JP2014066135A - Propeller fan and air conditioner with propeller fan - Google Patents

Propeller fan and air conditioner with propeller fan Download PDF

Info

Publication number
JP2014066135A
JP2014066135A JP2012209744A JP2012209744A JP2014066135A JP 2014066135 A JP2014066135 A JP 2014066135A JP 2012209744 A JP2012209744 A JP 2012209744A JP 2012209744 A JP2012209744 A JP 2012209744A JP 2014066135 A JP2014066135 A JP 2014066135A
Authority
JP
Japan
Prior art keywords
propeller fan
blade
recess
fan according
trailing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012209744A
Other languages
Japanese (ja)
Other versions
JP6049180B2 (en
Inventor
Seiji Sato
誠司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung R&D Institute Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung R&D Institute Japan Co Ltd filed Critical Samsung R&D Institute Japan Co Ltd
Priority to JP2012209744A priority Critical patent/JP6049180B2/en
Priority to KR1020130091122A priority patent/KR102194864B1/en
Priority to EP13185225.3A priority patent/EP2711558B1/en
Priority to US14/033,635 priority patent/US9556881B2/en
Priority to CN201310437318.1A priority patent/CN103671255B/en
Publication of JP2014066135A publication Critical patent/JP2014066135A/en
Application granted granted Critical
Publication of JP6049180B2 publication Critical patent/JP6049180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a propeller fan capable of reducing a tendency that a flow near a pressure surface at a blade rear edge part is displaced toward an outer peripheral side, inducing the flow strongly toward an inner peripheral side and substantially improving blow power.SOLUTION: A blade 10 is provided with a concavity 6 that is thick-walled at a radial central part near a rear edge 3 of the blade toward a suction surface 5 side, opened at least at a pressure surface 4 side and extending from the rear edge 3 to a front edge 2 of the blade 10, the concavity 6 has a pair of side face parts 61 raised up to form a prescribed angle in respect to the suction surface 5 as viewed from a radial section and a span width between the pair of side face parts 61 is set to be gradually increased from its upstream side to its downstream side.

Description

本発明は、例えば空気調和装置に用いられるプロペラファンの翼構造に関するものである。   The present invention relates to a blade structure of a propeller fan used in, for example, an air conditioner.

例えば図1に示すような全体が滑らかな曲線形状で形成されており、突出部や凹部が形成されていない一般的な翼10Aを備えたプロペラファン100Aを回転させると、回転中の翼の圧力面4A近傍における流れは、図1に示すように遠心力によって翼出口(翼後縁3A側)において外周側に偏った分布となる。そして、このような流れの偏りが生じることによりファン中央の円筒状のハブ11Aに近い部分では流れが不安定となりやすく、送風効率を低下させる問題がある。   For example, when a propeller fan 100A having a general blade 10A that is formed in a smooth curved shape as shown in FIG. 1 and has no protrusions or recesses is rotated, the pressure of the rotating blade is rotated. The flow in the vicinity of the surface 4A has a distribution biased toward the outer peripheral side at the blade outlet (blade trailing edge 3A side) due to centrifugal force as shown in FIG. And since such a flow non-uniformity occurs, the flow tends to become unstable near the cylindrical hub 11A in the center of the fan, and there is a problem of reducing the blowing efficiency.

このような問題に対して特許文献1では、図2に示すようにプロペラファン100Bの翼後縁3B付近を負圧面5B側に翼前縁2B側を凸とする円弧状に膨出した形状6Bとすることにより、この膨出部分6Bより流れが流出しやすくして、半径方向の流れの分布を均一化することが提案されている。   With respect to such a problem, in Patent Document 1, as shown in FIG. 2, a shape 6B in which the vicinity of the blade trailing edge 3B of the propeller fan 100B bulges in an arc shape with the blade leading edge 2B side projecting toward the suction surface 5B side. Thus, it has been proposed to make the flow easier to flow out from the bulging portion 6B and to make the distribution of the flow in the radial direction uniform.

しかしながら、特許文献1で示されているように翼後縁3B部分を膨出させると、同一半径断面の翼の反り線において、翼弦方向の途中で回転方向に角度が緩んでしまう。従って、翼後縁3Bにおいて流れが翼によって押されない部分が大きく存在することになり、送風力が低下することになる。また、翼後縁3B部分が円弧状に膨出した形状6Bとなっているのでこの部分に流れ込む流れは略円弧と直交した方向でスムーズに流れ込んでしまうため、流れ方向を外側から内側へと引き込む誘引力が小さく、送風効率を大きく改善するほどの効果を得ることができない。   However, as shown in Patent Document 1, when the blade trailing edge 3B portion is bulged, the angle of the blade warping line having the same radial cross section becomes loose in the rotation direction in the middle of the chord direction. Accordingly, there is a large portion of the blade trailing edge 3B where the flow is not pushed by the blade, and the blowing force is reduced. Further, since the blade trailing edge 3B portion has a shape 6B bulged in an arc shape, the flow flowing into this portion smoothly flows in a direction orthogonal to the substantially arc shape, so the flow direction is drawn from the outside to the inside. The attractive force is small, and an effect that greatly improves the blowing efficiency cannot be obtained.

特開2006−37800号公報JP 2006-37800 A

そこで、本発明は上述したような問題を鑑みてなされたものであり、翼後縁部において圧力面近傍の流れが外周側に偏ってしまう傾向を軽減し、内周側へと流れを強く誘引することができ、送風力を大幅に向上できるプロペラファンを提供する事を目的とする。   Therefore, the present invention has been made in view of the above-described problems, and reduces the tendency that the flow near the pressure surface is biased toward the outer peripheral side at the blade trailing edge, and strongly attracts the flow toward the inner peripheral side. An object of the present invention is to provide a propeller fan that can significantly improve the blowing power.

すなわち、本発明のプロペラファンは、円筒状のハブの外周面に対して周方向に所定間隔ごとに取り付けられた複数枚の翼を備えるプロペラファンであって、
前記翼が、その後縁近傍の半径方向中央部において負圧面側に盛り上がり、少なくとも圧力面側に開口しており、当該翼の後縁から前縁側へと延びる凹部を具備し、
前記凹部が、半径方向断面を視た場合に前記負圧面に対して所定角度をなして起立するとともに互いに対向する一対の側面部とを有しており、
前記一対の側面部の間におけるスパン方向幅が上流側から下流側にかけて次第に大きくなるように構成されていることを特徴とする。
That is, the propeller fan of the present invention is a propeller fan including a plurality of blades attached to the outer peripheral surface of a cylindrical hub at predetermined intervals in the circumferential direction,
The blade is raised to the suction surface side in the radial center near the trailing edge, and is open at least to the pressure surface side, and includes a recess extending from the trailing edge of the blade to the leading edge side,
The concave portion has a pair of side portions that stand up at a predetermined angle with respect to the suction surface when viewed in a radial direction and are opposed to each other.
The spanwise width between the pair of side surfaces is configured to gradually increase from the upstream side to the downstream side.

このようなものであれば、前記凹部が負圧面に対して所定角度をなして起立するとともに互いに対向する一対の側面部を有しているので、負圧面と凹部との間で大きく曲率が変化することになるので、圧力面近傍の流れが凹部に誘引される力を大きくすることができる。   If it is such, since the said recessed part stands at a predetermined angle with respect to a suction surface and has a pair of side part which mutually opposes, a curvature changes a lot between a suction surface and a recessed part. Therefore, the force that the flow near the pressure surface is attracted to the concave portion can be increased.

また、前記一対の側面部の間におけるスパン方向幅が上流側から下流側にかけて次第に大きくなるように構成されているので、前記各側面部の延びる方向と、前記凹部に対して誘引される直前の圧力面に沿った流れのなす角度を大きくすることができ、流れは側面部に対して垂直に入射しようとすることから外周側における流れの向きをより大きく変化させることができる。   Further, since the span direction width between the pair of side surface portions is configured to gradually increase from the upstream side to the downstream side, the extending direction of each side surface portion and the state immediately before being attracted to the recess portion are configured. The angle formed by the flow along the pressure surface can be increased, and since the flow is intended to enter perpendicularly to the side surface portion, the flow direction on the outer peripheral side can be changed more greatly.

したがって、前記凹部に圧力面近傍の流れが誘引されやすく、しかもその流れの向きを外周側から内周側へと大きく変化させることができるので、翼後縁部において圧力面に略均一に流れを分布させて、特に内周側の流れが不安定になり騒音や振動等が発生するのを防ぐことができ、送風効率を向上させることができる。   Accordingly, the flow in the vicinity of the pressure surface is easily attracted to the concave portion, and the direction of the flow can be greatly changed from the outer peripheral side to the inner peripheral side. In particular, it is possible to prevent the flow on the inner peripheral side from becoming unstable and generate noise, vibration, and the like, and to improve the blowing efficiency.

プロペラファンが回転することにより生じる遠心力により圧力面上において外周側へと偏る傾向のある遠心流れが発生する位置に前記凹部を形成し、効果的に偏流れを抑制できるようにするには、ファン回転軸を中心として前記翼の外径をR、内径をR、翼の後縁における内径側にある側面部の端部までの半径をR、翼の後縁における外径側にある側面部の端部までの半径Rとし、R=R+α(R−R)、R=R+β(R−R)とした場合に、0.2≦α≦0.6、0.6≦β≦0.9となる範囲に設定されていればよい。 To form the concave portion at a position where a centrifugal flow that tends to be biased toward the outer peripheral side on the pressure surface due to the centrifugal force generated by the rotation of the propeller fan is generated, so that the uneven flow can be effectively suppressed. Centering on the fan rotation axis, the outer diameter of the blade is R t , the inner diameter is R h , the radius to the end of the side surface on the inner diameter side at the trailing edge of the blade is R i , and the outer diameter side at the trailing edge of the blade When it is assumed that the radius R o to the end of a certain side surface portion is R i = R h + α (R t −R h ) and R o = R h + β (R t −R h ), 0.2 ≦ α It suffices if they are set in the ranges satisfying ≦ 0.6 and 0.6 ≦ β ≦ 0.9.

翼に設けた凹部内に圧力面に沿って流れる気流が前記凹部内に流入しやすくなるとともに、前記各側面部に沿って形成される渦対が略均等になり送風効率を高められるようにするには、前記凹部において、ファン回転軸に対する内径側にある側面部の傾斜角をθ、ファン回転軸に対する外径側にある側面の傾斜角をθとした場合に、5°≦θ≦60°、5°≦θ≦60°、かつ、θ≧θを満たすものであればよい。 The airflow flowing along the pressure surface into the recess provided in the wings easily flows into the recess, and the vortex pairs formed along the side surfaces are substantially uniform so that the blowing efficiency can be improved. In the recess, when the inclination angle of the side surface portion on the inner diameter side with respect to the fan rotation axis is θ i and the inclination angle of the side surface portion on the outer diameter side with respect to the fan rotation axis is θ o , 5 ° ≦ θ i ≦ 60 °, 5 ° ≦ θ o ≦ 60 °, and θ i ≧ θ o may be satisfied.

翼に設けた凹部への流入が、上流側から下流端まで円滑になるとともに、前記凹部の翼の出口角が凹部以外の隣接部分の出口角と略一致させて、半径方向に均一な流れとして送風効率を向上させるには、前記凹部の前縁側端部が位置する半径での周方向断面を視た場合において、その翼弦長Lに対して、後縁から前記凹部の前縁側端部までの長さLをLの10%〜60%に設定されていればよい。 The inflow into the recess provided on the wing is smooth from the upstream side to the downstream end, and the exit angle of the wing of the recess is substantially the same as the exit angle of the adjacent portion other than the recess so that the flow is uniform in the radial direction. to improve the air blowing efficiency, when the leading edge side end portion of the recess as viewed in the circumferential direction section at radius position, relative to the chord length L 0, the leading edge side end portion of the recess from the trailing edge until the length L 1 may be set at 10% to 60% of L 0.

前記凹部と圧力面の隣接部分に適切な段差を形成して、凹部への気流の流入をより確実にして遠心流れを抑制でき、送風効率を向上させるには、前記凹部の前縁側端部が位置する半径での周方向断面を視た場合において、前記凹部の前記負圧面側への深さdが上流側から下流側にかけて次第に大きくなるとともに、翼後縁近傍における深さdが所定深さdxで略一定となる深さ一定領域が設定されていればよい。   In order to improve the ventilation efficiency by forming an appropriate level difference between the concave portion and the adjacent portion of the pressure surface, thereby making it possible to suppress the centrifugal flow by ensuring the inflow of airflow into the concave portion, the front edge side end portion of the concave portion is When viewing a circumferential cross section at a positioned radius, the depth d of the recess toward the suction surface side gradually increases from the upstream side to the downstream side, and the depth d in the vicinity of the blade trailing edge is a predetermined depth. It is only necessary to set a constant depth region that is substantially constant at dx.

凹部を形成したことによる翼の強度低下を防ぎつつ、送風効率を向上させるには、前記凹部の前記各側面部の負圧面側に底部が形成されて閉塞されており、前記底部が負圧面と略並行な曲面を形成しているものであればよい。   In order to improve the air blowing efficiency while preventing the strength reduction of the blade due to the formation of the recess, a bottom is formed and closed on the suction surface side of each side surface of the recess, and the bottom is a suction surface. What is necessary is just to form the substantially parallel curved surface.

前記凹部に取り込まれる気流によって翼の負圧面側に縦渦を発生さえて負圧面近傍の流れが剥離するのを抑制できるようにして、送風効率をさらに向上させるには、前記凹部が、負圧面側にも開口しており、前記一対の側面部のみで構成されていればよい。このようなものであれは、翼面積の低減による送風作用はやや低下するため、同等の送風量を確保するには回転数を増加させる必要はあるものの、凹部に流入する気流をより大きくすることができ、上述した負圧面に生じる縦渦により送風効率を向上させられる。   In order to further suppress the flow in the vicinity of the suction surface by generating a vertical vortex on the suction surface side of the blade due to the air flow taken into the recess, the recess can be further improved in blowing efficiency. It is sufficient that it is also open on the side, and is configured only by the pair of side surface portions. In such a case, since the air blowing effect due to the reduction in the blade area is slightly reduced, it is necessary to increase the number of rotations in order to ensure the same amount of air blowing, but the airflow flowing into the concave portion should be increased. The vertical vortex generated on the suction surface described above can improve the blowing efficiency.

翼に設けた前記凹部への誘引される流れの乱れや損失を低減し、より一層、送風効率を向上させるには、前記各側面部と前記圧力面とが丸みを帯びて接続されていればよい。   In order to reduce the disturbance and loss of the flow induced to the concave portion provided on the blade and further improve the air blowing efficiency, the side surfaces and the pressure surface are rounded and connected. Good.

前記凹部を前記圧力面及び負圧面の両方に対して開口させている場合でも凹部の上流側端部の遠心力による応力集中を防いで強度を大きくすることができ、翼を破損しにくくするには、前記各側面部において負圧面側の上流側端部近傍が丸みを帯びて接続されていればよい。   Even when the recess is open to both the pressure surface and the suction surface, the strength can be increased by preventing stress concentration due to the centrifugal force at the upstream end of the recess, and the blade is less likely to be damaged. It is sufficient that the vicinity of the upstream end on the suction surface side is rounded and connected in each side surface portion.

翼に設けた凹部が負圧面側も開口している場合でも上流端における遠心力による応力集中をさらに緩和することができ、破損しにくくするには、前記凹部が、前記各側面部の圧力面側の上流側端部の間が中実となった埋め部を備えており、前記埋め部は隣接する圧力面と同一曲面を形成するように構成されていればよい。   Even when the concave portion provided in the blade is open on the suction side, the stress concentration due to the centrifugal force at the upstream end can be further alleviated, and in order to make it difficult to break, the concave portion is the pressure surface of each side portion. It suffices to have a solid filling portion between the upstream end portions on the side, and the filling portion may be configured to form the same curved surface as the adjacent pressure surface.

本発明のプロペラファンを用いた空気調和装置であれば、送風能力の向上によって効率よく空気調和装置を運転する事が可能となる。   If it is an air conditioning apparatus using the propeller fan of this invention, it will become possible to drive | operate an air conditioning apparatus efficiently by the improvement of ventilation capability.

このように本発明のプロペラファンによれば、翼に設けられた凹部が、半径方向断面を視た場合に前記負圧面に対して所定角度をなして起立するとともに互いに対向する一対の側面部とを有しており、前記一対の側面部の間におけるスパン方向幅が上流側から下流側にかけて次第に大きくなるように構成されているので、圧力面近傍を流れる流れを翼後縁部において凹部に強く誘引することができ、通常であれば外径側に偏りがちな流れを後縁部において半径方向に略均等に分布させることができ、送風効率を大幅に向上させることができる。   As described above, according to the propeller fan of the present invention, the recesses provided in the blades stand at a predetermined angle with respect to the suction surface when viewed in a radial cross section, and a pair of side surface portions facing each other. And the spanwise width between the pair of side surfaces gradually increases from the upstream side to the downstream side, so that the flow flowing in the vicinity of the pressure surface strongly resists the recess at the blade trailing edge. The flow that tends to be biased to the outer diameter side can be distributed almost evenly in the radial direction at the rear edge portion, and the blowing efficiency can be greatly improved.

従来のプロペラファンの形状及び翼後縁部における流れの偏りについて示す模式的斜視図。The typical perspective view shown about the shape of the conventional propeller fan and the deviation of the flow in a blade trailing edge. 従来のプロペラファンにおいて翼後縁部に膨出部を備えた例を示す模式図。The schematic diagram which shows the example which provided the bulging part in the blade trailing edge part in the conventional propeller fan. 本発明の第1実施形態に係るプロペラファンの模式的斜視図。1 is a schematic perspective view of a propeller fan according to a first embodiment of the present invention. 第1実施形態のA−A線断面図であって、凹部の翼弦長方向の断面を示す模式図。It is an AA line sectional view of a 1st embodiment, and is a mimetic diagram showing a section of a chord length direction of a crevice. 第1実施形態のファン回転軸に沿って負圧面を視た場合の模式図。The schematic diagram at the time of seeing a negative pressure surface along the fan rotating shaft of 1st Embodiment. 第1実施形態のC−C線断面図であって、凹部の半径方向断面を示す模式図。It is CC sectional view taken on the line of 1st Embodiment, Comprising: The schematic diagram which shows the radial direction cross section of a recessed part. 第1実施形態の圧力面近傍の流れを示す模式的斜視図。The typical perspective view which shows the flow of the pressure surface vicinity of 1st Embodiment. 第1実施形態の凹部の位置を示すためのパラメータについて示す模式図。The schematic diagram shown about the parameter for showing the position of the recessed part of 1st Embodiment. 第1実施形態の各側面部の傾斜角について示す模式図。The schematic diagram shown about the inclination-angle of each side part of 1st Embodiment. 第1実施形態の凹部が翼において占める位置及びその深さについて示す模式図。The schematic diagram shown about the position which the recessed part of 1st Embodiment occupies in a wing | blade, and its depth. 第1実施形態の凹部の翼弦長に占める割合と最大効率比との関係を示すグラフ。The graph which shows the relationship between the ratio which occupies for the chord length of the recessed part of 1st Embodiment, and the maximum efficiency ratio. 第1実施形態における凹部の深さの変化傾向について示すグラフ。The graph shown about the change tendency of the depth of the recessed part in 1st Embodiment. 本発明の第2実施形態に係るプロペラファンの模式的斜視図。The typical perspective view of the propeller fan which concerns on 2nd Embodiment of this invention. 第2実施形態のB−B線断面図であって、凹部の翼弦長方向の断面を示す模式図。It is a BB line sectional view of a 2nd embodiment, and is a mimetic diagram showing a section of a chord length direction of a crevice. 第2実施形態のファン回転軸に沿って負圧面を視た場合の模式図。The schematic diagram at the time of seeing a negative pressure surface along the fan rotating shaft of 2nd Embodiment. 第2実施形態のD−D線断面図であって、凹部の半径方向断面を示す模式図。It is the DD sectional view taken on the line of 2nd Embodiment, Comprising: The schematic diagram which shows the radial direction cross section of a recessed part. 第2実施形態の変形例であって、凹部の半径方向断面を示す模式図。It is a modification of 2nd Embodiment, Comprising: The schematic diagram which shows the radial direction cross section of a recessed part. 第2実施形態の変形例であって、凹部の翼弦長方向の断面を示す模式図。It is a modification of 2nd Embodiment, Comprising: The schematic diagram which shows the cross section of the chord length direction of a recessed part. 第2実施形態の変形例であって、ファン回転軸に沿って負圧面を視た場合の模式図。It is a modification of 2nd Embodiment, Comprising: The schematic diagram at the time of seeing a suction surface along a fan rotating shaft. 第1実施形態、第2実施形態、従来例のプロペラファンのファン効率を比較したグラフ。The graph which compared the fan efficiency of the propeller fan of 1st Embodiment, 2nd Embodiment, and a prior art example.

本発明の第1実施形態について図面を参照しながら説明する。   A first embodiment of the present invention will be described with reference to the drawings.

第1実施形態のプロペラファン100は、例えば空気調和装置の室外機に用いられるものであって、円筒状のハブ11の外周面に対して周方向に所定間隔ごとに取り付けられた複数枚の翼10を放射状に備えるものである。各図面ではプロペラファン100の各翼10のうち1つを代表させて記載している。   The propeller fan 100 according to the first embodiment is used, for example, in an outdoor unit of an air conditioner, and includes a plurality of blades attached to the outer peripheral surface of a cylindrical hub 11 at predetermined intervals in the circumferential direction. 10 is provided radially. In each drawing, one of the blades 10 of the propeller fan 100 is shown as a representative.

第1実施形態のプロペラファン100の翼10形状について翼10を負圧面5側から視た模式的斜視図である図3と、図3のA−A線に沿った翼弦長方向の断面図である図4を参照しながら説明する。   FIG. 3 is a schematic perspective view of the blade 10 of the propeller fan 100 according to the first embodiment as viewed from the suction surface 5 side, and FIG. 3 is a cross-sectional view in the chord length direction along the line AA in FIG. This will be described with reference to FIG.

図3に示すように前記翼10と円筒状のハブ11の取り付け部分は、ハブ11の一方の端面側から他方の端面側へとハブ11の側面に所定のらせんが描かれるように取り付けられており、前記翼10の前縁2が回転方向前方側へと延出させてある。また、前記翼10は図3に示されるA−A線の断面図である図4に示されるよう翼弦長方向において所定の反りが形成してあり、翼10の凹んでいる側の面を圧力面4とし、翼10における凸側の面を負圧面5としている。   As shown in FIG. 3, the attachment portion of the blade 10 and the cylindrical hub 11 is attached from one end surface side of the hub 11 to the other end surface side so that a predetermined spiral is drawn on the side surface of the hub 11. The leading edge 2 of the wing 10 extends forward in the rotational direction. The blade 10 has a predetermined warp in the chord length direction as shown in FIG. 4 which is a cross-sectional view taken along line AA shown in FIG. A pressure surface 4 is used, and a convex surface of the blade 10 is a suction surface 5.

そして、図3及び図4に示されるように、この翼10は後縁3側の中央部において負圧面5側に盛り上がり、圧力面4側が凹んだ凹部6が形成してある。   As shown in FIGS. 3 and 4, the blade 10 swells toward the negative pressure surface 5 at the central portion on the trailing edge 3 side, and is formed with a concave portion 6 that is recessed on the pressure surface 4 side.

以下ではこの凹部6の形状及び寸法等に関する特徴について図3乃至図10を参照しながら詳述する。   In the following, the features relating to the shape and dimensions of the recess 6 will be described in detail with reference to FIGS.

前記凹部6は、回転軸Cに沿って翼10の負圧面5を視た図5のC−C線断面である図6に示されるように後縁3の近傍の半径方向中央部において負圧面5側に盛り上がり、圧力面4側に開口させて形成してある。図5から分かるように前記凹部6は、回転軸Cの延伸する方向にそって負圧面5又は圧力面4を視た場合には概略ハの字形状に翼前縁2側から後縁3側へと広がって形成してある。   The recess 6 is a suction surface at the radial center near the trailing edge 3 as shown in FIG. 6 which is a cross-sectional view taken along the line CC of FIG. 5 when the suction surface 5 of the blade 10 is viewed along the rotation axis C. It swells on the 5 side and is formed to open on the pressure surface 4 side. As can be seen from FIG. 5, the concave portion 6 is formed in a generally square shape when viewed from the suction surface 5 or the pressure surface 4 along the direction in which the rotation axis C extends, from the blade leading edge 2 side to the trailing edge 3 side. It is spread and formed.

また、図6の凹部6を含む翼10の半径方向断面から明らかなように、前記凹部6の半径方向断面を視た場合、負圧面5側に底部62を有する概略コの字状をなしている。より具体的には、前記凹部6は、半径方向断面を視た場合に前記負圧面5に対して所定角度をなして起立するとともに互いに対向する一対の側面部61とを有しており、各側面部61の負圧面5側を閉塞するように概略角丸三角形状の曲面である底部62が設けてある。言い換えると、図6の断面図からも分かるように凹部6がある部分について半径方向の断面を視た場合、圧力面4又は負圧面5と前記側面部61との接続部分は大きく曲率が変化するように接続している。   Further, as apparent from the radial cross section of the blade 10 including the concave portion 6 in FIG. 6, when the radial cross section of the concave portion 6 is viewed, a substantially U-shape having a bottom 62 on the suction surface 5 side is formed. Yes. More specifically, the concave portion 6 has a pair of side surface portions 61 that stand up at a predetermined angle with respect to the negative pressure surface 5 and face each other when viewed in a radial section. A bottom portion 62 that is a curved surface having a generally rounded triangular shape is provided so as to close the suction surface 5 side of the side surface portion 61. In other words, as can be seen from the cross-sectional view of FIG. 6, when the radial cross section of the portion having the recess 6 is viewed, the curvature of the connecting portion between the pressure surface 4 or the suction surface 5 and the side surface portion 61 changes greatly. So that they are connected.

さらに、図3及び図5から分かるように前記一対の側面部61の間におけるスパン方向幅が上流側(前縁2側)から下流側(後縁3側)にかけて次第に大きくなるようにして概略ハの字状となるように形成してある。   Further, as can be seen from FIGS. 3 and 5, the spanwise width between the pair of side surfaces 61 gradually increases from the upstream side (front edge 2 side) to the downstream side (rear edge 3 side). It is formed so as to have a letter shape.

このような形状の凹部6が翼後縁部の中央に形成してあるので、図7の流線により示す圧力面4近傍の流れは、翼後縁部においてこの凹部6に誘引されることになる。このため、図1と図5を比較すると分かるように通常であれば外径側に偏ってしまう気流を翼後縁部において略均一にすることができ、ハブ11との接続側である内径側においてほとんど剥離や流れの乱れを生じさせないようにすることができる。   Since the recess 6 having such a shape is formed at the center of the blade trailing edge, the flow in the vicinity of the pressure surface 4 indicated by the streamline in FIG. 7 is attracted to the recess 6 at the blade trailing edge. Become. Therefore, as can be seen from a comparison between FIG. 1 and FIG. 5, the airflow that is normally biased toward the outer diameter side can be made substantially uniform at the blade trailing edge, and the inner diameter side that is the connection side with the hub 11. In this case, almost no separation or turbulence in flow can be caused.

次に、このような気流の均一化を達成するのに適した凹部6の位置や寸法範囲等について説明する。   Next, a description will be given of the position, size range, and the like of the recess 6 suitable for achieving such uniform airflow.

まず、前記凹部6の翼後縁部における配置について説明する。図8に示すように凹部6の形成一はファン回転軸Cを中心として前記翼10の外径をR、内径をR、翼10の後縁3における内径側にある側面部61の端部までの半径をR、翼10の後縁3における外径側にある側面部61の端部までの半径Rとし、R=R+α(R−R)、R=R+β(R−R)とした場合に、0.2≦α≦0.6、0.6≦β≦0.9となる範囲に設定してある。 First, the arrangement of the recess 6 at the blade trailing edge will be described. As shown in FIG. 8, the concave portion 6 is formed by setting the outer diameter of the blade 10 to R t , the inner diameter to R h , and the end of the side surface portion 61 on the inner diameter side of the trailing edge 3 of the blade 10. R i is a radius to the portion, and R i is a radius R o to the end of the side surface portion 61 on the outer diameter side of the trailing edge 3 of the blade 10, and R i = R h + α (R t −R h ), R o = When R h + β (R t −R h ), the ranges are set to 0.2 ≦ α ≦ 0.6 and 0.6 ≦ β ≦ 0.9.

次に、前記凹部6の盛り上がり方、すなわち、各側面部61と負圧面5に対する起立の仕方については図9を参照しながら説明する。図9に示すように前記凹部6において、ファン回転軸Cに対する内径側にある側面部61の傾斜角をθ、ファン回転軸Cに対する外径側にある側面の傾斜角をθとした場合に、5°≦θ≦60°、5°≦θ≦60°、かつ、θ≧θを満たすようにしてある。言い換えると、圧力面4から視た場合において、外径側の傾斜の方が急激に変化するようにしてあり、外径側の流れが凹部6内へと誘引される力が強くなるようにしてある。このようにすることで、内径側の側面部61と外径側の側面部61においてそれぞれ形成される一対の縦渦の大きさも均等にすることができ、送風効率をより向上させやすくなる。 Next, how the concave portion 6 swells, that is, how to stand up the side surfaces 61 and the suction surface 5 will be described with reference to FIG. As shown in FIG. 9, in the concave portion 6, the inclination angle of the side surface portion 61 on the inner diameter side with respect to the fan rotation axis C is θ i , and the inclination angle of the side surface on the outer diameter side with respect to the fan rotation axis C is θ o In addition, 5 ° ≦ θ i ≦ 60 °, 5 ° ≦ θ o ≦ 60 °, and θ i ≧ θ o are satisfied. In other words, when viewed from the pressure surface 4, the inclination on the outer diameter side changes abruptly, and the force that attracts the flow on the outer diameter side into the recess 6 is increased. is there. By doing in this way, the magnitude | size of a pair of vertical vortex respectively formed in the side part 61 by the side of an inner diameter and the side part 61 by the side of an outer diameter can also be equalized, and it becomes easier to improve ventilation efficiency.

さらに、前記凹部6が翼10において翼弦長方向に占める大きさやその凹部6の深さについて説明する。図3のA−A線断面図である図10に示すように前記凹部6の前縁2側端部が位置する半径での周方向断面を視た場合において、その翼弦長Lに対して、後縁3から前記凹部6の前縁2側端部までの長さLをLの10%〜60%に設定してある。より具体的には、翼弦長Lに対する前記凹部6の長さLの比率を変化させていくと、図11のグラフに示すようにLがLの10%〜60%の間に設定されている時に最大効率比が最大値を取ることが分かる。すなわち、より好ましくはLをLの20%〜45%に設定するとよい。さらに好ましくはLをLの略30%に設定すれば最大効率比の値を最大にすることができる。 Further, the size of the recess 6 in the blade chord length direction in the blade 10 and the depth of the recess 6 will be described. As shown in FIG. 10 which is a cross-sectional view taken along line AA in FIG. 3, when the circumferential cross section at the radius where the front edge 2 side end portion of the recess 6 is located is viewed, the chord length L 0 is The length L 1 from the rear edge 3 to the front edge 2 side end portion of the recess 6 is set to 10% to 60% of L 0 . More specifically, when gradually changing the ratio of the length L 1 of the recess 6 for the chord length L 0, while L 1 is 10% to 60% of the L 0 as shown in the graph of FIG. 11 It can be seen that the maximum efficiency ratio takes the maximum value when set to. That is, L 1 is more preferably set to 20% to 45% of L 0 . More preferably, the value of the maximum efficiency ratio can be maximized by setting L 1 to approximately 30% of L 0 .

また、凹部6の深さdについては前記凹部6の前縁2側端部が位置する半径での周方向断面を視た場合において、前記凹部6の前記負圧面5側への深さdを上流側から下流側にかけて次第に大きくするとともに、翼後縁3近傍における深さdが所定深さdxで略一定となる深さ一定領域を設定してある。また、前記所定深さdxが翼弦長Lの2%〜10%に設定してある。より具体的には図12のグラフに示すように凹部6の深さdは、上流側開始点の近傍では急激に深さを変化させておき、翼後縁部においてはその変化率を小さくするようにしてある。 Further, regarding the depth d of the concave portion 6, the depth d of the concave portion 6 toward the negative pressure surface 5 side when the circumferential cross section at the radius where the front edge 2 side end portion of the concave portion 6 is located is viewed. A constant depth region is set in which the depth d in the vicinity of the blade trailing edge 3 becomes substantially constant at the predetermined depth dx while gradually increasing from the upstream side to the downstream side. The predetermined depth dx has been set to 2% to 10% of the chord length L 0. More specifically, as shown in the graph of FIG. 12, the depth d of the concave portion 6 is rapidly changed in the vicinity of the upstream start point, and the rate of change is reduced at the blade trailing edge. It is like that.

上述したように凹部6の翼10に占める大きさを設定することで、翼10本来の機能と遠心流れの是正に関する機能とについてバランスさせることができ、送風効率を好適に向上させることができる。また、凹部6の深さdを上述したような値にすれば近傍の圧力面4と凹部6との段差により流れを確実に流入させることができる。従って、遠心流れを抑制でき、送風効率を向上させることができる。   As described above, by setting the size of the recess 6 in the blade 10, it is possible to balance the original function of the blade 10 and the function related to correction of the centrifugal flow, and the air blowing efficiency can be preferably improved. Further, if the depth d of the recess 6 is set to the above-described value, the flow can be surely introduced by the step between the pressure surface 4 and the recess 6 in the vicinity. Therefore, the centrifugal flow can be suppressed and the air blowing efficiency can be improved.

次に本発明の第2実施形態に係るプロペラファン100について図13〜図16を参照しながら説明する。   Next, a propeller fan 100 according to a second embodiment of the present invention will be described with reference to FIGS.

第2実施形態では図13に示すように凹部6が圧力面4側だけでなく、負圧面5側にも開口しており、各側面部61のみで凹部6が形成されている点が第1実施形態とは異なっている。言い換えると、第1実施形態において前記凹部6は底部62を有していたが第2実施形態では底部62を切り取った形状に開口部65が形成してある。   In the second embodiment, as shown in FIG. 13, the concave portion 6 is opened not only on the pressure surface 4 side but also on the negative pressure surface 5 side, and the concave portion 6 is formed only by each side surface portion 61. This is different from the embodiment. In other words, in the first embodiment, the recess 6 has the bottom 62, but in the second embodiment, the opening 65 is formed in the shape of the bottom 62 cut out.

以下に第2実施形態の翼10形状の詳細について説明する。   Details of the shape of the wing 10 of the second embodiment will be described below.

図13、図15に示すように凹部6の底部62は概略角丸三角形状に切り取ってあり、図13のB−B線断面図である図14、図15のD−D線断面図である図16に示すように、凹部6は負圧面5に対して起立する2つの側面部61のみで構成してある。   As shown in FIGS. 13 and 15, the bottom 62 of the recess 6 is cut into a substantially rounded triangular shape, and is a cross-sectional view taken along the line BB in FIG. 13 and a cross-sectional view taken along the line DD in FIG. As shown in FIG. 16, the recess 6 is composed of only two side portions 61 that stand up with respect to the suction surface 5.

すなわち、第1実施形態の図4と第2実施形態の図14とを比較すると分かるように凹部6の上流側端部の深さに関しては同様であるが、凹部6における下流側の薄板部分を無くしてある。また図16に示すように圧力面4の近傍を流れる流れが凹部6に誘引されると前記側面部61に沿って流れた後に負圧面5側へと流出し、負圧面5において縦渦を形成することになる。この負圧面5において形成される縦渦により負圧面5近傍の流れの剥離が抑制されるため送風効率をさらに向上させることができる。   That is, as can be seen by comparing FIG. 4 of the first embodiment and FIG. 14 of the second embodiment, the depth of the upstream end of the recess 6 is the same, but the downstream thin plate portion in the recess 6 is It has been lost. As shown in FIG. 16, when the flow flowing in the vicinity of the pressure surface 4 is attracted to the recess 6, it flows along the side surface portion 61 and then flows out toward the suction surface 5, forming a vertical vortex on the suction surface 5. Will do. Since the vertical vortex formed on the suction surface 5 suppresses the separation of the flow in the vicinity of the suction surface 5, the blowing efficiency can be further improved.

また、前記各側面部61において負圧面5側の上流側端部近傍64が丸みを帯びて接続してあり、その曲率半径を翼10厚さの1倍から5倍に設定してある。このようにすることで翼10に設けた開口部の上流端において、遠心力による応力集中を防ぎ破損しにくくすることができる。言い換えると、凹部6の底部62を切り取ることによる翼10の強度低下を防ぎつつ、送風効率を向上させることができるようになる。   Further, in each of the side surfaces 61, the vicinity of the upstream end 64 on the suction surface 5 side is rounded and the radius of curvature is set to 1 to 5 times the blade 10 thickness. By doing in this way, the stress concentration by a centrifugal force can be prevented at the upstream end of the opening part provided in the wing | blade 10, and it can make it hard to break. In other words, the blowing efficiency can be improved while preventing the strength of the blade 10 from being reduced by cutting off the bottom 62 of the recess 6.

次に第2実施形態の変形例について図17〜図19を参照しながら説明する。   Next, a modification of the second embodiment will be described with reference to FIGS.

図17に示すように前記各側面部61と前記圧力面4とが丸みを帯びて接続するようにしても構わない。すなわち、図16に示したように各側面部61と圧力面4とが尾根を形成するように接続するのではなく、図17に示すようにラウンド形状とすることによって圧力面4から側面部61に沿って負圧面5へと流れる流れの損失や乱れを低減し、より送風効率を向上させることができる。   As shown in FIG. 17, the side portions 61 and the pressure surface 4 may be rounded and connected. That is, the side surfaces 61 and the pressure surface 4 are not connected so as to form a ridge as shown in FIG. 16, but are rounded as shown in FIG. It is possible to reduce the loss and turbulence of the flow that flows along the negative pressure surface 5 and improve the blowing efficiency.

また、図18、図19に示すように前記凹部6が、前記各側面部61の圧力面4側の上流側端部の間が中実となった埋め部63を備えており、前記埋め部63は隣接する圧力面4と同一曲面を形成するように構成してもよい。図14と図18とを比較すると分かるように図18では、埋め部63によって凹部6の先端部分の中実部分が図14と比べて大きくなるようにしてある。このようにすることで、翼10に設けた開口部の上流端において、遠心力による応力集中をさらに緩和することができ、破損を防ぎやすくなる。   Further, as shown in FIGS. 18 and 19, the concave portion 6 includes a buried portion 63 in which the space between the upstream end portions on the pressure surface 4 side of each side surface portion 61 is solid, and the buried portion 63 may be configured to form the same curved surface as the adjacent pressure surface 4. As can be seen from a comparison between FIG. 14 and FIG. 18, in FIG. 18, the solid portion of the front end portion of the recess 6 is made larger than that of FIG. By doing in this way, the stress concentration by centrifugal force can further be relieve | moderated in the upstream end of the opening part provided in the wing | blade 10, and it becomes easy to prevent a failure | damage.

最後に第1実施形態のプロペラファン100、第2実施形態のプロペラファン100、従来例のプロペラファン100Aの送風効率の比較結果を示す。   Finally, a comparison result of the blowing efficiency of the propeller fan 100 of the first embodiment, the propeller fan 100 of the second embodiment, and the propeller fan 100A of the conventional example is shown.

図20のグラフに示すように第1実施形態及び第2実施形態のプロペラファン100であれば、凹部6により流れの引き寄せ効果により翼10出口流れを略均一にできることから、従来のプロペラファン100Aと比較して送風効率を良くできていることが分かる。また、第2実施形態のように凹部6の底面を無くし翼10に切り欠き部分を形成している場合が最も送風効率を向上させることができており、従来例に比べて送風効率を10%程度向上できていることが分かる。   As shown in the graph of FIG. 20, the propeller fan 100 according to the first embodiment and the second embodiment can make the blade 10 outlet flow substantially uniform due to the flow drawing effect by the recess 6. It can be seen that the ventilation efficiency is improved in comparison. In addition, when the bottom surface of the recess 6 is eliminated and a notched portion is formed in the blade 10 as in the second embodiment, the blowing efficiency can be improved most, and the blowing efficiency is 10% compared to the conventional example. It can be seen that the degree has been improved.

その他の実施形態について説明する。   Other embodiments will be described.

前記各実施形態では空気調和装置に用いられるプロペラファンを示したが、その他の用途に本発明のプロペラファンを用いても構わない。また、凹部の底面を残すか取り除くかについては、例えば求められる送風効率と、求められる翼の強度等との兼ね合いで適宜決定すればよい。   In each of the above embodiments, the propeller fan used in the air conditioner is shown, but the propeller fan of the present invention may be used for other purposes. Whether to leave or remove the bottom surface of the recess may be determined as appropriate in consideration of, for example, the required air blowing efficiency and the required blade strength.

また、本発明の趣旨に反しない限りにおいて様々な実施形態の組み合わせや変形を行っても構わない。   Further, various combinations and modifications of the embodiments may be performed without departing from the spirit of the present invention.

100 :プロペラファン
10 :翼
11 :ハブ
2 :前縁
3 :後縁
4 :圧力面
5 :負圧面
6 :凹部
61 :側面部
61 :各側面部
62 :底部
63 :埋め部
64 :上流側端部近傍
65 :開口部
C :回転軸
100: Propeller fan 10: Wing 11: Hub 2: Front edge 3: Rear edge 4: Pressure surface 5: Negative pressure surface 6: Concave portion 61: Side surface portion 61: Each side surface portion 62: Bottom portion 63: Buried portion 64: Upstream end Near part 65: opening C: rotation axis

Claims (12)

円筒状のハブの外周面に対して周方向に所定間隔ごとに取り付けられた複数枚の翼を備えるプロペラファンであって、
前記翼が、その後縁近傍の半径方向中央部において負圧面側に盛り上がり、少なくとも圧力面側に開口しており、当該翼の後縁から前縁側へと延びる凹部を具備し、
前記凹部が、半径方向断面を視た場合に前記負圧面に対して所定角度をなして起立するとともに互いに対向する一対の側面部とを有しており、
前記一対の側面部の間におけるスパン方向幅が上流側から下流側にかけて次第に大きくなるように構成されていることを特徴とするプロペラファン。
A propeller fan comprising a plurality of blades attached at predetermined intervals in the circumferential direction to the outer peripheral surface of a cylindrical hub,
The blade is raised to the suction surface side in the radial center near the trailing edge, and is open at least to the pressure surface side, and includes a recess extending from the trailing edge of the blade to the leading edge side,
The concave portion has a pair of side portions that stand up at a predetermined angle with respect to the suction surface when viewed in a radial direction and are opposed to each other.
A propeller fan, characterized in that a spanwise width between the pair of side surfaces gradually increases from an upstream side to a downstream side.
ファン回転軸を中心として前記翼の外径をR、内径をR、翼の後縁における内径側にある側面部の端部までの半径をR、翼の後縁における外径側にある側面部の端部までの半径Rとし、R=R+α(R−R)、R=R+β(R−R)とした場合に、0.2≦α≦0.6、0.6≦β≦0.9となる範囲に設定されている請求項1記載のプロペラファン。 Centering on the fan rotation axis, the outer diameter of the blade is R t , the inner diameter is R h , the radius to the end of the side surface on the inner diameter side at the trailing edge of the blade is R i , and the outer diameter side at the trailing edge of the blade When it is assumed that the radius R o to the end of a certain side surface portion is R i = R h + α (R t −R h ) and R o = R h + β (R t −R h ), 0.2 ≦ α The propeller fan according to claim 1, wherein the propeller fan is set in a range satisfying ≦ 0.6 and 0.6 ≦ β ≦ 0.9. 前記凹部において、ファン回転軸に対する内径側にある側面部の傾斜角をθ、ファン回転軸に対する外径側にある側面の傾斜角をθとした場合に、5°≦θ≦60°、5°≦θ≦60°、かつ、θ≧θを満たす請求項1又は2記載のプロペラファン。 In the concave portion, when the inclination angle of the side surface portion on the inner diameter side with respect to the fan rotation axis is θ i , and the inclination angle of the side surface on the outer diameter side with respect to the fan rotation shaft is θ o , 5 ° ≦ θ i ≦ 60 ° The propeller fan according to claim 1, wherein 5 ° ≦ θ o ≦ 60 ° and θ i ≧ θ o are satisfied. 前記凹部の前縁側端部が位置する半径での周方向断面を視た場合において、その翼弦長Lに対して、後縁から前記凹部の前縁側端部までの長さLをLの10%〜60%に設定されている請求項1乃至3いずれかに記載のプロペラファン。 When viewed in the circumferential direction cross-section at a radius leading edge side end portion of the recess is positioned, relative to the chord length L 0, from the rear edge to the front edge end portion of the recess length L 1 L The propeller fan according to any one of claims 1 to 3, wherein the propeller fan is set to 10% to 60% of 0 . 前記凹部の前縁側端部が位置する半径での周方向断面を視た場合において、前記凹部の前記負圧面側への深さdが上流側から下流側にかけて次第に大きくなるとともに、翼後縁近傍における深さdが所定深さdxで略一定となる深さ一定領域が設定されている請求項1乃至4いずれかに記載のプロペラファン。   When the circumferential cross section at the radius where the front edge side end of the recess is located is viewed, the depth d of the recess toward the suction surface gradually increases from the upstream side to the downstream side, and in the vicinity of the blade trailing edge 5. The propeller fan according to claim 1, wherein a constant depth region is set in which the depth d is substantially constant at a predetermined depth dx. 前記所定深さdxが翼弦長Lの2%〜10%に設定されている請求項5記載のプロペラファン。 The propeller fan having a predetermined depth dx 2% have been set according to claim 5, wherein the 10% of the chord length L 0. 前記凹部の前記各側面部の負圧面側に底部が形成されて閉塞されており、前記底部が負圧面と略並行な曲面を形成している請求項1乃至6いずれかに記載のプロペラファン。   The propeller fan according to any one of claims 1 to 6, wherein a bottom portion is formed and closed on a suction surface side of each side surface portion of the recess, and the bottom portion forms a curved surface substantially parallel to the suction surface. 前記凹部が、負圧面側にも開口しており、前記一対の側面部のみで構成されている請求項1乃至6いずれかに記載のプロペラファン。   The propeller fan according to any one of claims 1 to 6, wherein the concave portion is also opened on the suction surface side and is configured only by the pair of side surface portions. 前記各側面部と前記圧力面とが丸みを帯びて接続されている請求項1乃至8いずれかに記載のプロペラファン。   The propeller fan according to any one of claims 1 to 8, wherein each side surface portion and the pressure surface are connected in a rounded manner. 前記凹部の開口部の上流側端部近傍が丸みを帯びて接続されている請求項8又は9記載のプロペラファン。   The propeller fan according to claim 8 or 9, wherein the vicinity of the upstream end of the opening of the recess is rounded and connected. 前記凹部が、前記各側面部の圧力面側の上流側端部の間が中実となった埋め部を備えており、前記埋め部は隣接する圧力面と同一曲面を形成するように構成されている請求項10記載のプロペラファン。   The concave portion includes a filling portion in which a space between the upstream end portions on the pressure surface side of each side surface portion is solid, and the filling portion is configured to form the same curved surface as an adjacent pressure surface. The propeller fan according to claim 10. 請求項1乃至11いずれかに記載のプロペラファンを用いた空気調和装置。   An air conditioner using the propeller fan according to any one of claims 1 to 11.
JP2012209744A 2012-09-24 2012-09-24 Propeller fan and air conditioner using the propeller fan Expired - Fee Related JP6049180B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012209744A JP6049180B2 (en) 2012-09-24 2012-09-24 Propeller fan and air conditioner using the propeller fan
KR1020130091122A KR102194864B1 (en) 2012-09-24 2013-07-31 Propeller Fan
EP13185225.3A EP2711558B1 (en) 2012-09-24 2013-09-19 Propeller fan
US14/033,635 US9556881B2 (en) 2012-09-24 2013-09-23 Propeller fan
CN201310437318.1A CN103671255B (en) 2012-09-24 2013-09-24 Screw ventilation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209744A JP6049180B2 (en) 2012-09-24 2012-09-24 Propeller fan and air conditioner using the propeller fan

Publications (2)

Publication Number Publication Date
JP2014066135A true JP2014066135A (en) 2014-04-17
JP6049180B2 JP6049180B2 (en) 2016-12-21

Family

ID=50742772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209744A Expired - Fee Related JP6049180B2 (en) 2012-09-24 2012-09-24 Propeller fan and air conditioner using the propeller fan

Country Status (1)

Country Link
JP (1) JP6049180B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042877A1 (en) * 2015-09-08 2017-03-16 三菱電機株式会社 Propeller fan, propeller fan device and outdoor unit for air conditioning device
WO2018127953A1 (en) * 2017-01-05 2018-07-12 三菱電機株式会社 Propeller fan, and outdoor equipment for air-conditioning device
CN113167290A (en) * 2018-12-26 2021-07-23 三菱电机株式会社 Impeller, blower, and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2013473A (en) * 1932-09-24 1935-09-03 Gauger Fluid propeller
JPH08177792A (en) * 1994-10-25 1996-07-12 Matsushita Seiko Co Ltd Axial fan
JP2006037800A (en) * 2004-07-26 2006-02-09 Mitsubishi Electric Corp Blower

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2013473A (en) * 1932-09-24 1935-09-03 Gauger Fluid propeller
JPH08177792A (en) * 1994-10-25 1996-07-12 Matsushita Seiko Co Ltd Axial fan
JP2006037800A (en) * 2004-07-26 2006-02-09 Mitsubishi Electric Corp Blower

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042877A1 (en) * 2015-09-08 2017-03-16 三菱電機株式会社 Propeller fan, propeller fan device and outdoor unit for air conditioning device
JPWO2017042877A1 (en) * 2015-09-08 2018-03-01 三菱電機株式会社 Outdoor unit for propeller fan, propeller fan device and air conditioner
WO2018127953A1 (en) * 2017-01-05 2018-07-12 三菱電機株式会社 Propeller fan, and outdoor equipment for air-conditioning device
JPWO2018127953A1 (en) * 2017-01-05 2019-07-11 三菱電機株式会社 Propeller fan and outdoor unit of air conditioner
CN113167290A (en) * 2018-12-26 2021-07-23 三菱电机株式会社 Impeller, blower, and air conditioner
CN113167290B (en) * 2018-12-26 2024-02-06 三菱电机株式会社 Impeller, blower, and air conditioner

Also Published As

Publication number Publication date
JP6049180B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
EP2711558B1 (en) Propeller fan
US10400604B2 (en) Axial fan with grooved trailing edge and outdoor unit
EP2902639B1 (en) Propeller fan and air conditioner equipped with same
US9394911B2 (en) Axial flow fan
JP6604981B2 (en) Axial blower impeller and axial blower
EP3567258A1 (en) Blade, impeller, and blower
JP6914371B2 (en) Axial blower
JP2011144804A (en) Counter-rotating axial blower
JP5425192B2 (en) Propeller fan
JP2011074817A (en) Axial fan
EP3473860A1 (en) Turbine and axial blower
JP2012241684A (en) Axial fan
JP4867950B2 (en) Blower
JP2009203897A (en) Multi-blade blower
JP5593976B2 (en) Propeller fan
JP6049180B2 (en) Propeller fan and air conditioner using the propeller fan
KR20150136935A (en) Centrifugal fan
JP6330738B2 (en) Centrifugal blower and air conditioner using the same
JP2014231747A (en) Axial flow or mixed flow fan and air conditioner including the same
JP4818310B2 (en) Axial blower
CN110573746A (en) Propeller fan
KR102194864B1 (en) Propeller Fan
JP5147784B2 (en) Fan and axial blower
JP2018145938A (en) Propeller fan and air conditioner
KR20120023319A (en) A turbo fan for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6049180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees