JP2014024959A - Metal resin composite having excellent heat radiation effect - Google Patents

Metal resin composite having excellent heat radiation effect Download PDF

Info

Publication number
JP2014024959A
JP2014024959A JP2012166230A JP2012166230A JP2014024959A JP 2014024959 A JP2014024959 A JP 2014024959A JP 2012166230 A JP2012166230 A JP 2012166230A JP 2012166230 A JP2012166230 A JP 2012166230A JP 2014024959 A JP2014024959 A JP 2014024959A
Authority
JP
Japan
Prior art keywords
metal
resin
group
thermoplastic resin
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012166230A
Other languages
Japanese (ja)
Inventor
Toshiro Ezaki
俊朗 江▲崎▼
Shusuke Yoshihara
秀輔 吉原
Mitsuru Nakamura
充 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012166230A priority Critical patent/JP2014024959A/en
Publication of JP2014024959A publication Critical patent/JP2014024959A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a metal resin composite exhibiting excellent heat radiation properties.SOLUTION: A metal resin composite is produced by arranging a metallic member in the inner part of mold and forming a resin molding part on at least a part of surface of the metallic member and a thermoplastic resin which forms the resin molding part contains 25 to 60 mol% of (A) a unit having a biphenyl group, 25 to 60 mol% of (B) a linear unit (such as a linear aliphatic hydrocarbon chain) and 0 to 25 mol% of (C) a unit having a substituent selected from an aromatic group, a condensed aromatic group, a heterocyclic group, an alicyclic group and a cycloaliphatic heterocyclic group having folding effects of a major chain and has a thermal conductivity in a single resin of 0.4 W/(m K) or more.

Description

本発明は、熱伝導性に優れた放熱材料であって、優れた放熱性を有する金属樹脂複合体に関する。   The present invention relates to a heat dissipation material having excellent heat conductivity, and relates to a metal-resin composite having excellent heat dissipation.

熱可塑性樹脂組成物をパソコンやディスプレーの筐体、電子デバイス材料、自動車の内外装など種々の用途に使用する際、プラスチックは金属材料など無機物と比較して熱伝導性が低いため、発生する熱を逃がしづらいことが問題になることがある。   When a thermoplastic resin composition is used in various applications such as PC and display housings, electronic device materials, and interior and exterior of automobiles, the heat generated due to the low thermal conductivity of plastics compared to inorganic materials such as metal materials. Difficult to escape may be a problem.

このような課題を解決する方法の一つとして、放熱性に優れる金属と樹脂を一体化する技術が開発されている。特許文献1では、特殊な薬液に浸漬することで金属表面を微細粗化し、金属と樹脂の密着性、接着強度を向上させることが記載されている。   As one method for solving such a problem, a technique for integrating a metal and a resin excellent in heat dissipation has been developed. Patent Document 1 describes that a metal surface is finely roughened by dipping in a special chemical solution to improve the adhesion and adhesive strength between the metal and the resin.

また、特許文献2、3では、トリアジン系化合物を用いて表面処理された金属とチオエーテル結合やアミド結合などを有する熱可塑性樹脂との複合化することで、金属と樹脂組成物の接着強度、耐熱性、放熱性に優れた金属樹脂複合体を得られる方法が記載されている。しかし、いずれの場合においても、熱可塑性樹脂組成物自体の厚み方向の熱伝導率が低いため、発熱体からの熱を金属に効率よく伝熱させることができないという問題があった。   Further, in Patent Documents 2 and 3, by combining a metal surface-treated with a triazine compound and a thermoplastic resin having a thioether bond or an amide bond, the adhesive strength between the metal and the resin composition, heat resistance Describes a method for obtaining a metal resin composite excellent in heat dissipation and heat dissipation. However, in any case, since the thermal conductivity in the thickness direction of the thermoplastic resin composition itself is low, there is a problem that heat from the heating element cannot be efficiently transferred to the metal.

樹脂組成物の厚み方向の熱伝導率を向上させる方法として、高熱伝導性無機物を大量に熱可塑性樹脂中に配合する方法があるが、その場合、グラファイト、炭素繊維、アルミナ、窒化ホウ素等の高熱伝導性無機物を、通常は30Vol%以上、さらには50Vol%以上もの高含有量で樹脂中に配合する必要がある。しかしながら、無機物を大量に配合しても樹脂単体の熱伝導性が低いために、樹脂組成物の熱伝導率には限界があった。そこで樹脂単体の熱伝導性の向上が求められていた。   As a method of improving the thermal conductivity in the thickness direction of the resin composition, there is a method of blending a large amount of highly heat-conductive inorganic substance in a thermoplastic resin. In that case, high heat such as graphite, carbon fiber, alumina, boron nitride, etc. It is necessary to mix the conductive inorganic substance in the resin with a high content of usually 30 Vol% or more, and further 50 Vol% or more. However, even if a large amount of the inorganic substance is blended, the thermal conductivity of the resin alone is low, so that the thermal conductivity of the resin composition has a limit. Therefore, improvement in the thermal conductivity of the resin alone has been demanded.

樹脂単体の熱伝導性が優れた熱可塑性樹脂としては、延伸、磁場配向など特殊な成形加工なしに、射出成形により成形された樹脂単体が高熱伝導性を有する熱可塑性樹脂についての研究報告はほとんどなく、数少ない例として特許文献4〜6が挙げられる。特許文献4〜6に記載されているように、本発明の発明者らは樹脂単体で高熱伝導性を示す熱可塑性樹脂および樹脂組成物を見出してきた。特許文献4〜6に記載の熱可塑性樹脂は、射出成形することによって優れた熱伝導性を示す成形体を得ることができるが、金属と樹脂の複合化についての記載はなかった。   As for the thermoplastic resin with excellent thermal conductivity of the resin itself, there are almost no research reports on thermoplastic resins in which the resin itself molded by injection molding has high thermal conductivity without special molding processes such as stretching and magnetic field orientation. However, Patent Documents 4 to 6 are listed as few examples. As described in Patent Documents 4 to 6, the inventors of the present invention have found a thermoplastic resin and a resin composition that exhibit high thermal conductivity with a single resin. Although the thermoplastic resin described in Patent Documents 4 to 6 can obtain a molded article exhibiting excellent thermal conductivity by injection molding, there is no description about the composite of metal and resin.

特開2008−173967JP2008-173967 特開2009−185102JP2009-185102A 特開2009−202567JP 2009-202567 A 国際公開番号WO2010/050202号International Publication Number WO2010 / 050202 特願2011−024739号Japanese Patent Application No. 2011-024739 国際公開番号WO2011/033815号International Publication Number WO2011 / 033815

本発明は、厚み方向に優れた熱伝導性を有する熱可塑性樹脂からなる樹脂組成物と金属を一体化成形することで、優れた放熱性を示す金属樹脂複合体を提供することが目的である。 An object of the present invention is to provide a metal resin composite exhibiting excellent heat dissipation by integrally molding a resin composition comprising a thermoplastic resin having excellent thermal conductivity in the thickness direction and a metal. .

本発明者らは、特定の分子構造の重縮合体である熱可塑性樹脂を成形した際、厚み方向の熱伝導率がより高められ、そのため、金属と樹脂を複合化した際、樹脂から金属への熱をより効率的に伝熱することを見出し、本発明に至った。即ち、本発明は、下記1)〜12)である。
1)
金型内部に金属製部材を配置し、該金属製部材の表面の少なくとも一部に樹脂成形部を形成して得られる金属樹脂複合体であって、該樹脂成形部を形成する熱可塑性樹脂の主鎖の構造が一般式(1)
When the present inventors have molded a thermoplastic resin that is a polycondensate having a specific molecular structure, the thermal conductivity in the thickness direction is further increased. Therefore, when a metal and a resin are combined, the resin is converted into a metal. The present inventors have found that the heat of the heat can be transferred more efficiently, and have reached the present invention. That is, the present invention includes the following 1) to 12).
1)
A metal-resin composite obtained by disposing a metal member inside a mold and forming a resin molded portion on at least a part of the surface of the metal member, the thermoplastic resin forming the resin molded portion The structure of the main chain is general formula (1)

Figure 2014024959
Figure 2014024959

(式中、XはO、COの群から選ばれる2価の置換基を示す)
で表されるビフェニル基を有するユニット(A)25〜60モル%、
一般式(2)
−Y−R−Y− (2)
(式中、Rは主鎖原子数2〜20の分岐を含んでもよい2価の直鎖状置換基を示す。YはO、COの群から選ばれる2価の置換基を示す)
で表されるユニット(B)25〜60モル%、
一般式(3)
−Z1−M−Z2− (3)
(式中、Z1、Z2はO、NH、CO、S、NHCOの群から選ばれる2価の置換基を示す。Mは主鎖の折り畳み効果を有する芳香族基、縮合芳香族基、複素環基、脂環基、脂環式複素環基から選ばれる置換基を示す。)
で表されるユニット(C)0〜25モル%(ただしユニット(A)、(B)、(C)の合計を100モル%とする)からなり、樹脂単体の熱伝導率が0.4W/(m・K)以上である熱可塑性樹脂組成物からなる金属樹脂複合体。
2)
前記熱可塑性樹脂の分子鎖の末端の60モル%以上がカルボキシル基であることを特徴とする、1)に記載の金属樹脂複合体。
3)
前記一般式(1)のXがO、一般式(2)のYがCOである、1)または2)の何れかに記載の金属樹脂複合体。
4)
前記熱可塑性樹脂のRに相当する部分が直鎖の脂肪族炭化水素鎖である、1)〜3)の何れかに記載の金属樹脂複合体。
5)
前記熱可塑性樹脂のRに相当する部分の主鎖原子数が偶数である、1)〜4)の何れかに記載の金属樹脂複合体。
6)
前記熱可塑性樹脂のRが−(CH28−、−(CH210−、−(CH212−から選ばれる少なくとも1種である、1)〜5)の何れかに記載の金属樹脂複合体。
7)
前記熱可塑性樹脂のMが以下に示す構造のうちいずれか一種である、1)〜6)の何れかに記載の金属樹脂複合体。
(Wherein X represents a divalent substituent selected from the group of O and CO)
Unit (A) having a biphenyl group represented by 25 to 60 mol%,
General formula (2)
-YR-Y- (2)
(In the formula, R represents a divalent linear substituent which may contain a branch having 2 to 20 main chain atoms. Y represents a divalent substituent selected from the group of O and CO.)
Unit (B) represented by 25 to 60 mol%,
General formula (3)
-Z 1 -MZ 2- (3)
(In the formula, Z 1 and Z 2 represent a divalent substituent selected from the group of O, NH, CO, S and NHCO. M represents an aromatic group having a main chain folding effect, a condensed aromatic group, A substituent selected from a heterocyclic group, an alicyclic group, and an alicyclic heterocyclic group is shown.)
Unit (C) represented by 0 to 25 mol% (however, the total of units (A), (B), and (C) is 100 mol%), and the thermal conductivity of the resin alone is 0.4 W / (M * K) The metal resin composite which consists of a thermoplastic resin composition which is more than.
2)
The metal resin composite as described in 1), wherein 60 mol% or more of molecular chain terminals of the thermoplastic resin are carboxyl groups.
3)
The metal resin composite according to 1) or 2), wherein X in the general formula (1) is O and Y in the general formula (2) is CO.
4)
The metal resin composite according to any one of 1) to 3), wherein a portion corresponding to R of the thermoplastic resin is a linear aliphatic hydrocarbon chain.
5)
The metal resin composite according to any one of 1) to 4), wherein the number of main chain atoms in a portion corresponding to R of the thermoplastic resin is an even number.
6)
R in the thermoplastic resin is at least one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —, 1) to 5) Metal resin composite.
7)
The metal resin composite according to any one of 1) to 6), wherein M of the thermoplastic resin is any one of the structures shown below.

Figure 2014024959
Figure 2014024959

8)
前記熱可塑性樹脂の数平均分子量が3000〜40000である、1)〜7)の何れかに記載の金属樹脂複合体。
9)
前記熱可塑性樹脂中のラメラ晶の割合が10Vol%以上であることを特徴とする、1)〜8)の何れかに記載の金属樹脂複合体。
10)
前記熱可塑性樹脂組成物に単体での熱伝導率が1W/(m・K)以上である無機充填剤を含有することを特徴とする金属樹脂複合体。
11)
前記無機充填剤が、窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化アルミニウム、酸化マグネシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化ベリリウムおよびダイヤモンドからなる群から選ばれる1種以上の電気絶縁性高熱伝導性無機化合物であることを特徴とする10)に記載の金属樹脂複合体。
12)
前記無機充填剤が、グラファイト、導電性金属粉、軟磁性フェライト、炭素繊維、導電性金属繊維および酸化亜鉛からなる群から選ばれる1種以上の導電性高熱伝導性無機化合物であることを特徴とする11)に記載の金属樹脂複合体。
13)
1)〜12)のいずれかに記載の金属樹脂複合体と発熱体を有する構造体であって、熱可塑性樹脂組成物が、発熱体と金属樹脂複合体の金属との間に存在することを特徴とする構造体。
8)
The metal resin composite according to any one of 1) to 7), wherein the thermoplastic resin has a number average molecular weight of 3000 to 40000.
9)
The metal resin composite according to any one of 1) to 8), wherein the ratio of lamellar crystals in the thermoplastic resin is 10 Vol% or more.
10)
A metal resin composite comprising an inorganic filler having a thermal conductivity of 1 W / (m · K) or more as a single substance in the thermoplastic resin composition.
11)
The inorganic filler is one or more electrically insulating high heat selected from the group consisting of boron nitride, aluminum nitride, silicon nitride, aluminum oxide, magnesium oxide, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, beryllium oxide and diamond. 10. The metal resin composite as described in 10), which is a conductive inorganic compound.
12)
The inorganic filler is one or more conductive high thermal conductive inorganic compounds selected from the group consisting of graphite, conductive metal powder, soft magnetic ferrite, carbon fiber, conductive metal fiber, and zinc oxide. 11) The metal resin composite according to 11).
13)
It is a structure having the metal resin composite according to any one of 1) to 12) and a heating element, wherein the thermoplastic resin composition is present between the heating element and the metal of the metal resin composite. Characteristic structure.

本発明の金属樹脂複合体は、熱伝導性に優れ、優れた放熱性を示す。 The metal resin composite of the present invention is excellent in thermal conductivity and exhibits excellent heat dissipation.

金属樹脂複合体Metal resin composite 金属樹脂複合体Metal resin composite 金属樹脂複合体Metal resin composite 評価用試験片Test specimen for evaluation 構造体Structure 構造体Structure 構造体Structure

本発明は、金型の内部に、金属製部材を配置し、該金属製部材の表面の少なくとも一部に樹脂成形部を形成する金属樹脂複合体であって、該樹脂成形部を形成する熱可塑性樹脂の主鎖の構造が一般式(1)   The present invention provides a metal-resin composite in which a metal member is disposed inside a mold and a resin molded part is formed on at least a part of the surface of the metal member, the heat forming the resin molded part The structure of the main chain of the plastic resin is the general formula (1)

Figure 2014024959
Figure 2014024959

(式中、XはO、COの群から選ばれる2価の置換基を示す)
で表されるビフェニル基を有するユニット(A)25〜60モル%、
一般式(2)
−Y−R−Y− (2)
(式中、Rは主鎖原子数2〜20の分岐を含んでもよい2価の直鎖状置換基を示す。YはO、COの群から選ばれる2価の置換基を示す)
で表されるユニット(B)25〜60モル%、
一般式(3)
−Z1−M−Z2− (3)
(式中、Z1、Z2はO、NH、CO、S、NHCOの群から選ばれる2価の置換基を示す。Mは主鎖の折り畳み効果を有する芳香族基、縮合芳香族基、複素環基、脂環基、脂環式複素環基から選ばれる置換基を示す。)
で表されるユニット(C)0〜25モル%(ただしユニット(A)、(B)、(C)の合計を100モル%とする)からなることを特徴とし、樹脂単体の熱伝導率が0.4W/(m・K)以上である。
(Wherein X represents a divalent substituent selected from the group of O and CO)
Unit (A) having a biphenyl group represented by 25 to 60 mol%,
General formula (2)
-YR-Y- (2)
(In the formula, R represents a divalent linear substituent which may contain a branch having 2 to 20 main chain atoms. Y represents a divalent substituent selected from the group of O and CO.)
Unit (B) represented by 25 to 60 mol%,
General formula (3)
-Z 1 -MZ 2- (3)
(In the formula, Z 1 and Z 2 represent a divalent substituent selected from the group of O, NH, CO, S and NHCO. M represents an aromatic group having a main chain folding effect, a condensed aromatic group, A substituent selected from a heterocyclic group, an alicyclic group, and an alicyclic heterocyclic group is shown.)
The unit (C) is represented by 0 to 25 mol% (however, the sum of the units (A), (B), and (C) is 100 mol%), and the thermal conductivity of the resin alone is 0.4 W / (m · K) or more.

本発明で言う熱可塑性とは、加熱により可塑化する性質のことであり、本発明の熱可塑性樹脂は、好ましくは、ユニット(A)が30〜55モル%であり、ユニット(B)が30〜55モル%であり、ユニット(C)が0〜20モル%である熱可塑性樹脂である。より好ましくは、ユニット(A)が30〜48%であり、ユニット(B)が45〜55モル%であり、ユニット(C)が0〜15モル%である熱可塑性樹脂である。また、ユニット(A)、(B)、(C)の比率は、ユニット(A)が30〜55モル%であり、ユニット(B)が30〜55モル%であり、ユニット(C)が1〜20モル%も好ましく、ユニット(A)が30〜48%であり、ユニット(B)が45〜55モル%であり、ユニット(C)が1〜15モル%であることが、より好ましい。ユニット(C)が26モル%以上であると熱伝導率が低下する場合がある。   The thermoplasticity referred to in the present invention is a property of being plasticized by heating, and the thermoplastic resin of the present invention is preferably such that the unit (A) is 30 to 55 mol% and the unit (B) is 30. It is -55 mol%, and is a thermoplastic resin whose unit (C) is 0-20 mol%. More preferably, it is a thermoplastic resin in which the unit (A) is 30 to 48%, the unit (B) is 45 to 55 mol%, and the unit (C) is 0 to 15 mol%. The ratio of units (A), (B), and (C) is 30-55 mol% for unit (A), 30-55 mol% for unit (B), and 1 for unit (C). -20 mol% is also preferable, unit (A) is 30-48%, unit (B) is 45-55 mol%, and unit (C) is more preferably 1-15 mol%. When the unit (C) is 26 mol% or more, the thermal conductivity may decrease.

本発明の熱可塑性樹脂の熱伝導率は0.4W/(m・K)以上であり、好ましくは0.6W/(m・K)以上であり、さらに好ましくは0.8W/(m・K)以上であり、特に好ましくは1.0W/(m・K)以上である。熱伝導率の上限は特に制限されず、高ければ高いほど好ましいが、成形時に磁場、電圧印加、ラビング、延伸等の物理的処理を施さなければ、一般的には30W/(m・K)以下、さらには10W/(m・K)以下となる。   The thermal conductivity of the thermoplastic resin of the present invention is 0.4 W / (m · K) or more, preferably 0.6 W / (m · K) or more, more preferably 0.8 W / (m · K). ) Or more, and particularly preferably 1.0 W / (m · K) or more. The upper limit of the thermal conductivity is not particularly limited and is preferably as high as possible, but generally 30 W / (m · K) or less unless physical treatment such as magnetic field, voltage application, rubbing, and stretching is performed during molding. Further, it becomes 10 W / (m · K) or less.

本発明の金属製部材は、金属又は合金(以下、併せて「金属」という。)である。金属の材質は特に制限されないが、アルミニウム及びそれを含む合金(アルミニウム合金)、銅及びそれを含む合金(黄銅、青銅、アルミ黄銅等)、ニッケル、クロム、チタン、鉄、コバルト、スズ、亜鉛、パラジウム、銀、ステンレス、マグネシウム、マンガン等が挙げられる。   The metal member of the present invention is a metal or an alloy (hereinafter collectively referred to as “metal”). The material of the metal is not particularly limited, but aluminum and an alloy including the same (aluminum alloy), copper and an alloy including the same (brass, bronze, aluminum brass, etc.), nickel, chromium, titanium, iron, cobalt, tin, zinc, Palladium, silver, stainless steel, magnesium, manganese etc. are mentioned.

上記金属製部材の形状は、特に限定されないが、平板状、曲板状、棒状、筒状、塊状等が挙げられ、これらの組み合わせからなる構造体であってもよい。また、貫通穴、折り曲げ部等を有してもよい。   The shape of the metal member is not particularly limited, and examples thereof include a flat plate shape, a curved plate shape, a rod shape, a cylindrical shape, and a lump shape, and may be a structure formed by a combination thereof. Moreover, you may have a through-hole, a bending part, etc.

本発明の樹脂成形部が形成される金属製部材の表面形状は、特に限定されないが、平板、曲面、凹凸面、尖状部等が挙げられる。尚、上記のように、樹脂成形部の形成は、金属製部材の表面の一部であってもよいし、全面であってもよい。   The surface shape of the metal member on which the resin molded portion of the present invention is formed is not particularly limited, and examples thereof include a flat plate, a curved surface, an uneven surface, and a pointed portion. As described above, the resin molded portion may be formed on a part of the surface of the metal member or on the entire surface.

これら樹脂成形部が形成される金属製部材の表面は、金属製部材と樹脂成形部との接着強度、密着性の観点から表面処理がなされたものであってもよい。表面処理方法は、特に限定されないが、例えば、特殊薬液や物理的研磨による微細粗化、陽極酸化や有機化合物による皮膜の形成等が挙げられる。   The surface of the metal member on which the resin molded part is formed may be subjected to a surface treatment from the viewpoints of adhesive strength and adhesion between the metal member and the resin molded part. The surface treatment method is not particularly limited, and examples thereof include fine chemical roughening by special chemicals and physical polishing, anodization, and formation of a film by an organic compound.

本発明の金属樹脂複合体の成形方法は特に限定されないが、成形性の簡便の観点で射出成形法が好ましい。   Although the molding method of the metal resin composite of the present invention is not particularly limited, an injection molding method is preferable from the viewpoint of easy moldability.

本発明における熱可塑性樹脂は液晶性を示し、液晶相転移温度と等方相転移温度を有する。金型に導入する熱可塑性樹脂組成物の樹脂温度は、固化温度以上であれば、特に限定されないが、より高熱伝導性を発現することができるという点で、液晶相転移温度と等方相転移温度の間の温度に加熱して液晶状態で成形することが好ましい。ここで言う液晶相転移温度と等方相転移温度とは、示差走査熱量測定(DSC)において昇温過程で見られる2つのピークのうち、それぞれ低温側のものと高温側のものである。また、金型の温度も、特に限定されないが、好ましくは40℃〜190℃である。成形性の観点から、100〜180℃がより好ましい。   The thermoplastic resin in the present invention exhibits liquid crystallinity and has a liquid crystal phase transition temperature and an isotropic phase transition temperature. The resin temperature of the thermoplastic resin composition to be introduced into the mold is not particularly limited as long as it is equal to or higher than the solidification temperature, but the liquid crystal phase transition temperature and the isotropic phase transition can be expressed in that higher thermal conductivity can be expressed. It is preferable to mold in a liquid crystal state by heating to a temperature between temperatures. The liquid crystal phase transition temperature and the isotropic phase transition temperature referred to here are the low-temperature side and the high-temperature side, respectively, of two peaks observed in the temperature rising process in differential scanning calorimetry (DSC). The temperature of the mold is not particularly limited, but is preferably 40 ° C to 190 ° C. From the viewpoint of moldability, 100 to 180 ° C. is more preferable.

本発明の金属製部材において、成形時の予備加熱の有無は特に限定されないが、成形性の観点より、予め、過熱することが好ましい。   In the metal member of the present invention, the presence or absence of preheating at the time of molding is not particularly limited, but it is preferably preheated from the viewpoint of formability.

本発明の熱可塑性樹脂の分子鎖の全末端に対するカルボキシル基の割合は好ましくは60モル%以上であり、より好ましくは70モル%以上であり、さらに好ましくは80モル%以上である。60モル%未満の場合は、無機充填剤を配合した際に、末端のカルボキシル基が60モル%以上の樹脂と比較して樹脂組成物の熱伝導率が低くなる場合がある。   The ratio of the carboxyl group with respect to all terminals of the molecular chain of the thermoplastic resin of the present invention is preferably 60 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more. When the amount is less than 60 mol%, the thermal conductivity of the resin composition may be lower than that of a resin having a terminal carboxyl group of 60 mol% or more when an inorganic filler is blended.

本発明の熱可塑性樹脂は、
一般式(1)
The thermoplastic resin of the present invention is
General formula (1)

Figure 2014024959
Figure 2014024959

(式中、XはO、COの群から選ばれる2価の置換基を示す)
中のXとしては、熱伝導性の優れる樹脂が得られるという観点から、Oであることが好ましい。
(Wherein X represents a divalent substituent selected from the group of O and CO)
X in the inside is preferably O from the viewpoint of obtaining a resin having excellent thermal conductivity.

一般式(2)
−Y−R−Y− (2)
(式中、Rは主鎖原子数2〜20の分岐を含んでもよい2価の直鎖状置換基を示す。YはO、COの群から選ばれる2価の置換基を示す)
中のYとしては、熱伝導性の優れる樹脂が得られるという観点から、COであることが好ましい。
General formula (2)
-YR-Y- (2)
(In the formula, R represents a divalent linear substituent which may contain a branch having 2 to 20 main chain atoms. Y represents a divalent substituent selected from the group of O and CO.)
Y in the inside is preferably CO from the viewpoint that a resin having excellent thermal conductivity can be obtained.

一般式(2)中のRは、主鎖原子数2〜20の分岐を含んでもよい2価の直鎖状置換基を表し、分岐を含まない直鎖の脂肪族炭化水素鎖であることが好ましい。分岐を含む場合、結晶化度が低下し、熱伝導率が低下する場合がある。また、Rは飽和でも不飽和でもよいが、飽和脂肪族炭化水素鎖であることが好ましい。不飽和結合を含む場合、十分な屈曲性が得られず、熱伝導率の低下を招く場合がある。Rは炭素数2〜20の直鎖の飽和脂肪族炭化水素鎖であることが好ましく、炭素数4〜18の直鎖の飽和脂肪族炭化水素鎖であることがより好ましく、特に炭素数8〜14の直鎖の飽和脂肪族炭化水素鎖であることが好ましい。Rの主鎖原子数は偶数であることが好ましい。奇数の場合、結晶化度が低下し、熱伝導率が低下する場合がある。特に熱伝導性の優れる樹脂が得られるという観点から、Rは−(CH28−、−(CH210−、−(CH212−から選ばれる少なくとも1種であることが好ましい。 R in the general formula (2) represents a divalent linear substituent which may include a branch having 2 to 20 main chain atoms, and is a linear aliphatic hydrocarbon chain not including a branch. preferable. When branching is included, the crystallinity may be reduced, and the thermal conductivity may be reduced. R may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain. When the unsaturated bond is included, sufficient flexibility cannot be obtained, and the thermal conductivity may be lowered. R is preferably a straight chain saturated aliphatic hydrocarbon chain having 2 to 20 carbon atoms, more preferably a straight chain saturated aliphatic hydrocarbon chain having 4 to 18 carbon atoms, particularly 8 to 8 carbon atoms. Preferably, it is a 14 straight chain saturated aliphatic hydrocarbon chain. The number of main chain atoms of R is preferably an even number. In the case of an odd number, the crystallinity may decrease and the thermal conductivity may decrease. In particular, R is preferably at least one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 — from the viewpoint that a resin having excellent thermal conductivity can be obtained. .

一般式(3)
−Z1−M−Z2− (3)
(式中、Z1、Z2はO、NH、CO、S、NHCOの群から選ばれる2価の置換基を示す。Mは主鎖の折り畳み効果を有する芳香族基、縮合芳香族基、複素環基、脂環基、脂環式複素環基から選ばれる置換基を示す。)
について、ここで言う主鎖の折り畳み効果とは、高分子主鎖を折り畳むように屈曲させる効果を意味し、主鎖をなす結合どうしの角度が150度以下、好ましくは120度以下、より好ましくは60度以下である。一般式(3)中のMの具体例としては、以下で表される基が挙げられる。
General formula (3)
-Z 1 -MZ 2- (3)
(In the formula, Z 1 and Z 2 represent a divalent substituent selected from the group of O, NH, CO, S and NHCO. M represents an aromatic group having a main chain folding effect, a condensed aromatic group, A substituent selected from a heterocyclic group, an alicyclic group, and an alicyclic heterocyclic group is shown.)
The main chain folding effect referred to here means the effect of bending the polymer main chain so as to fold, and the angle between the bonds forming the main chain is 150 degrees or less, preferably 120 degrees or less, more preferably It is 60 degrees or less. Specific examples of M in the general formula (3) include groups represented by the following.

Figure 2014024959
Figure 2014024959

熱伝導性の優れる樹脂が得られるという観点から、好ましい一般式(3)中のMの具体例としては、以下で表される基が挙げられる。 From the viewpoint of obtaining a resin having excellent thermal conductivity, specific examples of M in the general formula (3) include groups represented by the following.

Figure 2014024959
Figure 2014024959

さらに熱伝導性の優れる樹脂が得られるという観点から、以下で表される基であることがより好ましい。 Further, from the viewpoint of obtaining a resin having excellent thermal conductivity, a group represented by the following is more preferable.

Figure 2014024959
Figure 2014024959

一般式(3)中のZ1、Z2はO、NH、CO、S、NHCOの群から選ばれる2価の置換基を表し、熱伝導性の優れる樹脂が得られるという観点から、Z1、Z2はO、NH、COのいずれかであることが好ましく、Z1、Z2共にOであることがより好ましい。
本発明における熱可塑性樹脂の数平均分子量とはポリスチレンを標準とし、本発明における熱可塑性樹脂をp−クロロフェノールとトルエンの体積比3:8混合溶媒に0.25重量%濃度となるように溶解して調製した溶液を用いて、GPCにて80℃で測定した値である。本発明における熱可塑性樹脂の数平均分子量は好ましくは3000〜40000であり、より好ましくは5000〜30000であり、さらに好ましくは7000〜20000である。数平均分子量が3000未満または40000より大きい場合、同一の一次構造を有する樹脂であっても熱伝導率が0.6W/(m・K)未満になる場合がある。
Z 1, Z 2 in formula (3) is O, NH, CO, S, from the viewpoint represents a divalent substituent selected from the group consisting of NHCO, thermal conductivity and excellent resin is obtained, Z 1 , Z 2 is preferably any of O, NH, and CO, and more preferably both Z 1 and Z 2 are O.
The number average molecular weight of the thermoplastic resin in the present invention is based on polystyrene, and the thermoplastic resin in the present invention is dissolved in a mixed solvent of p-chlorophenol and toluene in a volume ratio of 3: 8 so as to have a concentration of 0.25% by weight. It is the value measured at 80 ° C. by GPC using the prepared solution. The number average molecular weight of the thermoplastic resin in the present invention is preferably 3000 to 40000, more preferably 5000 to 30000, and still more preferably 7000 to 20000. When the number average molecular weight is less than 3000 or greater than 40000, even if the resin has the same primary structure, the thermal conductivity may be less than 0.6 W / (m · K).

本発明に関わる熱可塑性樹脂は、公知のいかなる方法で製造されても構わない。構造の制御が簡便であるという観点から、ビフェニル基の両末端に反応性官能基を有する化合物と、直鎖状置換基Rの両末端に反応性官能基を有する化合物と、主鎖の折り畳み効果を有する置換基Mに2つの反応性官能基を有する化合物とを反応させて製造する方法が好ましい。このような反応性官能基としては水酸基、カルボキシル基、エステル基、アミノ基、チオール基、イソシアネート基など公知のものを使用でき、これらを反応させる条件も特に限定されない。  The thermoplastic resin according to the present invention may be produced by any known method. From the viewpoint that the control of the structure is simple, a compound having a reactive functional group at both ends of the biphenyl group, a compound having a reactive functional group at both ends of the linear substituent R, and the main chain folding effect A method in which a substituent M having a hydrogen atom is reacted with a compound having two reactive functional groups is preferred. As such a reactive functional group, known ones such as a hydroxyl group, a carboxyl group, an ester group, an amino group, a thiol group, and an isocyanate group can be used, and the conditions for reacting them are not particularly limited.

合成が簡便であるという観点から、ビフェニル基の両末端に反応性官能基を有する化合物と、直鎖状置換基Rの両末端に反応性官能基を有する化合物の組合せについては、ビフェニル基の両末端に水酸基を有する化合物と、直鎖状置換基Rの両末端にカルボキシル基を有する化合物、または、ビフェニル基の両末端にカルボキシル基またはエステル基を有する化合物と、直鎖状置換基Rの両末端に水酸基を有する化合物の組合せが好ましい。また、主鎖の折り畳み効果を有する置換基Mに2つの反応性官能基を有する化合物については、主鎖の折り畳み効果を有する置換基Mに水酸基、カルボキシル基、エステル基、アミノ基のいずれか少なくとも1種を有することが好ましい。   From the viewpoint of easy synthesis, a combination of a compound having a reactive functional group at both ends of the biphenyl group and a compound having a reactive functional group at both ends of the linear substituent R is Both a compound having a hydroxyl group at the end, a compound having a carboxyl group at both ends of the linear substituent R, or a compound having a carboxyl group or an ester group at both ends of the biphenyl group, and both of the linear substituent R A combination of compounds having a hydroxyl group at the terminal is preferred. In addition, for a compound having two reactive functional groups in the substituent M having a main chain folding effect, the substituent M having a main chain folding effect has at least one of a hydroxyl group, a carboxyl group, an ester group, and an amino group. It is preferable to have one.

ビフェニル基の両末端に水酸基を有する化合物と、直鎖状置換基Rの両末端にカルボキシル基を有する化合物と、主鎖の折り畳み効果を有する置換基Mに水酸基を有する化合物からなる熱可塑性樹脂の製造方法の一例としては、化合物の水酸基を無水酢酸等の低級脂肪酸を用いてそれぞれ個別に、または一括して低級脂肪酸エステルとした後、別の反応槽または同一の反応槽で、直鎖状置換基Rの両末端にカルボキシル基を有する化合物と脱低級脂肪酸重縮合反応させる方法が挙げられる。重縮合反応は、実質的に溶媒の存在しない状態で、通常220〜330℃、好ましくは240〜310℃の温度で、窒素等の不活性ガスの存在下、常圧または減圧下に、0.5〜5時間行われる。反応温度が220℃より低いと反応の進行は遅く、330℃より高い場合は分解等の副反応が起こりやすい。減圧下で反応させる場合は段階的に減圧度を高くすることが好ましい。急激に高真空度まで減圧した場合、直鎖状置換基Rを有するモノマー、主鎖の折り畳み効果を有するモノマーが揮発し、望む組成、または分子量の樹脂が得られない場合がある。到達真空度は40Torr以下が好ましく、30Torr以下がより好ましく、20Torr以下がさらに好ましく、10Torr以下が特に好ましい。真空度が40Torrより高い場合、十分に脱酸が進まず、低分子量の樹脂が得られることがある。多段階の反応温度を採用してもかまわないし、場合により昇温中あるいは最高温度に達したらすぐに反応生成物を溶融状態で抜き出し、回収することもできる。得られた熱可塑性樹脂はそのままで使用してもよいし、未反応原料を除去する、または、物性をあげる意味から固相重合を行なうこともできる。固相重合を行なう場合には、得られた熱可塑性樹脂を3mm以下、好ましくは1mm以下の粒径の粒子に機械的に粉砕し、固相状態のまま100〜350℃で窒素等の不活性ガス雰囲気下、または減圧下に1〜30時間処理することが好ましい。ポリマー粒子の粒径が3mmより大きくなると、処理が十分でなく、物性上の問題を生じるため好ましくない。固相重合時の処理温度や昇温速度は、熱可塑性樹脂粒子どうしが融着を起こさないように選ぶことが好ましい。   A thermoplastic resin comprising a compound having a hydroxyl group at both ends of a biphenyl group, a compound having a carboxyl group at both ends of a linear substituent R, and a compound having a hydroxyl group at a substituent M having a main chain folding effect As an example of the production method, the hydroxyl group of the compound is individually or collectively converted into a lower fatty acid ester using a lower fatty acid such as acetic anhydride, and then substituted with a straight chain in another reaction vessel or the same reaction vessel. Examples include a method in which a compound having a carboxyl group at both ends of the group R is subjected to a delowering fatty acid polycondensation reaction. The polycondensation reaction is carried out at a temperature of usually 220 to 330 ° C., preferably 240 to 310 ° C. in the presence of substantially no solvent, in the presence of an inert gas such as nitrogen, at normal pressure or reduced pressure, and at a pressure of 0. 5 to 5 hours. When the reaction temperature is lower than 220 ° C, the reaction proceeds slowly, and when it is higher than 330 ° C, side reactions such as decomposition tend to occur. When making it react under reduced pressure, it is preferable to raise a pressure reduction degree in steps. When the pressure is rapidly reduced to a high degree of vacuum, the monomer having the linear substituent R and the monomer having the main chain folding effect volatilize, and a resin having a desired composition or molecular weight may not be obtained. The ultimate vacuum is preferably 40 Torr or less, more preferably 30 Torr or less, further preferably 20 Torr or less, and particularly preferably 10 Torr or less. When the degree of vacuum is higher than 40 Torr, deoxidation does not proceed sufficiently and a low molecular weight resin may be obtained. A multi-stage reaction temperature may be employed. In some cases, the reaction product can be withdrawn in a molten state and recovered as soon as the temperature rises or when the maximum temperature is reached. The obtained thermoplastic resin may be used as it is, or unreacted raw materials may be removed, or solid phase polymerization may be performed in order to increase physical properties. When solid phase polymerization is performed, the obtained thermoplastic resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and inert such as nitrogen at 100 to 350 ° C. in a solid state. The treatment is preferably performed in a gas atmosphere or under reduced pressure for 1 to 30 hours. If the particle size of the polymer particles is larger than 3 mm, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid phase polymerization so that the thermoplastic resin particles do not cause fusion.

本発明における熱可塑性樹脂の製造に用いられる低級脂肪酸の酸無水物としては、炭素数2〜5個の低級脂肪酸の酸無水物、例えば無水酢酸、無水プロピオン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロム酢酸、無水ジブロム酢酸、無水トリブロム酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸等が挙げられるが、無水酢酸、無水プロピオン酸、無水トリクロル酢酸が特に好適に用いられる。低級脂肪酸の酸無水物の使用量は、用いるモノマーが有する水酸基とアミノ基の合計に対し1.01〜1.5倍当量、好ましくは1.02〜1.2倍当量である。1.01倍当量未満である場合、低級脂肪酸の酸無水物が揮発することによって、水酸基とアミノ基が低級脂肪酸の無水物と反応しきらないことがあり、低分子量の樹脂が得られることがある。その他、ビフェニル基の両末端にカルボキシル基またはエステル基を有する化合物と、置換基Rの両末端に水酸基を有する化合物と、主鎖の折り畳み効果を有する置換基Mにカルボキシル基またはエステル基を有する化合物からなる熱可塑性樹脂の製造方法については例えば、特開平2−258864号公報に記載のように4,4’−ビフェニルジカルボン酸ジメチルと脂肪族ジオールを溶融重合する方法が挙げられる。   Examples of the acid anhydride of the lower fatty acid used in the production of the thermoplastic resin in the present invention include acid anhydrides of lower fatty acids having 2 to 5 carbon atoms, such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, Trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, etc. Acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used. The amount of the lower fatty acid anhydride used is 1.01 to 1.5 times equivalent, preferably 1.02 to 1.2 times equivalent to the total of hydroxyl groups and amino groups of the monomers used. When the amount is less than 1.01 equivalent, the lower fatty acid anhydride may volatilize, whereby the hydroxyl group and amino group may not completely react with the lower fatty acid anhydride, and a low molecular weight resin may be obtained. is there. In addition, a compound having a carboxyl group or an ester group at both ends of the biphenyl group, a compound having a hydroxyl group at both ends of the substituent R, and a compound having a carboxyl group or an ester group at the substituent M having a main chain folding effect As a method for producing a thermoplastic resin comprising, for example, a method of melt polymerization of dimethyl 4,4′-biphenyldicarboxylate and an aliphatic diol as described in JP-A-2-258864 is mentioned.

本発明の熱可塑性樹脂の製造には触媒を使用してもよい。触媒としては、従来からポリエステルの重合用触媒として公知のものを使用することができ、例えば、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属塩触媒、N,N−ジメチルアミノピリジン、N−メチルイミダゾール等の有機化合物触媒を挙げることができる。   You may use a catalyst for manufacture of the thermoplastic resin of this invention. As the catalyst, conventionally known polyester polymerization catalysts can be used, such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide and the like. Mention may be made of organic compound catalysts such as metal salt catalysts, N, N-dimethylaminopyridine, N-methylimidazole and the like.

前記触媒の添加量としては、熱可塑性樹脂の総重量に対し、通常、1×10-3〜1重量%、好ましくは5×10-3〜5×10-1重量%、さらに好ましくは1×10-2〜1×10-1重量%用いられる。 The amount of the catalyst added is usually 1 × 10 −3 to 1% by weight, preferably 5 × 10 −3 to 5 × 10 −1 % by weight, more preferably 1 × based on the total weight of the thermoplastic resin. 10 −2 to 1 × 10 −1 wt% is used.

本発明の熱可塑性樹脂の末端構造は特に限定されないが、成形に適した樹脂が得られるという観点から、水酸基、カルボキシル基、エステル基、アシル基、アルコキシ基、アミノ基、アミド基、チオール基、イソシアネート基などによって末端が封止されていることが好ましい。末端にエポキシ基、マレイミド基などの反応性が高い官能基を有する場合、樹脂が熱硬化性となり、射出成形性が損なわれることがある。高い熱伝導性を示すという観点から、末端構造はカルボキシル基であることが特に好ましい。分子鎖の全末端に対するカルボキシル基の割合は60モル%以上であり、好ましくは70モル%以上であり、より好ましくは80モル%以上である。60モル%未満の場合は、無機充填剤を配合した際に、末端のカルボキシル基が60モル%以上の樹脂と比較して樹脂組成物の熱伝導率が低くなることがある。   Although the terminal structure of the thermoplastic resin of the present invention is not particularly limited, from the viewpoint of obtaining a resin suitable for molding, a hydroxyl group, a carboxyl group, an ester group, an acyl group, an alkoxy group, an amino group, an amide group, a thiol group, It is preferable that the terminal is sealed with an isocyanate group or the like. When the terminal has a highly reactive functional group such as an epoxy group or a maleimide group, the resin becomes thermosetting and the injection moldability may be impaired. From the viewpoint of exhibiting high thermal conductivity, the terminal structure is particularly preferably a carboxyl group. The ratio of the carboxyl group with respect to all terminals of the molecular chain is 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more. When it is less than 60 mol%, when an inorganic filler is blended, the thermal conductivity of the resin composition may be lower than that of a resin having a terminal carboxyl group of 60 mol% or more.

本発明においては、熱可塑性樹脂中のラメラ晶の割合が10Vol%以上であることが好ましい。ラメラ晶の割合は、20Vol%以上であることが好ましく、30Vol%以上であることがより好ましく、さらには40Vol%以上であることが特に好ましい。  In this invention, it is preferable that the ratio of the lamellar crystal in a thermoplastic resin is 10 Vol% or more. The ratio of lamellar crystals is preferably 20 Vol% or more, more preferably 30 Vol% or more, and particularly preferably 40 Vol% or more.

本発明で言うラメラ晶とは長い鎖状の分子が折り畳まれて平行に並び作られる板状結晶に相当する。ラメラ晶の割合が高いほど、熱可塑性樹脂及び樹脂組成物の熱伝導率が高くなる傾向がある。ラメラ晶が樹脂中に存在するか否かは、透過型電子顕微鏡(TEM)観察またはX線回折によって容易に判別することができる。   The lamellar crystal referred to in the present invention corresponds to a plate-like crystal in which long chain molecules are folded and arranged in parallel. There exists a tendency for the heat conductivity of a thermoplastic resin and a resin composition to become high, so that the ratio of a lamellar crystal is high. Whether or not lamellar crystals are present in the resin can be easily determined by observation with a transmission electron microscope (TEM) or X-ray diffraction.

ラメラ晶の割合は、RuO4で染色した試料を透過型電子顕微鏡(TEM)により直接観察することで算出することができる。具体的な方法として、TEM観察用の試料は、成形した厚み6mm×20mmφの円柱状サンプルの一部を切り出し、RuO4にて染色した後、ミクロトームにて作成した0.1μm厚の超薄切片を使用するものとする。作成した切片を加速電圧100kVでTEMにて観察し、得られた4万倍スケールの写真(18cm×25cm)から、ラメラ晶の領域を決定することができる。領域の境界は、ラメラ晶領域を周期的なコントラストの存在する領域とし、決定できる。ラメラ晶は深さ方向にも同様に分布していることから、ラメラ晶の割合は写真の全体の面積に対するラメラ晶領域の割合として算出することができる。 The ratio of lamellar crystals can be calculated by directly observing a sample stained with RuO 4 with a transmission electron microscope (TEM). As a specific method, a sample for TEM observation was prepared by cutting out a part of a molded cylindrical sample having a thickness of 6 mm × 20 mmφ, staining with RuO 4 , and then forming a 0.1 μm-thick ultrathin slice with a microtome. Shall be used. The prepared slice is observed with a TEM at an accelerating voltage of 100 kV, and the region of the lamellar crystal can be determined from the obtained 40,000-fold scale photograph (18 cm × 25 cm). The boundary of the region can be determined by using the lamellar crystal region as a region where periodic contrast exists. Since the lamella crystals are similarly distributed in the depth direction, the ratio of the lamella crystals can be calculated as a ratio of the lamella crystal region to the entire area of the photograph.

本発明の熱可塑性樹脂組成物の熱伝導率は、好ましくは0.4W/(m・K)以上であり、より好ましくは1.0W/(m・K)以上、さらに好ましくは5.0W/(m・K)以上、特に好ましくは10W/(m・K)以上である。この熱伝導率が0.4W/(m・K)未満であると、電子部品から発生する熱を効率的に外部に伝えることが困難である。熱伝導率の上限は特に制限されず、高ければ高いほど好ましいが、一般的には100W/(m・K)以下、さらには80W/(m・K)以下のものが用いられる。本発明に用いられる熱可塑性樹脂は、優れた熱伝導性を有するため、上記の範囲の熱伝導率を有する高熱伝導性熱可塑性樹脂組成物を容易に得ることが可能となる。   The thermal conductivity of the thermoplastic resin composition of the present invention is preferably 0.4 W / (m · K) or more, more preferably 1.0 W / (m · K) or more, and even more preferably 5.0 W / (M · K) or more, particularly preferably 10 W / (m · K) or more. When the thermal conductivity is less than 0.4 W / (m · K), it is difficult to efficiently transmit the heat generated from the electronic component to the outside. The upper limit of the thermal conductivity is not particularly limited, and is preferably as high as possible. Generally, a thermal conductivity of 100 W / (m · K) or less, further 80 W / (m · K) or less is used. Since the thermoplastic resin used in the present invention has excellent thermal conductivity, it is possible to easily obtain a highly thermally conductive thermoplastic resin composition having a thermal conductivity in the above range.

本発明の熱可塑性樹脂組成物における無機充填剤の使用量は、好ましくは熱可塑性樹脂と無機充填剤の体積比で90:10〜30:70であり、より好ましくは80:20〜40:60であり、特に好ましくは70:30〜50:50である。熱可塑性樹脂と無機充填剤の体積比が100:0〜90:10では満足な熱伝導率が得られないことがある。熱可塑性樹脂と無機充填剤の体積比が30:70〜10:90では機械物性が低下することがある。本発明の熱可塑性樹脂が優れた熱伝導性を有するため、無機充填剤の使用量が熱可塑性樹脂と無機充填剤の体積比で90:10〜70:30と少量の場合でも、樹脂組成物は優れた熱伝導性を有し、さらに同時に無機充填剤の使用量が少量のために密度を下げることができる。熱伝導性に優れ、かつ密度が小さいことは電気・電子工業分野、自動車分野等さまざまな状況で放熱・伝熱用樹脂材料として用いる際に有利である。   The amount of the inorganic filler used in the thermoplastic resin composition of the present invention is preferably 90:10 to 30:70, more preferably 80:20 to 40:60, by volume ratio of the thermoplastic resin and the inorganic filler. And particularly preferably 70:30 to 50:50. If the volume ratio of the thermoplastic resin to the inorganic filler is 100: 0 to 90:10, satisfactory thermal conductivity may not be obtained. When the volume ratio of the thermoplastic resin to the inorganic filler is 30:70 to 10:90, the mechanical properties may be lowered. Since the thermoplastic resin of the present invention has excellent thermal conductivity, the resin composition can be used even when the amount of the inorganic filler used is as small as 90:10 to 70:30 in the volume ratio of the thermoplastic resin to the inorganic filler. Has excellent thermal conductivity, and at the same time, the density can be lowered due to the small amount of inorganic filler used. The excellent thermal conductivity and low density are advantageous when used as a heat-dissipating / heat-transfer resin material in various situations such as in the electric / electronic industry and automobile fields.

無機充填剤としては、公知の充填剤を広く使用できる。無機充填剤単体での熱伝導率は好ましくは1W/(m・K)以上、より好ましくは10W/(m・K)以上、さらに好ましくは20W/(m・K)以上、特に好ましくは30W/(m・K)以上のものが用いられる。無機充填剤単体での熱伝導率の上限は特に制限されず、高ければ高いほど好ましいが、一般的には3000W/(m・K)以下、さらには2500W/(m・K)以下のものが好ましく用いられる。   A wide variety of known fillers can be used as the inorganic filler. The thermal conductivity of the inorganic filler alone is preferably 1 W / (m · K) or more, more preferably 10 W / (m · K) or more, further preferably 20 W / (m · K) or more, particularly preferably 30 W / The thing more than (m * K) is used. The upper limit of the thermal conductivity of the inorganic filler alone is not particularly limited, and it is preferably as high as possible. Generally, it is 3000 W / (m · K) or less, more preferably 2500 W / (m · K) or less. Preferably used.

樹脂組成物として特に電気絶縁性が要求されない用途に用いる場合には、無機充填剤としては金属系化合物や導電性炭素化合物等が好適に用いられる。これらの中でも、熱伝導性に優れることから、グラファイト、炭素繊維等の導電性炭素材料、各種金属を微粒子化した導電性金属粉、各種金属を繊維状に加工した導電性金属繊維、軟磁性フェライト等の各種フェライト類、酸化亜鉛等の金属酸化物、等の無機充填剤を好適に用いることができる。   When the resin composition is used for applications that do not require electrical insulation, a metal compound, a conductive carbon compound, or the like is preferably used as the inorganic filler. Among these, since it is excellent in thermal conductivity, conductive carbon materials such as graphite and carbon fibers, conductive metal powders obtained by atomizing various metals, conductive metal fibers obtained by processing various metals into fibers, soft magnetic ferrite Inorganic fillers such as various ferrites such as zinc oxide and metal oxides such as zinc oxide can be suitably used.

樹脂組成物として電気絶縁性が要求される用途に用いる場合には、無機充填剤としては電気絶縁性を示す化合物が好適に用いられる。電気絶縁性とは具体的には、電気抵抗率1Ω・cm以上のものを示すこととするが、好ましくは10Ω・cm以上、より好ましくは105Ω・cm以上、さらに好ましくは1010Ω・cm以上、最も好ましくは1013Ω・cm以上のものを用いるのが好ましい。電気抵抗率の上限には特に制限は無いが、一般的には1018Ω・cm以下である。本発明の高熱伝導性熱可塑性樹脂組成物から得られる成形体の電気絶縁性も上記範囲にあることが好ましい。 When the resin composition is used for applications requiring electrical insulation, a compound showing electrical insulation is suitably used as the inorganic filler. Specifically, the electrical insulating property indicates an electrical resistivity of 1 Ω · cm or more, preferably 10 Ω · cm or more, more preferably 10 5 Ω · cm or more, and further preferably 10 10 Ω · cm or more. It is preferable to use a material having a thickness of cm or more, most preferably 10 13 Ω · cm or more. The upper limit of the electrical resistivity is not particularly limited, but is generally 10 18 Ω · cm or less. It is preferable that the electrical insulation of the molded product obtained from the high thermal conductivity thermoplastic resin composition of the present invention is also in the above range.

無機充填剤のうち、電気絶縁性を示す化合物としては具体的には、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化ベリリウム、酸化銅、亜酸化銅等の金属酸化物、窒化ホウ素、窒化アルミニウム、窒化ケイ素等の金属窒化物、炭化ケイ素等の金属炭化物、炭酸マグネシウムなどの金属炭酸塩、ダイヤモンド等の絶縁性炭素材料、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物が挙げられる。これらは単独あるいは複数種類を組み合わせて用いることができる。   Among inorganic fillers, specific examples of compounds that exhibit electrical insulation include metal oxides such as aluminum oxide, magnesium oxide, silicon oxide, beryllium oxide, copper oxide, and cuprous oxide, boron nitride, aluminum nitride, and nitride. Examples thereof include metal nitrides such as silicon, metal carbides such as silicon carbide, metal carbonates such as magnesium carbonate, insulating carbon materials such as diamond, and metal hydroxides such as aluminum hydroxide and magnesium hydroxide. These can be used alone or in combination.

無機充填剤の形状については、特に限定されない。例えば粒子状、微粒子状、ナノ粒子、凝集粒子状、チューブ状、ナノチューブ状、ワイヤ状、ロッド状、針状、板状、不定形、ラグビーボール状、六面体状、大粒子と微小粒子とが複合化した複合粒子状、液体等種々の形状が挙げられるが、本発明の放熱効果をより向上させられるという点で、真球状、丸み状、凝集粒子状等の無機充填剤がより好ましい。これらの形状の無機充填剤を用いることで、樹脂組成物の厚み方向の熱伝導率をより向上させることができ、発熱体からの熱を金属に効率よく伝熱させることができる。上記形状を示す無機充填剤として具体的には、酸化マグネシウム、酸化アルミニウム、窒化ホウ素、窒化アルミニウム等が挙げられる。添加量としては特に限定されないが、添加量が増加するにつれて、より放熱効果を向上させることができる。上記無機充填剤は天然物であってもよいし、合成されたものであってもよい。天然物の場合、産地等には特に限定はなく、適宜選択することができる。これら無機充填剤は、1種類のみを単独で用いてもよいし、形状、平均粒子径、種類、表面処理剤等が異なる2種類以上を併用してもよい。   The shape of the inorganic filler is not particularly limited. For example, particles, fine particles, nanoparticles, aggregated particles, tubes, nanotubes, wires, rods, needles, plates, irregular shapes, rugby balls, hexahedrons, large particles and fine particles are combined Although various shapes such as a composite particle shape and a liquid are mentioned, an inorganic filler such as a true spherical shape, a round shape, and an aggregated particle shape is more preferable in that the heat dissipation effect of the present invention can be further improved. By using the inorganic filler of these shapes, the thermal conductivity in the thickness direction of the resin composition can be further improved, and the heat from the heating element can be efficiently transferred to the metal. Specific examples of the inorganic filler having the above shape include magnesium oxide, aluminum oxide, boron nitride, and aluminum nitride. Although it does not specifically limit as addition amount, As a addition amount increases, the thermal radiation effect can be improved more. The inorganic filler may be a natural product or a synthesized one. In the case of a natural product, there are no particular limitations on the production area and the like, which can be selected as appropriate. These inorganic fillers may be used alone or in combination of two or more different shapes, average particle diameters, types, surface treatment agents and the like.

これら無機充填剤は、樹脂と無機化合物との界面の接着性を高めたり、作業性を容易にしたりするため、シラン処理剤等の各種表面処理剤で表面処理がなされたものであってもよい。表面処理剤としては特に限定されず、例えばシランカップリング剤、チタネートカップリング剤等従来公知のものを使用することができる。中でも、エポキシシラン等のエポキシ基含有シランカップリング剤、及び、アミノシラン等のアミノ基含有シランカップリング剤、ポリオキシエチレンシラン等が樹脂の物性を低下させることが少ないため好ましい。無機化合物の表面処理方法としては特に限定されず、通常の処理方法を利用できる。   These inorganic fillers may have been subjected to surface treatment with various surface treatment agents such as a silane treatment agent in order to enhance the adhesion at the interface between the resin and the inorganic compound or to facilitate workability. . It does not specifically limit as a surface treating agent, For example, conventionally well-known things, such as a silane coupling agent and a titanate coupling agent, can be used. Among them, an epoxy group-containing silane coupling agent such as epoxy silane, an amino group-containing silane coupling agent such as aminosilane, polyoxyethylene silane, and the like are preferable because they hardly reduce the physical properties of the resin. The surface treatment method of the inorganic compound is not particularly limited, and a normal treatment method can be used.

本発明の熱可塑性樹脂組成物には、前記の無機充填剤以外にも、その目的に応じて公知の充填剤を広く使用することができる。樹脂単体の熱伝導率が高いために、公知の充填剤の熱伝導率が10W/(m・K)未満と比較的低くても、樹脂組成物として高い熱伝導率を有する。無機充填剤以外の充填剤としては、例えばケイソウ土粉、塩基性ケイ酸マグネシウム、焼成クレイ、微粉末シリカ、石英粉末、結晶シリカ、カオリン、タルク、三酸化アンチモン、微粉末マイカ、二硫化モリブデン、ロックウール、セラミック繊維、アスベスト等の無機質繊維、及び、ガラス繊維、ガラスパウダー、ガラスクロス、溶融シリカ等のガラス製充填剤が挙げられる。これら充填剤を用いることで、例えば熱伝導性、機械強度、または耐摩耗性など樹脂組成物を応用する上で好ましい特性を向上させることが可能となる。さらに必要に応じて紙、パルプ、木材、ポリアミド繊維、アラミド繊維、ボロン繊維等の合成繊維、ポリオレフィン粉末等の樹脂粉末、等の有機充填剤を併用して配合することができる。   In the thermoplastic resin composition of the present invention, known fillers can be widely used in addition to the inorganic fillers according to the purpose. Since the thermal conductivity of the single resin is high, the resin composition has a high thermal conductivity even if the thermal conductivity of the known filler is relatively low as less than 10 W / (m · K). Examples of fillers other than inorganic fillers include diatomaceous earth powder, basic magnesium silicate, calcined clay, fine powder silica, quartz powder, crystalline silica, kaolin, talc, antimony trioxide, fine powder mica, molybdenum disulfide, Examples thereof include inorganic fibers such as rock wool, ceramic fibers, and asbestos, and glass fillers such as glass fibers, glass powder, glass cloth, and fused silica. By using these fillers, for example, it is possible to improve favorable characteristics in applying a resin composition such as thermal conductivity, mechanical strength, or abrasion resistance. Furthermore, if necessary, organic fillers such as paper, pulp, wood, polyamide fiber, aramid fiber, boron fiber and other synthetic fibers, polyolefin powder and the like can be used in combination.

本発明は、金属樹脂複合体と発熱体を有する構造体であってもよい。この構造体において、熱可塑性樹脂組成物は、発熱体と金属樹脂複合体の金属との間に存在することが好ましい。すなわち熱可塑性樹脂組成物を介して発熱体と金属とが結合しており、発熱体と金属とは、直接結合していないものであることが好ましい。一般に、金属の熱伝導度は、樹脂と比べてかなり高いといえる。したがって従来の構造体では、放熱効率を上げる目的で発熱体と金属を直接結合したものが比較的多かった。しかし用途によっては、発熱体と金属が電気的に結合しない方が好ましい場合もある。本発明は、発熱体と金属とが直接結合していない構造体として優れている。   The present invention may be a structure having a metal resin composite and a heating element. In this structure, the thermoplastic resin composition is preferably present between the heating element and the metal of the metal resin composite. That is, it is preferable that the heating element and the metal are bonded via the thermoplastic resin composition, and the heating element and the metal are not directly bonded. In general, it can be said that the thermal conductivity of metal is considerably higher than that of resin. Therefore, in the conventional structures, there are relatively many structures in which the heating element and the metal are directly coupled for the purpose of increasing the heat radiation efficiency. However, depending on the application, it may be preferable that the heating element and the metal are not electrically coupled. The present invention is excellent as a structure in which a heating element and a metal are not directly bonded.

本発明の金属樹脂複合体の熱可塑性樹脂組成物は、厚み方向の熱伝導率が高いため、発熱体からの熱をより効率よく金属に伝熱することができ、放熱効果を一層向上させることができる。また、導電性の無機充填剤を用いない場合、樹脂組成物は絶縁性を示すため、発熱体から発生する電気を金属に導電させることなく、絶縁化することができる。
本発明の熱可塑性樹脂組成物には、本発明の効果の発揮を失わない範囲で、エポキシ樹脂、ポリオレフィン樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリエーテル樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、メラミン樹脂、ユリア樹脂、ウレタン樹脂等いかなる公知の樹脂も含有させて構わない。好ましい樹脂の具体例として、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、液晶ポリマー、ナイロン6、ナイロン6,6等が挙げられる。これら樹脂の使用量は、通常樹脂組成物に含まれる本発明の熱可塑性樹脂100重量部に対し、0〜10000重量部の範囲である。
Since the thermoplastic resin composition of the metal resin composite of the present invention has a high thermal conductivity in the thickness direction, the heat from the heating element can be more efficiently transferred to the metal, and the heat dissipation effect is further improved. Can do. In addition, when the conductive inorganic filler is not used, the resin composition exhibits insulating properties, so that the electricity generated from the heating element can be insulated without being conducted to the metal.
The thermoplastic resin composition of the present invention includes an epoxy resin, a polyolefin resin, a bismaleimide resin, a polyimide resin, a polyether resin, a phenol resin, a silicone resin, a polycarbonate resin, and a polyamide as long as the effects of the present invention are not lost. Any known resin such as resin, polyester resin, fluorine resin, acrylic resin, melamine resin, urea resin, urethane resin may be contained. Specific examples of preferred resins include polycarbonate, polyethylene terephthalate, polybutylene terephthalate, liquid crystal polymer, nylon 6, nylon 6,6 and the like. The amount of these resins used is in the range of 0 to 10,000 parts by weight with respect to 100 parts by weight of the thermoplastic resin of the present invention usually contained in the resin composition.

本発明の熱可塑性樹脂組成物には、上記樹脂や充填剤以外の添加剤として、さらに目的に応じて他のいかなる成分、例えば、補強剤、増粘剤、離型剤、カップリング剤、難燃剤、耐炎剤、顔料、着色剤、その他の助剤等を本発明の効果を失わない範囲で、添加することができる。これらの添加剤の使用量は、熱可塑性樹脂100重量部に対し、合計で0〜20重量部の範囲であることが好ましい。   In the thermoplastic resin composition of the present invention, as an additive other than the above resin and filler, any other component, for example, a reinforcing agent, a thickener, a release agent, a coupling agent, a difficulty agent, or the like, depending on the purpose. A flame retardant, a flame retardant, a pigment, a colorant, other auxiliary agents, and the like can be added as long as the effects of the present invention are not lost. The amount of these additives used is preferably in the range of 0 to 20 parts by weight in total with respect to 100 parts by weight of the thermoplastic resin.

本発明の熱可塑性樹脂組成物の製造方法としては特に限定されるものではない。例えば、上述した成分や添加剤等を乾燥させた後、単軸、2軸等の押出機のような溶融混練機にて溶融混練することにより製造することができる。また、配合成分が液体である場合は、液体供給ポンプ等を用いて溶融混練機に途中添加して製造することもできる。   It does not specifically limit as a manufacturing method of the thermoplastic resin composition of this invention. For example, it can be produced by drying the above-described components, additives and the like and then melt-kneading them in a melt-kneader such as a single-screw or twin-screw extruder. Moreover, when a compounding component is a liquid, it can also manufacture by adding to a melt-kneader on the way using a liquid supply pump etc.

本発明の金属樹脂複合体は、電子材料、磁性材料、触媒材料、構造体材料、光学材料、医療材料、自動車材料、建築材料等の各種の用途に幅広く用いることが可能である。特に優れた高熱伝導性、放熱性という優れた特性を持つことから、放熱・伝熱用樹脂材料として非常に有用である。   The metal resin composite of the present invention can be widely used in various applications such as electronic materials, magnetic materials, catalyst materials, structural materials, optical materials, medical materials, automobile materials, and building materials. In particular, it has excellent properties such as high thermal conductivity and heat dissipation, so it is very useful as a resin material for heat dissipation and heat transfer.

本発明の金属樹脂複合体は、家電、OA機器部品、AV機器部品、自動車内外装部品等の射出成形品等に好適に使用することができる。特に多くの熱を発する家電製品やOA機器において、好適に用いることができる。さらには発熱源を内部に有するがファン等による強制冷却が困難な電子機器において、内部で発生する熱を外部へ放熱するために、これらの機器の外装材として好適に用いられる。これらの中でも好ましい装置として、ノートパソコンなどの携帯型コンピューター、PDA、携帯電話、携帯ゲーム機、携帯型音楽プレーヤー、携帯型TV/ビデオ機器、携帯型ビデオカメラ等の小型あるいは携帯型電子機器類の筐体、ハウジング、等として非常に有用である。また自動車や電車等におけるバッテリー周辺用樹脂、家電機器の携帯バッテリー用樹脂、ブレーカー等の配電部品用樹脂、モーター等の封止用材料としても非常に有用に用いることができる。   The metal resin composite of the present invention can be suitably used for injection molded products such as home appliances, OA equipment parts, AV equipment parts, automobile interior and exterior parts, and the like. In particular, it can be suitably used in household electrical appliances and OA devices that generate a lot of heat. Furthermore, in an electronic device having a heat source inside but difficult to be forcibly cooled by a fan or the like, it is suitably used as an exterior material for these devices in order to dissipate the heat generated inside to the outside. Among these, preferable devices include portable computers such as notebook computers, PDAs, cellular phones, portable game machines, portable music players, portable TV / video devices, portable video cameras, and other small or portable electronic devices. It is very useful as a housing, a housing, etc. It can also be used very effectively as a resin for battery peripherals in automobiles, trains, etc., a resin for portable batteries in home appliances, a resin for power distribution parts such as breakers, and a sealing material for motors and the like.

本発明の熱可塑性樹脂組成物は、従来良く知られている樹脂および樹脂組成物に比べて、厚み方向の熱伝導率を一層高熱伝導化することができ、また成形加工性が良好であるため、上記の用途における部品あるいは筐体用として有用な特性を有するものである。
The thermoplastic resin composition of the present invention can have a higher thermal conductivity in the thickness direction and better molding processability than conventionally known resins and resin compositions. It has characteristics useful as a part or casing for the above applications.

次に、本発明の金属樹脂複合体について、製造例、実施例及び比較例を挙げさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。なお、以下に挙げる各試薬は特記しない限り、和光純薬工業製の試薬を精製せずに用いた。   Next, although the manufacture example, an Example, and a comparative example are given and demonstrated further in detail about the metal resin composite of this invention, this invention is not restrict | limited only to this Example. Unless otherwise specified, the reagents listed below were used without purification from Wako Pure Chemical Industries.

樹脂組成物の調製に用いる原料成分を以下に示す。
ポリエチレンテレフタレート樹脂:
三菱化学株式会社製 ノバペックス PBKII
酸化マグネシウム:
宇部マテリアル株式会社製RF−50−SC、単体での熱伝導率40W/m・K、体積平均粒子径50μm、電気絶縁性、体積固有抵抗1014Ω・cm
窒化ホウ素粉末:
モメンティブパフォーマンスマテリアルズ社製PT110、単体での熱伝導率60W/m・K、体積平均粒子径45μm、電気絶縁性、体積固有抵抗1014Ω・cm
ガラス繊維:
日本電気硝子株式会社製T187H/PL、単体での熱伝導率1.0W/(m・K)、繊維直径13μm、数平均繊維長3.0mm、電気絶縁性、体積固有抵抗1015Ω・cm
The raw material components used for preparing the resin composition are shown below.
Polyethylene terephthalate resin:
Novapex PBKII manufactured by Mitsubishi Chemical Corporation
Magnesium oxide:
RF-50-SC manufactured by Ube Material Co., Ltd., single body thermal conductivity 40 W / m · K, volume average particle diameter 50 μm, electrical insulation, volume resistivity 10 14 Ω · cm
Boron nitride powder:
PT110 manufactured by Momentive Performance Materials Co., Ltd., single body thermal conductivity 60 W / m · K, volume average particle diameter 45 μm, electrical insulation, volume resistivity 10 14 Ω · cm
Glass fiber:
T187H / PL manufactured by Nippon Electric Glass Co., Ltd., single body thermal conductivity 1.0 W / (m · K), fiber diameter 13 μm, number average fiber length 3.0 mm, electrical insulation, volume resistivity 10 15 Ω · cm

[評価方法]
数平均分子量:本発明に用いる熱可塑性樹脂をp−クロロフェノール(東京化成工業製)とトルエンの体積比3:8混合溶媒に0.25重量%濃度となるように溶解して試料を調製した。標準物質はポリスチレンとし、同様の試料溶液を調製した。高温GPC(Viscotek社製 350 HT−GPC System)にてカラム温度:80℃、流速1.00mL/minの条件で測定した。検出器としては、示差屈折計(RI)を使用した。
[Evaluation method]
Number average molecular weight: A sample was prepared by dissolving the thermoplastic resin used in the present invention in a mixed solvent of p-chlorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene in a volume ratio of 3: 8 to a concentration of 0.25% by weight. . The standard material was polystyrene, and a similar sample solution was prepared. The measurement was performed using a high temperature GPC (350 HT-GPC System manufactured by Viscotek) under conditions of a column temperature of 80 ° C. and a flow rate of 1.00 mL / min. A differential refractometer (RI) was used as a detector.

融点:熱可塑性樹脂(A)を約8mg秤量し、示差走査熱量計(島津製作所社製、DSC−50 ASSY)を用いて25℃から300℃まで20℃/分の速度で昇温し、次いで25℃まで降温し、再び300℃まで20℃/分の速度で昇温し、吸熱サーモグラムを測定した。   Melting point: About 8 mg of the thermoplastic resin (A) was weighed, and heated at a rate of 20 ° C./min from 25 ° C. to 300 ° C. using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-50 ASSY). The temperature was lowered to 25 ° C., the temperature was raised again to 300 ° C. at a rate of 20 ° C./min, and an endothermic thermogram was measured.

熱伝導率:得られたペレット状の樹脂及び樹脂組成物を、熱風乾燥機を用いて120℃で4時間乾燥した後、射出成形機[東洋機械金属(株)製、Si−15III]を用いて、厚み
1mm×26mmφの円板状サンプルを成形した。得られたサンプルを用いて、レーザーフラッシュ法熱伝導率測定装置(NETZSCH社製 LFA447)により、室温大気中における厚み方向、面内方向の熱伝導率を測定した。
Thermal conductivity: After the obtained pellet-shaped resin and resin composition were dried at 120 ° C. for 4 hours using a hot air dryer, an injection molding machine [manufactured by Toyo Machine Metal Co., Ltd., Si-15III] was used. Thickness
A disk-shaped sample of 1 mm × 26 mmφ was formed. Using the obtained sample, the thermal conductivity in the thickness direction and in-plane direction in the room temperature atmosphere was measured with a laser flash method thermal conductivity measuring device (LFA447 manufactured by NETZSCH).

末端カルボキシル基の定量:1H−NMR(400MHz,重水素化クロロホルム:トリフルオロ酢酸=2:1Vol%溶媒中で測定)を用い、各末端基の特性シグナルの積分値よりカルボキシル基末端の割合を測定した。測定に用いた代表的なシグナルの化学シフト値を表1に示す。   Quantification of terminal carboxyl group: Using 1H-NMR (400 MHz, deuterated chloroform: trifluoroacetic acid = 2: 1 vol% measured in a solvent), the ratio of the carboxyl group terminal is measured from the integral value of the characteristic signal of each terminal group. did. Table 1 shows chemical shift values of typical signals used for the measurement.

ラメラ晶の割合:射出成形した厚み6mm×20mmφのサンプルから観察用に切片を切り出し、RuO4にて染色したのち、ミクロトームにて作成した0.1μm厚の超薄切片を加速電圧100kVでTEMにて観察した。このTEM観察により得られた4万倍スケールの写真から、ラメラ晶領域の割合を写真の全体の面積に対するラメラ晶領域の割合として算出した。 Percentage of lamella crystals: Sections cut out from an injection-molded 6 mm × 20 mmφ sample for observation, stained with RuO 4 , and then 0.1 μm-thick ultrathin sections prepared with a microtome were subjected to TEM at an acceleration voltage of 100 kV. And observed. From the 40,000-fold scale photograph obtained by this TEM observation, the ratio of the lamellar crystal region was calculated as the ratio of the lamellar crystal region to the entire area of the photo.

Figure 2014024959
Figure 2014024959

[製造例1]
還流冷却器、温度計、窒素導入管及び攪拌棒を備え付けた密閉型反応器に、4,4’−ジヒドロキシビフェニル、セバシン酸、カテコール、無水酢酸をモル比でそれぞれ0.9:1.1:0.1:2.1の割合で仕込み、酢酸ナトリウムを触媒とし、常圧、窒素雰囲気下で145℃にて反応させ均一な溶液を得た後、酢酸を留去しながら2℃/minで240℃まで昇温し、240℃で30分撹拌した。さらに1℃/minで260℃まで昇温し、260℃で1時間撹拌した。引き続きその温度を保ったまま、約40分かけて10Torrまで減圧した後、減圧状態を維持した。減圧開始から3時間後、窒素ガスで常圧に戻し、生成したポリマーを取り出した。得られた樹脂の各種データを表2に示す。得られた樹脂を(i)とする。
[Production Example 1]
In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen introduction tube and a stir bar, 4,4′-dihydroxybiphenyl, sebacic acid, catechol, and acetic anhydride were each in a molar ratio of 0.9: 1.1: The mixture was charged at a ratio of 0.1: 2.1, and sodium acetate was used as a catalyst to react at 145 ° C. under atmospheric pressure and nitrogen atmosphere to obtain a uniform solution. Then, while acetic acid was distilled off at 2 ° C./min. The temperature was raised to 240 ° C., and the mixture was stirred at 240 ° C. for 30 minutes. Furthermore, it heated up to 260 degreeC at 1 degreeC / min, and stirred at 260 degreeC for 1 hour. Subsequently, while maintaining the temperature, the pressure was reduced to 10 Torr over about 40 minutes, and then the reduced pressure state was maintained. Three hours after the start of pressure reduction, the pressure was returned to normal pressure with nitrogen gas, and the produced polymer was taken out. Various data of the obtained resin are shown in Table 2. Let the obtained resin be (i).

[製造例2]
還流冷却器、温度計、窒素導入管及び攪拌棒を備え付けた密閉型反応器に、4,4’−ジヒドロキシビフェニル、ドデカン二酸、無水酢酸をモル比でそれぞれ1.0:1.1:2.1の割合で仕込み、酢酸ナトリウムを触媒とし、常圧、窒素雰囲気下で145℃にて反応させ均一な溶液を得た後、酢酸を留去しながら2℃/minで250℃まで昇温し、250℃で1時間撹拌した。引き続きその温度を保ったまま、約40分かけて10Torrまで減圧した後、減圧状態を維持した。減圧開始から3時間後、窒素ガスで常圧に戻し、生成したポリマーを取り出した。得られた樹脂の各種データを表2に示す。得られた樹脂を(ii)とする。
[Production Example 2]
In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen introduction tube, and a stirring rod, 4,4′-dihydroxybiphenyl, dodecanedioic acid, and acetic anhydride were each in a molar ratio of 1.0: 1.1: 2. .1 was charged, and sodium acetate was used as a catalyst to react at 145 ° C. under atmospheric pressure and nitrogen atmosphere to obtain a uniform solution, and then heated to 250 ° C. at 2 ° C./min while acetic acid was distilled off. And stirred at 250 ° C. for 1 hour. Subsequently, while maintaining the temperature, the pressure was reduced to 10 Torr over about 40 minutes, and then the reduced pressure state was maintained. Three hours after the start of pressure reduction, the pressure was returned to normal pressure with nitrogen gas, and the produced polymer was taken out. Various data of the obtained resin are shown in Table 2. Let the obtained resin be (ii).

Figure 2014024959
Figure 2014024959

[実施例1〜4]
製造例1、2で得られた樹脂(i)及び(ii)を、熱風乾燥機を用いて120℃で4時間乾燥し、表4に示された体積比率となるように混合したものを準備した。これに、フェノール系安定剤(株式会社ADEKA製AO−60)およびリン系酸化防止剤(株式会社ADEKA製アデカスタブPEP−36)を樹脂100重量部に対してそれぞれ0.2重量部加えた。
[Examples 1 to 4]
Resins (i) and (ii) obtained in Production Examples 1 and 2 were dried at 120 ° C. for 4 hours using a hot air dryer, and prepared by mixing so as to have the volume ratio shown in Table 4 did. To this, 0.2 parts by weight of a phenol-based stabilizer (AO-60 manufactured by ADEKA Co., Ltd.) and a phosphorus-based antioxidant (ADEKA STAB PEP-36 manufactured by ADEKA Co., Ltd.) were respectively added.

この混合物を、株式会社テクノベル製15mm同方向回転完全噛合型二軸押出機KZW15−45MGを用いて、バレル温度を表3のように設定して溶融混練し、ダイスヘッド部より吐出した熱可塑性樹脂を水冷することで、樹脂組成物を得た。吐出量は20g/min、スクリュー回転数は150rpmに設定した。二軸押出機内における熱可塑性樹脂は、C1からC6へと順次流動し、ダイスヘッド部から吐出される。得られた樹脂組成物のペレットを、射出成形機を用いて成形し、厚み方向及び面方向の熱伝導率を測定した。射出成形条件は、シリンダー温度220℃、金型温度150℃、射出速度150mm/secの条件下で成形した。熱伝導率の値を表4に示す。   This mixture is melt-kneaded using a 15 mm co-rotating fully meshed twin screw extruder KZW15-45MG manufactured by Technobel Co., Ltd. with the barrel temperature set as shown in Table 3, and the thermoplastic resin discharged from the die head part. Was cooled with water to obtain a resin composition. The discharge amount was set to 20 g / min, and the screw rotation speed was set to 150 rpm. The thermoplastic resin in the twin screw extruder sequentially flows from C1 to C6 and is discharged from the die head portion. The obtained pellets of the resin composition were molded using an injection molding machine, and the thermal conductivity in the thickness direction and in the plane direction was measured. The injection molding was performed under the conditions of a cylinder temperature of 220 ° C., a mold temperature of 150 ° C., and an injection speed of 150 mm / sec. Table 4 shows thermal conductivity values.

得られた各ペレットを、射出成形機[東洋機械金属(株)製、Si−30IV]を用いて
、予め150℃で加熱したアルミニウム板を金型内に設置し、シリンダー温度は220℃、金型温度150℃、射出速度150mm/secの条件下、射出成形し、図1〜3に示す金属樹脂複合体を得た。
An aluminum plate heated in advance at 150 ° C. was placed in a mold using an injection molding machine [manufactured by Toyo Machine Metal Co., Ltd., Si-30IV], and the cylinder temperature was 220 ° C. Injection molding was performed under conditions of a mold temperature of 150 ° C. and an injection speed of 150 mm / sec to obtain a metal resin composite shown in FIGS.

[比較例1〜6]
熱可塑性樹脂(i)、バレル温度、射出成形条件を変更した点以外は、実施例1と同様にし、樹脂組成物及び金属複合体が得られた。
射出成形は、予め120℃で加熱したアルミニウム板を金型内に設置し、シリンダー温度280℃、金型温度120℃、射出速度100mm/secの条件下、射出成形した。熱伝導率の値を表4に示す。
[Comparative Examples 1-6]
A resin composition and a metal composite were obtained in the same manner as in Example 1 except that the thermoplastic resin (i), the barrel temperature, and the injection molding conditions were changed.
In the injection molding, an aluminum plate heated in advance at 120 ° C. was placed in a mold, and injection molding was performed under the conditions of a cylinder temperature of 280 ° C., a mold temperature of 120 ° C., and an injection speed of 100 mm / sec. Table 4 shows thermal conductivity values.

放熱効果測定:
アクリル樹脂製の透明板で作製された、縦、横及び高さが2mの室内(25℃)の中心部に、図4に示すように上記評価用試験片(金属樹脂複合体)を設置した。試験片のアルミニウム板に発熱体(10×10×2mm、アルミナ:36W/mK、0.9mm径のニクロム線接続)を図1a〜図3bのように接着し、5Wの電圧を印加した状態で、60分間放置した。発熱体の温度が平衡に達したことを確認した後、発熱体の温度を測定した。発熱体の温度を表4に示す。
Measurement of heat dissipation effect:
As shown in FIG. 4, the test piece for evaluation (metal resin composite) was installed in the center of a room (25 ° C.) made of a transparent plate made of acrylic resin and having a height, width and height of 2 m. . A heating element (10 × 10 × 2 mm, alumina: 36 W / mK, 0.9 mm diameter nichrome wire connection) was bonded to the aluminum plate of the test piece as shown in FIGS. 1 a to 3 b and a voltage of 5 W was applied. , Left for 60 minutes. After confirming that the temperature of the heating element reached equilibrium, the temperature of the heating element was measured. Table 4 shows the temperature of the heating element.

Figure 2014024959
Figure 2014024959

Figure 2014024959
Figure 2014024959

Figure 2014024959
Figure 2014024959

表4および表5より、実施例1〜4と比較例1〜3において、同配合比で比較した場合、本発明の熱可塑性樹脂組成物の方が、厚み方向の熱伝導率が高く、放熱効果も高いといえるまた、実施例1〜3と比較例4〜6で比較した場合、面方向の熱伝導率より厚み方向の熱伝導率が高い方が、発熱体の温度が低く、厚み方向の熱伝導率が高い樹脂組成物の方がより金属へ伝熱していることを示している。これらのことから、本発明の金属樹脂複合体が、優れた放熱効果を示すことが言える。   From Tables 4 and 5, in Examples 1 to 4 and Comparative Examples 1 to 3, when compared at the same blending ratio, the thermoplastic resin composition of the present invention has a higher thermal conductivity in the thickness direction, and heat dissipation. Moreover, when it compares with Examples 1-3 and Comparative Examples 4-6, it can be said that an effect is high, and the one where the heat conductivity of the thickness direction is higher than the heat conductivity of a surface direction, the temperature of a heat generating body is low, and the thickness direction It shows that the resin composition having a higher thermal conductivity of the heat transfer to the metal more. From these, it can be said that the metal resin composite of the present invention exhibits an excellent heat dissipation effect.

本発明の金属樹脂複合体は、優れた熱伝導性・放熱効果を示す。このような金属樹脂複合体は電気・電子工業分野、自動車分野等さまざまな状況で放熱・伝熱用樹脂材料として用いることが可能で、工業的に有用である。   The metal resin composite of the present invention exhibits excellent thermal conductivity and heat dissipation effect. Such a metal-resin composite can be used as a resin material for heat dissipation and heat transfer in various situations such as in the electric / electronic industry and automobile fields, and is industrially useful.

Claims (13)

金型内部に金属製部材を配置し、該金属製部材の表面の少なくとも一部に樹脂成形部を形成して得られる金属樹脂複合体であって、該樹脂成形部を形成する熱可塑性樹脂の主鎖の構造が一般式(1)
Figure 2014024959
(式中、XはO、COの群から選ばれる2価の置換基を示す)
で表されるビフェニル基を有するユニット(A)25〜60モル%、
一般式(2)
−Y−R−Y− (2)
(式中、Rは主鎖原子数2〜20の分岐を含んでもよい2価の直鎖状置換基を示す。YはO、COの群から選ばれる2価の置換基を示す)
で表されるユニット(B)25〜60モル%、
一般式(3)
−Z1−M−Z2− (3)
(式中、Z1、Z2はO、NH、CO、S、NHCOの群から選ばれる2価の置換基を示す。Mは主鎖の折り畳み効果を有する芳香族基、縮合芳香族基、複素環基、脂環基、脂環式複素環基から選ばれる置換基を示す。)
で表されるユニット(C)0〜25モル%(ただしユニット(A)、(B)、(C)の合計を100モル%とする)からなり、樹脂単体の熱伝導率が0.4W/(m・K)以上である熱可塑性樹脂組成物からなる金属樹脂複合体。
A metal-resin composite obtained by disposing a metal member inside a mold and forming a resin molded portion on at least a part of the surface of the metal member, the thermoplastic resin forming the resin molded portion The structure of the main chain is general formula (1)
Figure 2014024959
(Wherein X represents a divalent substituent selected from the group of O and CO)
Unit (A) having a biphenyl group represented by 25 to 60 mol%,
General formula (2)
-YR-Y- (2)
(In the formula, R represents a divalent linear substituent which may contain a branch having 2 to 20 main chain atoms. Y represents a divalent substituent selected from the group of O and CO.)
Unit (B) represented by 25 to 60 mol%,
General formula (3)
-Z 1 -MZ 2- (3)
(In the formula, Z 1 and Z 2 represent a divalent substituent selected from the group of O, NH, CO, S and NHCO. M represents an aromatic group having a main chain folding effect, a condensed aromatic group, A substituent selected from a heterocyclic group, an alicyclic group, and an alicyclic heterocyclic group is shown.)
Unit (C) represented by 0 to 25 mol% (however, the total of units (A), (B), and (C) is 100 mol%), and the thermal conductivity of the resin alone is 0.4 W / (M * K) The metal resin composite which consists of a thermoplastic resin composition which is more than.
前記熱可塑性樹脂の分子鎖の末端の60モル%以上がカルボキシル基であることを特徴とする、請求項1に記載の金属樹脂複合体。 The metal resin composite according to claim 1, wherein 60 mol% or more of molecular chain terminals of the thermoplastic resin are carboxyl groups. 前記一般式(1)のXがO、一般式(2)のYがCOである、請求項1または2の何れかに記載の金属樹脂複合体。 The metal resin composite according to claim 1, wherein X in the general formula (1) is O and Y in the general formula (2) is CO. 前記熱可塑性樹脂のRに相当する部分が直鎖の脂肪族炭化水素鎖である、請求項1〜3の何れかに記載の金属樹脂複合体。 The metal resin composite according to any one of claims 1 to 3, wherein a portion corresponding to R of the thermoplastic resin is a linear aliphatic hydrocarbon chain. 前記熱可塑性樹脂のRに相当する部分の主鎖原子数が偶数である、請求項1〜4の何れかに記載の金属樹脂複合体。 The metal resin composite according to any one of claims 1 to 4, wherein the number of main chain atoms in a portion corresponding to R of the thermoplastic resin is an even number. 前記熱可塑性樹脂のRが−(CH28−、−(CH210−、−(CH212−から選ばれる少なくとも1種である、請求項1〜5の何れかに記載の金属樹脂複合体。 6. The thermoplastic resin according to claim 1, wherein R of the thermoplastic resin is at least one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —. Metal resin composite. 前記熱可塑性樹脂のMが以下に示す構造のうちいずれか一種である、請求項1〜6の何れかに記載の金属樹脂複合体。
Figure 2014024959
The metal resin composite according to any one of claims 1 to 6, wherein M of the thermoplastic resin is any one of the structures shown below.
Figure 2014024959
前記熱可塑性樹脂の数平均分子量が3000〜40000である、請求項1〜7の何れかに記載の金属樹脂複合体。 The metal resin composite according to claim 1, wherein the thermoplastic resin has a number average molecular weight of 3000 to 40000. 前記熱可塑性樹脂中のラメラ晶の割合が10Vol%以上であることを特徴とする、請求項1〜8の何れかに記載の金属樹脂複合体。 The metal resin composite according to any one of claims 1 to 8, wherein a ratio of lamellar crystals in the thermoplastic resin is 10 Vol% or more. 前記熱可塑性樹脂組成物に単体での熱伝導率が1W/(m・K)以上である無機充填剤を含有することを特徴とする金属樹脂複合体。   A metal resin composite comprising an inorganic filler having a thermal conductivity of 1 W / (m · K) or more as a single substance in the thermoplastic resin composition. 前記無機充填剤が、窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化アルミニウム、酸化マグネシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化ベリリウムおよびダイヤモンドからなる群から選ばれる1種以上の電気絶縁性高熱伝導性無機化合物であることを特徴とする請求項10に記載の金属樹脂複合体。   The inorganic filler is one or more electrically insulating high heat selected from the group consisting of boron nitride, aluminum nitride, silicon nitride, aluminum oxide, magnesium oxide, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, beryllium oxide and diamond. It is a conductive inorganic compound, The metal resin composite of Claim 10 characterized by the above-mentioned. 前記無機充填剤が、グラファイト、導電性金属粉、軟磁性フェライト、炭素繊維、導電性金属繊維および酸化亜鉛からなる群から選ばれる1種以上の導電性高熱伝導性無機化合物であることを特徴とする請求項11に記載の金属樹脂複合体。   The inorganic filler is one or more conductive high thermal conductive inorganic compounds selected from the group consisting of graphite, conductive metal powder, soft magnetic ferrite, carbon fiber, conductive metal fiber, and zinc oxide. The metal resin composite according to claim 11. 請求項1〜12のいずれかに記載の金属樹脂複合体と発熱体を有する構造体であって、熱可塑性樹脂組成物が、発熱体と金属樹脂複合体の金属との間に存在することを特徴とする構造体。   It is a structure which has a metal resin composite and a heat generating body in any one of Claims 1-12, Comprising: A thermoplastic resin composition exists between the metal of a heat generating body and a metal resin composite. Characteristic structure.
JP2012166230A 2012-07-26 2012-07-26 Metal resin composite having excellent heat radiation effect Pending JP2014024959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166230A JP2014024959A (en) 2012-07-26 2012-07-26 Metal resin composite having excellent heat radiation effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166230A JP2014024959A (en) 2012-07-26 2012-07-26 Metal resin composite having excellent heat radiation effect

Publications (1)

Publication Number Publication Date
JP2014024959A true JP2014024959A (en) 2014-02-06

Family

ID=50198907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166230A Pending JP2014024959A (en) 2012-07-26 2012-07-26 Metal resin composite having excellent heat radiation effect

Country Status (1)

Country Link
JP (1) JP2014024959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183100A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Method of manufacturing heat conductive material
EP3305519A4 (en) * 2015-06-03 2019-02-20 Kaneka Corporation Metal resin complex

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202567A (en) * 2008-02-01 2009-09-10 Techno Polymer Co Ltd Manufacturing method of composite comprising resin-made member and metallic member, substrate for mounting led and reflector for mounting led
JP2011127053A (en) * 2009-12-21 2011-06-30 Sekisui Chem Co Ltd Resin sheet and laminate
WO2011132389A1 (en) * 2010-04-19 2011-10-27 株式会社カネカ Thermoplastic resin with high thermal conductivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202567A (en) * 2008-02-01 2009-09-10 Techno Polymer Co Ltd Manufacturing method of composite comprising resin-made member and metallic member, substrate for mounting led and reflector for mounting led
JP2011127053A (en) * 2009-12-21 2011-06-30 Sekisui Chem Co Ltd Resin sheet and laminate
WO2011132389A1 (en) * 2010-04-19 2011-10-27 株式会社カネカ Thermoplastic resin with high thermal conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183100A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Method of manufacturing heat conductive material
EP3305519A4 (en) * 2015-06-03 2019-02-20 Kaneka Corporation Metal resin complex

Similar Documents

Publication Publication Date Title
JP5941840B2 (en) High thermal conductivity thermoplastic resin
JP5731199B2 (en) High thermal conductivity thermoplastic resin composition and molded article of thermoplastic resin
JP5844290B2 (en) High thermal conductivity thermoplastic resin, resin composition and molded body
JP5366533B2 (en) Thermoplastic resin composition
JP5490604B2 (en) Thermoplastic resin composition and resin material for heat dissipation and heat transfer
JP5542513B2 (en) High thermal conductivity thermoplastic resin composition for extrusion molding
WO2013133181A1 (en) Thermally conductive resin compact and method for manufacturing thermally conductive resin compact
JP5684999B2 (en) High thermal conductivity thermoplastic resin composition for blow molding
JP5468975B2 (en) High heat conductivity thermoplastic resin heat sink
JP6046484B2 (en) Thermally conductive thermoplastic resin molding
JP5476203B2 (en) High thermal conductivity thermoplastic resin composition
JP5680873B2 (en) High thermal conductivity thermoplastic resin and thermoplastic resin molding
KR20130079381A (en) Thermoplastic resin with high thermal conductivity
JP2014091826A (en) Thermally conductive molded body
JP2014024959A (en) Metal resin composite having excellent heat radiation effect
JP5646874B2 (en) Flame retardant high thermal conductivity thermoplastic resin composition
JP2013170202A (en) Highly heat conductive thermoplastic resin composition
JP5923392B2 (en) High thermal conductivity thermoplastic resin composition
JP6012240B2 (en) High thermal conductivity thermoplastic resin composition
JP5860664B2 (en) High thermal conductivity thermoplastic resin composition
JP2013221117A (en) Thermoplastic resin composition with high thermal conductivity
JP6101501B2 (en) High thermal conductivity thermoplastic resin composition and method for producing high thermal conductivity thermoplastic resin
JP5795866B2 (en) High thermal conductivity thermoplastic liquid crystal resin and molding method of resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161101