JP2014052657A - Projection video display apparatus - Google Patents

Projection video display apparatus Download PDF

Info

Publication number
JP2014052657A
JP2014052657A JP2013248831A JP2013248831A JP2014052657A JP 2014052657 A JP2014052657 A JP 2014052657A JP 2013248831 A JP2013248831 A JP 2013248831A JP 2013248831 A JP2013248831 A JP 2013248831A JP 2014052657 A JP2014052657 A JP 2014052657A
Authority
JP
Japan
Prior art keywords
light
excitation light
intensity
base material
display apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013248831A
Other languages
Japanese (ja)
Other versions
JP5786012B2 (en
Inventor
Nobuyuki Kimura
展之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Consumer Electronics Co Ltd
Priority to JP2013248831A priority Critical patent/JP5786012B2/en
Publication of JP2014052657A publication Critical patent/JP2014052657A/en
Application granted granted Critical
Publication of JP5786012B2 publication Critical patent/JP5786012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a projection video display apparatus which, in using a light source in which a fluorescent substance is made to emit light by excitation light, improves a lifetime of the light source with the fluorescent substance without causing an increase in size of the apparatus.SOLUTION: A projection video display apparatus includes: an excitation light source group for emitting excitation light; a base material on which a fluorescent substance for emitting fluorescent light by incidence of the excitation light is applied; a first light intensity detector for detecting the intensity of the excitation light; a second light intensity detector for detecting the intensity of the fluorescent light; a control device for determining whether or not to move the base material on the basis of a detection value of the first and the second light intensity detectors; and a moving device for moving the base material in accordance with an indication of the control device. When the ratio of a decrease in the intensity of the fluorescent light to a decrease in the intensity of the excitation light exceeds a prescribed value, the control device may give the indication to the moving device so as to move the base material. Furthermore, the control device may move the base material in the direction orthogonal to the direction of the incident light axis in which the excitation light is incident on the base material.

Description

本発明は、投写型映像表示装置に関する。   The present invention relates to a projection display apparatus.

当該技術分野において、固体光源から出射する励起光を可視光としても高効率で発光する光源装置が提案されている(特許文献1参照)。特許文献1では、紫外光よりエネルギーの低い可視光を励起光として蛍光体に照射し、蛍光体を回転制御可能な円形上の基材に接着することで、励起光が蛍光体の1箇所に照射されるのを防いでいる。   In this technical field, a light source device has been proposed that emits light with high efficiency even when excitation light emitted from a solid light source is visible light (see Patent Document 1). In Patent Document 1, visible light having lower energy than ultraviolet light is irradiated as excitation light on a phosphor, and the phosphor is adhered to a circular base material that can be rotationally controlled, so that the excitation light is applied to one place of the phosphor. Prevents irradiation.

特開2009−277516号公報JP 2009-277516 A

特許文献1によれば、円盤の円周上に、励起光が常に照射されることに変わりなく、蛍光体の寿命改善としては不十分である。尚、回転中心から遠い位置に励起光を照射すれば、実照射領域を大きくすることは可能であるが、円盤の形状が大きくなり、装置が大型化する、という課題がある。   According to Patent Document 1, excitation light is always irradiated on the circumference of the disk, which is insufficient for improving the life of the phosphor. Note that if the excitation light is irradiated to a position far from the center of rotation, the actual irradiation area can be enlarged, but there is a problem that the shape of the disk becomes large and the apparatus becomes large.

そこで、本発明の目的は、装置の大型化を招くことなく、蛍光体光源の寿命を改善した投写型映像表示装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a projection display apparatus that improves the life of a phosphor light source without increasing the size of the apparatus.

上記課題を解決するため、本発明の望ましい態様の一つは次の通りである。   In order to solve the above problems, one of the desirable embodiments of the present invention is as follows.

当該投写型映像表示装置は、励起光を発光する励起光源群と、励起光の入射により蛍光光を発光する蛍光体が塗布された基材と、励起光の強度を検出する第1の光強度検出器と、蛍光光の強度を検出する第2の光強度検出器と、第1及び第2の光強度検出器の検出値に基づいて、基材を移動させるか否かを判断する制御装置と、制御装置の指示に応じて基材を移動させる移動装置を備える。   The projection display apparatus includes an excitation light source group that emits excitation light, a base material coated with a phosphor that emits fluorescence light upon incidence of excitation light, and a first light intensity that detects the intensity of excitation light. A control device that determines whether or not to move the substrate based on the detection values of the detector, the second light intensity detector that detects the intensity of the fluorescent light, and the first and second light intensity detectors And a moving device for moving the substrate in accordance with an instruction from the control device.

本発明によれば、装置の大型化を招くことなく、蛍光体光源の寿命を改善した投写型映像表示装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the projection type video display apparatus which improved the lifetime of the fluorescent light source can be provided, without causing the enlargement of an apparatus.

本実施例の照明光学系の一部を示す図。The figure which shows a part of illumination optical system of a present Example. 投写型映像表示装置の光学系の概略構成図。1 is a schematic configuration diagram of an optical system of a projection display apparatus. 従来技術の照明光学系の一部を示す図。The figure which shows a part of illumination optical system of a prior art.

以下、本実施例について、図を参照しながら説明する。尚、各図において、同一部分には同一符号を付して、一度説明したものについては、その説明を省略する。   Hereinafter, the present embodiment will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same part and the description is abbreviate | omitted about what was once demonstrated.

ここで、右手直角座標系を導入しておく。図中で紙面内左から右、即ち、それぞれの図中の光軸100の光の進行方向をZ軸として、Z軸に直交する面内で紙面に平行な軸をX軸とし、紙面裏から表に向かう軸をY軸とする(但し、図1(B)、図1(C)、図3(B)については紙面表から裏に向かう軸がX軸となる)。X軸に平行な方向を「X方向」、Y軸に平行な方向を「Y方向」、Z軸に平行な方向を「Z方向」、偏光方向がX方向の偏光光を「X偏光光」、偏光方向がY方向の偏光光を「Y偏光光」と呼ぶ。   Here, a right-handed rectangular coordinate system is introduced. In the drawings, from left to right in the drawing, that is, the light traveling direction of the optical axis 100 in each drawing is taken as the Z axis, and the axis parallel to the drawing in the plane perpendicular to the Z axis is taken as the X axis. The axis toward the front is the Y-axis (however, in FIGS. 1B, 1C, and 3B, the axis from the front to the back of the page is the X-axis). The direction parallel to the X axis is the “X direction”, the direction parallel to the Y axis is the “Y direction”, the direction parallel to the Z axis is the “Z direction”, and the polarized light whose polarization direction is the X direction is “X polarized light”. The polarized light whose polarization direction is the Y direction is referred to as “Y-polarized light”.

まず、本実施例と従来技術の差異を分かりやすくするため、従来技術(特許文献1)について説明する。図3は、従来技術の照明光学系の一部を示す図である。   First, in order to make the difference between the present embodiment and the prior art easier to understand, the prior art (Patent Document 1) will be described. FIG. 3 is a diagram showing a part of a conventional illumination optical system.

図3(A)において、励起光源群5から射出した励起光は、コリメートレンズ群6により略平行光となり、ダイクロイックミラー7に入射する。ダイクロイックミラー7は励起光の波長域を透過し、蛍光光の波長域を反射する特性を持つ。そこで、励起光は、ダイクロイックミラー7を通過し、集光レンズ4を通過後、蛍光体3が塗布された円盤1に入射する。集光レンズ4の曲率は、入射した平行光が円盤1の1箇所に集光するように設定されている。   In FIG. 3A, the excitation light emitted from the excitation light source group 5 becomes substantially parallel light by the collimating lens group 6 and enters the dichroic mirror 7. The dichroic mirror 7 has a characteristic of transmitting the wavelength range of excitation light and reflecting the wavelength range of fluorescent light. Therefore, the excitation light passes through the dichroic mirror 7, passes through the condenser lens 4, and then enters the disk 1 on which the phosphor 3 is applied. The curvature of the condensing lens 4 is set so that the incident parallel light is condensed at one place of the disk 1.

円盤1は、回転素子2を中心軸とする回転制御可能な円形状の基材である。励起光により励起された円盤1上の蛍光体3は、集光レンズ4の方向に蛍光光を射出する。蛍光光は集光レンズ4を通過後、略平行光となり、ダイクロイックミラー7で反射して、投写レンズ側に入射する。   The disk 1 is a circular base material whose rotation can be controlled with the rotation element 2 as a central axis. The phosphor 3 on the disk 1 excited by the excitation light emits fluorescent light in the direction of the condenser lens 4. After passing through the condenser lens 4, the fluorescent light becomes substantially parallel light, is reflected by the dichroic mirror 7, and enters the projection lens side.

図3(B)において、励起光は円盤1上の照射領域31に集光する。蛍光体3の1箇所に励起光が常に集光されるのを防ぐため、円盤1は回転素子2を中心に回転する。蛍光体3の1箇所に励起光が常に集光される場合(円盤1の回転なし)と比較すると、円周1周が照射領域となり、蛍光体の寿命が改善される。   In FIG. 3B, the excitation light is condensed on the irradiation region 31 on the disk 1. In order to prevent the excitation light from being always collected at one place of the phosphor 3, the disk 1 rotates around the rotating element 2. Compared with the case where excitation light is always collected at one place of the phosphor 3 (without rotation of the disk 1), the circumference of the circumference becomes an irradiation region, and the life of the phosphor is improved.

次に、本実施例について説明する。図1は、本実施例の照明光学系の一部を示す図である。尚、本実施例では、照明光学系とは、図2において、投写レンズ22及びスクリーン120を除く部分を指すものとする。   Next, this embodiment will be described. FIG. 1 is a diagram showing a part of the illumination optical system of the present embodiment. In this embodiment, the illumination optical system refers to a portion excluding the projection lens 22 and the screen 120 in FIG.

図1(A)において、励起光源群5から射出した励起光が蛍光光の入射を受け蛍光体3が蛍光光を発光し、その後、蛍光光が投写レンズ側に入射する点については図3の説明と同様である。   In FIG. 1A, the excitation light emitted from the excitation light source group 5 receives the incidence of fluorescent light, the phosphor 3 emits fluorescent light, and then the fluorescent light is incident on the projection lens side in FIG. It is the same as the description.

円盤1は、回転素子2を中心軸とする回転制御可能な円形状の基材であり、連結部40を介して、円盤1をZ方向に移動できる移動装置42と接続されている。連結部40には穴が開いており、位置決めピン41を穴に通している。そこで、制御装置60は、移動装置42を作動させることにより、Z方向に円盤1を移動することができる。 The disk 1 is a circular base material whose rotation is controllable with the rotation element 2 as a central axis, and is connected via a connecting part 40 to a moving device 42 that can move the disk 1 in the Z direction. The connecting portion 40 has a hole, and the positioning pin 41 is passed through the hole. Therefore, the control device 60 can move the disk 1 in the Z direction by operating the moving device 42.

円盤1の後面には、励起光源群5から射出した励起光の強度を検出する第1の光強度検出器50を配置する。又、円盤1の後面で励起光強度を検出するため、円盤1の基材は透過基材とし、蛍光体が接着されていない領域(無蛍光体領域30)を設ける。更に、ダイクロイックミラー7の投写レンズ側に、蛍光光の強度を検出する第2の光強度検出器51を配置する。 A first light intensity detector 50 that detects the intensity of the excitation light emitted from the excitation light source group 5 is disposed on the rear surface of the disk 1. Further, in order to detect the excitation light intensity on the rear surface of the disk 1, the base material of the disk 1 is a transmissive base material, and a region (non-fluorescent material region 30) to which no phosphor is bonded is provided. Further, a second light intensity detector 51 for detecting the intensity of the fluorescent light is disposed on the projection lens side of the dichroic mirror 7.

第1の光強度検出器50及び第2の光強度検出器51は、各々、光強度のモニタ結果を制御装置60に送信する。制御装置60は、受信したモニタ結果に基づいて、円盤1を移動させるか否かを判断する。 The first light intensity detector 50 and the second light intensity detector 51 each transmit a light intensity monitoring result to the control device 60. The control device 60 determines whether or not to move the disk 1 based on the received monitoring result.

投写型映像表示装置の実使用に伴い、励起光源、蛍光体とも徐々に劣化し、投写型映像表示装置としての明るさも低下する。励起光源が劣化した場合は、励起光出力が低下するため、励起により発光された蛍光光の出力も励起光強度の低下と比例して低下し、投写型映像表示装置の明るさが低下する。又、蛍光体のみが劣化した場合も、蛍光光の出力が低下し、投写型映像表示装置の明るさが低下する。 With actual use of the projection display apparatus, both the excitation light source and the phosphor gradually deteriorate, and the brightness as the projection display apparatus also decreases. When the excitation light source is deteriorated, the excitation light output is reduced, so the output of the fluorescent light emitted by the excitation is also reduced in proportion to the reduction in the excitation light intensity, and the brightness of the projection display apparatus is reduced. Even when only the phosphor is deteriorated, the output of the fluorescent light is lowered, and the brightness of the projection display apparatus is lowered.

蛍光体の劣化が大きい場合は、励起光強度の低下と比較し、蛍光光強度の低下が大きく検出される。そこで、制御装置60は、励起光強度の低下に対する蛍光光強度の低下の割合が所定値を超えた場合、円盤1を移動させる、と判断する。 When the phosphor is greatly deteriorated, a decrease in the fluorescence light intensity is detected as compared with a decrease in the excitation light intensity. Therefore, the control device 60 determines that the disk 1 is moved when the ratio of the decrease in the fluorescence light intensity to the decrease in the excitation light intensity exceeds a predetermined value.

次に、制御装置60は、円盤1をZ方向にレーザ照射サイズ程度(例えば、1〜2mm)移動させる。例えば、蛍光体3の塗布幅10mm、レーザ照射サイズ2mmの場合、励起光照射可能位置は5箇所(移動回数は4回)となる。即ち、Z方向に移動させない場合(特許文献1)と比べると、寿命が約5倍となる。 Next, the control device 60 moves the disk 1 in the Z direction by about the laser irradiation size (for example, 1 to 2 mm). For example, when the application width of the phosphor 3 is 10 mm and the laser irradiation size is 2 mm, the excitation light irradiation possible positions are five (the number of movements is four times). In other words, the life is about five times longer than when not moving in the Z direction (Patent Document 1).

記憶装置61は、蛍光体3の塗布幅、レーザ照射サイズ、現在集光位置となっている円周上の位置等を記憶しており、制御装置60はこれらの情報に基づいて、移動装置42に円盤1を移動するよう指示を出す。次に移動させるべき位置がなくなったと判断した場合は、ユーザインタフェースを介して円盤1を交換するようユーザに通知するようにしてもよい。 The storage device 61 stores the application width of the phosphor 3, the laser irradiation size, the position on the circumference that is the current condensing position, and the control device 60, based on these pieces of information, the moving device 42. Is instructed to move the disk 1. If it is determined that there is no longer a position to be moved, the user may be notified to replace the disk 1 via the user interface.

尚、制御装置60は、投写型映像表示装置を作動中(レーザを照射中)、常に円盤を回転させる。ここで用いる励起光は高ワット(20〜30W)のため、回転させないで一点に熱を集中させてしまうと一瞬で蛍光体を基材に接着するシリコン接着剤が焼けてしまうためである。常に回転させるため、1回転に1回は、無蛍光体領域30が集光位置を通過する。よって、第1の光強度検出器50は確実に励起光強度を検出できる。 Note that the control device 60 always rotates the disk while the projection display apparatus is operating (during laser irradiation). This is because the excitation light used here is a high wattage (20 to 30 W), and if the heat is concentrated at one point without rotating, the silicon adhesive for bonding the phosphor to the substrate is burned in an instant. In order to always rotate, the non-fluorescent substance region 30 passes through the condensing position once per rotation. Therefore, the first light intensity detector 50 can reliably detect the excitation light intensity.

図1(B)は、蛍光体3が円盤1に接着している状態を示している。円盤1の面上には、蛍光体3が接着されている領域(斜線で表示)、及び、蛍光体3内の照射領域31があり、更に、蛍光体3が接着されていない無蛍光体領域30が設けられている。円盤1が回転し、照射領域31を無蛍光体領域30が通過すると、第1の光強度検出器50が励起光強度を検出する。無蛍光体領域30は、光束量低下を防ぐために、照射領域31と同程度の幅であることが望ましい。 FIG. 1B shows a state in which the phosphor 3 is bonded to the disk 1. On the surface of the disk 1, there are a region to which the phosphor 3 is adhered (indicated by oblique lines), an irradiation region 31 in the phosphor 3, and a non-phosphor region to which the phosphor 3 is not adhered. 30 is provided. When the disk 1 rotates and the non-fluorescent material region 30 passes through the irradiation region 31, the first light intensity detector 50 detects the excitation light intensity. The non-fluorescent material region 30 is desirably as wide as the irradiation region 31 in order to prevent a decrease in the amount of light flux.

図1(C)は、円盤の位置をZ方向に移動した場合の一例を示している。蛍光体3が接着されている領域における半径方向の幅は、照射領域31を半径方向に複数収容できる大きさとなっている。円盤の位置を照射領域31と同程度のサイズだけ移動することにより、劣化した蛍光体領域とは別の領域の蛍光体に励起光を照射することができるため、蛍光光の出力が上昇し、明るさを回復することができる。即ち、光源としての寿命を改善できる。 FIG. 1C shows an example when the position of the disk is moved in the Z direction. The radial width of the region where the phosphor 3 is bonded is large enough to accommodate a plurality of irradiation regions 31 in the radial direction. By moving the position of the disk by the same size as the irradiation region 31, it is possible to irradiate the phosphor in a region other than the deteriorated phosphor region with the excitation light, so that the output of the fluorescent light increases, Brightness can be restored. That is, the lifetime as a light source can be improved.

尚、第1の光強度検出器50の位置を円盤1の後面、第2の光強度検出器51の位置をダイクロイックミラーの後面としたが、励起光強度を検出できる位置であれば、この位置に限定されるものではない。又、円盤を移動させる方向も、蛍光体3の劣化した領域を回避できるように移動できる方向であれば、Z方向に限定されるものではない。   Although the position of the first light intensity detector 50 is the rear surface of the disk 1 and the position of the second light intensity detector 51 is the rear surface of the dichroic mirror, this position can be used as long as the excitation light intensity can be detected. It is not limited to. Also, the direction in which the disk is moved is not limited to the Z direction as long as it can move so as to avoid the degraded region of the phosphor 3.

上記実施例では、蛍光体を塗布する対象を円盤として説明したが、円盤に限定されるものではなく、例えば、多角形の形状の基材であってもよい。   In the said Example, although the object which apply | coats fluorescent substance was demonstrated as a disk, it is not limited to a disk, For example, a polygon-shaped base material may be sufficient.

次に、投写型映像表示装置の照明光学系について説明する。図2は、投写型映像表示装置の光学系の概略構成図である。各色光の光路に配置されている要素を区別する際には符号の後に色光を表すR,G,Bを添えて示し、区別する必要がない場合には、色光の添え字を省略する。   Next, the illumination optical system of the projection display apparatus will be described. FIG. 2 is a schematic configuration diagram of an optical system of the projection display apparatus. When distinguishing elements arranged in the optical path of each color light, R, G, and B representing the color light are added after the reference numerals, and when it is not necessary to distinguish, the subscript of the color light is omitted.

まず、赤色光及び緑色光が液晶型映像表示素子(以下、液晶パネル)17R、17Gに均一な照度で照射される原理を説明する。 First, the principle of applying red light and green light to liquid crystal display elements (hereinafter referred to as liquid crystal panels) 17R and 17G with uniform illuminance will be described.

励起光源としては、青色レーザを使用する。レーザは発光源の発光領域が小さいため、光の集光やコリメートが容易なためである。励起光源群5から射出した青色励起光は、コリメートレンズ群6により略平行となり、ダイクロイックミラー7に入射する。ダイクロイックミラー7は青色光を透過し、緑色光及び赤色光を反射する特性を持つ。従って、青色励起光はダイクロイックミラー7を通過し、集光レンズ4で集光し、円盤1に集光する。黄色蛍光体3で発生した緑色光と赤色光との成分を含んだ黄色光は、円盤1から射出後、集光レンズ4を通過して平行となり、ダイクロイックミラー7で反射して、偏光変換インテグレータ70に入射する。 A blue laser is used as the excitation light source. This is because the light emission area of the light source is small, so that it is easy to collect and collimate light. The blue excitation light emitted from the excitation light source group 5 becomes substantially parallel by the collimating lens group 6 and enters the dichroic mirror 7. The dichroic mirror 7 has characteristics of transmitting blue light and reflecting green light and red light. Therefore, the blue excitation light passes through the dichroic mirror 7, is condensed by the condenser lens 4, and is condensed on the disk 1. The yellow light including the components of green light and red light generated by the yellow phosphor 3 is emitted from the disk 1, passes through the condenser lens 4, becomes parallel, is reflected by the dichroic mirror 7, and is converted into a polarization conversion integrator. 70 is incident.

偏光変換インテグレータ70は、第1のレンズ群8と第2のレンズ群9からなる均一照明行うオプチカルインテグレータと、光の偏光方向を所定偏光方向に揃えて直線偏光光に変換する偏光ビームスプリッタアレイとλ/2板を組み合わせた偏光変換素子10とを含む。第2のレンズ群9からの光は偏光変換素子10により、所定の偏光方向、例えばY方向の直線偏光光に略揃えられる。そして、第1のレンズ群8の各レンズセルの投影像は、それぞれ集光レンズ11、コリメートレンズ15R、15Gにより各液晶パネル17R、17G上に重ね合わせられる。 The polarization conversion integrator 70 includes an optical integrator that performs uniform illumination including the first lens group 8 and the second lens group 9, and a polarization beam splitter array that converts light into a linearly polarized light with the polarization direction aligned with a predetermined polarization direction. and a polarization conversion element 10 combined with a λ / 2 plate. Light from the second lens group 9 is substantially aligned by a polarization conversion element 10 into linearly polarized light in a predetermined polarization direction, for example, the Y direction. The projected images of the lens cells of the first lens group 8 are superimposed on the liquid crystal panels 17R and 17G by the condenser lens 11 and the collimating lenses 15R and 15G, respectively.

その際、集光レンズ11を通過した黄色光は、ダイクロイックミラー12により、赤色光と緑色光に分離される。ダイクロイックミラー12は緑色光を通過、赤色光を反射する特性を有しているので、ダイクロイックミラー12に入射した黄色光の内、緑色光はダイクロイックミラー12を通過し、反射ミラー13で反射し、コリメートレンズ15Gで略平行となり、入射偏光板16GでX偏光光を更に取り除いた後、液晶パネル17Gに入射する。一方、赤色光は、ダイクロイックミラー12で反射し、反射ミラー14で反射し、コリメートレンズ15Rで略平行となり、入射偏光板16RでX偏光光を更に取り除いた後、液晶パネル17Rに入射する。 At that time, the yellow light passing through the condenser lens 11 is separated into red light and green light by the dichroic mirror 12. Since the dichroic mirror 12 has characteristics of transmitting green light and reflecting red light, among yellow light incident on the dichroic mirror 12, green light passes through the dichroic mirror 12 and is reflected by the reflection mirror 13. It becomes substantially parallel by the collimating lens 15G, and after further removing the X-polarized light by the incident polarizing plate 16G, it enters the liquid crystal panel 17G. On the other hand, the red light is reflected by the dichroic mirror 12, reflected by the reflecting mirror 14, becomes substantially parallel by the collimating lens 15R, and after further removing the X-polarized light by the incident polarizing plate 16R, enters the liquid crystal panel 17R.

このようにして、励起光源群5からの偏光方向がランダムな光を所定偏光方向(ここではY偏光光)に揃えながら、液晶パネルを均一照明することができる。 In this manner, the liquid crystal panel can be uniformly illuminated while aligning light having a random polarization direction from the excitation light source group 5 with a predetermined polarization direction (here, Y-polarized light).

次に、青色光が液晶パネル17Bに均一な照度で照射される原理を説明する。   Next, the principle of irradiating blue light to the liquid crystal panel 17B with uniform illuminance will be described.

青色光源としては、LEDを使用する。レーザと違い目への危険性が少ない、視感度が低いため明るさへの寄与が少ない、長寿命である、等の理由からである。   An LED is used as the blue light source. This is because, unlike lasers, there is less danger to eyes, less visibility, less contribution to brightness, and longer life.

励起光源としては集光やコリメートが容易な青色レーザを使用し、投写用の光源としてはLEDを使用することにより、光の明るさを保ちつつ、目への危険性をも少なくできる、という効果を奏する。   By using a blue laser that is easy to collect and collimate as an excitation light source and using an LED as a light source for projection, the effect of reducing the risk to eyes while maintaining the brightness of the light Play.

LED19から発光した青色光は、直後に配置された多重反射素子20に入射する。青色光は多重反射素子20で複数回反射し、多重反射素子20の出射開口面では、均一照度分布を有する光となる。多重反射素子20の出射開口面の形状は、液晶パネル17Bと略相似な形状である。多重反射素子20を射出した青色光はコリメートレンズ15Bで略平行となり、入射偏光板16Bに入射する。LEDから射出する光は偏光方向がランダムな光であるため、入射偏光板16Bにより、X偏光光が取り除かれ、Y偏光光のみが通過し、液晶パネル17Bに入射する。 The blue light emitted from the LED 19 is incident on the multiple reflection element 20 disposed immediately thereafter. The blue light is reflected by the multiple reflection element 20 a plurality of times, and becomes light having a uniform illuminance distribution on the exit aperture surface of the multiple reflection element 20. The shape of the exit aperture surface of the multiple reflection element 20 is substantially similar to that of the liquid crystal panel 17B. The blue light emitted from the multiple reflection element 20 becomes substantially parallel by the collimator lens 15B and enters the incident polarizing plate 16B. Since the light emitted from the LED is light having a random polarization direction, the X-polarized light is removed by the incident polarizing plate 16B, and only the Y-polarized light passes and enters the liquid crystal panel 17B.

続いて、Y方向を透過軸とする入射偏光板16(16R、16G、16B)により偏光度が高められた各色光は、光強度変調部を構成する各液晶パネル17(17R、17G、17B)により、図示しないカラー映像信号に応じて変調(光強度変調)し、青色光と赤色光のX偏光、及び緑色光のZ偏光の光学像を形成する。 Subsequently, each color light whose degree of polarization is increased by the incident polarizing plate 16 (16R, 16G, 16B) whose transmission axis is the Y direction is the liquid crystal panel 17 (17R, 17G, 17B) constituting the light intensity modulation unit. Thus, modulation (light intensity modulation) is performed in accordance with a color video signal (not shown) to form an X-polarized optical image of blue light and red light and a Z-polarized optical image of green light.

当該光学像は、出射偏光板18(18R、18G、18B)に入射する。出射偏光板18R、18G、18Bは、X方向を透過軸とする偏光板であり、出射偏光板18Gは、Z方向を透過軸とする偏光板である。これにより、不要な偏光光成分(ここでは、Y偏光光)が除去され、コントラストが高められる。 The optical image is incident on the output polarizing plate 18 (18R, 18G, 18B). The outgoing polarizing plates 18R, 18G, and 18B are polarizing plates that have the X direction as the transmission axis, and the outgoing polarizing plate 18G is a polarizing plate that has the Z direction as the transmission axis. Thereby, an unnecessary polarized light component (here, Y-polarized light) is removed, and the contrast is increased.

当該光学像は、色合成手段である色合成プリズム21に入射する。この時、緑色光の光学像は、Z偏光(色合成プリズム21のダイクロイック膜面に対してP偏光)のままで入射する。一方、青色光路及び赤色光路では、出射偏光板18B、18Rと色合成プリズム21との間に図示しない1/2λ波長板を設けていることから、X偏光の青色光及び赤色光の光学像は、Y偏光(色合成プリズム21の色合成を行うダイクロイック膜面に対してS偏光)の光学像に変換された後、色合成プリズム21に入射する。これは、ダイクロイック膜の分光特性を考慮したもので、緑色光をP偏光光、赤色光と青色光をS偏光光とする所謂SPS合成とすることで、効率良く色合成するためである。 The optical image is incident on the color synthesizing prism 21 which is color synthesizing means. At this time, the optical image of green light is incident as Z-polarized light (P-polarized light with respect to the dichroic film surface of the color synthesis prism 21). On the other hand, in the blue optical path and the red optical path, a ½λ wavelength plate (not shown) is provided between the output polarizing plates 18B and 18R and the color combining prism 21, so that the optical images of the X-polarized blue light and red light are After being converted into an optical image of Y-polarized light (S-polarized light with respect to the dichroic film surface that performs color composition of the color composition prism 21), the light enters the color composition prism 21. This is because the spectral characteristics of the dichroic film are taken into account, and the color is efficiently synthesized by so-called SPS synthesis in which green light is P-polarized light and red light and blue light are S-polarized light.

続いて、色合成プリズム21は、青色光を反射するダイクロイック膜(誘電体多層膜)と、赤色光を反射するダイクロイック膜(誘電体多層膜)とが、4つの直角プリズムの界面に略X字状(クロス状)に形成されたものである。色合成プリズム21の3つの入射面の内、対向する入射面に入射した青色光と赤色光(ダイクロイック膜面に対してS偏光光)は、クロスした青色光用のダイクロイック膜及び赤色光用のダイクロイック膜でそれぞれ反射される。又、中央の入射面に入射した緑色光(ダイクロイック膜面に対してP偏光光)は直進する。これらの各色光の光学像は色合成され、カラー映像光(合成光)が出射面から出射する。 Subsequently, in the color synthesis prism 21, a dichroic film (dielectric multilayer film) that reflects blue light and a dichroic film (dielectric multilayer film) that reflects red light are substantially X-shaped at the interface of four right-angle prisms. It is formed in a shape (cross shape). Of the three incident surfaces of the color combining prism 21, blue light and red light (S-polarized light with respect to the dichroic film surface) incident on the opposite incident surfaces are crossed by the dichroic film for blue light and the red light. Each is reflected by the dichroic film. Further, the green light (P-polarized light with respect to the dichroic film surface) incident on the central incident surface travels straight. The optical images of these color lights are color-synthesized, and color video light (synthesized light) is emitted from the emission surface.

そして、色合成プリズム21から出射した合成光は、例えば、ズームレンズであるような投写レンズ22によって、透過型又は投写型のスクリーン120上に投影され、もって、拡大投写した映像を表示することとなる。   Then, the combined light emitted from the color combining prism 21 is projected onto a transmission type or projection type screen 120 by a projection lens 22 such as a zoom lens, for example, thereby displaying an enlarged projected image. Become.

ここでは、映像表示素子として、液晶型映像表示素子(液晶パネル)を例として説明したが、DMD(Digital Mirror Device)素子を用いた投写型映像表示装置にも適用できることは、言うまでもない。   Here, the liquid crystal display device (liquid crystal panel) has been described as an example of the video display device, but it goes without saying that the present invention can also be applied to a projection display device using a DMD (Digital Mirror Device) device.

1…円盤、2…回転素子、3…蛍光体、4…集光レンズ、5…励起光源群、6…コリメートレンズ群、7…ダイクロイックミラー、30…無蛍光体領域、31…照射領域、32…蛍光体領域、40…連結部、41…位置決めピン、42…移動装置、50…第1の光強度検出器、51…第2の光強度検出器、60…制御装置、61…記憶装置。 DESCRIPTION OF SYMBOLS 1 ... Disk 2, 2 Rotating element, 3 ... Phosphor, 4 ... Condensing lens, 5 ... Excitation light source group, 6 ... Collimating lens group, 7 ... Dichroic mirror, 30 ... Non-fluorescent substance area, 31 ... Irradiation area, 32 DESCRIPTION OF SYMBOLS ... Phosphor area | region, 40 ... Connection part, 41 ... Positioning pin, 42 ... Moving device, 50 ... 1st light intensity detector, 51 ... 2nd light intensity detector, 60 ... Control apparatus, 61 ... Memory | storage device.

Claims (6)

励起光を発光する励起光源群と、
前記励起光の入射により蛍光光を発光する蛍光体が塗布された基材と、
前記励起光の強度を検出する第1の光強度検出器と、
前記蛍光光の強度を検出する第2の光強度検出器と、
前記第1及び第2の光強度検出器の検出値に基づいて、前記基材を移動させるか否かを判断する制御装置と、
前記制御装置の指示に応じて前記基材を移動させる移動装置を備える、投写型映像表示装置。
An excitation light source group that emits excitation light; and
A substrate coated with a phosphor that emits fluorescent light upon incidence of the excitation light; and
A first light intensity detector for detecting the intensity of the excitation light;
A second light intensity detector for detecting the intensity of the fluorescent light;
A control device for determining whether or not to move the substrate based on detection values of the first and second light intensity detectors;
A projection display apparatus comprising a moving device for moving the base material in accordance with an instruction from the control device.
前記制御装置は、前記励起光の強度の低下に対する前記蛍光光の強度の低下の割合が所定値を超えた場合、前記基材を移動するよう前記移動装置に指示を出す、請求項1記載の投写型映像表示装置。   The said control apparatus issues the instruction | indication to the said moving apparatus to move the said base material, when the ratio of the fall of the intensity | strength of the said fluorescence light with respect to the fall of the intensity | strength of the said excitation light exceeds a predetermined value. Projection display device. 前記移動装置は、前記基材を、前記励起光が前記基材に入射する入射光軸方向と直交する方向に移動させる、請求項2記載の投写型映像表示装置。   The projection display apparatus according to claim 2, wherein the moving device moves the base material in a direction orthogonal to an incident optical axis direction in which the excitation light enters the base material. 前記基材における前記励起光を受光する側の面は、前記励起光を透過させるための無蛍光体領域を備える、請求項1乃至3何れか一に記載の投写型映像表示装置。   4. The projection display apparatus according to claim 1, wherein a surface of the base material that receives the excitation light includes a non-fluorescent region for transmitting the excitation light. 5. 前記蛍光体が塗布される領域は、前記励起光が実際に集光する照射領域を含み、
当該蛍光体が塗布される領域は円状に形成されると共に、当該円状における半径方向の幅は、前記照射領域を当該半径方向に複数収容できる大きさである、請求項4記載の投写型映像表示装置。
The area where the phosphor is applied includes an irradiation area where the excitation light is actually condensed,
5. The projection type according to claim 4, wherein a region to which the phosphor is applied is formed in a circular shape, and a radial width in the circular shape is large enough to accommodate a plurality of the irradiation regions in the radial direction. Video display device.
前記励起光源群は青色レーザであり、LEDのスクリーンへの投写用光源を更に備える、請求項1乃至5何れか一に記載の投写型映像表示装置。   The projection display apparatus according to claim 1, wherein the excitation light source group is a blue laser, and further includes a light source for projecting an LED on a screen.
JP2013248831A 2013-12-02 2013-12-02 Projection display device Active JP5786012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248831A JP5786012B2 (en) 2013-12-02 2013-12-02 Projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248831A JP5786012B2 (en) 2013-12-02 2013-12-02 Projection display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010163478A Division JP5427719B2 (en) 2010-07-21 2010-07-21 Projection display device

Publications (2)

Publication Number Publication Date
JP2014052657A true JP2014052657A (en) 2014-03-20
JP5786012B2 JP5786012B2 (en) 2015-09-30

Family

ID=50611133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248831A Active JP5786012B2 (en) 2013-12-02 2013-12-02 Projection display device

Country Status (1)

Country Link
JP (1) JP5786012B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167297A (en) * 2001-12-04 2003-06-13 Nec Viewtechnology Ltd Time division color separating device and color picture display device
JP2003233123A (en) * 2002-02-08 2003-08-22 Sharp Corp Projector device
JP2005024719A (en) * 2003-06-30 2005-01-27 Marantz Japan Inc Projector apparatus
JP2005107400A (en) * 2003-10-01 2005-04-21 Nec Viewtechnology Ltd Color wheel, filter device and projector
JP2005189539A (en) * 2003-12-25 2005-07-14 Toshiba Corp Lighting system for projector
JP2006119589A (en) * 2004-10-22 2006-05-11 Ctx Opto Electronics Corp Projection apparatus having filtering device
JP2007187702A (en) * 2006-01-11 2007-07-26 Casio Comput Co Ltd Projector, method for adjusting coloring of projector, and color wheel used for method
JP2007218956A (en) * 2006-02-14 2007-08-30 Sharp Corp Projection type image display apparatus
JP2009539219A (en) * 2006-06-02 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination device for generating colored and white light
JP2010085745A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Light source device and projector
JP2010164846A (en) * 2009-01-16 2010-07-29 Casio Computer Co Ltd Projection apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167297A (en) * 2001-12-04 2003-06-13 Nec Viewtechnology Ltd Time division color separating device and color picture display device
JP2003233123A (en) * 2002-02-08 2003-08-22 Sharp Corp Projector device
JP2005024719A (en) * 2003-06-30 2005-01-27 Marantz Japan Inc Projector apparatus
JP2005107400A (en) * 2003-10-01 2005-04-21 Nec Viewtechnology Ltd Color wheel, filter device and projector
JP2005189539A (en) * 2003-12-25 2005-07-14 Toshiba Corp Lighting system for projector
JP2006119589A (en) * 2004-10-22 2006-05-11 Ctx Opto Electronics Corp Projection apparatus having filtering device
JP2007187702A (en) * 2006-01-11 2007-07-26 Casio Comput Co Ltd Projector, method for adjusting coloring of projector, and color wheel used for method
JP2007218956A (en) * 2006-02-14 2007-08-30 Sharp Corp Projection type image display apparatus
JP2009539219A (en) * 2006-06-02 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination device for generating colored and white light
JP2010085745A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Light source device and projector
JP2010164846A (en) * 2009-01-16 2010-07-29 Casio Computer Co Ltd Projection apparatus

Also Published As

Publication number Publication date
JP5786012B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5427719B2 (en) Projection display device
JP5567844B2 (en) Projection display device
EP2687903B1 (en) Phosphor-equipped illumination optical system and projector
JP5617288B2 (en) Lighting device and projector
JP5675320B2 (en) Light source device and projection-type image display device
JP6452172B2 (en) Illumination device, wheel deterioration detection method, and projector
CN107357122B (en) Light source device and projector
US8462296B2 (en) Projection-type display apparatus
JP2011164151A (en) Illumination device and projection type image display device
JP2012220811A (en) Method for adjusting light source device, light source device, and projector
JP2012128121A (en) Illumination device and projector
JP2015108758A (en) Illumination apparatus, projection type video display device, illumination method, and projection type video display method
JP2017015966A (en) Light source device and projector
JP2016145881A (en) Wavelength conversion element, illumination device, and projector
JP5433561B2 (en) Light source device
JP2017037175A (en) Light source apparatus, illumination apparatus, and projector
JP5786012B2 (en) Projection display device
JP2019008018A (en) Illumination device and projector
JP5733376B2 (en) projector
JP2016066086A (en) Lighting device and projector
JP2019197129A (en) Light source device, projector using light source device, control method of light source device, and program
JP2016212172A (en) Illumination optical system and image projection device
JP5872639B2 (en) Illumination light source device
JP2015108830A (en) Illumination optical system including phosphor, projector, and irradiation method
JPWO2013038488A1 (en) Illumination optical system and projection display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5786012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250