JP2014034628A - Silicone-based coating material and transparent base material having heat-shielding structure - Google Patents

Silicone-based coating material and transparent base material having heat-shielding structure Download PDF

Info

Publication number
JP2014034628A
JP2014034628A JP2012176095A JP2012176095A JP2014034628A JP 2014034628 A JP2014034628 A JP 2014034628A JP 2012176095 A JP2012176095 A JP 2012176095A JP 2012176095 A JP2012176095 A JP 2012176095A JP 2014034628 A JP2014034628 A JP 2014034628A
Authority
JP
Japan
Prior art keywords
component
silicone
coating
silane solution
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012176095A
Other languages
Japanese (ja)
Other versions
JP6060338B2 (en
Inventor
Hiromitsu Furuichi
弘光 古市
Hiroyasu Tsuge
弘安 柘植
Makoto Murase
真 村瀬
Original Assignee
Daiko Technical:Kk
株式会社大光テクニカル
Nagoya City
名古屋市
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiko Technical:Kk, 株式会社大光テクニカル, Nagoya City, 名古屋市 filed Critical Daiko Technical:Kk
Priority to JP2012176095A priority Critical patent/JP6060338B2/en
Publication of JP2014034628A publication Critical patent/JP2014034628A/en
Application granted granted Critical
Publication of JP6060338B2 publication Critical patent/JP6060338B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicone-based coating material from which a heat-shielding coating film excellent in surface uniformity and adhesion and having high hardness and properties capable of sufficiently shielding near infrared rays can be obtained when the silicone coating material is applied on a transparent base material such as glass.SOLUTION: The silicone-based coating material is used in such a manner that a silane solution composed of an alkoxysilane hydrolysate and a dispersion of ITO particles are mixed. The silane solution uses, as a base, a hydrolysis mixture of a tetraalkoxysilane (A component) that is a main component and represented by general formula (I): Si(OR)(where, Ris a 1-4C alkyl group) and a trialkoxysilane (B component) represented by general formula (II): RSi(OR)(where, Rand Rare each a 1-4C alkyl group). To the hydrolysis mixture, a hydrolysate of an ω-glycidoxyalkyl trialkoxysilane (C component) represented by general formula (III) (where, Ris H or CH, Ris a 1-4C alkylene group, and Ris a 1-4C alkyl group) is added.

Description

本発明は、アルコキシシラン加水分解物からなるシラン溶液と、インジウム錫酸化物(ITO)粒子の分散液(以下、「ITO分散液」という。)とを、混合して使用するシリコーン系塗料に関する。 The present invention includes a silane solution consisting of alkoxysilane hydrolyzate, indium tin oxide (ITO) dispersion of particles (hereinafter, referred to as "ITO dispersion".) And the concerns silicone coating material used as a mixture. 特に遮熱塗料として好適なシリコーン系塗料に係る発明である。 Particularly the invention according to a preferred silicone-based paint as thermal barrier coatings.

省エネルギー・省コストを強く意識して開発された技術・製品の一例として、遮熱塗料が挙げられる。 As an example of the technologies and products that have been developed with a strong awareness of the conservation of energy and cost, and a thermal barrier paint.

遮熱塗料の特長は、これを建築物等の窓ガラス(透明基材)に塗付することによって、室内に入射する近赤外線(熱線)を遮断でき、室内の温度上昇をある程度抑制できる点にある。 Features of the thermal barrier coating is by with paint on the window glass of buildings or the like (transparent substrate) this can block near infrared rays (heat rays) incident in a room, the temperature rise in the room in that to some extent suppressed is there. この特長を活かして、例えば夏場の冷房の使用量を減らせれば、消費電力の削減に貢献できる。 Taking advantage of this feature, for example if ask reduce the amount of summer cooling, can contribute to reduction in power consumption.

このような背景を基に本願出願人の一人は、遮熱塗料として、ITO分散液を合成樹脂(アクリル樹脂とアクリル系シロキサン架橋型反応性ポリマー)に混合した製品を開発・販売してきた(特許文献1)。 One of the present applicants on the basis of this background, a thermal barrier coating, the product obtained by mixing has been developed and sold in the ITO dispersion liquid synthetic resin (an acrylic resin and an acrylic siloxane crosslinked reactive polymer) (Patent Document 1).

そして、遮熱塗料の適用範囲を広げるには、遮熱塗料で形成される遮熱塗膜は、室温乾燥(室温硬化)により、下記のような目標性能を達成する必要があることが分かってきた。 Then, the widening the application range of the thermal barrier coating, Saeginetsunurimaku formed by thermal barrier coatings, have found that room temperature drying (room temperature vulcanizing), it is necessary to achieve the target performance as follows It was.

1)塗膜が均一かつ緻密で、表面に割れや剥がれのような欠陥が無い、 1) coating is uniform and dense, there is no defect such as cracking and peeling on the surface,
2)粘着テープによる剥離(ピーリング)試験で全く剥がれない、 2) not peeled at all peel (peeling) test with adhesive tape,
3)鉛筆硬度5H以上(実用的耐擦傷性が得られる硬度)、 3) Pencil Hardness 5H or more (hardness practical scratch resistance is obtained),
4)耐熱性試験後(100℃×30min)に表面欠陥発生なし、 4) After the heat resistance test (100 ° C. × 30min) to surface defects without the occurrence,
5)近赤外線(特に波長域約1500〜2500nm)を確実に遮断できる。 5) it can be reliably cut off near infrared rays (in particular, a wavelength range of about 1500~2500Nm).

本発明の特許性に影響を与えるものではないが、ITO粒子を含有して熱線等を遮断する遮熱塗料に関連する先行技術文献として、特許文献2〜6等が存在する。 Without affecting the patentability of the present invention, as prior art documents related to thermal barrier coatings containing ITO particle blocking heat rays, etc., there are Patent Documents 2-6 and the like.

特開2007−106826号公報(要約、請求項1等) JP 2007-106826 discloses (abstract, claims 1, etc.) 特表2005−511292号公報(要約、請求項8,21等) Kohyo 2005-511292 JP (Abstract, etc. claim 8,21) 特開2005−121759号公報(要約、請求項2,6等) JP 2005-121759 discloses (abstract, claims 2,6, etc.) 特開2006−291136号公報(要約、請求項1,4等) JP 2006-291136 discloses (abstract, claims 1, etc.) 特開2008−297414号公報(要約、請求項2等) JP 2008-297414 discloses (abstract, claims 2, etc.) 特開2009− 13358号公報(要約、請求項1,2等) JP 2009- 13358 discloses (abstract, claims 1, 2, etc.)

本発明は、上記にかんがみて、ガラス等の透明基板(透明基材)上に適用した場合、近赤外線、遠赤外線等の熱線を十分に遮断できる特性も有するとともに、表面の均一性と密着性に優れ且つ実用的な耐擦傷性を有し、さらには、実用的な耐熱性を示す遮熱塗膜が形成できるシリコーン系塗料を提供することを目的(課題)とする。 The present invention is, in view of the above, when applied on a transparent substrate such as glass (transparent substrate), near infrared, with also has characteristics that can sufficiently block the heat rays of far infrared rays, the uniformity of the surface and adhesion excellent and have practical scratch resistance, and further, an object (object) to provide a practical silicone coating the thermal barrier coating film can be formed showing the heat resistance.

本発明者らは、上記課題を解決するために鋭意開発に努力をした結果、下記構成のシリコーン系塗料に想到した。 The present inventors have made an effort to intensive development in order to solve the above problems, and conceived a silicone-based coating having the following constitutions.

アルコキシシラン加水分解物からなるシラン溶液と、ITO分散液とを混合して使用するシリコーン系塗料であって、 A silane solution consisting of alkoxysilane hydrolyzate, a silicone-based paint used by mixing the ITO dispersion liquid,
前記シラン溶液が、 The silane solution,
一般式(I):Si(OR 14 (但し、R 1は炭素数1〜4のアルキル基)で示されるテトラアルコキシシラン(A成分)と、 General formula (I): Si and (OR 1) 4 (where, R 1 represents an alkyl group having 1 to 4 carbon atoms) tetraalkoxysilane (A component) represented by,
一般式(II):R 2 Si(OR 33 (但し、R 2 、R 3は炭素数1〜4のアルキル基)で示されるトリアルコキシシラン(B成分)との、前者を主体とする加水分解混合物において、 Formula (II): R 2 Si ( OR 3) 3 ( where, R 2, R 3 is an alkyl group having 1 to 4 carbon atoms) as a main component of the trialkoxysilane represented by (B component), the former in the hydrolysis mixture,
さらに、一般式(III): In addition, the general formula (III):

(但し、R 4はH又はCH 3 、R 5は炭素数1〜4のアルキレン基、R 6は炭素数1〜4のアルキル基)で示されるωグリシドキシアルキルトリアルコキシシラン(C成分)の加水分解物が添加されている、ことを特徴とする。 (Wherein, R 4 is H or CH 3, R 5 is an alkylene group, R 6 is an alkyl group having 1 to 4 carbon atoms having 1 to 4 carbon atoms) omega glycidoxy alkyltrialkoxysilane (C component) represented by hydrolyzate is added, wherein the.

本発明のシリコーン系塗料は、近赤外線等の熱線を十分に遮断できる特性も有するとともに、表面の均一性と密着性に優れ且つ実用的な耐擦傷性を有し、さらには、実用的な耐熱性を示す遮熱塗膜が形成できる。 Silicone coatings of the present invention has the characteristics that can sufficiently block the heat rays in the near infrared such as excellent adhesion and uniformity of the surface and have a practical scratch resistance, further, practical heat-resistant thermal coating barrier showing the sex can be formed.

そして、従来の如く、ITO分散液におけるITO粒子をシラン処理しなくても基材(特にガラス基材)に対する密着性が良好であり、塗料の調製工数も削減できる。 Then, as in the conventional, even the ITO particles in the ITO dispersion without silane treated substrate is (particularly glass substrate) excellent adhesion to paint steps of preparation can also be reduced.

ガラス基板に本発明の一実施例のシリコーン系塗料からなる遮熱塗膜を形成した場合の、波長範囲800〜2600nmにおける透過率曲線である。 In the case of forming the composed thermal barrier coating from a silicone-based paint of one embodiment of the present invention to the glass substrate, the transmittance curve at the wavelength range 800~2600Nm. 同じくガラス基板に形成した遮熱塗膜の表面(a)及び断面(b)の各SEM(走査電子顕微鏡)写真である。 Also it is the SEM (scanning electron microscope) photograph of the surface (a) and a cross section (b) of the thermal barrier coating film formed on the glass substrate.

以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described. 以下の説明で、配合単位、添加率は、特に断らない限り、質量基準とする。 In the following description, compounding unit, the addition rate, unless otherwise specified, and weight.

本発明は、アルコキシシラン加水分解物からなるシラン溶液と、ITO分散液とを混合して使用するシリコーン系塗料であることを上位概念的構成とする。 The present invention is directed to the upper conceptual configuration that a silane solution consisting of alkoxysilane hydrolyzate, a silicone-based paint used by mixing the ITO dispersion.

(1)シラン溶液の調製: (1) silane solution prepared in:
本発明に使用するシラン溶液は、一般式(I):Si(OR 14 (但し、R 1は炭素数1〜4のアルキル基)で示されるテトラアルコキシシラン(A成分)と、 Silane solution used in the present invention have the general formula (I): Si and (OR 1) 4 (where, R 1 represents an alkyl group having 1 to 4 carbon atoms) tetraalkoxysilane (A component) represented by,
一般式(II):R 2 Si(OR 33 (但し、R 2 、R 3は炭素数1〜4のアルキル基)で示されるトリアルコキシシラン(B成分)との、前者を主体とする加水分解混合物をベースとする。 Formula (II): R 2 Si ( OR 3) 3 ( where, R 2, R 3 is an alkyl group having 1 to 4 carbon atoms) as a main component of the trialkoxysilane represented by (B component), the former the hydrolysis mixture based.

そして、本発明のシラン溶液は、さらに、一般式(III): The silane solution of the present invention, further, the general formula (III):

(但し、R 4はH又はCH 3 、R 5は炭素数1〜4のアルキレン基、R 6は炭素数1〜4のアルキル基)で示されるωグリシドキシアルキルトリアルコキシシラン(C成分)の加水分解物が添加されている。 (Wherein, R 4 is H or CH 3, R 5 is an alkylene group, R 6 is an alkyl group having 1 to 4 carbon atoms having 1 to 4 carbon atoms) omega glycidoxy alkyltrialkoxysilane (C component) represented by hydrolyzate is added.

上記テトラアルコキシシランおよびトリアルコキシシランとしては、入手し易さの見地から、それぞれの汎用のアルコキシシランを用いる。 Examples of the tetraalkoxysilane and trialkoxysilane, from the standpoint of ease of availability, using each of the general alkoxysilane. 例えば、テトラエトキシシラン(TEOS)およびメチルトリメトキシシラン(MTMOS)が望ましい。 For example, tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMOS) is desirable.

上記A成分と上記B成分との混合モル比は、A成分/B成分=75/25〜65/35、さらには、73/27〜67/33が望ましい。 Mixing molar ratio of the A component and the B component, the A component / B component = 75 / 25-65 / 35, more, 73 / 27-67 / 33 is desirable.

すなわち、テトラアルコキシシランのみでは、塗膜の硬度が高いが脆く、熱・機械衝撃に対する耐性が低い。 That is, only the tetraalkoxysilane, while the hardness of the coating film is high brittle, low resistance to thermal and mechanical shock. このため、トリアルコキシシランを適当なモル比で混合することにより、塗膜に柔軟性を付与して、熱・機械衝撃に対する耐性を高める必要がある。 Therefore, by mixing the trialkoxysilane with appropriate molar ratios, to impart flexibility to the coating film, it is necessary to increase the resistance to thermal and mechanical shock. しかし、トリアルコキシシランが過剰になると、所要の塗膜硬度を確保し難く、耐擦傷性に問題が発生し易くなる。 However, when the trialkoxysilane is excessive, it is difficult to ensure the desired film hardness, a problem likely to occur scratch resistance.

上記ωグリシドキシアルキルトリアルコキシシラン(C成分)としては、汎用のグリシドキシアルキルトリアルコキシシランを用いる。 As the ω glycidoxy alkyltrialkoxysilane (C component), used glycidoxy alkyltrialkoxysilane of the general-purpose. 例えば、3-グリシドキシプロピルトリメトキシシラン(GTMOS)が望ましい。 For example, 3-glycidoxypropyltrimethoxysilane (GTMOS) is desirable.

ωグリシドキシアルキルトリアルコキシシラン(C成分)に対する前記A成分とB成分との合計量の混合モル比(C成分/(A成分+B成分))=1/14.5〜1/8.5、さらには、1/13〜1/8.5、よりさらには1/11.5〜1/12.5が望ましい。 The A component and the mixing molar ratio of the total amount of the B component (C component / (A component + B component)) = 1 / 14.5 to 1 / 8.5 for ω glycidoxy alkyltrialkoxysilane (C component), and further, 1 / 13-1 / 8.5, more 1 / 11.5 to 1 / 12.5 is preferred more. C成分の混合モル比が小さいと、塗膜に白濁が発生し易く、実用的な遮熱塗膜を形成し難い。 If the mixing molar ratio of the component C is small, easily clouded coating occurs, it is difficult to form a practical thermal barrier coating. 逆に、C成分の混合モル比が大きいと、塗膜に波打ち(筋状模様)が発生し易い。 Conversely, when the mixing molar ratio of the C component is larger, waviness in the coating film (streaky pattern) is likely to occur.

そして、加水分解混合物の調製は、例えば、65〜75℃×3〜7h、望ましくは、65〜75℃×4〜6hの条件で行なう。 The preparation of the hydrolysis mixture, for example, 65~75 ℃ × 3~7h, preferably, carried out under the condition of 65~75 ℃ × 4~6h. 時間が長い程、加水分解が充分に進み、シリコーン塗膜の基材(特にガラス基材)に対する密着性および耐熱性が向上する。 The longer time, hydrolysis proceeds sufficiently, thereby improving the adhesion and heat resistance to the substrate of the silicone coating film (particularly a glass substrate).

なお、加水分解に使用する触媒としては、慣用的に使用されている塩酸が望ましい。 As the catalyst used in the hydrolysis, hydrochloric acid has been conventionally used is desirable.

(2)ITO分散液の用意: (2) provision of ITO dispersion:
ITO分散液とは、ITO粒子がIPA等の水系分散媒に分散保持されている溶液をいう。 The ITO dispersion liquid means a solution in which ITO particles are dispersed and held in an aqueous dispersion medium such as IPA. 市販品を用いることができる。 A commercially available product can be used.

ITO粒子の平均粒径(メジアン値)は、0.2μm以下、さらには0.1μm以下、よりさらには0.04μm以下が望ましい。 Average particle size (median value) of the ITO particles, 0.2 [mu] m or less, more 0.1μm or less, still more or less is preferable 0.04 .mu.m. 良好な透明性を確保するためである。 In order to ensure good transparency. (特許文献6段落0012)。 (Patent Document 6 paragraph 0012).

ITOとしては、Sn比[Sn/(Sn+In)]が1〜20%のものが望ましい。 The ITO, Sn ratio [Sn / (Sn + In)] is 1-20% of it is desirable. Snが1%未満のときは、熱線遮蔽性能を得難いとともに、In成分が多くなるため高価となる。 When Sn is less than 1%, with difficult to obtain heat ray shielding performance, and expensive because the In component increases. Sn比が20%より多くなると上記同様熱線遮蔽性能を得難い。 When Sn ratio is more than 20% is difficult to obtain the same heat ray shielding performance. (同段落0013)。 (Same paragraph 0013).

ITO分散液のITO粒子濃度は、通常、25〜45%、望ましくは30〜40%のものを使用する。 ITO particle concentration of the ITO dispersion liquid is usually 25% to 45%, preferably to use a 30 to 40%. ITO粒子濃度が低いと充分な遮熱効果を得難く、ITO粒子濃度が高すぎても、それ以上の遮熱効果を得難い又は過剰品質となる。 ITO particle concentration difficult to obtain sufficient heat insulating effect is low, even if ITO particle concentration is too high, a hard or excessive quality obtained more the thermal barrier effect.

(3)シリコーン系塗料の調製: (3) Preparation of silicone-based coating:
前記シラン溶液と上記ITO分散液とを混合して本発明のシリコーン系塗料とする。 And silicone-based coating of the present invention by mixing the silane solution and the ITO dispersion liquid.

混合比(体積基準とする。以下同じ。)は、シラン溶液/ITO分散液=75/25〜65/35、望ましくは、72/28〜68/32とする。 The mixing ratio (a volume basis. Hereinafter the same.), The silane solution / ITO dispersion = 75 / 25-65 / 35, desirably 72 / 28-68 / 32.

ITO分散液の比率が低くても高くても、ゲル化時間が短くなる傾向にあり、実用的な塗料可使時間を得難くなる。 Be higher even at low ratios of ITO dispersion, tend to gel time is short, it is difficult to obtain a practical paint pot life. なお、ゲル化した塗料を用いた場合、塗膜が白濁状態となるとともに平滑塗膜面を得難い。 In the case of using the gelled coating, it is difficult to obtain a smooth coated surface with the coating film becomes opaque state.

(4)シリコーン系塗膜の形成: (4) formation of a silicone-based coating:
こうして調製したシリコーン系塗料は、通常、ガラス基材上に塗装して室温下1日乾燥すれば、本発明のシリコーン塗膜(遮熱塗膜)を形成することができる。 Thus prepared silicone coating, usually, if dried under room temperature for one day painted on a glass substrate, it is possible to form a silicone coating (Saeginetsunurimaku) of the present invention. 乾燥・硬化促進の見地から、適宜、加熱処理(例えば、90〜100℃×30〜60min)してもよい。 From the point of view of drying and curing accelerator, as appropriate, heat treatment (e.g., 90~100 ℃ × 30~60min) may be.

なお、塗装方法は、特に限定されない。 Incidentally, the coating method is not particularly limited. 例えば、スプレー塗装、ローラ塗り、刷毛塗り等、慣用の方法が適用でき、工場塗装する場合、浸漬塗りや流し塗り等も可能である。 For example, spray coating, roller coating, brush coating or the like, can be conventional methods is applied, to the factory coating, it is also possible dip coating or flow coating and the like.

このときのシリコーン系塗料の塗膜厚は、200〜2000nm、望ましくは500〜1500nmとする。 Film thickness of the silicone-based paint in this case, 200 to 2000 nm, preferably to 500 to 1500 nm. 塗膜厚が薄いと塗膜に必要な遮熱効果や硬度を得難くなる傾向にある。 Film thickness is thin and becomes difficult to obtain a thermal barrier effect and hardness required for the coating film tends. 逆に、塗膜厚を厚くしても、それ以上の性能の向上が望めない又は過剰品質となる。 Conversely, even when the thickness of the coating thickness, the more improved performance can not be expected or excessive quality. 即ち、塗料コストが嵩む。 In other words, it increases the paint cost.

こうしてガラス基板等の透明基材上にシリコーン系塗膜(遮熱塗膜)を形成した場合、後述の実施例で示す如く、熱線波長範囲を遮断して良好な遮熱性を透明基材に付与できるとともに、該遮熱塗膜のガラス等の透明基材に対する密着性も良好である。 Thus the case of forming a silicone coating (Saeginetsunurimaku) on a transparent substrate such as a glass substrate, as shown in Examples below, by blocking heat rays wavelength range impart good thermal insulation transparent substrate it is possible, adhesion to the transparent substrate such as glass-shielding heat the coating is good.

このようにして形成した本発明の遮熱塗膜は、ITO分散液を合成樹脂に混合した遮熱塗料で形成した従来の遮熱塗膜に比して、膜厚が薄く(例えば、従来10μm前後、本発明1μm前後)、硬度も高い(例えば、従来4〜5H、本発明8H前後)という長所を有する。 Netsunurimaku shield of the present invention formed in this way, compared to conventional thermal barrier coating film formed by the thermal barrier coating of a mixture of ITO dispersion in the synthetic resin, thin film thickness (e.g., conventional 10μm front and rear, the present invention 1μm so), has the advantage of hardness is high (e.g., conventional 4~5H, the present invention 8H longitudinal).

以下、本発明を実施例に基づいて、さらに詳細に説明をする。 Hereinafter, the present invention based on examples further described in detail.
<A. <A. 試験片の調製> Preparation of the test piece>
(A-1)シラン溶液(アルコキシシラン加水分解物)の調製 エタノール中、TEOSとMTMOSとを合わせたモル濃度を1Mとし、シラン:HCl:水=1:0.01:4のモル比で加えた。 During the preparation of ethanol (A-1) a silane solution (alkoxysilane hydrolyzate), the molar concentration of the combined TEOS and MTMOS and 1M, silane: HCl: water = 1: 0.01: was added in a molar ratio of 4. TEOSとMTMOSのモル比は70:30とした。 The molar ratio of TEOS and MTMOS was 70:30. この加水分解用溶液を70℃で4h、加熱攪拌して均一なシラン溶液(アルコキシシラン加水分解物)を得た。 4h the hydrolysis solution at 70 ° C., to obtain a heated and stirred to a uniform silane solution (alkoxysilane hydrolyzate).

TEOSとMTMOSを合わせたモル濃度について、1.5M、1.75M、2Mの溶液も1Mの場合と同様に調製した。 For molar concentration of the combined TEOS and MTMOS, 1.5M, 1.75M, 2M solution were prepared as in the case of 1M.

また、上記TEOSとMTMOSによるシラン溶液に、GTMOSを加えた溶液も同様にして調製した。 Further, the silane solution by the TEOS and MTMOS, the solution was also prepared in the same manner plus GTMOS.

このとき、TEOS+MTMOSとGTMOSとのモル比としては、GTMOS/(TEOS+MTMOS)=1/Xにおいて、x=14〜4の範囲に亘ってシラン溶液を調製した。 At this time, the molar ratio of TEOS + MTMOS and GTMOS, in GTMOS / (TEOS + MTMOS) = 1 / X, and the silane solution was prepared over a range of x = from 14 to 4.

(A-2)ITO分散液の用意: (A-2) prepared in ITO dispersion:
ITO粒子(平均粒径(メジアン値)0.2μm)、濃度(質量比):35%、比重1.15、分散溶媒IPAの市販品を用意した。 ITO particles (average particle size (median value) 0.2 [mu] m), the concentration (weight ratio): 35%, specific gravity 1.15, was prepared commercial products dispersion solvent IPA.

(A-3)シリコーン系塗料の調製 上記(1)のシラン溶液に上記(2)のITO分散液をシラン溶液/ITO分散液=70/30又は80/20の混合比の混合物を、室温下1h攪拌して目的のシリコーン系塗料(遮熱塗料)を得た。 (A-3) A mixture of the mixing ratio of the ITO dispersion silane solution / ITO dispersion liquid = 70/30 or 80/20 of (2) to the silane solution of the silicone-based paint prepared above (1), room temperature to yield the desired silicone coating (thermal barrier coating) in 1h stirring.

(A-4)塗膜評価試験片の作成 試験片用基板は、塗膜面特性用は約15mm×12mm×1.2mmtの、透過率測定用は約30mm×20mm×1.2mmtの各ガラス基板を用いた。 (A-4) substrate for creating test piece coating film evaluation specimens of a coated surface characteristics about 15mm × 12mm × 1.2mmt, For transmittance measurements of the glass substrates to about 30mm × 20mm × 1.2mmt Using. これらのガラス基板は、アセトンおよびエタノールで順次洗浄しておいた。 These glass substrates, which had been washed with acetone and ethanol.

各ガラス基板の上へ、上記(A-3)で得た塗料を、塗膜面特性用は6μLずつ、透過率測定用は20μLずつ、それぞれ滴下し、室温下1日乾燥して試験片を調製した。 Onto each glass substrate, the coating material obtained in the above (A-3), for the coated surface property by 6 [mu] L, is for transmittance measurement by 20 [mu] L, respectively was added dropwise, the test pieces were dried under room temperature for one day It was prepared.

<B. <B. 試験方法・結果および考察> Test Methods and Results and Discussion>
(B-0)上記A. (B-0) above A. でガラス基板上に形成した各シリコーン塗膜(遮熱塗膜)について、下記項目の評価試験を行った。 In each silicone coating film formed on a glass substrate (Saeginetsunurimaku), evaluation tests were carried out for the following items.
(I)表面状態・・・光学顕微鏡と走査電子顕微鏡(SEM)を用いて目視観察した。 It was visually observed using a (I) surface condition ... optical microscope and a scanning electron microscope (SEM).

(II)密着性・・・粘着テープによる剥離試験を行った。 (II) was subjected to a peeling test by adhesion ... adhesive tape. 具体的には、粘着テープを塗膜面に貼り付け、これを引き剥がした後の表面状態を目視により観察した。 Specifically, paste the adhesive tape to the coated surface was visually observed surface state after peeling it.

(III)硬度・・・鉛筆硬度を測定した。 (III) was measured hardness ... pencil hardness.

(IV)耐熱性・・・試験片を乾燥器に入れ、100℃×30minの条件で耐熱試験を行い、該試験後の塗膜の表面状態を目視観察した。 (IV) is heat resistant ... specimen was placed in a dryer performs heat resistance test under the conditions of 100 ° C. × 30min, and the surface state of the coating film after the test was visually observed.

(V)透過率・・・分光光度計(日立製作所社製「340S」)を用いて波長範囲800〜2600nmについて測定した。 It was measured for the wavelength range 800~2600nm with (V) transmittance ... spectrophotometer (manufactured by Hitachi, Ltd. "340S").

(B-1)塗料成分であるシラン溶液の評価: (B-1) Evaluation of the silane solution is paint components:
前記(A-1)に従って調製したTEOS+MTMOSのシラン溶液と、前記(A-3)に従って、ITO分散液とを所定の混合比で混合し、室温下1h攪拌した。 Wherein the (A-1) silane TEOS + MTMOS prepared according solution, according to the (A-3), the ITO dispersion liquid were mixed at a predetermined mixing ratio, and the mixture was stirred at room temperature 1h. シラン溶液のTEOSとMTMOSを合わせた、シラン濃度は1Mと1.5Mを用いた。 Combined TEOS and MTMOS the silane solution, the silane concentration using 1M and 1.5M.

得られた塗料を用い、(A-4)に従ってガラス基板上に塗膜を形成した。 Using the resulting coating to form a coating film on a glass substrate according to (A-4). その結果、シラン溶液とITO分散溶液の混合比が70/30の場合には、シラン濃度が1Mと1.5M共に得られた塗膜面に細かい割れ(欠陥)が観察された。 As a result, the mixing ratio of the silane solution and the ITO dispersed solution in the case of 70/30, fine cracks on the coating film surface which silane concentration is obtained both 1M and 1.5M (defect) was observed. また、シラン溶液とITO分散溶液の混合比が80/20の場合には、シラン濃度が1Mと1.5M共に塗膜が白濁した。 The mixing ratio of the silane solution and the ITO dispersed solution in the case of 80/20, the silane concentration is 1M and 1.5M both coating film became cloudy.

シリコーン塗膜の調製法を再度調べ直したが、得られる塗膜の表面状態を改善することはできなかった。 Re investigated the preparation of the silicone coating film again, it was not possible to improve the surface state of the resulting coating film.

このため、TEOS+MTMOSの二成分系のシラン溶液にGTMOSを添加した三成分系のシラン溶液について調べた。 Therefore, it was examined silane solution ternary addition of GTMOS silane solution of two-component TEOS + MTMOS.

TEOS+MTMOS=1Mの場合において、「GTMOS混合比」を「1/x(モル比)=GTMOS/(TEOS+MTMOS)」としたとき、x=14、12、10、8、6、4となるような混合比でGTMOSを添加して各シラン溶液を調製した。 In the case of TEOS + MTMOS = 1M, "GTMOS mixing ratio" a "1 / x (molar ratio) = GTMOS / (TEOS + MTMOS)" when a, so as to be x = 14,12,10,8,6,4 They were prepared each silane solution was added to GTMOS in Do mixing ratio. なお、塗料は、前記(A-3)に従って、シラン溶液/ITO分散液=70/30の混合比で混合して調製した。 Incidentally, paint, according to the (A-3), were prepared by mixing in a mixing ratio of the silane solution / ITO dispersion = 70/30. 得られたシリコーン系塗料を用いてガラス基板上に塗膜を形成し、表面状態を観察した。 Obtained using a silicone-based coating to form a coating film on a glass substrate, and observing the surface state.

その結果、TEOS+MTMOS=1Mでは、いずれのGTMOS混合比(1/x)においても、塗膜に白濁(塗膜面全体波打ちも)が観察された。 As a result, the TEOS + MTMOS = 1M, in any of GTMOS mixing ratio (1 / x), white turbidity in the coating film (also waving entire coated surface) was observed. TEOS+MTMOS=1Mでは、実用上の遮熱塗膜の形成が困難であることが分かった。 In TEOS + MTMOS = 1M, formation of practical thermal barrier coating film was found to be difficult.

続いて、TEOSとMTMOSを合わせたシラン濃度を1.5Mと濃くして、上記1Mの場合と同様な条件で塗膜を形成した。 Subsequently, the silane combined concentration of TEOS and MTMOS and darker with 1.5M, to form a coating film under the same conditions as in the above 1M.

これらの塗膜の表面状態を観察した結果、x=14,12,10のいずれの場合にも、白濁が発生しないが、x=14の場合、塗膜面に波打ちが、x=12,10の場合、塗膜縁部に波打ちが発生することがわかった。 Result of observation of the surface state of these coatings, in either case of x = 14,12,10, but white turbidity does not occur in the case of x = 14, the undulation in the coated surface, x = 12, 10 in the case of, it was found that the waviness is generated in the Nurimakuen part. x=14,12,10に、波打ちが発生しても、塗膜に白濁が発生せず、実用上の遮熱塗膜の形成が可能であることが分かった。 To x = 14,12,10, even waving occurs, without white turbidity in the coating film occurred, formation of practical thermal barrier coating film was found to be possible.

x=8、6、4においては、塗膜に白濁(塗膜面波打ちも)が観察され、実用上の遮熱塗膜の形成が困難であることが分かった。 In x = 8,6,4, white turbidity in the coating film (waving coated surface also) is observed, formation of practical thermal barrier coating film was found to be difficult.

TEOS+MTMOS=1.75M,2Mの場合においても同様な条件で塗膜を形成したところ、得られた塗膜の表面状態は1.5Mの場合と同様な傾向を示し、1.75Mと2M共にx=10,12の場合が良好な結果を示した。 TEOS + MTMOS = 1.75M, was to form a coating film under the same conditions even in the case of 2M, the surface state of the obtained coating film showed a similar trend to that of 1.5M, 1.75 M and 2M both x = 10, for 12 showed good results.

ただし、TEOSとMTMOSを合わせたシラン濃度が2.5Mを超えると、塗膜面の平滑性(均一性)が低下して塗膜面に波打ちが発生し易い傾向があった。 However, if the silane combined concentration of TEOS and MTMOS exceeds 2.5M, coated surface smoothness (uniformity) is waving the coated surface there was a tendency to generate reduced.

それらの結果をまとめたものを表1に示す。 The summary of the results are shown in Table 1.

続いて、上記で得られた塗膜の耐熱性を前記(B-0)(IV)に基づいて調べた。 Subsequently, it was examined on the basis of the heat resistance of the coating film obtained above in the (B-0) (IV).

その結果、TEOS+MTMOS=1.5Mの場合には全く問題ないが、それ以上になると、基板の縁部分において、一部割れや剥がれが見られる場合があった。 As a result, although no problem in the case of TEOS + MTMOS = 1.5M, becomes the more, the edge portion of the substrate, some cracking or peeling was can be seen. 加えて、TEOS+MTMOS=2Mを用いた際、室温下で長期間(1週間以上)乾燥した塗膜において、表面に大きな割れや剥がれが生成した場合があった。 In addition, when using the TEOS + MTMOS = 2M, long time at room temperature (over a week) in dry coating film, there are cases where large cracks or peeling was generated on the surface.

これらの結果から、TEOS+MTMOSのシラン濃度が低すぎると(例えば1M)、塗膜が白濁し、高すぎると塗膜面の平滑性が低下し、さらに、乾燥・硬化後の塗膜が割れたり剥がれたりすることが判明した。 These results, that the silane concentration of TEOS + MTMOS too low (e.g. 1M), the coating film was opaque and too high smoothness of the coating film surface is deteriorated, further, peeling or cracking the coating film after drying and curing it has been found that or.

上記結果を基に、さらに詳細なGTMOS混合比(1/x)の最適範囲を調べることにした。 Based on the above results, it was decided to investigate the optimum range of more detailed GTMOS mixing ratio (1 / x).

そこで、TEOS+MTMOS=1.5M、1.75M、2Mについて、x=10に加えてx=11と9のシラン溶液を調製した。 Therefore, TEOS + MTMOS = 1.5M, 1.75M, about 2M, was prepared silane solution of x = 11 and 9 in addition to x = 10. その結果、いずれの場合においても、塗膜面の平滑性と透明性から判断すると、x=11が最も優れていることが判明した。 As a result, in any case, judging from smoothness and transparency of the coating film surface, it was found that x = 11 is the best.

さらに、TEOS+MTMOSおよびGTMOSを用いた、加水分解物調製であるシラン溶液の調製において、加熱時間を4hから6hへと長くしたシラン溶液を調べることにした。 Furthermore, using a TEOS + MTMOS and GTMOS, in the preparation of the silane solution is an hydrolyzate prepared and to investigate the long silane solution and the heating time from 4h to 6h.

得られた塗料を用いて塗膜の検討を繰り返した結果、再現性良く、白濁無しで塗膜面平滑な塗膜を形成できることがわかった。 A result of repeated study of the coating film using the resulting coating, with good reproducibility, it has been found capable of forming a coating film surface smooth film without cloudiness.

また、TEOS+MTMOS=1.5Mにおいて、x=11とした塗料で形成した塗膜は、密着性が良好で、鉛筆硬度は8Hと高い値を示した。 Further, the TEOS + MTMOS = 1.5M, the coating film formed by coating was x = 11 is a adhesion good pencil hardness showed 8H high value.

加えて、耐熱性試験を行った結果、割れや剥がれは全く観察されなかった。 In addition, results of the heat resistance test, cracks or peeling was observed.

1.75Mの場合においても、加熱時間を長くすることにより同様の改善が見られた。 In the case of 1.75M it was also observed similar improvements by increasing the heating time. しかし、1.75Mの場合には、6時間加熱後に溶液中に若干のシラン溶液にゲルの生成が見られた。 However, in the case of 1.75M, the gel produced was observed to some silane solution in the solution after heating for 6 hours.

ただし、このゲルを除いた溶液を用いれば、問題なく平滑な塗膜が得られた。 However, the use of the solution excluding the gel, smooth film without problems was obtained.

一方、2Mの場合には、ゲル化がかなり進行してしまうため、塗膜調製には細心の注意が必要である。 On the other hand, in the case of 2M, since gelation would considerably advanced, it is necessary to close attention to the coating preparation. これらの結果から、TEOS+MTMOS=1.5M又は1.75M、GTMOS混合比=1/xにおいて、x=11を最適なシラン溶液と結論付けることができる。 These results, TEOS + MTMOS = 1.5M or 1.75 M, in GTMOS mixing ratio = 1 / x, it can be concluded that the optimum silane solution x = 11.

即ち、TEOS+MTMOSのシラン濃度を1.3〜1.8M(さらには、1.4〜1.6M)において、GTMOS混合比(1/x)としたとき、x=14.5〜8.5、さらには13〜8.5、よりさらには11.5〜10.5とすることが望ましい。 That, TEOS + the silane concentration of MTMOS 1.3~1.8M (further, 1.4~1.6M) in, when the GTMOS mixing ratio (1 / x), x = 14.5~8.5, further from 13 to 8.5, more Furthermore it is desirable that the 11.5 to 10.5.

また、今回検討した、TEOS+MTMOSのモル濃度が1M,1.5M,1.75Mおよび2Mにおいて、TEOS+MTMOSのモル濃度が1MおよびGTMOS混合比(1/x)がx=8,6,4のいずれかに該当する場合は、本発明の塗料として不適であることが分かった。 We also examined this, the molar concentration of TEOS + MTMOS is 1M, 1.5M, in 1.75M and 2M, the molar concentration 1M and GTMOS mixing ratio of TEOS + MTMOS (1 / x) is any of the x = 8,6,4 If it was found to be unsuitable as a coating material of the present invention.

本発明における、シラン溶液とITO分散液の体積混合比は、シラン溶液/ITO分散液=75/25〜65/35、望ましくは72/28〜68/32の範囲とする。 In the present invention, the volume mixing ratio of the silane solution and the ITO dispersion liquid, the silane solution / ITO dispersion liquid = 75 / 25-65 / 35, preferably in the range of 72 / 28-68 / 32.

ITO分散液の割合が減った場合、例えば混合比を80/20とすると、塗料が若干不均一かつ青白色となり、この溶液により得られる塗膜は、白濁する。 If the proportion of the ITO dispersion has decreased, for example, the mixing ratio when 80/20, paint slightly becomes uneven and bluish white, the coating film obtained by this solution is cloudy.

なお、ITO分散液に関して、これをシラン溶液へ加える際に、冷却状態(冷蔵庫保管)のITO分散液を用いて混合溶液を調製すると、これにより得られる塗膜は強く白濁した。 Regarding ITO dispersion, when adding it to the silane solution, when the mixed solution is prepared by using the ITO dispersion liquid of the cooling state (refrigerator storage), the coating film thus obtained was cloudy strongly. よって、室温下で保存したITO分散液を利用することが、白濁の無い塗膜作製には重要であることがわかった。 Thus, is possible to use the ITO dispersion liquid was stored at room temperature, it was found that the turbidity-free coating produced is important.

また、TEOSとMTMOSおよびGTMOSによるシラン溶液に関して、調製後、直ちにITO分散液と混合するのではなく、調製後、室温下において1日程度置いた方が、白濁の少ない塗膜が得られる傾向が見られた。 With respect to the silane solution by TEOS and MTMOS and GTMOS, after preparation, does not immediately mix with ITO dispersion liquid after preparation, is better placed about one day at room temperature, tend to less coating film cloudiness is obtained It was seen.

続いて、上記最適組成の塗料から形成した塗膜の透過率を測定(測定波長領域:800〜2600nm)した。 Subsequently, measuring the transmittance of the coating film formed from the paint of the optimal composition (wavelength region: 800~2600nm) was.

測定結果である図1は、塗膜を施したガラス基板では、波長800nm付近で透過率約85%を示したが、これ以降波長が長くなるに連れて低下し続け、波長1500〜2600nmの範囲において、ほぼ0%を示した。 Figure 1 is a measurement result, the glass substrate subjected to coating film showed about 85% transmittance around the wavelength of 800 nm, it continued to decline As the wavelength subsequent longer, the wavelength range of 1500~2600nm in showed almost 0%. なお、未処理のガラス基板では、通常、測定波長範囲全般において約90%と高い透過率を示すとされている。 In the glass substrate of the untreated, it is generally a show about 90% and high transmittance in the measurement wavelength range in general.

この結果から、本塗膜をガラス基板上へ導入することにより、大幅に近赤外線が遮断できることが確認できた。 From this result, the present coating by introducing onto a glass substrate, it was confirmed that significant near infrared rays can be blocked. また、本塗膜は、透過率の測定終了後においても、塗膜面の劣化は全く観察されなかった。 Further, Hon'nurimaku is even after the measurement of the transmittance termination, the deterioration of the coated surface was observed.

さらに、本塗膜の(a)表面状態と(b)断面のSEM像を図2に示す。 Moreover, the present coating comprising (a) a surface state (b) SEM image of the cross section shown in FIG.

図2(a)から、塗膜面には割れや剥がれのような欠陥は無く、塗膜面平滑であることが確認できた。 2 from (a), the coated surface without defects such as cracks or peeling, was confirmed to be Nurimakumen smooth. また、図2(b)から、ITO粒子が均一かつ緻密に分散している状態が観察され、また、塗膜の膜厚は約1.5μmであることが判明した。 Further, from FIG. 2 (b), is a state where ITO particles are uniformly and densely dispersed observed, also, it has been found thickness of the coating film is about 1.5 [mu] m.

<C. <C. 考察まとめ> Discussion Conclusion>
以下に、本研究によって得られた成果をまとめる。 The following summarizes the results obtained by this study.
1)ITO分散液へのシラン処理剤(シランカップリング剤)の添加を行わず、ITO分散液をそのまま使用し、これとシラン溶液との混合を試みた。 1) without the addition of the silane treating agent to ITO dispersion (silane coupling agent), the ITO dispersion liquid used as is, tried to mix between this and the silane solution. TEOSとMTMOSのみによるシラン溶液を用いて塗膜を作製したが、塗膜面に細かい割れが発生する場合や、白濁する場合もあった。 To prepare a coating film using the silane solution by only TEOS and MTMOS but, and if the fine cracks in the coating film surface occurs, there may be cloudy. これを改善するために、様々な溶液の調製条件を調べたが、良好な表面状態を有する塗膜を得ることができなかった。 To improve this, it was examined preparation conditions of the various solutions, but it was not possible to obtain a coating film having a good surface state.

2)上記1)の結果を受け、シラン溶液の改良として、TEOSとMTMOSの溶液に対して、さらにGTMOSを加えたシラン溶液について調べた。 It received two) above 1) result, as an improvement of the silane solution, to a solution of TEOS and MTMOS, was studied further silane solution plus GTMOS. この際、TEOSとMTMOSを合わせたシラン濃度、加えるGTMOSの濃度、シラン溶液とITO分散液との混合比等、様々な条件で最適範囲を模索した。 In this case, silane combined concentration of TEOS and MTMOS, the concentration of GTMOS added, mixing ratio, etc. of the silane solution and the ITO dispersion liquid, and sought the optimum range in a variety of conditions.

その結果、表面状態と密着性および硬度に優れ、耐熱性も問題が無く、さらに近赤外線(特に約1500〜2600nm)を確実に遮断できる塗膜を作製できるシリコーン系塗料が開発できた。 As a result, excellent adhesion and hardness and surface condition, heat resistance without problems, further near infrared silicone coating can be produced a film that can be (especially about 1500~2600Nm) reliably cut off could be developed.

また、溶液の塗付性も良好で、平滑な塗膜を形成できることを確認した。 Also, the coating with properties of the solution was good, it was confirmed that can form a smooth film.

なお、実際にITO分散液と混合する際には、室温下で1日程度静置したシラン溶液を使用した方が良い(塗膜平滑性が向上し、白濁化を防ぐ)。 Incidentally, when mixing actually the ITO dispersion, 1 day about standing silane solution is better to use at room temperature (improved coating smoothness, prevent white turbidity). 本シラン溶液は封をした状態で室温下保存すれば、約1ヶ月以上、場合によっては5〜6ケ月使用できることを確認している。 This silane solution when stored at room temperature while sealed, about 1 month or more, in some cases it has been confirmed that it can be used 5-6 months.

本シラン溶液をITO分散液と混合して、塗料を調製する際、所定時間(例えば、1h以上)できる限り攪拌を強くし均一に混合することが望ましい。 This silane solution is mixed with ITO dispersion, when preparing the coating material, a predetermined time (for example, 1h higher) unless it is desired to mix strongly and uniformly stirring possible.

Claims (6)

  1. アルコキシシラン加水分解物からなるシラン溶液と、インジウム錫酸化物(ITO)粒子の分散液(以下、「ITO分散液」という。)とを混合して使用するシリコーン系塗料であって、 Alkoxysilane silane consisting hydrolyzate solution, an indium tin oxide (ITO) dispersion of particles (hereinafter, referred to as "ITO dispersion".) And a silicone-based paint that uses a mixture of,
    前記シラン溶液が、 The silane solution,
    一般式(I):Si(OR 14 (但し、R 1は炭素数1〜4のアルキル基)で示されるテトラアルコキシシラン(A成分)と、 General formula (I): Si and (OR 1) 4 (where, R 1 represents an alkyl group having 1 to 4 carbon atoms) tetraalkoxysilane (A component) represented by,
    一般式(II):R 2 Si(OR 33 (但し、R 2 、R 3は炭素数1〜4のアルキル基)で示されるトリアルコキシシラン(B成分)との、前者を主体とする加水分解混合物において、 Formula (II): R 2 Si ( OR 3) 3 ( where, R 2, R 3 is an alkyl group having 1 to 4 carbon atoms) as a main component of the trialkoxysilane represented by (B component), the former in the hydrolysis mixture,
    さらに、一般式(III): In addition, the general formula (III):
    (但し、R 4はH又はCH 3 、R 5は炭素数1〜4のアルキレン基、R 6は炭素数1〜4のアルキル基)で示されるωグリシドキシアルキルトリアルコキシシラン(C成分)の加水分解物が添加されている、 (Wherein, R 4 is H or CH 3, R 5 is an alkylene group, R 6 is an alkyl group having 1 to 4 carbon atoms having 1 to 4 carbon atoms) omega glycidoxy alkyltrialkoxysilane (C component) represented by hydrolyzate is added,
    ことを特徴とするシリコーン系塗料。 Silicone coatings, characterized in that.
  2. 前記シラン溶液における前記テトラアルコキシシラン(A成分)と前記トリアルコキシシラン(B成分)との混合モル比がA成分/B成分=75/25〜65/35であるとともに、前記ωグリシドキシアルキルトリアルコキシシラン(C成分)に対する前記A成分とB成分との合計量の混合モル比がC成分/(A成分+B成分)=1/14.5〜1/8.5であることを特徴とする請求項1記載のシリコーン系塗料。 Wherein with the mixing molar ratio of tetraalkoxysilane (A component) and the trialkoxysilane (B component) is the A component / B component = 75 / 25-65 / 35 in the silane solution, the ω glycidoxyalkyl claim, characterized in that the mixing molar ratio of the total amount of the components a and B with respect to trialkoxysilanes (C component) is C component / (a ​​component + B component) = 1 / 14.5 to 1 / 8.5 1 silicone-based paint described.
  3. 前記加水分解混合物における前記A成分とB成分の合計モル濃度が1.3〜2.5Mであることを特徴とする請求項1又は2記載のシリコーン系塗料。 The hydrolysis total molar concentration of the A component and the B component in the mixture characterized in that it is a 1.3~2.5M claim 1 or 2 wherein the silicone-based paint.
  4. 前記シラン溶液と前記ITO分散液との混合比(体積基準)が、前記ITO分散液の固形分濃度30〜40%の場合において、シラン溶液/ITO分散液=75/25〜40/60であることを特徴とする請求項3記載のシリコーン系塗料。 The mixing ratio of the ITO dispersion liquid and the silane solution (volume basis), in the case of solid concentration 30-40% of the ITO dispersion, is silane solution / ITO dispersion liquid = 75 / 25-40 / 60 claim 3 wherein the silicone-based coating, characterized in that.
  5. 前記A成分がテトラエトキシシラン(TEOS)であり、前記B成分がメチルトリメトキシシラン(MTMOS)であるとともに、前記C成分が3−グリシドキシプロピルトリメトキシシラン(GTMOS)であることを特徴とする請求項1〜4のいずれかに記載のシリコーン系塗料。 Wherein component A is a tetraethoxysilane (TEOS), together with the B component is methyltrimethoxysilane (MTMOS), and wherein the C component is 3-glycidoxypropyltrimethoxysilane (GTMOS) silicone paint according to any one of claims 1 to 4.
  6. 透明基材上に請求項1〜5のいずれかに記載のシリコーン系塗料で遮熱塗膜が形成されていることを特徴とする遮熱構造透明基材。 Heat insulating structure transparent substrate, characterized in that the thermal coating barrier with a silicone coating according to claim 1 on a transparent substrate is formed.
JP2012176095A 2012-08-08 2012-08-08 Silicone-based coatings and thermal barrier structure transparent substrate Active JP6060338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176095A JP6060338B2 (en) 2012-08-08 2012-08-08 Silicone-based coatings and thermal barrier structure transparent substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176095A JP6060338B2 (en) 2012-08-08 2012-08-08 Silicone-based coatings and thermal barrier structure transparent substrate

Publications (2)

Publication Number Publication Date
JP2014034628A true JP2014034628A (en) 2014-02-24
JP6060338B2 JP6060338B2 (en) 2017-01-18

Family

ID=50283813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176095A Active JP6060338B2 (en) 2012-08-08 2012-08-08 Silicone-based coatings and thermal barrier structure transparent substrate

Country Status (1)

Country Link
JP (1) JP6060338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052938A (en) * 2015-09-07 2017-03-16 株式会社エフコンサルタント Aqueous coating material and forming method of coated film
WO2017043486A1 (en) * 2015-09-07 2017-03-16 株式会社エフコンサルタント Water-based coating material and method for forming coating film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699263A (en) * 1980-01-10 1981-08-10 Nippon Sheet Glass Co Ltd Coating composition
JPH09255917A (en) * 1996-03-27 1997-09-30 Nippon Shokubai Co Ltd Method of formation of herd coat layer on resin molding, and resin molding with herd coat layer formed thereon
JP2000144051A (en) * 1998-11-18 2000-05-26 Teijin Chem Ltd Composition for coating
JP2003013007A (en) * 2001-06-29 2003-01-15 Koei Shiko:Kk Coating composition and building material using the same
JP2005200546A (en) * 2004-01-15 2005-07-28 Shin Etsu Chem Co Ltd Silicone resin composition and article covered with the same
JP2008030015A (en) * 2005-11-15 2008-02-14 Central Glass Co Ltd Method of manufacturing a base material for formation of heat-shielding film
JP2009297626A (en) * 2008-06-12 2009-12-24 Central Glass Co Ltd Method for forming silica-based coating film and coating liquid
WO2010143645A1 (en) * 2009-06-12 2010-12-16 石原産業株式会社 Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor
JP2011018024A (en) * 2009-06-08 2011-01-27 Jsr Corp Radiation-sensitive composition, protective film, inter-layer insulating films, and method of forming them
JP2011242448A (en) * 2010-05-14 2011-12-01 Nippon Coating Industry Co Ltd Functional transparent film and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699263A (en) * 1980-01-10 1981-08-10 Nippon Sheet Glass Co Ltd Coating composition
JPH09255917A (en) * 1996-03-27 1997-09-30 Nippon Shokubai Co Ltd Method of formation of herd coat layer on resin molding, and resin molding with herd coat layer formed thereon
JP2000144051A (en) * 1998-11-18 2000-05-26 Teijin Chem Ltd Composition for coating
JP2003013007A (en) * 2001-06-29 2003-01-15 Koei Shiko:Kk Coating composition and building material using the same
JP2005200546A (en) * 2004-01-15 2005-07-28 Shin Etsu Chem Co Ltd Silicone resin composition and article covered with the same
JP2008030015A (en) * 2005-11-15 2008-02-14 Central Glass Co Ltd Method of manufacturing a base material for formation of heat-shielding film
JP2009297626A (en) * 2008-06-12 2009-12-24 Central Glass Co Ltd Method for forming silica-based coating film and coating liquid
JP2011018024A (en) * 2009-06-08 2011-01-27 Jsr Corp Radiation-sensitive composition, protective film, inter-layer insulating films, and method of forming them
WO2010143645A1 (en) * 2009-06-12 2010-12-16 石原産業株式会社 Near-infrared shielding coating agent curable at ordinary temperatures, near-infrared shielding film using same, and manufacturing method therefor
JP2011242448A (en) * 2010-05-14 2011-12-01 Nippon Coating Industry Co Ltd Functional transparent film and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052938A (en) * 2015-09-07 2017-03-16 株式会社エフコンサルタント Aqueous coating material and forming method of coated film
WO2017043486A1 (en) * 2015-09-07 2017-03-16 株式会社エフコンサルタント Water-based coating material and method for forming coating film

Also Published As

Publication number Publication date
JP6060338B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP4032185B2 (en) Coating having a low refractive index and water repellency
EP0611812B1 (en) Liquid coating composition forming a liquid crystal display element insulating film
US4355135A (en) Tintable abrasion resistant coatings
JP5109108B2 (en) The method for producing a silica airgel coating
JP3201654B2 (en) The coating composition
CN102405533B (en) For the anti-reflective coating an optically transparent substrate
JP3956043B2 (en) Coating composition and its preparation and scratch-resistant plastic lens
US5766673A (en) Process for forming a liquid crystal vertical alignment film
CN1771445A (en) Anti-reflective coating composition and coating film with excellent stain resistance
CN100462395C (en) Transparent heat-insulating film and its preparing process
JP2003202406A (en) Antireflection film and display device
JP4957926B2 (en) Chemical floor care flexibilizer cold curing inorganic coating agent
JP5633371B2 (en) Core - method of manufacturing a shell particles
JPWO2006022347A1 (en) The coating composition and the resin laminate
CN102070981A (en) Ultraviolet curing paint and preparation method and application thereof
JPH07112126A (en) Organosol dispersed in fluorine-containing solvent
EP1997860A1 (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
CN101309759B (en) Process for producing base material for forming heat shielding film
JP4887783B2 (en) Coating having a low refractive index and water repellency
CN102084288B (en) Silicon-based liquid crystal orientating agent, liquid crystal orientated film and liquid crystal display element
CN103937354B (en) A method of preparing high-hardness water glass paint
CN1800068A (en) Transparent heat insulating glass
CN103443224A (en) Liquid composition, method for producing same, and glass article
JP4321319B2 (en) Curable liquid composition, cured film, and antistatic laminate
JPH09281502A (en) Formation of liquid crystal vertically oriented film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161104

R150 Certificate of patent or registration of utility model

Ref document number: 6060338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150