ボルト、入力電流を2.0アンペアとして26.0ワットの電力で発信コイルから20KHzの電磁波を発信した。 The relative power amplifying apparatus, 13.0 volts input voltage, has transmitted electromagnetic waves 20KHz from transmitter coil 26.0 watts of power input current as 2.0 Amps.

受信表コイルと受信裏コイルに発生した起電力の電圧をそれぞれ計測し、回収した電力を計算により求めた。 Voltage generated in the reception table coil receiving back coil electromotive force were respectively measured, it was determined by calculating the recovered power. これらの結果を表1に示す。 The results are shown in Table 1.

表1から明らかなように、本発明の実施例では、入力電力26.0ワットに対して出力電力合計は28.22ワットであった。 As apparent from Table 1, in the embodiment of the present invention, the output power sum to the input power 26.0 watts was 28.22 watts. 即ち、1次側の消費電力1に対して2次側の取出し電力が1以上となることが判明した。 That is, take out the power of the secondary side has been found to be a 1 or more with respect to power consumption 1 of the primary side.

電気工学の基礎となっている古典物理学におけるエネルギー保存の法則の解釈からすると、電磁誘導によるエネルギー移動現象において、需給電力(出力)が消費電力(入力)より大きい値をとることは許されない。 From the interpretation of the energy conservation law in classical physics underlying the electrical engineering, in energy transfer phenomenon due to electromagnetic induction, supply power (output) that are not allowed to take power (input) greater than. しかし、古典電磁力学は、電子を始めとする荷電粒子間の電磁相互作用について、場の量子論である量子電磁力学により書き改められており、非常に短い時間であれば、エネルギー保存の法則を破ることが許されると言うハイゼンベルグの「不確定性原理」は量子力学の定理となっている。 However, classical electrodynamics, for electromagnetic interaction between charged particles, including electrons, has been rewritten by the quantum electrodynamics is a quantum field theory, if a very short time, the law of energy conservation "uncertainty principle" of Heisenberg say that it is allowed to break is in the quantum mechanics of the theorem. 電磁力は、朝永振一郎氏の超多時間理論により相対論的共変な場の量子論とその存在空間が示され、繰り込みの確立などから相対論的な量子電磁力学として確立されている。 Electromagnetic power, Shinichiro Tomonaga's super multi by time theoretical quantum theory of relativistic covariant field and their presence space is shown, it has been established from such renormalization of establishing a relativistic quantum electrodynamics.

本発明の電力増幅装置は、時間変動に伴う電界磁界の相互作用からなる電磁波の空間放出の特性に着目し、多方向からの電磁波を複数個所で回収して電磁誘導により電力を取出すことで、電力の増幅を可能としたものと推定され得るが、正確な究明については今後の検討に委ねられるところである。 Power amplifying apparatus of the present invention focuses on the characteristics of the spatial emission of electromagnetic waves consisting of the interaction of the electric field magnetic field with time variation, by taking out the power by electromagnetic induction to recover the electromagnetic waves from multiple directions at a plurality of locations, Although be assumed which enables amplification of power, the exact investigation is where left to future study.

本発明の電力増幅装置の利用分野に限定はない。 Limited FIELD power amplification device of the present invention is not. 例えば、家電製品の省エネ対策として冷蔵庫やエアコンに組み込んで利用することができる。 For example, it is possible to use by incorporating in refrigerators and air conditioners as energy-saving measures of consumer electronics products. また、増幅率が一定であることから太陽光発電のような気象条件に左右されず安定した電力の供給が可能となり、農業や食品分野での加温、保温、冷房・冷凍用の電源増強装置として利用できる。 Further, regardless of the weather conditions, such as solar power enables stable power supply from that the amplification factor is constant, heating of the agricultural and food industry, heat insulation, power intensifier for cooling and refrigeration It can be used as a. 更に本発明の電力増幅装置は電気自動車のバッテリー分野においても利用できる。 Furthermore the power amplifier of the present invention can also be used in the battery field for an electric vehicle. 雪国におけるロードヒーティング電源増強装置としての利用方法は、既存設備の省エネルギー対策装置として活用できるなど、従来の概念を一新する利用方法が多数考えられる。 Usage as road heating power intensifiers in snow country, such as can be used as energy-saving device of the existing equipment, method of use renewed conventional concept contemplated a number.

1 電池 1 battery
21次側コイル駆動回路 21 primary coil drive circuit
3発信コイル 3 transmitter coil
4受信表負荷抵抗 4 reception table load resistance
5受信表コイル 5 reception table coil
6受信裏負荷抵抗 6 reception back load resistance
7受信裏コイル 7 reception back coil
8 コイル間の距離 8 distance between the coils

Claims (2)

  1. 発信側(1次側)から放出された電磁波を、電磁誘導を用いて受信側(2次側)で電力として取出す際、受信側にコイル、またはコイルと強磁性体で構成される受信素子を複数個配置することを特徴とする電力増幅装置。 The electromagnetic waves emitted from the originating (primary side), when taken out as electric power at the receiving side using the electromagnetic induction (secondary side), to the receiving coil or receiving element consists of a coil with ferromagnetic, power amplifier, characterized by arranging a plurality.
  2. 発信側から放出する電磁波の周波数は、5KHz から5.4GHzを範囲とする請求項1の電力増幅装置。 Frequency of electromagnetic waves emitted from the originating side power amplifying apparatus according to claim 1 in the range of 5.4GHz from 5 KHz.
JP2012233461A 2012-10-23 2012-10-23 Power amplification apparatus Pending JP2014087147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233461A JP2014087147A (en) 2012-10-23 2012-10-23 Power amplification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233461A JP2014087147A (en) 2012-10-23 2012-10-23 Power amplification apparatus

Publications (1)

Publication Number Publication Date
JP2014087147A true JP2014087147A (en) 2014-05-12

Family

ID=50789747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233461A Pending JP2014087147A (en) 2012-10-23 2012-10-23 Power amplification apparatus

Country Status (1)

Country Link
JP (1) JP2014087147A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182303A (en) * 1995-12-20 1997-07-11 Sumitomo Electric Ind Ltd Power feeding device for charging electric vehicle
JP2009501510A (en) * 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジーMassachusetts Institute Of Technology Wireless non-radiative energy transfer
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2012005189A (en) * 2010-06-15 2012-01-05 Toko Inc Charger
JP2012019648A (en) * 2010-07-09 2012-01-26 Sony Corp Power supply device and wireless power supply system
JP2012200031A (en) * 2011-03-18 2012-10-18 Yazaki Corp Feeding system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182303A (en) * 1995-12-20 1997-07-11 Sumitomo Electric Ind Ltd Power feeding device for charging electric vehicle
JP2009501510A (en) * 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジーMassachusetts Institute Of Technology Wireless non-radiative energy transfer
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2012005189A (en) * 2010-06-15 2012-01-05 Toko Inc Charger
JP2012019648A (en) * 2010-07-09 2012-01-26 Sony Corp Power supply device and wireless power supply system
JP2012200031A (en) * 2011-03-18 2012-10-18 Yazaki Corp Feeding system

Similar Documents

Publication Publication Date Title
Tan et al. Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system
US8604746B2 (en) Contactless power charging system and energy storage system including the same
US8237313B2 (en) Method and apparatus for wireless transmission and reception of electric power
Zhong et al. A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance
Islam et al. A high-frequency link multilevel cascaded medium-voltage converter for direct grid integration of renewable energy systems
Wang et al. Optimization design of an inductive energy harvesting device for wireless power supply system overhead high-voltage power lines
Ho et al. A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging
Nomura et al. Technical and cost evaluation on SMES for electric power compensation
El-Sharkawi Electric energy: an introduction
Choi et al. Generalized active EMF cancel methods for wireless electric vehicles
Li et al. Wireless power transfer by electric field resonance and its application in dynamic charging
Basu et al. Harmonic distortion caused by EV battery chargers in the distribution systems network and its remedy
Ahmad et al. A comprehensive review of wireless charging technologies for electric vehicles
TW201325010A (en) Contactless power feeding system, electrical device, repeater, and adapter
Song et al. Design of a high power transfer pickup for on-line electric vehicle (OLEV)
Yuan et al. Magnetic field energy harvesting under overhead power lines
JP2015015891A (en) Non-contact power supply device
US10033178B2 (en) Linear electromagnetic device
US9065045B2 (en) Apparatus for harvesting electrical power from mechanical energy
Zhang et al. Load-independent duality of current and voltage outputs of a series-or parallel-compensated inductive power transfer converter with optimized efficiency
Hearn et al. Utilization of optimal control law to size grid-level flywheel energy storage
US20130082539A1 (en) Wireless Power Receiving Unit For Receiving Power, A Wireless Power Transferring Unit For Transferring Power, A Wireless Power Transferring Device And Use Of Wireless Power Transferring Device
Gunter et al. Optimal design of grid-connected PEV charging systems with integrated distributed resources
Ohta Energy technology: sources, systems and frontier conversion
Huang et al. Magnetics in smart grid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214