JP2014048571A - Optical deflector, image forming apparatus, and image projection device - Google Patents

Optical deflector, image forming apparatus, and image projection device Download PDF

Info

Publication number
JP2014048571A
JP2014048571A JP2012193169A JP2012193169A JP2014048571A JP 2014048571 A JP2014048571 A JP 2014048571A JP 2012193169 A JP2012193169 A JP 2012193169A JP 2012193169 A JP2012193169 A JP 2012193169A JP 2014048571 A JP2014048571 A JP 2014048571A
Authority
JP
Japan
Prior art keywords
optical deflector
meandering
meandering beam
frequency
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012193169A
Other languages
Japanese (ja)
Inventor
Tomofumi Kitazawa
智文 北澤
Goichi Akanuma
悟一 赤沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012193169A priority Critical patent/JP2014048571A/en
Publication of JP2014048571A publication Critical patent/JP2014048571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve linearity of the rotation amplitude in an optical deflector that rotatably supports a movable part with meandering beam parts.SOLUTION: An optical deflector 101 has a movable part that has a reflection surface, meandering beam parts that rotatably support the movable part, a frame member that supports the meandering beam parts, and a plurality of piezoelectric members provided to respective meandering beams of the meandering beam parts. To the plurality of piezoelectric members provided to the respective meandering beams of the meandering beam parts, different triangular waves having a rise time and a fall time replaced with each other in the same frequency are applied every other one to drive the meandering beam parts, so as to rotationally swing the movable part.

Description

本発明は、光ビームを偏向・走査する光偏向器、該光偏向器を備えた画像形成装置及び画像投影装置に関する。   The present invention relates to an optical deflector that deflects and scans a light beam, an image forming apparatus including the optical deflector, and an image projection apparatus.

近年、光ビームを偏向・走査する手段として、半導体製造技術を応用したシリコンやガラスを微細加工するマイクロマシニング技術により、半導体基板上に、反射面を設けた可動部や弾性梁部を一体形成した小型の光偏向器(光偏向素子)が開発されている。   In recent years, as a means for deflecting and scanning a light beam, a movable part provided with a reflective surface and an elastic beam part are integrally formed on a semiconductor substrate by a micromachining technique for finely processing silicon or glass using semiconductor manufacturing technology. Small optical deflectors (optical deflecting elements) have been developed.

このような光偏向器を用いて、光源からの光を偏向・走査して画像を描画する場合、一方向に走査する時間の割合をできるだけ多くすることが望ましい。例えば、図10に示すように主走査と副走査方向にラスタースキャンを行う場合、描画時は描画速度を一定に保ち、1つのフレームの描画が終わって、次のフレームの描画を始める際、副走査方向では、最終行からできるだけ早く最初の行に戻ることが望ましい。   When using such an optical deflector to draw an image by deflecting and scanning light from a light source, it is desirable to increase the proportion of time for scanning in one direction as much as possible. For example, when raster scanning is performed in the main scanning and sub-scanning directions as shown in FIG. 10, the drawing speed is kept constant during drawing, and when drawing of one frame is finished and drawing of the next frame is started, In the scanning direction, it is desirable to return to the first row as soon as possible from the last row.

図11乃至図14は、光偏向器の反射面の振幅角(回転角)と時間の関係をグラフに示した図である。ここで、図11のように、正弦波駆動で、ほぼ線型的な領域sだけを使おうとすると、描画に使える時間が短くなってしまう。したがって、図12のようになるように駆動することが望ましいが、実際には図13のようになる。図13の場合も、図14に示すように、できるだけ描画有効時間を大きくし、戻り時間をできるだけ小さくすることが望ましい。共振駆動では、図13や図14のような振幅角特性が得られないので、反射面を設けた可動部を支持する梁の剛性をできるだけ小さくし、所望の駆動制御ができるようにすることが必要となる。   11 to 14 are graphs showing the relationship between the amplitude angle (rotation angle) of the reflecting surface of the optical deflector and time. Here, as shown in FIG. 11, if only the substantially linear region s is used by sine wave drive, the time available for drawing is shortened. Therefore, it is desirable to drive as shown in FIG. 12, but in practice it is as shown in FIG. In the case of FIG. 13 as well, as shown in FIG. 14, it is desirable to make the drawing effective time as long as possible and the return time as short as possible. In the resonance drive, the amplitude angle characteristics as shown in FIGS. 13 and 14 cannot be obtained. Therefore, it is possible to reduce the rigidity of the beam supporting the movable portion provided with the reflection surface as much as possible so that the desired drive control can be performed. Necessary.

従来、マイクロマシニング技術を用いた光偏向器において、可動部を支持する梁部の剛性を下げる構成として、図15に示すように、梁部を蛇行状に形成することが知られている(例えば、特許文献1、特許文献2、特許文献3等)。図15において、10は反射面を有する可動部であり、該可動部10は、複数の折り返し部を有して蛇行して形成された一対の梁部(蛇行状梁部)11a,11bで支持され、該蛇行状梁部11a,11bは枠部材12に支持されている。蛇行状梁部11a,11bには蛇行した隣り合う各梁部ごとに独立の圧電部材(圧電体層)13が設けられている。これらの圧電部材13の一つ置きに、それぞれ位相の異なる電圧を印加して、蛇行状梁部11a,11bに反りを発生させることにより、図16に示すように、隣り合う梁部が異なる方向にたわみ、それが累積されて、可動部10がX軸周りに大きな角度で回転する。   Conventionally, in an optical deflector using micromachining technology, as shown in FIG. 15, it is known to form a beam portion in a meandering manner as a configuration for reducing the rigidity of the beam portion that supports the movable portion (for example, Patent Document 1, Patent Document 2, Patent Document 3, etc.). In FIG. 15, reference numeral 10 denotes a movable portion having a reflecting surface, and the movable portion 10 is supported by a pair of beam portions (meandering beam portions) 11 a and 11 b formed by meandering with a plurality of folded portions. The meandering beam portions 11 a and 11 b are supported by the frame member 12. In the meandering beam portions 11a and 11b, an independent piezoelectric member (piezoelectric layer) 13 is provided for each adjacent meandering beam portion. By applying a voltage having a different phase to each of the piezoelectric members 13 to generate warpage in the meandering beam portions 11a and 11b, as shown in FIG. 16, adjacent beam portions have different directions. As a result, the movable part 10 is accumulated at a large angle around the X axis.

このように、光偏向器として、蛇行する梁部(蛇行状梁部)で可動部を支持する構成とすることで、単純なトーション梁に比べて、剛性を低下させ、より小さい力で、大きな捩れ角を得ることができる。   As described above, as the optical deflector, the movable portion is supported by the meandering beam portion (meandering beam portion), so that the rigidity is reduced as compared with a simple torsion beam, and it is large with a smaller force. A twist angle can be obtained.

ところで、光偏向器では、可動部の重さと支持梁部の剛性などにより、共振周波数が決まり、共振周波数からずれた低周波で駆動させたとしても、共振周波数成分の振動が乗ってしまい、直線的な駆動を妨げることがある。これは、蛇行状梁部を用いた光偏向器でも同様である。   By the way, in the optical deflector, the resonance frequency is determined by the weight of the movable part and the rigidity of the support beam, and even when driven at a low frequency that deviates from the resonance frequency, the vibration of the resonance frequency component rides on the optical deflector. May be disturbed. The same applies to an optical deflector using a meandering beam portion.

例えば、図17に示すように、蛇行状梁部11a,11bに設けた圧電部材13を一つ置きにA,Bとし、それぞれに異なる電圧を印加して、可動部10を振幅駆動するとする。いま、図12、図13のような振幅特性を得るために、A,Bどちらかの圧電部材が反りを発生させているときに、一方が休んでいる、図18のような印加電圧を考える。図18において、波形cがAの印加電圧、波形dがBの印加電圧である。圧電部材13がモノモルフの場合、0V以下で駆動させようとしても、単位電圧に対する圧電素子の変形量が小さくなったり、分極が崩れたりする可能性があるため、図18のように、0V以上で上限電圧以下の範囲で、波形c,dの電圧をA,Bの圧電部材13に印加する。   For example, as shown in FIG. 17, it is assumed that every other piezoelectric member 13 provided on the meandering beam portions 11a and 11b is A and B, and different voltages are applied to the respective movable members 10 to drive the amplitude. Now, in order to obtain the amplitude characteristics as shown in FIGS. 12 and 13, consider the applied voltage as shown in FIG. 18 in which one of the piezoelectric members A and B is resting when warping occurs. . In FIG. 18, a waveform c is an applied voltage of A, and a waveform d is an applied voltage of B. When the piezoelectric member 13 is a monomorph, even if it is driven at 0 V or less, there is a possibility that the deformation amount of the piezoelectric element with respect to the unit voltage may be reduced or the polarization may be lost. The voltages c and d are applied to the A and B piezoelectric members 13 within a range equal to or lower than the upper limit voltage.

この場合、理想的には図12や図12のように、周期的に三角波で、可動部の振幅角が線型的に変化し、かつ、立上がり時間と立下がり時間の差が大きくなるはずである。しかしながら、実際には、図19に示すように、共振周波数の周期の振動が乗ってしまい、直線的に変化しない。   In this case, ideally, as shown in FIG. 12 and FIG. 12, the amplitude angle of the movable part should change linearly with a triangular wave periodically, and the difference between the rise time and the fall time should be large. . However, in actuality, as shown in FIG. 19, vibration with a period of the resonance frequency rides and does not change linearly.

なお、光偏向器において、共振周波数による振動成分をカットするために、ノッチフィルタを入れて共振周波数の振動を適正にカットすると、共振周波数分の振動をなくすことが知られている。しかしながら、全体的にうねりが生じたり、折り返し部分で図20のように丸まってしまったりして、実使用範囲が減ってしまう不具合が生じる。   It is known that in an optical deflector, if a notch filter is inserted to properly cut the vibration at the resonance frequency in order to cut the vibration component due to the resonance frequency, the vibration corresponding to the resonance frequency is eliminated. However, there arises a problem that the entire range of use is reduced due to the occurrence of swells as a whole or rounding as shown in FIG.

特許文献1乃至3に記載の光偏向器では、可動部の回転振幅の線形性について考慮されてない。   In the optical deflectors described in Patent Documents 1 to 3, the linearity of the rotational amplitude of the movable part is not considered.

本発明は、蛇行状梁部で可動部を回転可能に支持する光偏向器において、可動部の回転振幅の線型性(直線性)を高めることにある。   It is an object of the present invention to improve the linearity (linearity) of the rotational amplitude of a movable part in an optical deflector that rotatably supports the movable part with a meandering beam part.

本発明は、反射面を有する可動部と、前記可動部を回転可能に支持する、複数の折り返し部を有して蛇行して形成された蛇行状梁部と、前記蛇行状梁部を支持する枠部材と、前記蛇行状梁部の蛇行した各梁部にそれぞれ設けられた複数の圧電部材とを有し、
前記圧電部材に電圧を印加して前記蛇行状梁部を駆動することにより、前記蛇行状梁部の蛇行した各梁部の屈曲変形が累積して前記可動部が回転振幅する光偏向器において、
前記蛇行状梁部の蛇行した各梁部にそれぞれ設けられた複数の圧電部材の一つ置きに、それぞれ同じ周波数で立上がり時間と立下がり時間が入れ替わった異なる三角波の電圧信号が印加されて、前記蛇行状梁部が駆動されることを特徴とする。
The present invention supports a movable portion having a reflective surface, a meandering beam portion formed by meandering having a plurality of folded portions, which rotatably supports the movable portion, and the meandering beam portion. A frame member and a plurality of piezoelectric members respectively provided on each meandering beam portion of the meandering beam portion;
In the optical deflector in which a bending deformation of each of the meandering beam portions of the meandering beam portion is accumulated by applying a voltage to the piezoelectric member to drive the meandering beam portion, and the movable portion rotates and swings.
A voltage signal of a different triangular wave in which the rising time and the falling time are switched at the same frequency is applied to each other of the plurality of piezoelectric members provided in each of the meandering beam portions of the meandering beam portion, The meandering beam portion is driven.

本発明の光偏向器によれば、可動部の回転振幅(振幅角)の線形性が向上する。   According to the optical deflector of the present invention, the linearity of the rotational amplitude (amplitude angle) of the movable part is improved.

一実施形態に係る光走査装置の全体構成図である。1 is an overall configuration diagram of an optical scanning device according to an embodiment. 本発明の印加電圧信号の一例を示す図である。It is a figure which shows an example of the applied voltage signal of this invention. 図2の印加電圧信号を適用した場合の光偏向器の振幅角特性を示す図である。It is a figure which shows the amplitude angle characteristic of the optical deflector at the time of applying the applied voltage signal of FIG. 図2の印加電圧信号の位相ずれを説明する図である。It is a figure explaining the phase shift of the applied voltage signal of FIG. 別の実施形態に係る光走査装置の全体構成図である。It is a whole block diagram of the optical scanning device concerning another embodiment. 2方向光偏向器の一例を示す図である。It is a figure which shows an example of a two-way optical deflector. 一実施形態に係る画像処理装置の全体構成図である。1 is an overall configuration diagram of an image processing apparatus according to an embodiment. 一実施形態に係る画像投影装置の全体構成図である。1 is an overall configuration diagram of an image projection apparatus according to an embodiment. 別の実施形態に係る画像投影装置の全体構成図である。It is a whole block diagram of the image projector which concerns on another embodiment. 描画のラスタースキャンを説明する図である。It is a figure explaining the raster scan of drawing. 正弦波駆動における振幅角特性を示す図である。It is a figure which shows the amplitude angle characteristic in a sine wave drive. 理想的な振幅角特性を示す図である。It is a figure which shows an ideal amplitude angle characteristic. 図12に対する実際の振幅角特性を示す図である。It is a figure which shows the actual amplitude angle characteristic with respect to FIG. 図13における描画有効時間と戻り時間の関係を示した図である。It is the figure which showed the relationship between the drawing effective time in FIG. 13, and return time. 本発明で対象とする光偏向器の一例を示す図である。It is a figure which shows an example of the optical deflector made into object by this invention. 図15の光偏向器の蛇行状梁部の駆動動作を説明する図である。It is a figure explaining the drive operation | movement of the meandering beam part of the optical deflector of FIG. 蛇行状梁部上の圧電部材と印加電圧信号の関係を説明する図である。It is a figure explaining the relationship between the piezoelectric member on a meandering beam part, and an applied voltage signal. 従来の印加電圧信号の一例を示す図である。It is a figure which shows an example of the conventional applied voltage signal. 図18の印加電圧信号を適用した場合の光偏向器の振幅角特性を示す図である。It is a figure which shows the amplitude angle characteristic of the optical deflector at the time of applying the applied voltage signal of FIG. ノッチフィルタを用いた場合の光偏向器の振幅角特性を示す図である。It is a figure which shows the amplitude angle characteristic of the optical deflector at the time of using a notch filter.

以下、本発明の実施形態について図面を参照して説明する。なお、以下では、光偏向器及びその駆動手段等を含めて光走査装置と称すことにする。   Embodiments of the present invention will be described below with reference to the drawings. Hereinafter, the optical deflector and its driving means are referred to as an optical scanning device.

図1に、本実施形態に係る光走査装置の全体構成図を示す。本光走査装置は、レーザ光源(LD)100、該レーザ光源100から出射されるレーザ光の光ビームを偏向・走査する光偏向器(光偏向素子)101、レーザ光源100を駆動するためのレーザ光源駆動部102、光偏向器101を駆動するための光偏向器駆動部103、光偏向器101の駆動周波数、その他の駆動条件を記憶する記憶部104、及び、レーザ光源駆動部102や光偏向器駆動部103等の動作を制御する制御部105を有している。   FIG. 1 is an overall configuration diagram of an optical scanning device according to the present embodiment. The optical scanning device includes a laser light source (LD) 100, an optical deflector (optical deflecting element) 101 that deflects and scans a light beam of laser light emitted from the laser light source 100, and a laser for driving the laser light source 100. Light source drive unit 102, optical deflector drive unit 103 for driving optical deflector 101, storage unit 104 for storing the drive frequency of optical deflector 101, and other drive conditions, and laser light source drive unit 102 and optical deflection It has a control unit 105 that controls the operation of the instrument drive unit 103 and the like.

光偏向器101は、図15と同様の構成であり、反射面を有する可動部10、該可動部10を回転可能に支持する一対の蛇行状梁部11a,11b、該蛇行状梁部11a,11bを支持する枠部材12、及び、該蛇行状梁部11a,11bの蛇行した各梁部ごとに独立に設けられた複数の圧電部材(圧電体層)13を有している。   The optical deflector 101 has the same configuration as that shown in FIG. 15, and includes a movable portion 10 having a reflecting surface, a pair of serpentine beam portions 11a and 11b that rotatably support the movable portion 10, and the serpentine beam portions 11a, A frame member 12 that supports 11b and a plurality of piezoelectric members (piezoelectric layers) 13 provided independently for each meandering beam portion of the meandering beam portions 11a and 11b.

ここで、光偏向器101は、光偏向器駆動部103によって、蛇行状梁部11a,11bの蛇行した各梁部にそれぞれ設けられた複数の圧電部材13の一つ置きに、それぞれ同じ周波数で立上がり時間と立下がり時間が入れ替わった異なる三角波(鋸歯状波)の電圧信号が印加されて、蛇行状梁部11a,11bが駆動され、可動部10が回転駆動する。以下、これについて具体的に説明する。   Here, the optical deflector 101 has the same frequency for every other piezoelectric member 13 provided on each of the meandering beam portions 11a and 11b by the optical deflector driving unit 103. A voltage signal of a different triangular wave (sawtooth wave) in which the rising time and the falling time are switched is applied, the meandering beam portions 11a and 11b are driven, and the movable portion 10 is rotationally driven. This will be specifically described below.

図17に示したように、蛇行状梁部11a,11bの蛇行した各梁部(回転軸X−Xに垂直な方向の各梁部)にそれぞれ設けられた複数の圧電部材13を一つ置きにA,Bとする。ここで、Aの圧電部材には、図2の波形aに示す電圧の信号(以下、電圧信号a)を印加し、Bの圧電部材には、図2の波形bに示す電圧の信号(以下、電圧信号b)を印加するようにする。図3は、この場合の可動部10の振幅角と時間の関係を示したものである。   As shown in FIG. 17, a plurality of piezoelectric members 13 provided on the meandering beam portions (each beam portion in the direction perpendicular to the rotation axis XX) of the meandering beam portions 11a and 11b are placed one by one. A and B. Here, a voltage signal (hereinafter, voltage signal a) indicated by waveform a in FIG. 2 is applied to the piezoelectric member A, and a voltage signal (hereinafter referred to as waveform b) in FIG. 2 is applied to the piezoelectric member B. The voltage signal b) is applied. FIG. 3 shows the relationship between the amplitude angle of the movable part 10 and time in this case.

先の図18のように、1周期内の半分が0Vで、残りの半分でゆっくり立上がり高速で戻る電圧信号cと、高速で立上がり、ゆっくり戻り、残り半分の周期が0Vとなる電圧信号dとに比べ、図2のように、1周期間の立上がり時間と立下がり時間が互いに入れ替った三角波(鋸歯状波)の2つの電圧信号a,bを、蛇行状梁部11a,11bの蛇行した各梁部の圧電部材13の一つ置きに印加して、蛇行状梁部11a,11bを駆動したほうが、可動部10の回転振幅(振幅角)の線型性が高くなる(図3参照)。   As shown in FIG. 18, a voltage signal c in which one half of one cycle is 0V, slowly rises in the other half and returns at high speed, and a voltage signal d that rises at high speed and returns slowly, and the other half is 0V. 2, two voltage signals a and b of a triangular wave (sawtooth wave) in which the rise time and the fall time in one cycle are interchanged are meandered in the meandering beam portions 11 a and 11 b as shown in FIG. 2. The linearity of the rotational amplitude (amplitude angle) of the movable portion 10 is higher when the meandering beam portions 11a and 11b are driven by applying the piezoelectric members 13 to every other beam portion (see FIG. 3).

なお、光偏向器によっては、図2のような立上がり時間と立下がり時間の入れ替わっただけの同位相の電圧信号a,bでは、十分な線形性が得られないことがある。この場合には、電圧信号aと電圧信号bの位相を相対的に変化させる。圧電部材13のAに印加する電圧信号aとBに印加する電圧信号bの位相をずらし、そのずらし量を調整することで、可動部10の回転振幅の線形性が改善することが実験的に確かめられた。これは、Aの圧電部材の駆動によって励起される周波数成分の振動と、Bの圧電部材の駆動によって励起される周波数成分の振動とが、位相をずらすことで、それぞれの不要振動が打ち消し合うことによると考えられる。圧電部材13のA,Bそれぞれで発生する不要な振動を打ち消し合う条件となるように、該圧電部材13のA,Bに印加する電圧信号a,bの位相ずれ量を調整できれば、可動部10の回転振幅の線形性をさらに改善できる。   Note that, depending on the optical deflector, sufficient linearity may not be obtained with the voltage signals a and b having the same phase in which the rise time and the fall time are simply switched as shown in FIG. In this case, the phases of the voltage signal a and the voltage signal b are relatively changed. Experimentally, the linearity of the rotational amplitude of the movable part 10 is improved by shifting the phase of the voltage signal a applied to A of the piezoelectric member 13 and the voltage signal b applied to B and adjusting the shift amount. It was confirmed. This is because the vibration of the frequency component excited by the drive of the piezoelectric member A and the vibration of the frequency component excited by the drive of the piezoelectric member B are shifted in phase so that the unnecessary vibrations cancel each other. It is thought that. If the amount of phase shift of the voltage signals a and b applied to A and B of the piezoelectric member 13 can be adjusted so as to cancel out unnecessary vibrations generated in the piezoelectric members 13 A and B, the movable part 10 The linearity of the rotation amplitude can be further improved.

具体的には、図4の(a)および(b)に示すように、圧電部材13のAに印加する電圧信号aとBに印加する電圧信号bの位相を相対的にずらしながら蛇行状梁部11a,11bを駆動して、可動部10の回転振幅の線形性の変化を調べ、線形性が最も改善する位相のずれ量を見つける。この位相ずれ量を記憶部104に記憶しておく。そして、光偏向器100の駆動時、制御部105が記憶部104から当該位相ずれ量を読み出して光偏向器駆動部103に設定する。光偏向器駆動部103は、設定された位相ずれ量だけ、圧電部材13のAに印加する電圧信号aとBに印加する電圧信号bの位相を相対的にずらして(例えば、図4(a)のm、図4(b)のnなど)、蛇行状梁部11a,11bを駆動する。   Specifically, as shown in FIGS. 4A and 4B, the meandering beam is relatively shifted while the phases of the voltage signal a applied to A and the voltage signal b applied to B of the piezoelectric member 13 are relatively shifted. By driving the portions 11a and 11b, the change in the linearity of the rotational amplitude of the movable portion 10 is examined, and the phase shift amount where the linearity is most improved is found. This phase shift amount is stored in the storage unit 104. When the optical deflector 100 is driven, the control unit 105 reads the phase shift amount from the storage unit 104 and sets it in the optical deflector driving unit 103. The optical deflector driving unit 103 relatively shifts the phase of the voltage signal a applied to A and the voltage signal b applied to B of the piezoelectric member 13 by the set phase shift amount (for example, FIG. ) M, n in FIG. 4B, etc.), the meandering beam portions 11a and 11b are driven.

なお又、光偏向器によっては、圧電部材13のAに印加する電圧信号aとBに印加する電圧信号bの位相を相対的にずらすだけでは、十分な線形性が得られないことがある。この場合には、駆動周波数(電圧信号a,bの周波数)を変えるようにする。可動部10の回転振幅に共振周波数成分の振動が乗り、線形性が損なわれている場合に、駆動周波数を変えることによって、可動部10の回転振幅の線形性が改善することが実験的に確かめられた。これは、駆動周波数によっては、Aの圧電部材とBの圧電部材の振幅駆動で、励起される共振周波数成分の振動が打ち消し合うようになる条件があるためだと考えられる。そこで駆動周波数を変えて線形性の変化を調べ、線形性が最も良くなる駆動周波数で駆動するようにする。   In addition, depending on the optical deflector, sufficient linearity may not be obtained only by relatively shifting the phase of the voltage signal a applied to A of the piezoelectric member 13 and the voltage signal b applied to B. In this case, the drive frequency (frequency of the voltage signals a and b) is changed. It has been experimentally confirmed that the linearity of the rotational amplitude of the movable part 10 can be improved by changing the drive frequency when the vibration of the resonance frequency component is applied to the rotational amplitude of the movable part 10 and the linearity is impaired. It was. This is considered to be because, depending on the drive frequency, there is a condition that the vibrations of the resonance frequency components excited by the amplitude drive of the piezoelectric member A and the piezoelectric member B cancel each other. Therefore, the drive frequency is changed to check the change in linearity, and the drive is performed at the drive frequency where the linearity is the best.

具体的には、圧電部材の13のAに印加する電圧信号aとBに印加する電圧信号bの周波数を変えながら蛇行状梁部11a,11bを駆動して、可動部10の回転振幅の線形性の変化を調べ、線形性が最も良くなる周波数を見つけ、記憶部104に記憶しておく。そして、光偏向器100の駆動時、制御部105が記憶部104から該当周波数(駆動周波数)を読み出して光偏向器駆動部103に設定する。光偏向器駆動部103は、圧電部材13のAに印加する電圧信号aとBに印加する電圧信号の周波数を設定された周波数として、蛇行状梁部11a,11bを駆動する。同時に、制御部105では、駆動周波数に合わせて、レーザ光源駆動部102におけるレーザ光源100の発光タイミングを設定する。これにより、レーザ光源駆動部102では、駆動周波数が変わっても、それに合わせてレーザ光源100を駆動することができる。   Specifically, the meandering beam portions 11a and 11b are driven while changing the frequency of the voltage signal a applied to A of the piezoelectric member 13 and the voltage signal b applied to B, and the rotational amplitude of the movable portion 10 is linear. The frequency change is examined, the frequency with the best linearity is found, and stored in the storage unit 104. When the optical deflector 100 is driven, the control unit 105 reads the corresponding frequency (driving frequency) from the storage unit 104 and sets it in the optical deflector driving unit 103. The optical deflector driving unit 103 drives the meandering beam portions 11a and 11b by setting the frequency of the voltage signal a applied to A of the piezoelectric member 13 and the frequency of the voltage signal applied to B to the set frequency. At the same time, the control unit 105 sets the light emission timing of the laser light source 100 in the laser light source driving unit 102 in accordance with the drive frequency. Thereby, even if the drive frequency changes, the laser light source driving unit 102 can drive the laser light source 100 accordingly.

なお、駆動周波数の調整・設定は、上記の位相の調整・設定と組み合わせて実施することでもよい。これにより、可動部10の回転振幅の線形性をさらに改善することができる。   The adjustment / setting of the drive frequency may be performed in combination with the above-described adjustment / setting of the phase. Thereby, the linearity of the rotational amplitude of the movable part 10 can be further improved.

ただし、駆動周波数を設定する際には、光偏向器の構造部の共振周波数の略整数分の1でない周波数を使用するのが望ましい。例えば、共振周波数が360Hzの場合、駆動周波数(電圧信号a,bの周波数)としては、180Hz周辺、120Hz周辺、90Hz周辺、60Hz周辺等の周波数は避けるのが望ましい。実験したところ、共振周波数の整数分の1又はその近傍の値を駆動周波数とした場合、周波数および/または相対的位相がわずかに変わっても、共振周波数の整数分の1からはなれた周波数で駆動した場合に比べ、可動部10の回転振幅の直線性が大きく損なわれる結果となった。   However, when setting the drive frequency, it is desirable to use a frequency that is not substantially an integral number of the resonance frequency of the structural portion of the optical deflector. For example, when the resonance frequency is 360 Hz, it is desirable to avoid frequencies of around 180 Hz, around 120 Hz, around 90 Hz, around 60 Hz, etc. as the driving frequency (frequency of the voltage signals a and b). Experiments have shown that when the drive frequency is a fraction of the resonance frequency or a value in the vicinity thereof, even if the frequency and / or the relative phase changes slightly, the drive is performed at a frequency that is separated from the integral fraction of the resonance frequency. Compared with the case where it did, it resulted in the linearity of the rotational amplitude of the movable part 10 being impaired significantly.

光偏向器の製造のばらつきや、使用環境などによって、共振周波数自体が一定ではないので、共振周波数が変動して、駆動周波数が共振周波数の整数分の1の値にならないように、余裕を持って駆動周波数を設定する必要がある。   Since the resonance frequency itself is not constant due to manufacturing variations of optical deflectors and usage environment, there is a margin so that the resonance frequency does not fluctuate and the drive frequency does not become a value of 1 / integer of the resonance frequency. Drive frequency must be set.

図5に、別の実施形態に係る光走査装置の全体構成図を示す。本光走査装置は、レーザ光源(LD)100、該レーザ光源100から出射されるレーザ光の光ビームを偏向・走査する光偏向器(光偏向素子)101、レーザ光源100を駆動するためのレーザ光源駆動部102、光偏向器101を駆動するための光偏向器駆動部103、駆動周波数、その他の駆動条件を記憶する記憶部104、レーザ光源駆動部102や光偏向器駆動部103等の動作を制御する制御部105、及び、光偏向器101の周囲温度を検出する温度センサ(温度検出手段)106を有している。   FIG. 5 shows an overall configuration diagram of an optical scanning device according to another embodiment. The optical scanning device includes a laser light source (LD) 100, an optical deflector (optical deflecting element) 101 that deflects and scans a light beam of laser light emitted from the laser light source 100, and a laser for driving the laser light source 100. Operation of the light source driving unit 102, the optical deflector driving unit 103 for driving the optical deflector 101, the storage unit 104 for storing the driving frequency and other driving conditions, the laser light source driving unit 102, the optical deflector driving unit 103, etc. And a temperature sensor (temperature detecting means) 106 for detecting the ambient temperature of the optical deflector 101.

光偏向器101は、図1と同じく図16と同様の構成であり、反射面を有する可動部10、該可動部10を回転可能に支持する一対の蛇行状梁部11a,11b、該蛇行状梁部11a,11bを支持する枠部材12、及び、該蛇行状梁部11a,11bの蛇行した各梁部ごとに独立に設けられた複数の圧電部材13を有している。なお、温度センサ106は、該光偏向器101と一体に形成するようにする。   The optical deflector 101 has the same configuration as that of FIG. 16 as in FIG. 1, and includes a movable portion 10 having a reflecting surface, a pair of meandering beam portions 11a and 11b that rotatably support the movable portion 10, and the meandering shape. A frame member 12 that supports the beam portions 11a and 11b and a plurality of piezoelectric members 13 provided independently for each meandering beam portion of the meandering beam portions 11a and 11b. Note that the temperature sensor 106 is formed integrally with the optical deflector 101.

図1と同様に、光偏向器101は、光偏向器駆動部103によって、蛇行状梁部11a,11bの蛇行した各梁部にそれぞれ設けられた複数の圧電部材13の一つ置きに(図17の圧電部材13のA,B毎に)、それぞれ同じ周波数で立上がり時間と立下がり時間が入れ替わった異なる三角波の電圧信号(図2のa,b)が印加されて、蛇行状梁部11a,11bが駆動され、可動部10が回転駆動する。   As in FIG. 1, the optical deflector 101 is provided for every other piezoelectric member 13 provided on each meandering beam portion of the meandering beam portions 11a and 11b by the optical deflector driving unit 103 (see FIG. 1). 17 (for each of A and B of the piezoelectric member 13), different triangular wave voltage signals (a and b in FIG. 2) with the same rising frequency and falling time are applied at the same frequency, respectively, and the meandering beam portions 11a, 11b is driven and the movable part 10 is rotationally driven.

本実施形態の特徴は、光偏向器101の周囲温度の変化によって、2つの電圧信号a,bの相対的位相や周波数(駆動周波数)、電圧値等を変えることにある。光偏向器101の主要構成である可動部10や蛇行状梁部11a,11bは、使用環境等の温度変化によって、弾性係数が変わったり、膨張・縮小によって形状が変化したりする。その結果、共振周波数が変化するなどして、可動部10の回転振幅の線形性が損なわれてしまう。弾性係数が変化することで、振幅感度(単位電圧当たりで増減する振幅角度)も変わってしまう。   The feature of this embodiment is that the relative phase, frequency (drive frequency), voltage value, and the like of the two voltage signals a and b are changed according to a change in the ambient temperature of the optical deflector 101. The movable portion 10 and the meandering beam portions 11a and 11b, which are the main components of the optical deflector 101, change in elastic coefficient or change in shape due to expansion / contraction due to a temperature change such as a use environment. As a result, the linearity of the rotational amplitude of the movable part 10 is impaired due to a change in the resonance frequency. As the elastic coefficient changes, the amplitude sensitivity (the amplitude angle that increases or decreases per unit voltage) also changes.

そこで、本実施形態では、光偏向器101の周辺の温度を検出する温度センサ106を設けて、光偏向器101の周囲温度に応じて駆動条件を変えるようにする。具体的には、温度毎に、蛇行状梁部11a,11bの蛇行した各梁部にそれぞれ設けられた複数の圧電部材13の一つ置きに印加する電圧信号a,bの相対的位相、周波数、電圧値を変化させて、蛇行状梁部11a,11bを駆動し、可動部10の回転振幅の線形性、振幅感度が最も改善する位相ずれ量、周波数、印加電圧を見つける。そして、温度毎に、この見つけた位相ずれ量、周波数、印加電圧の最適値を記憶部104に記憶しておく。光偏向器101の実際の駆動時、制御部105が、温度センサ106で検出された光偏向器101の周囲温度に応じて、記憶部104から、電圧信号a,bの位相ずれ量、周波数(駆動周波数)、印加電圧の最適値を読み出して光偏向器駆動部103に設定する。同時に、制御部105は、該駆動周波数に合わせて、レーザ光源駆動部102におけるレーザ光源100の発光タイミングを設定する。   Therefore, in the present embodiment, a temperature sensor 106 that detects the temperature around the optical deflector 101 is provided, and the driving condition is changed according to the ambient temperature of the optical deflector 101. Specifically, for each temperature, the relative phase and frequency of the voltage signals a and b applied to every other piezoelectric member 13 provided in each of the meandering beam portions of the meandering beam portions 11a and 11b. Then, by changing the voltage value, the meandering beam portions 11a and 11b are driven to find the phase shift amount, frequency, and applied voltage that improve the linearity and amplitude sensitivity of the rotational amplitude of the movable portion 10 most. For each temperature, the found optimum values of the phase shift amount, frequency, and applied voltage are stored in the storage unit 104. When the optical deflector 101 is actually driven, the control unit 105 receives from the storage unit 104 the phase shift amount and frequency (frequency) of the voltage signals a and b according to the ambient temperature of the optical deflector 101 detected by the temperature sensor 106. Driving frequency) and the optimum value of the applied voltage are read out and set in the optical deflector driving unit 103. At the same time, the control unit 105 sets the light emission timing of the laser light source 100 in the laser light source driving unit 102 in accordance with the driving frequency.

このように、本実施形態によれば、光偏向器101の周囲温度の変化に応じて、2つの電圧信号a,bの位相ずれ量、駆動周波数、印加電圧等を最適値に調整することができるので、可動部の回転振幅の線形性および振幅感度が向上する。   As described above, according to the present embodiment, the phase shift amount, the drive frequency, the applied voltage, and the like of the two voltage signals a and b can be adjusted to optimum values according to the change in the ambient temperature of the optical deflector 101. Therefore, the linearity and amplitude sensitivity of the rotational amplitude of the movable part are improved.

これまでは、図15に示したように、一方向に反射面の傾きを発生させる光偏向器を対象にしてきた。これに対し、本実施形態は、複数方向に反射面の傾きを発生させる光偏向器において、少なくとも一方向の軸周りの回動部に実施例1や実施例2で説明した駆動手段を入れ子状に配置して、反射面の回転振幅の直線性を改善するものである。ここでは、2方向に反射面の傾きを発生させる2方向光偏向器を例に説明する。   So far, as shown in FIG. 15, an optical deflector that generates a tilt of the reflecting surface in one direction has been targeted. On the other hand, in this embodiment, in the optical deflector that generates the inclination of the reflecting surface in a plurality of directions, the driving means described in the first and second embodiments is nested in the rotating portion around the axis in at least one direction. To improve the linearity of the rotational amplitude of the reflecting surface. Here, a two-way optical deflector that generates the tilt of the reflecting surface in two directions will be described as an example.

図6に、2方向光偏向器の構成例を示す。図6において、20は反射面を有する可動部であり、該可動部20は一対のトーションバー21a,21bで支持されている。トーションバー21a,21bの端部は、それぞれ圧電カンチレバー22a〜22dの一端に支持され、圧電カンチレバー22a〜22dの他端はそれぞれ可動枠23に支持さている。可動枠23は、複数の折り返し部を有して蛇行して形成された一対の梁部(蛇行状梁部)24a,24bで支持され、該蛇行状梁部24a,24bは枠部材25に支持されている。蛇行状梁部24a,24bには、蛇行した各梁部毎に独立の複数の圧電部材26が設けられている。   FIG. 6 shows a configuration example of the two-way optical deflector. In FIG. 6, reference numeral 20 denotes a movable portion having a reflecting surface, and the movable portion 20 is supported by a pair of torsion bars 21a and 21b. The ends of the torsion bars 21a and 21b are supported by one ends of the piezoelectric cantilevers 22a to 22d, respectively, and the other ends of the piezoelectric cantilevers 22a to 22d are supported by the movable frame 23, respectively. The movable frame 23 is supported by a pair of beam portions (meandering beam portions) 24 a and 24 b formed by meandering with a plurality of folded portions, and the meandering beam portions 24 a and 24 b are supported by the frame member 25. Has been. The meandering beam portions 24a and 24b are provided with a plurality of independent piezoelectric members 26 for each meandering beam portion.

図6の構成で、圧電カンチレバー22a〜22dを駆動することで、可動部20を支持するトーションレバー21a,21bに回転が与えられて、可動部20が、Y軸周りに回転振幅する。一方、蛇行状梁部24a,24bを駆動することで、可動枠23がX軸周りに回転し、これに応じて可動部20もX軸周りに回転振幅する。具体的には、蛇行状梁部24a,24bの蛇行した各梁部毎にそれぞれ独立に設けられた複数の圧電部材26の一つ置きに、それぞれ同じ周波数で立上がり時間と立下り時間が入れ替わった異なる三角波の電圧信号(図2のa,b)を印加して、該蛇行状梁部24a,24bを駆動する。これにより、可動部20のX軸周りの回転振幅の直線性が向上する。この場合も、必要に応じて、2つの電圧信号a,bの位相、周波数等を変化させてもよい。   In the configuration of FIG. 6, by driving the piezoelectric cantilevers 22a to 22d, rotation is given to the torsion levers 21a and 21b that support the movable portion 20, and the movable portion 20 rotates and swings around the Y axis. On the other hand, by driving the meandering beam portions 24a and 24b, the movable frame 23 rotates around the X axis, and accordingly, the movable portion 20 also rotates and swings around the X axis. Specifically, the rise time and the fall time are switched at the same frequency for every other piezoelectric member 26 provided independently for each meandering beam portion of the meandering beam portions 24a and 24b. Different triangular wave voltage signals (a and b in FIG. 2) are applied to drive the meandering beam portions 24a and 24b. Thereby, the linearity of the rotation amplitude around the X axis of the movable part 20 is improved. Also in this case, the phase and frequency of the two voltage signals a and b may be changed as necessary.

本実施形態は、実施例1や実施例2で説明した1軸方向に光を偏向・走査する光偏向器を光書込みユニットの構成部材として実装した画像形成装置を提供するものである。   The present embodiment provides an image forming apparatus in which the optical deflector that deflects and scans light in the uniaxial direction described in the first and second embodiments is mounted as a constituent member of an optical writing unit.

図7に本実施形態の画像形成装置の一例の全体構成図を示す。図7において、1001が光書込みユニットであり、レーザビームを被走査面に出射して画像を書き込む。1002は光書込みユニット1001による走査対象としての被走査面を提供する像担持体としての感光体ドラムである。   FIG. 7 shows an overall configuration diagram of an example of the image forming apparatus of the present embodiment. In FIG. 7, reference numeral 1001 denotes an optical writing unit, which emits a laser beam to a surface to be scanned and writes an image. Reference numeral 1002 denotes a photosensitive drum as an image carrier that provides a surface to be scanned as an object to be scanned by the optical writing unit 1001.

光書込みユニット1001は、記録信号によって変調された1本又は複数本のレーザビームで感光体ドラム1002の表面(被走査面)を同ドラムの軸方向に走査する。感光体ドラム1002は矢印1003方向に回転駆動され、帯電手段1004により帯電された表面に、光書込みユニット1001により光走査されることによって、静電潜像が形成される。この静電潜像は現像手段1005でトナー像に顕像化され、このトナー像は転写手段1006で記録紙1007に転写される。転写されたトナー像は定着手段1008によって記録紙1007に定着される。感光体ドラム1002の転写手段1006対向部を通過した感光体ドラムの表面部分はクリーニング部1009で残留トナーを除去される。   The optical writing unit 1001 scans the surface (scanned surface) of the photosensitive drum 1002 in the axial direction of the photosensitive drum 1002 with one or a plurality of laser beams modulated by the recording signal. The photosensitive drum 1002 is rotationally driven in the direction of an arrow 1003, and an optical latent image is formed on the surface charged by the charging unit 1004 by optical scanning by the optical writing unit 1001. The electrostatic latent image is visualized as a toner image by the developing unit 1005, and the toner image is transferred to the recording paper 1007 by the transfer unit 1006. The transferred toner image is fixed on the recording paper 1007 by the fixing unit 1008. Residual toner is removed by the cleaning unit 1009 from the surface portion of the photosensitive drum that has passed the transfer unit 1006 facing portion of the photosensitive drum 1002.

なお、感光体ドラム1002に代えてベルト状の感光体を用いる構成も可能である。また、トナー像を記録紙以外の転写媒体に一旦転写し、この転写媒体からトナー像を記録紙に転写して定着させる構成とすることも可能である。   A configuration using a belt-like photoconductor in place of the photoconductor drum 1002 is also possible. Further, the toner image may be temporarily transferred to a transfer medium other than the recording paper, and the toner image may be transferred from the transfer medium to the recording paper and fixed.

光書込みユニット1001は記録信号によって変調された1本又は複数本のレーザビームを発するレーザ素子としての光源部1020と、レーザビームを変調する光源駆動手段1500と、実施例1や実施例2で説明した1軸方向にレーザビームを偏向する光偏向器1002と、この光偏向器1022のミラー基板のミラー面に光源部1020からの、記録信号によって変調されたレーザビーム(光ビーム)を結像させるための結像光学系1021と、ミラー面で反射・偏向された1本又は複数本のレーザビームを感光体ドラム1002の表面(被走査面)に結像させるための手段である走査光学系1023などから構成される。光偏向器1022は、その駆動のための集積回路(駆動手段)1024とともに回路基板1025に実装された形で光書込みユニット1001に組み込まれている。   The optical writing unit 1001 is described in the first and second embodiments, as a light source unit 1020 as a laser element that emits one or a plurality of laser beams modulated by a recording signal, a light source driving unit 1500 that modulates the laser beams. The optical deflector 1002 that deflects the laser beam in one axial direction, and the laser beam (light beam) modulated by the recording signal from the light source unit 1020 is formed on the mirror surface of the mirror substrate of the optical deflector 1022. An imaging optical system 1021 for scanning, and a scanning optical system 1023 which is a means for imaging one or a plurality of laser beams reflected and deflected by a mirror surface on the surface (scanned surface) of the photosensitive drum 1002 Etc. The optical deflector 1022 is incorporated in the optical writing unit 1001 in a form mounted on a circuit board 1025 together with an integrated circuit (driving means) 1024 for driving the optical deflector 1022.

光偏向器1022は、従来の回転多面鏡に比べ駆動のための消費電力が小さいため、画像形成装置の省電力化に有利である。また、光偏向器1022のミラー基板の振動時の風切り音は回転多面鏡に比べ小さいため、画像形成装置の静粛性の改善に有利である。さらに、光偏向器1022は、回転多面鏡に比べ設置スペースが圧倒的に少なくて済み、また、発熱量もわずかであるため、小型化が容易であり、したがって画像形成装置の小型化に有利である。また、走査の直線性能がよく、画質の劣化が防止できる。   The optical deflector 1022 consumes less power for driving than the conventional rotary polygon mirror, which is advantageous for power saving of the image forming apparatus. Further, since the wind noise during vibration of the mirror substrate of the optical deflector 1022 is smaller than that of the rotary polygon mirror, it is advantageous for improving the quietness of the image forming apparatus. Furthermore, the optical deflector 1022 requires much less installation space than the rotary polygon mirror, and also has a small amount of heat generation, so that it can be easily downsized, and therefore advantageous for downsizing the image forming apparatus. is there. In addition, the linear performance of scanning is good, and deterioration of image quality can be prevented.

なお、記録紙1007の搬送機構、感光体ドラム1002の駆動機構、現像手段1005、転写手段1006などの制御手段、光源部1020の駆動系などは、従来の画像形成装置と同様でよいため図23では省略されている。   Note that the conveyance mechanism of the recording paper 1007, the driving mechanism of the photosensitive drum 1002, the control means such as the developing means 1005 and the transfer means 1006, the driving system of the light source unit 1020, and the like may be the same as those in the conventional image forming apparatus. Is omitted.

本実施形態は、実施例2で説明した2軸方向に光を偏向する光偏向器を実装した画像投影装置を提供するものである。   The present embodiment provides an image projection apparatus in which the optical deflector that deflects light in the biaxial direction described in the second embodiment is mounted.

図8に、本実施形態の画像投影装置の一例の全体構成図を示す。図8において、2001−Rは赤色(R)のレーザ光を出射するレーザ光源、2001−Gは緑色(G)のレーザ光を出射するレーザ光源、2001−Bは青色(B)のレーザ光を出射するレーザ光源である。これらレーザ光源2001−R,2001−G,2001−Bから出射されたR,G,Bのレーザ光はクロスダイクロイックプリズム2002によって合成され、光偏向器2003の反射面に入射される。光偏向器2003は反射面に入力した合成レーザ光を2軸方向(主走査/副走査方向)に偏向・走査して投射面(スクリーン)2004に投影する。   FIG. 8 shows an overall configuration diagram of an example of the image projection apparatus of the present embodiment. In FIG. 8, 2001-R is a laser light source that emits red (R) laser light, 2001-G is a laser light source that emits green (G) laser light, and 2001-B is blue (B) laser light. This is a laser light source that emits light. R, G, and B laser beams emitted from these laser light sources 2001-R, 2001-G, and 2001-B are combined by a cross dichroic prism 2002 and are incident on a reflection surface of an optical deflector 2003. The optical deflector 2003 deflects and scans the combined laser light input to the reflection surface in the biaxial direction (main scanning / sub-scanning direction) and projects the resultant light onto the projection surface (screen) 2004.

ここで、光偏向器2003は、図6に示したような構成である。例えば、Y軸周り(主走査方向)は、高剛性のバネ系である圧電カンチレバー22a〜22dを共振周波数で駆動して、共振特性を利用して可動部20を高速に回転振幅させる。一方、X軸周り(副走査方向)は、低い剛性のバネ系の蛇行状梁部24a,24bを共振周波数より低い周波数で駆動して、可動部20を低速に回転振幅させる。すなわち、X軸周り駆動とY軸駆動の周波数の差が十分に大きくなるようにする。これにより、X軸周りとY軸回りで大きな速度差が得られるようになる。したがって、光偏向器2003により2次元的に光ビームを走査し、投射面(スクリーン)2004上に2次元的に画像を投影することができる。しかも、蛇行状梁部24a,24bの蛇行した各梁部ごとに独立に設けられた圧電体層26の一つ置きに、それぞれ同じ周波数で立上がり時間と立下がり時間が入れ替わった異なる三角波の電圧を印加して、該蛇行状梁部24a,24bを駆動することで、X軸周りの回転振幅の線形性能、すなわち、副走査方向の走査の線形性能がよくなり、画質の劣化が防止できる。   Here, the optical deflector 2003 is configured as shown in FIG. For example, around the Y axis (in the main scanning direction), the piezoelectric cantilevers 22a to 22d, which are highly rigid spring systems, are driven at a resonance frequency, and the movable unit 20 is rotated and amplified at high speed using resonance characteristics. On the other hand, around the X axis (in the sub-scanning direction), the meandering beam portions 24a and 24b of a low rigidity spring system are driven at a frequency lower than the resonance frequency to rotate the movable portion 20 at low speed. That is, the difference between the frequencies around the X-axis drive and the Y-axis drive is made sufficiently large. Thereby, a large speed difference can be obtained between the X axis and the Y axis. Therefore, a light beam can be scanned two-dimensionally by the optical deflector 2003, and an image can be projected two-dimensionally on a projection surface (screen) 2004. In addition, for every other piezoelectric layer 26 provided independently for each meandering beam portion of the meandering beam portions 24a and 24b, different triangular wave voltages with the same rising frequency and falling time are switched at the same frequency. By applying and driving the serpentine beam portions 24a and 24b, the linear performance of the rotation amplitude around the X axis, that is, the linear performance of scanning in the sub-scanning direction is improved, and the deterioration of the image quality can be prevented.

図9は、本実施形態の画像投影装置の別の構成図を示した図である。これは、レーザ光源2001−R,2001−G,2001−Bから出射されたR,G,Bのレーザ光を1つの光路に合成しないで光偏向器2003に入射させ、該光偏向器2003でそれぞれ2次元的に走査して、投射面(スクリーン)2004に投影するものである。光偏向器2003の動作は、図8の場合と基本的に同様である。   FIG. 9 is a diagram showing another configuration diagram of the image projection apparatus of the present embodiment. This is because R, G, and B laser beams emitted from the laser light sources 2001-R, 2001-G, and 2001-B are incident on the optical deflector 2003 without being combined into one optical path. Each of them is scanned two-dimensionally and projected onto a projection surface (screen) 2004. The operation of the optical deflector 2003 is basically the same as that in FIG.

なお、図8及び図9では、カラー画像を投影する構成例を示したが、レーザ光源を一つとすることで、白黒の画像を投影する場合にも適応可能である。   8 and 9 show the configuration examples for projecting a color image, but it is also possible to project a monochrome image by using one laser light source.

10 可動部
11a,11b 蛇行状梁部
12 枠部材
13 圧電部材
20 可動部
21a,21b トーションバー
22a〜22d 圧電カンチレバー
23 可動枠
24a,24b 蛇行状梁部
25 枠部材
26 圧電部材
101 光偏向器
a,b 電圧信号
DESCRIPTION OF SYMBOLS 10 Movable part 11a, 11b Meandering beam part 12 Frame member 13 Piezoelectric member 20 Movable part 21a, 21b Torsion bar 22a-22d Piezoelectric cantilever 23 Movable frame 24a, 24b Meandering beam part 25 Frame member 26 Piezoelectric member 101 Optical deflector a , B Voltage signal

特開2008−35600号公報JP 2008-35600 A 特開2009−223165号公報JP 2009-223165 A 特開2009−265362号公報JP 2009-265362 A

Claims (8)

反射面を有する可動部と、前記可動部を回転可能に支持する、複数の折り返し部を有して蛇行して形成された蛇行状梁部と、前記蛇行状梁部を支持する枠部材と、前記蛇行状梁部の蛇行した各梁部にそれぞれ設けられた複数の圧電部材とを有し、
前記圧電部材に電圧を印加して前記蛇行状梁部を駆動することにより、前記蛇行状梁部の蛇行した各梁部の屈曲変形が累積して前記可動部が回転振幅する光偏向器において、
前記蛇行状梁部の蛇行した各梁部にそれぞれ設けられた複数の圧電部材の一つ置きに、それぞれ同じ周波数で立上がり時間と立下がり時間が入れ替わった異なる三角波の電圧信号が印加されて、前記蛇行状梁部が駆動されることを特徴とする光偏向器。
A movable part having a reflective surface; a meandering beam part formed by meandering with a plurality of folded parts that rotatably supports the movable part; and a frame member that supports the meandering beam part; A plurality of piezoelectric members respectively provided on each meandering beam portion of the meandering beam portion;
In the optical deflector in which a bending deformation of each of the meandering beam portions of the meandering beam portion is accumulated by applying a voltage to the piezoelectric member to drive the meandering beam portion, and the movable portion rotates and swings.
A voltage signal of a different triangular wave in which the rising time and the falling time are switched at the same frequency is applied to each other of the plurality of piezoelectric members provided in each of the meandering beam portions of the meandering beam portion, An optical deflector in which a meandering beam is driven.
前記可動部の回転振幅の線形性に応じて、前記電圧信号の位相を相対的に変化させることを特徴とする請求項1に記載の光偏向器。   The optical deflector according to claim 1, wherein the phase of the voltage signal is relatively changed in accordance with linearity of the rotation amplitude of the movable part. 前記可動部の回転振幅の線形性に応じて、前記電圧信号の周波数を変化させることを特徴とする請求項1又は2に記載の光偏向器。   The optical deflector according to claim 1, wherein the frequency of the voltage signal is changed in accordance with linearity of the rotation amplitude of the movable part. 前記電圧信号の周波数は、光偏向器の構造部の共振周波数の整数分の1又はその近くの値にならないようにすることを特徴とする請求項3に記載の光偏向器。   4. The optical deflector according to claim 3, wherein the frequency of the voltage signal does not become a value of 1 / integer of the resonance frequency of the structural portion of the optical deflector. 5. 光偏向器周辺の温度を検出する温度センサを有し、前記温度センサにより検出された温度に応じて、前記電圧信号の周波数、位相、電圧値の少なくとも一つを変化させることを特徴とする請求項1に記載の光偏向器。   A temperature sensor for detecting a temperature around the optical deflector is provided, and at least one of a frequency, a phase, and a voltage value of the voltage signal is changed according to the temperature detected by the temperature sensor. Item 4. The optical deflector according to Item 1. 複数方向に反射面の傾きを発生させる光偏向器であって、
少なくとも一方向の軸周りの回動部に請求項1乃至5のいずれか1項に記載の光偏向器の駆動手段を入れ子状に配置して、反射面を回転振幅させることを特徴とする光偏向器。
An optical deflector that generates a tilt of the reflecting surface in a plurality of directions,
A light characterized in that the driving means of the optical deflector according to any one of claims 1 to 5 is arranged in a nested manner in a rotating portion around an axis in at least one direction, and the reflection surface is rotated and amplified. Deflector.
請求項1乃至5のいずれか1項に記載の光偏向器を有し、該光偏向器により光ビームを偏向・走査して、感光体上に像を結像させることを特徴とする画像形成装置。   6. An image forming apparatus comprising: the optical deflector according to claim 1; and a light beam deflected and scanned by the optical deflector to form an image on a photosensitive member. apparatus. 請求項6に記載の光偏向器を有し、該光偏向器により光ビームを偏向・走査して、投影面に画像を投影することを特徴とする画像投影装置。   An image projection apparatus comprising: the optical deflector according to claim 6, wherein an optical beam is deflected and scanned by the optical deflector to project an image on a projection surface.
JP2012193169A 2012-09-03 2012-09-03 Optical deflector, image forming apparatus, and image projection device Pending JP2014048571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193169A JP2014048571A (en) 2012-09-03 2012-09-03 Optical deflector, image forming apparatus, and image projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193169A JP2014048571A (en) 2012-09-03 2012-09-03 Optical deflector, image forming apparatus, and image projection device

Publications (1)

Publication Number Publication Date
JP2014048571A true JP2014048571A (en) 2014-03-17

Family

ID=50608284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193169A Pending JP2014048571A (en) 2012-09-03 2012-09-03 Optical deflector, image forming apparatus, and image projection device

Country Status (1)

Country Link
JP (1) JP2014048571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055829A (en) * 2013-09-13 2015-03-23 株式会社リコー Optical deflector, image forming apparatus, vehicle, optical deflector control method, and optical deflector adjustment method
JP2018005001A (en) * 2016-07-04 2018-01-11 株式会社リコー Drive device, optical deflection system, optical scanning system, image projection device, object recognition device and drive method
WO2023021777A1 (en) * 2021-08-19 2023-02-23 パナソニックIpマネジメント株式会社 Drive element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055829A (en) * 2013-09-13 2015-03-23 株式会社リコー Optical deflector, image forming apparatus, vehicle, optical deflector control method, and optical deflector adjustment method
JP2018005001A (en) * 2016-07-04 2018-01-11 株式会社リコー Drive device, optical deflection system, optical scanning system, image projection device, object recognition device and drive method
WO2023021777A1 (en) * 2021-08-19 2023-02-23 パナソニックIpマネジメント株式会社 Drive element

Similar Documents

Publication Publication Date Title
KR100742882B1 (en) Light deflector
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
WO2012115264A1 (en) Light scanning device
JP5296427B2 (en) Optical scanning device, control method therefor, image reading device, and display device
JP2012198314A (en) Actuator device, optical deflector, optical scanner, image forming device and image projection device
JP2020034942A (en) Piezoelectric optical deflector, optical scanning device, image forming apparatus, and image projection device
JP2011095331A (en) Optical scanner, image forming apparatus and image projector
JP6311314B2 (en) Optical deflection apparatus, optical scanning apparatus, image display apparatus, and image forming apparatus
JP2011232589A (en) Optical scanner
JP6533365B2 (en) Light deflection device, light deflection mirror and image display device
JP2014228783A (en) Optical scanner, image forming apparatus, and image projection device
JP2014048571A (en) Optical deflector, image forming apparatus, and image projection device
JP6369068B2 (en) Actuator, optical deflector, optical scanning apparatus, image forming apparatus, and image projection apparatus
JP2013020124A (en) Optical deflector, optical scanner, image forming device, and image projection device
JP5716992B2 (en) Optical deflection apparatus, optical scanning apparatus, image forming apparatus, and image projection apparatus
JP6648443B2 (en) Optical deflector, two-dimensional image display device, optical scanning device, and image forming device
JP2013195479A (en) Optical deflector, optical scanning device, image formation device and image projection device
JP6003529B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
JP2008145542A (en) Optical device, optical scanner and image forming apparatus
JP4677145B2 (en) Image reading apparatus and image forming apparatus
JP6442844B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP4023941B2 (en) Optical scanning device
JP2002006250A (en) Optical scanner
JP2010055051A (en) Optical scanning device, control method thereof, and image forming apparatus therewith
JP4968932B2 (en) Optical deflection apparatus and optical scanning apparatus