JP2013540208A - Copolymerized polyimide / nanofiber nonwoven fabric, production method and application thereof - Google Patents

Copolymerized polyimide / nanofiber nonwoven fabric, production method and application thereof Download PDF

Info

Publication number
JP2013540208A
JP2013540208A JP2013530522A JP2013530522A JP2013540208A JP 2013540208 A JP2013540208 A JP 2013540208A JP 2013530522 A JP2013530522 A JP 2013530522A JP 2013530522 A JP2013530522 A JP 2013530522A JP 2013540208 A JP2013540208 A JP 2013540208A
Authority
JP
Japan
Prior art keywords
copolymerized
nonwoven fabric
nanofiber nonwoven
polyimide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013530522A
Other languages
Japanese (ja)
Inventor
豪 情 侯
楚 云 程
水 亮 陳
小 平 周
暁 義 呂
平 何
暁 明 匡
金 生 任
Original Assignee
江西先材納米繊維科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西先材納米繊維科技有限公司 filed Critical 江西先材納米繊維科技有限公司
Publication of JP2013540208A publication Critical patent/JP2013540208A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Abstract

本発明は、共重合ポリイミド・ナノファイバー不織布、その製造方法および応用に関する。本発明は、テトラカルボン酸二無水物モノマーおよびジアミンモノマーを反応とし、高極性溶媒を反応媒体とし、反応釜において機械撹拌することにより、縮合重合し、共重合ポリアミド酸溶液を形成し、この共重合ポリアミド酸溶液に高圧電場を印加して静電紡糸を実施し、共重合ポリアミド酸ナノファイバー不織布に加工し、高温下でこの不織布をイミド化し、耐引裂性が強く、空隙率が高く、高低温に耐えることができ、機械性に優れているなどの特性のある共重合ポリイミド・ナノファイバー不織布を製造し、主に電池セパレータおよびキャパシタセパレータに応用する。
【選択図】なし
The present invention relates to a copolymerized polyimide / nanofiber nonwoven fabric, a method for producing the same, and an application thereof. In the present invention, a tetracarboxylic dianhydride monomer and a diamine monomer are reacted, a highly polar solvent is used as a reaction medium, and mechanically stirred in a reaction kettle to perform condensation polymerization to form a copolymerized polyamic acid solution. Electrostatic spinning is performed by applying a high piezoelectric field to the polymerized polyamic acid solution, processed into a copolymerized polyamic acid nanofiber non-woven fabric, imidized at high temperature, strong tear resistance, high porosity, high Copolymer polyimide / nanofiber nonwoven fabrics that can withstand low temperatures and have excellent mechanical properties are manufactured and applied mainly to battery separators and capacitor separators.
[Selection figure] None

Description

本発明は、共重合ポリイミド、その製造方法および応用に関し、具体的には、ポリイミド・ナノファイバー不織布、製造方法およびその電池セパレータとしての応用に関する。   The present invention relates to a copolymerized polyimide, a method for producing the same, and an application thereof. Specifically, the present invention relates to a polyimide / nanofiber nonwoven fabric, a production method, and an application thereof as a battery separator.

化学電池は、現代の生活において極めて重要な構成部分となっており、携帯電話の電池、開発中の自動車動力電池などは、いずれも人類が質の高い生活を追求するために不可欠な製品である。しかしながら、電池の安全性は、人々の関心を集めている重大な科学技術の問題および社会的責任の問題であり、安全な電池セパレータの開発は、電池の安全性の問題を解決する技術的な鍵となっている。現在、電池産業において用いられているポリエチレン(PE)、ポリプロピレン(PP)などの電池セパレータは、溶融温度が低く、熱収縮率が高すぎるために、比較的高い温度での完全性を保証することができず、過熱、過充電などの場合には、熱によって収縮することがよくあり、ひいては溶解し、電池セパレータが破裂し、電池内部の短絡により熱暴走や爆発などの重大事故が発生することがある。そのため、耐熱性がよく、熱収縮しにくい材料を開発し、電池セパレータに応用することが、化学電池の安全性の問題を解決する鍵を握っている。   Chemical batteries are an extremely important component in modern life, and mobile phone batteries and automobile power batteries under development are all indispensable products for human beings to pursue a high-quality life. . However, battery safety is a serious scientific and social responsibility issue that has attracted people's attention, and the development of a safe battery separator is a technical solution that solves the problem of battery safety. It is the key. Battery separators such as polyethylene (PE) and polypropylene (PP) currently used in the battery industry have a low melting temperature and a too high heat shrinkage rate, thus ensuring their integrity at relatively high temperatures. In the case of overheating, overcharging, etc., it often shrinks due to heat, eventually melts, the battery separator ruptures, and a serious accident such as thermal runaway or explosion occurs due to a short circuit inside the battery There is. Therefore, the development of materials with good heat resistance and resistance to thermal shrinkage and application to battery separators is the key to solving chemical battery safety issues.

本発明の目的は、耐引裂性が強く、空隙率が高く、高低温に耐えることができ、機械性能に優れているなどの特性のある共重合ポリイミド・ナノファイバー不織布を提供することである。   An object of the present invention is to provide a copolymerized polyimide / nanofiber nonwoven fabric having characteristics such as strong tear resistance, high porosity, withstand high and low temperatures, and excellent mechanical performance.

本発明のもう1つの目的は、本発明のポリイミド・ナノファイバー不織布の製造方法を提供することである。   Another object of the present invention is to provide a method for producing the polyimide nanofiber nonwoven fabric of the present invention.

本発明のさらにもう1つの目的は、ポリイミド・ナノファイバー不織布を電池セパレータに応用することである。   Yet another object of the present invention is to apply a polyimide nanofiber nonwoven fabric to a battery separator.

以上の目的を達成するため、本発明で採用する技術手法は、次のとおりである。   In order to achieve the above object, the technical technique employed in the present invention is as follows.

本発明の共重合ポリイミド・ナノファイバー不織布は、下記(I)、(II)、(III)、(IV)の4種のモノマーのうちの3種以上のモノマーにより共重合ポリアミド酸を共重合し、さらに静電紡糸、イミド化を経てなる。   The copolymerized polyimide / nanofiber nonwoven fabric of the present invention is obtained by copolymerizing a copolymerized polyamic acid with three or more monomers among the following four monomers (I), (II), (III), and (IV). Further, it is subjected to electrostatic spinning and imidization.

式中、共重合ポリイミドは、次の化学構造を有する。   In the formula, the copolymerized polyimide has the following chemical structure.

この際、nは50〜300の自然数であり、mは50〜300の自然数であり、R、RはC〜C30のテトラカルボン酸または二無水物モノマーの残基構造であり、R、RはC〜C30ジアミンモノマーの残基構造であり、テトラカルボン酸二無水物モノマーの全物質量と二無水物モノマーの全物質量の比は、常に1:1を保つ。 In this case, n is a natural number of 50 to 300, m is a natural number of 50 to 300, R 1 and R 3 are residue structures of C 4 to C 30 tetracarboxylic acid or dianhydride monomers, R 2 and R 4 are residue structures of C 6 to C 30 diamine monomers, and the ratio of the total amount of tetracarboxylic dianhydride monomer to the total amount of dianhydride monomer always maintains 1: 1. .

好ましい共重合ポリイミド・ナノファイバー不織布は、1種のテトラカルボン酸二無水物モノマーと、2種のジアミンモノマーとの共重合により、すなわち、上記(I)、(III)、(IV)または(II)、(III)、(IV)の3種のモノマー共重合によりなる。3種のモノマーのモル比は、(I):(III):(IV)または(II):(III):(IV)=[1]:[0.05〜0.95]:[0.05〜0.95]である。   Preferred copolymerized polyimide nanofiber nonwoven fabrics are obtained by copolymerization of one tetracarboxylic dianhydride monomer and two diamine monomers, that is, the above (I), (III), (IV) or (II). ), (III), and (IV). The molar ratio of the three monomers is (I) :( III) :( IV) or (II) :( III) :( IV) = [1]: [0.05-0.95]: [0. 05 to 0.95].

好ましい共重合ポリイミド・ナノファイバー不織布は、2種のテトラカルボン酸二無水物モノマーと、1種のジアミンモノマーとの共重合によってもよく、上記(I)、(II)、(III)または(I)、(II)、(IV)の3種のモノマー共重合により、3種のモノマーのモル比は、(I):(II):(III)または(II):(III):(IV)=[0.05〜0.95]:[0.05〜0.95]:[1]である。   A preferable copolymerized polyimide / nanofiber nonwoven fabric may be obtained by copolymerization of two types of tetracarboxylic dianhydride monomers and one type of diamine monomer, and the above (I), (II), (III) or (I ), (II), and (IV), the molar ratio of the three monomers is (I) :( II) :( III) or (II) :( III) :( IV) = [0.05-0.95]: [0.05-0.95]: [1].

好ましい共重合ポリイミド・ナノファイバー不織布は、さらに2種のテトラカルボン酸二無水物モノマーと、2種のジアミンモノマーとの共重合、すなわち上記(I)、(II)、(III)、(IV)の4種のモノマーの共重合によってもよく、4種のモノマーのモル比の関係は、[(I)+(II)]:[(III)+(IV)]=1:1である。   Preferred copolymerized polyimide / nanofiber nonwoven fabric is a copolymer of two kinds of tetracarboxylic dianhydride monomers and two kinds of diamine monomers, that is, the above (I), (II), (III), (IV). The four monomers may be copolymerized with each other in a molar ratio of [(I) + (II)]: [(III) + (IV)] = 1: 1.

好ましくは、R、Rは、それぞれ下記のテトラカルボン酸二無水物残基構造から選択される1種である。 Preferably, R 1 and R 3 are each one selected from the following tetracarboxylic dianhydride residue structures.

好ましくは、R、Rは、それぞれ下記のジアミン残基構造から選択される1種である。 Preferably, R 2 and R 4 are each one selected from the following diamine residue structures.

本発明の共重合されたイミドナノファイバーの化学成分は、1種の二無水物モノマーと2種のジアミンモノマーとの共重合生成物であってもよく、2種の二無水物モノマーと1種のジアミンモノマーとの共重合生成物であってもよく、さらに2種の二無水物モノマーと2種のジアミンモノマーとの共重合生成物であってもよい。具体には、式中のRおよびRは、同じ残基でも異なる残基でもよく、RおよびRは、同じ残基でも異なる残基でもよく、RおよびRが同じである場合は、RおよびRが異なり、同様に、RおよびRが同じである場合は、RおよびRが必ず異なり、前記共重合されたイミドナノファイバーの化学成分が、少なくとも3種のモノマーの共重合により得られることを保証する。 The chemical component of the copolymerized imide nanofiber of the present invention may be a copolymer product of one dianhydride monomer and two diamine monomers, and may be two dianhydride monomers and one kind. It may be a copolymerization product with a diamine monomer, or may be a copolymerization product of two dianhydride monomers and two diamine monomers. Specifically, R 1 and R 3 in the formula can be the same residue or different residues, R 2 and R 4 can be the same residue or different residues, and R 1 and R 3 are the same. In the case where R 2 and R 4 are different, similarly, when R 2 and R 4 are the same, R 1 and R 3 are always different, and the chemical component of the copolymerized imide nanofiber is at least 3 It is guaranteed to be obtained by copolymerization of seed monomers.

本発明の共重合されたイミドナノファイバー不織布の厚さは10〜60μmであり、破断伸びは20%以上であり、普通の有機溶媒において完全に溶解せず、ガラス転移温度は210℃以上であり、熱分解温度は510℃以上であり、溶融温度は350℃を超え、ひいては分解温度以下で溶融せず、空隙率は80%よりも高く、機械強度は20MPaよりも高く、絶縁破壊強度は1×10V/mを超える。こうした特性を有するエレクトロスピニング共重合ポリイミド・ナノファイバー不織布は、耐引裂、抗熱収縮、耐高温、耐高圧大電流過充電の特性を有し、本発明のイミドナノファイバー不織布を各種高容量および高動力の電池セパレータおよびキャパシタセパレータに応用することは、自動車動力電池やスーパーキャパシタ産業などにおいて、巨大な潜在的市場を有する。 The thickness of the copolymerized imide nanofiber nonwoven fabric of the present invention is 10 to 60 μm, the elongation at break is 20% or more, it is not completely dissolved in ordinary organic solvents, and the glass transition temperature is 210 ° C. or more. The thermal decomposition temperature is 510 ° C. or higher, the melting temperature exceeds 350 ° C., and thus does not melt below the decomposition temperature, the porosity is higher than 80%, the mechanical strength is higher than 20 MPa, and the dielectric breakdown strength is 1 × 10 7 V / m is exceeded. The electrospinning copolymerized polyimide / nanofiber nonwoven fabric having such properties has the properties of tear resistance, anti-heat shrinkage, high temperature resistance, high voltage resistance and high current overcharge, and the imide nanofiber nonwoven fabric of the present invention has various high capacity and high capacity. Application to power battery separators and capacitor separators has a huge potential market, such as in the automotive power battery and supercapacitor industries.

本発明のもう1つの目的は、次のステップを含む共重合ポリイミド・ナノファイバー不織布の製造方法を提供することである。   Another object of the present invention is to provide a method for producing a copolymerized polyimide nanofiber nonwoven fabric comprising the following steps.

(一)3種以上のモノマーを精製した後、適量の溶媒とともに重合反応釜の中に入れ、撹拌しながら一定時間反応させる。共重合ポリアミド酸(ポリイミド前駆体)溶液を得て、この共重合ポリアミド酸溶液に対して高圧電場において静電紡糸を実施し、ステンレスドラムをコレクターとし、収集して共重合ポリアミド酸ナノファイバー不織布を得る。   (1) After purifying three or more kinds of monomers, they are put together with an appropriate amount of solvent into a polymerization reaction kettle and reacted for a certain time with stirring. Obtain a copolymerized polyamic acid (polyimide precursor) solution, perform electrospinning on the copolymerized polyamic acid solution in a high piezoelectric field, collect the stainless steel drum as a collector, and collect the copolymerized polyamic acid nanofiber nonwoven fabric. obtain.

用いる溶媒は、高極性溶媒であり、好ましくはN,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)のうちの1種である。撹拌反応の時間は1〜10時間であり、好ましくは反応時間は5〜10時間である。反応の温度は0〜30℃であり、好ましくは反応温度は5〜10℃である。エレクトロスピニング加工で用いる電場強度は、好ましくは250〜300kV/mである。ステンレスドラム・コレクターの直径は0.3mである。   The solvent used is a highly polar solvent, and is preferably one of N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAC). The stirring reaction time is 1 to 10 hours, preferably the reaction time is 5 to 10 hours. The reaction temperature is 0 to 30 ° C., preferably the reaction temperature is 5 to 10 ° C. The electric field strength used in the electrospinning process is preferably 250 to 300 kV / m. The diameter of the stainless steel drum collector is 0.3 m.

(二)上記の得られた共重合ポリアミド酸ナノファイバー不織布を高温炉の中に置き、加熱してイミド化する。   (2) The obtained copolymer polyamic acid nanofiber nonwoven fabric is placed in a high temperature furnace and heated to imidize.

イミド化は、窒素ガス雰囲気中で行い、加熱プロセスの昇温手順は、20℃/分の昇温速度で室温から200〜250℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で330〜370℃まで加熱し、この温度で30分間滞留させ、次いで電源を切る。   The imidization is performed in a nitrogen gas atmosphere, and the heating process is performed by heating from room temperature to 200 to 250 ° C. at a heating rate of 20 ° C./min, and retaining at this temperature for 30 minutes, and then 5 ° C. The temperature is raised to 330-370 ° C. at a rate of temperature rise / minute, the temperature is maintained for 30 minutes, and then the power is turned off.

(三)キャラクタリゼーション:共重合ポリアミド酸溶液および紡糸液の絶対粘度、エレクトロスピニング共重合ポリアミド酸ナノファイバーの直径、共重合ポリイミド・ナノファイバー不織布の熱分解温度、共重合ポリイミド・ナノファイバー不織布の機械性質(強度、破断伸びなど)、共重合ポリイミド・ナノファイバー不織布のガラス転移温度、共重合ポリイミド・ナノファイバー不織布の比表面積、共重合ポリイミド・ナノファイバー不織布の絶縁破壊強度の測定を含む。   (3) Characterization: absolute viscosity of copolymerized polyamic acid solution and spinning solution, diameter of electrospun copolymerized polyamic acid nanofiber, thermal decomposition temperature of copolymerized polyimide / nanofiber nonwoven fabric, machine of copolymerized polyimide / nanofiber nonwoven fabric Includes measurement of properties (strength, elongation at break, etc.), glass transition temperature of copolymerized polyimide / nanofiber nonwoven fabric, specific surface area of copolymerized polyimide / nanofiber nonwoven fabric, and dielectric breakdown strength of copolymerized polyimide / nanofiber nonwoven fabric.

本発明では、NDJ−8S粘度計(上海精密科学儀器公司)を採用してポリアミド酸溶液および紡糸液の絶対粘度を測定した。走査電子顕微鏡VEGA 3 SBU(チェコ共和国)によってエレクトロスピニング・ポリアミド酸ナノファイバーの直径を測定した。WRT−3P熱重量分析装置(TGA)(上海精密科学儀器有限公司)を採用して共重合ポリイミド・ナノファイバー不織布の熱分解温度を測定した。CMT8102型電子万能試験機(深▲せん▼SANS材料検測有限公司)を採用して共重合ポリイミド・ナノファイバー不織布の機械性質(強度、破断伸びなど)を測定した。Diamond動的機械分析装置(DMA)(Perkin−Elmer,米国)を用いて共重合ポリイミド・ナノファイバーのガラス転移温度を測定した。本発明に記載の共重合ポリイミド・ナノファイバー多孔膜または不織布の比表面積は、JW−K型孔分布・比表面積測定装置(北京精微高博科学技術有限公司)を採用して測定した。共重合ポリイミド・ナノファイバー不織布の絶縁破壊強度は、絶縁破壊試験機DJD−20KV(北京冠測試験儀器有限公司)を用いて測定した。   In the present invention, the absolute viscosity of the polyamic acid solution and the spinning solution was measured using an NDJ-8S viscometer (Shanghai Precision Science Equipment Co., Ltd.). The diameter of the electrospun polyamic acid nanofibers was measured with a scanning electron microscope VEGA 3 SBU (Czech Republic). The thermal decomposition temperature of the copolymerized polyimide nanofiber nonwoven fabric was measured using a WRT-3P thermogravimetric analyzer (TGA) (Shanghai Precision Science Equipment Co., Ltd.). The mechanical properties (strength, elongation at break, etc.) of the copolymerized polyimide / nanofiber nonwoven fabric were measured using a CMT8102 type electronic universal testing machine (Shenzhen SANS Material Inspection Co., Ltd.). The glass transition temperature of the copolymerized polyimide nanofibers was measured using a Diamond dynamic mechanical analyzer (DMA) (Perkin-Elmer, USA). The specific surface area of the copolymerized polyimide / nanofiber porous membrane or non-woven fabric described in the present invention was measured using a JW-K type pore distribution / specific surface area measuring device (Beijing Seiko Gaobo Science and Technology Co., Ltd.). The dielectric breakdown strength of the copolymerized polyimide / nanofiber nonwoven fabric was measured using a dielectric breakdown tester DJD-20KV (Beijing Crown Tester Co., Ltd.).

本発明に記載の共重合ポリイミド・ナノファイバー不織布の空隙率は、下記の算式により計算して得た。   The porosity of the copolymerized polyimide / nanofiber nonwoven fabric described in the present invention was calculated by the following formula.

空隙率β=[1−(ρ/ρ)]×100
式中、ρは共重合ポリイミド・ナノファイバー不織布の密度(g/cm)であり、ρは共重合ポリイミド・ソリッドフィルム(溶液流延法により作製)の密度(g/cm)である。
Porosity β = [1− (ρ / ρ o )] × 100
Wherein, [rho is the density of the copolymer polyimide nanofiber nonwoven fabric (g / cm 3), the [rho o is the density of the copolymer polyimide solid film (manufactured by solution casting method) (g / cm 3) .

本発明のさらにもう1つの目的は、共重合ポリイミド・ナノファイバー不織布の電池セパレータにおける応用である。   Yet another object of the present invention is the application in battery separators of copolymerized polyimide nanofiber nonwovens.

本発明は、二無水物およびジアミンを反応原料とし、高極性溶媒を反応媒質とし、機械撹拌下で縮合重合を行い、共重合ポリアミド酸(co−PIの前駆体ポリマー)溶液を形成する。二無水物モノマーおよびジアミンモノマーの全種類は3種以上であり、二無水物の官能基総数およびジアミンの官能基総数は等しいか、またはほぼ等しい。高圧静電紡糸技術により、上記合成で得られた溶液を共重合ポリアミド酸ナノファイバー不織布に加工し、300℃以上の高温下でイミド化し、隔離化学電池における電極の耐高温ナノファイバー不織布電池セパレータを形成する。この共重合ポリイミド・ナノファイバー不織布は、耐引裂性が強く、空隙率が高く、高低温に耐えることができ、機械性に優れており、電池セパレータに応用しても、耐熱性がよく、熱収縮しにくく、過熱、過充電などの場合においても、熱により収縮することもなく、ひいては電池セパレータが破裂し、電池内部の短絡により熱暴走などの現象が発生することもない。また、この共重合ポリイミド・ナノファイバー不織布を各種高容量および高動力の電池セパレータおよびキャパシタセパレータに応用することは、自動車動力電池およびスーパーキャパシタ産業などにおいて、巨大な潜在的市場を有する。   In the present invention, dianhydride and diamine are used as reaction raw materials, a highly polar solvent is used as a reaction medium, and condensation polymerization is performed under mechanical stirring to form a copolymerized polyamic acid (co-PI precursor polymer) solution. There are three or more types of dianhydride monomers and diamine monomers, and the total number of functional groups of dianhydride and the total number of functional groups of diamine are equal or approximately equal. The solution obtained by the above synthesis is processed into a copolymerized polyamic acid nanofiber nonwoven fabric by high-pressure electrospinning technology, imidized at a high temperature of 300 ° C or higher, and a high-temperature resistant nanofiber nonwoven fabric battery separator for electrodes in isolated chemical batteries Form. This copolymerized polyimide / nanofiber nonwoven fabric has strong tear resistance, high porosity, can withstand high and low temperatures, has excellent mechanical properties, and has good heat resistance even when applied to battery separators. In the case of overheating, overcharging, etc., it does not shrink easily, and it does not shrink due to heat. As a result, the battery separator bursts, and a phenomenon such as thermal runaway due to a short circuit inside the battery does not occur. In addition, the application of this copolymerized polyimide / nanofiber nonwoven fabric to various high-capacity and high-power battery separators and capacitor separators has a huge potential market in the automotive power battery and supercapacitor industries.

次に、実施例と合わせ、本発明についてさらに詳細に説明する。   Next, the present invention will be described in more detail in conjunction with examples.

本発明の共重合ポリイミド・ナノファイバー不織布の製造方法のステップは、次のことを含む。   The steps of the method for producing a copolymerized polyimide / nanofiber nonwoven fabric of the present invention include the following.

(一)二無水物官能基のモル総量とジアミン官能基のモル総量が等しいことを原則とし、1種の二無水物モノマーと2種のジアミンモノマーの混合または2種の二無水物モノマーと1種のジアミンモノマーの混合または2種の二無水物モノマーと2種のジアミンモノマーの混合を適量取り、適量の溶媒とともに重合反応釜の中に添加し、撹拌しながら一定時間反応させる。共重合ポリアミド酸(ポリイミド前駆体)溶液を得て、この共重合ポリアミド酸溶液に対して高圧電場において静電紡糸を実施し、ステンレスドラムをコレクターとし、収集して共重合ポリアミド酸ナノファイバー不織布を得る。用いる溶媒は、好ましくはN,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)のうちの1種である。反応釜の温度は0〜30℃である。撹拌反応の時間は、好ましくは1〜10時間であり、高圧電場の電場強度は250〜300kV/mである。ステンレスドラム・コレクターの直径は0.3mである。   (1) In principle, the molar total amount of the dianhydride functional group and the molar total amount of the diamine functional group are equal, and a mixture of one dianhydride monomer and two diamine monomers or two dianhydride monomers and 1 An appropriate amount of a mixture of seed diamine monomers or a mixture of two dianhydride monomers and two diamine monomers is taken into a polymerization reaction kettle together with an appropriate amount of solvent and allowed to react for a certain period of time while stirring. Obtain a copolymerized polyamic acid (polyimide precursor) solution, perform electrospinning on the copolymerized polyamic acid solution in a high piezoelectric field, collect the stainless steel drum as a collector, and collect the copolymerized polyamic acid nanofiber nonwoven fabric. obtain. The solvent used is preferably one of N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAC). The temperature of the reaction kettle is 0-30 ° C. The stirring reaction time is preferably 1 to 10 hours, and the electric field strength of the high piezoelectric field is 250 to 300 kV / m. The diameter of the stainless steel drum collector is 0.3 m.

(二)上記の得られた共重合ポリアミド酸ナノファイバー不織布を高温炉の中に置き、窒素ガス雰囲気中で加熱してイミド化する。加熱プロセスの昇温手順は、20℃/分の昇温速度で室温から200〜250℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で330〜370℃まで加熱し、この温度で30分間滞留させ、次いで、電源を切る。   (2) The copolymerized polyamic acid nanofiber nonwoven fabric obtained above is placed in a high temperature furnace and heated in a nitrogen gas atmosphere to imidize. The heating process was performed at a heating rate of 20 ° C./min from room temperature to 200 to 250 ° C., kept at this temperature for 30 minutes, and then at a heating rate of 5 ° C./min at 330 to 370 ° C. And let it stay at this temperature for 30 minutes, then turn off the power.

(三)キャラクタリゼーション:共重合ポリアミド酸溶液および紡糸液の絶対粘度、エレクトロスピニング共重合ポリアミド酸ナノファイバーの直径、共重合ポリイミド・ナノファイバー不織布の熱分解温度、共重合ポリイミド・ナノファイバー多孔膜または不織布の機械性質(強度、破断伸びなど)、共重合ポリイミド・ナノファイバー不織布のガラス転移温度、共重合ポリイミド・ナノファイバー不織布の比表面積、共重合ポリイミド・ナノファイバー不織布の絶縁破壊強度の測定を含む。   (3) Characterization: absolute viscosity of copolymerized polyamic acid solution and spinning solution, diameter of electrospun copolymerized polyamic acid nanofiber, thermal decomposition temperature of copolymerized polyimide / nanofiber nonwoven fabric, porous film of copolymerized polyimide / nanofiber or Includes measurement of mechanical properties (strength, elongation at break, etc.) of nonwoven fabric, glass transition temperature of copolymerized polyimide / nanofiber nonwoven fabric, specific surface area of copolymerized polyimide / nanofiber nonwoven fabric, dielectric breakdown strength of copolymerized polyimide / nanofiber nonwoven fabric .

実施例1
共重合モノマーに1種のテトラカルボン酸二無水物モノマーと2種のジアミンモノマーを選定した。モル比が1:0.5:0.5の精製したビフェニル二無水物(BPDA)、p−フェニレンジアミン(PPD)およびオキシジアニリン(ODA)を混合し、N,N−ジメチルホルムアミド(DMF)を溶媒とし、上記反応ステップにより行った。反応ステップ(一)において、この実施例では、反応釜の温度を10℃とし、撹拌反応時間を6時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は300kV/mとした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から200℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で350℃まで加熱し、350℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 1
One tetracarboxylic dianhydride monomer and two diamine monomers were selected as copolymerization monomers. Purified biphenyl dianhydride (BPDA), p-phenylenediamine (PPD) and oxydianiline (ODA) with a molar ratio of 1: 0.5: 0.5 are mixed and N, N-dimethylformamide (DMF) is mixed. Was carried out by the above reaction step. In the reaction step (1), in this example, the temperature of the reaction kettle was 10 ° C., and the stirring reaction time was 6 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 300 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 200 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 350 ° C. at a temperature rising rate of 5 ° C./min. Heated and held at 350 ° C. for 30 minutes, then turned off and allowed to cool naturally to room temperature.

キャラクタリゼーション:共重合ポリアミド酸(ポリイミド前駆体)溶液の質量濃度は7%、絶対粘度は5.2Pa・Sであり、共重合ポリアミド酸ナノファイバーの直径は100〜400nmであり、主に250nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは25MPa、破断伸びは24%、ガラス転移温度は285℃、熱分解温度は530℃、空隙率は84.2%、比表面積は37.4m/g、絶縁破壊強度は1.2×10V/cmまたは12V/μmであった。 Characterization: Copolymerized polyamic acid (polyimide precursor) solution has a mass concentration of 7%, an absolute viscosity of 5.2 Pa · S, and the diameter of the copolymerized polyamic acid nanofiber is 100 to 400 nm, mainly about 250 nm. The tensile strength of the copolymerized polyimide / nanofiber nonwoven fabric is 25 MPa, the elongation at break is 24%, the glass transition temperature is 285 ° C., the thermal decomposition temperature is 530 ° C., the porosity is 84.2%, and the specific surface area is 37. .4m 2 / g, the dielectric breakdown strength was 1.2 × 10 5 V / cm or 12V / [mu] m.

実施例2
共重合モノマーに1種のテトラカルボン酸二無水物モノマーと2種のジアミンモノマーを選定した。モル比1:0.6:0.4の精製したピロメリット酸二無水物(PMDA)、オキシジアニリン(ODA)およびベンジジン(Bz)を混合し、N,N−ジメチルホルムアミド(DMF)を溶媒とし、上記ステップにより反応させ、反応ステップ(一)において、この実施例では、反応釜の温度を5℃とし、撹拌反応時間を6時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は250kV/mとした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から250℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で370℃まで加熱し、370℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 2
One tetracarboxylic dianhydride monomer and two diamine monomers were selected as copolymerization monomers. Purified pyromellitic dianhydride (PMDA), oxydianiline (ODA) and benzidine (Bz) in a molar ratio of 1: 0.6: 0.4 are mixed, and N, N-dimethylformamide (DMF) is used as a solvent. In the reaction step (1), in this example, the temperature of the reaction kettle was 5 ° C., and the stirring reaction time was 6 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 250 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 250 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 370 ° C. at a temperature rising rate of 5 ° C./min Heated and allowed to stay at 370 ° C. for 30 minutes, then turned off and allowed to cool naturally to room temperature.

キャラクタリゼーション:共重合ポリアミド酸(ポリイミド前駆体)溶液の質量濃度は5%、絶対粘度は4.8Pa・Sであり、共重合ポリアミド酸ナノファイバーの直径は100〜400nmであり、主に200nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは24MPa、破断伸びは23%、ガラス転移温度は298℃、熱分解温度は560℃、空隙率は82.0%、比表面積は38.8m/g、絶縁破壊強度は1.3×10V/cmまたは13V/μmであった。 Characterization: The mass concentration of the copolymerized polyamic acid (polyimide precursor) solution is 5%, the absolute viscosity is 4.8 Pa · S, and the diameter of the copolymerized polyamic acid nanofiber is 100 to 400 nm, mainly about 200 nm. The tensile strength of the copolymerized polyimide / nanofiber nonwoven fabric is 24 MPa, the elongation at break is 23%, the glass transition temperature is 298 ° C., the thermal decomposition temperature is 560 ° C., the porosity is 82.0%, and the specific surface area is 38 .8m 2 / g, the dielectric breakdown strength was 1.3 × 10 5 V / cm or 13V / [mu] m.

実施例3
共重合モノマーに1種のテトラカルボン酸二無水物モノマーと2種のジアミンモノマーを選定した。モル比が1:0.5:0.5の精製したピロメリット酸二無水物(PMDA)、ジフェニルメタンジアミン(MDA)およびオキシジアニリン(ODA)を混合し、N,N−ジメチルホルムアミド(DMF)を溶媒とし、上記ステップにより反応させ、反応ステップ(一)において、この実施例では、反応釜の温度を5℃とし、撹拌反応時間を10時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は250kV/mした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から250℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で370℃まで加熱し、370℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 3
One tetracarboxylic dianhydride monomer and two diamine monomers were selected as copolymerization monomers. Purified pyromellitic dianhydride (PMDA), diphenylmethanediamine (MDA) and oxydianiline (ODA) with a molar ratio of 1: 0.5: 0.5 are mixed and N, N-dimethylformamide (DMF) is mixed. In the reaction step (1), in this example, the temperature of the reaction kettle was 5 ° C., and the stirring reaction time was 10 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 250 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 250 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 370 ° C. at a temperature rising rate of 5 ° C./min. Heated and allowed to stay at 370 ° C. for 30 minutes, then turned off and allowed to cool naturally to room temperature.

キャラクタリゼーション:共重合ポリイミド前駆体(共重合ポリアミド酸,co−PAA)溶液の質量濃度は6%、絶対粘度は4.8Pa・Sであり、共重合ポリアミド酸ナノファイバーの直径は100〜400nmであり、主に250nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは20MPa、破断伸びは21%、ガラス転移温度は296℃、熱分解温度は510℃、空隙率は85.1%、比表面積は3,6.9m/g、絶縁破壊強度は1.1×10V/cmまたは11V/μmであった。 Characterization: The mass concentration of the copolymerized polyimide precursor (copolymerized polyamic acid, co-PAA) solution is 6%, the absolute viscosity is 4.8 Pa · S, and the diameter of the copolymerized polyamic acid nanofiber is 100 to 400 nm. It is distributed mainly at about 250 nm, and the tensile strength of the copolymerized polyimide / nanofiber nonwoven fabric is 20 MPa, the elongation at break is 21%, the glass transition temperature is 296 ° C., the thermal decomposition temperature is 510 ° C., and the porosity is 85.1. %, The specific surface area was 3,6.9 m 2 / g, and the dielectric breakdown strength was 1.1 × 10 5 V / cm or 11 V / μm.

実施例4
共重合モノマーに1種のテトラカルボン酸二無水物モノマーと2種のジアミンモノマーを選定した。モル比が1:0.3:0.7の精製したジフェニルスルホン二無水物(DSDA)、ビスアミノフェノキシフェニルスルホン(BAPS)およびオキシジアニリン(ODA)を混合し、N,N−ジメチルホルムアミド(DMF)を溶媒とし、上記ステップにより反応させ、反応ステップ(一)において、この実施例では、反応釜の温度を5℃とし、撹拌反応時間を10時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は250kV/mした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から200℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で330℃まで加熱し、330℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 4
One tetracarboxylic dianhydride monomer and two diamine monomers were selected as copolymerization monomers. Purified diphenylsulfone dianhydride (DSDA), bisaminophenoxyphenylsulfone (BAPS) and oxydianiline (ODA) with a molar ratio of 1: 0.3: 0.7 were mixed and N, N-dimethylformamide ( DMF) was used as a solvent, and the reaction was carried out by the above steps. In this reaction step (1), in this example, the temperature of the reaction kettle was 5 ° C., and the stirring reaction time was 10 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 250 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 200 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 330 ° C. at a temperature rising rate of 5 ° C./min. Heated and held at 330 ° C. for 30 minutes, then turned off and allowed to cool to room temperature.

キャラクタリゼーション:共重合ポリイミド前駆体(共重合ポリアミド酸,co−PAA)溶液の質量濃度は8%、絶対粘度は4.2Pa・Sであり、共重合ポリアミド酸ナノファイバーの直径は100〜300nmであり、主に180nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは20MPa、破断伸びは25%、ガラス転移温度は238℃、熱分解温度は520℃、空隙率は81.3%、比表面積は3,6.9m/g、絶縁破壊強度は1.4×10V/cmまたは14V/μmであった。 Characterization: The copolymer polyimide precursor (copolymerized polyamic acid, co-PAA) solution has a mass concentration of 8%, an absolute viscosity of 4.2 Pa · S, and a diameter of the copolymerized polyamic acid nanofiber of 100 to 300 nm. There are mainly distributed about 180 nm, the tensile strength of the copolymerized polyimide / nanofiber nonwoven fabric is 20 MPa, the elongation at break is 25%, the glass transition temperature is 238 ° C., the thermal decomposition temperature is 520 ° C., and the porosity is 81.3 %, The specific surface area was 3,6.9 m 2 / g, and the dielectric breakdown strength was 1.4 × 10 5 V / cm or 14 V / μm.

実施例5
重合モノマーに2種のテトラカルボン酸二無水物モノマーおよび1種のジアミンモノマーを選定した。モル比0.5:0.5:1の精製したビフェニル二無水物(BPDA)、ピロメリット酸二無水物(PMDA)およびオキシジアニリン(ODA)を混合し、適量のN,N−ジメチルホルムアミド(DMF)を溶媒とし、上記ステップにより行った。反応ステップ(一)において、この実施例では、反応釜の温度を5℃とし、撹拌反応時間を10時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は250kV/mとした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から250℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で370℃まで加熱し、370℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 5
Two tetracarboxylic dianhydride monomers and one diamine monomer were selected as polymerization monomers. Purified biphenyl dianhydride (BPDA), pyromellitic dianhydride (PMDA) and oxydianiline (ODA) in a molar ratio of 0.5: 0.5: 1 are mixed and an appropriate amount of N, N-dimethylformamide is mixed. (DMF) was used as a solvent, and the above steps were performed. In the reaction step (1), in this example, the temperature of the reaction kettle was 5 ° C., and the stirring reaction time was 10 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 250 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 250 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 370 ° C. at a temperature rising rate of 5 ° C./min. Heated and allowed to stay at 370 ° C. for 30 minutes, then turned off and allowed to cool naturally to room temperature.

キャラクタリゼーション:共重合ポリアミド酸溶液の質量濃度は6%、絶対粘度は5.5Pa・Sであり、ポリアミド酸ナノファイバーの直径は150〜400nmであり、主に280nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは23MPa、破断伸びは22%、ガラス転移温度は295℃、熱分解温度は550℃、空隙率は85.0%、比表面積は36.9m/g、絶縁破壊強度は1.1×10V/cmまたは11V/μmであった。 Characterization: The mass concentration of the copolymerized polyamic acid solution is 6%, the absolute viscosity is 5.5 Pa · S, the diameter of the polyamic acid nanofiber is 150 to 400 nm, and is mainly distributed at about 280 nm.・ The tensile strength of nanofiber nonwoven fabric is 23 MPa, elongation at break is 22%, glass transition temperature is 295 ° C., thermal decomposition temperature is 550 ° C., porosity is 85.0%, specific surface area is 36.9 m 2 / g, insulation The breaking strength was 1.1 × 10 5 V / cm or 11 V / μm.

実施例6
重合モノマーに2種のテトラカルボン酸二無水物モノマーおよび1種のジアミンモノマーを選定した。モル比0.5:0.5:1の精製した1,4−ビス(3,10−ジカルボキシフェノキシ)ベンゼン二無水物(HQDPA)、ピロメリット酸二無水物(PMDA)およびオキシジアニリン(ODA)ならびに適量の溶媒N,N−ジメチルホルムアミド(DMF)を、上記ステップにより反応させた。反応ステップ(一)において、この実施例では、反応釜の温度を10℃とし、撹拌反応時間を5時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は300kV/mとした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から200℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で350℃まで加熱し、350℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 6
Two tetracarboxylic dianhydride monomers and one diamine monomer were selected as polymerization monomers. Purified 1,4-bis (3,10-dicarboxyphenoxy) benzene dianhydride (HQDPA), pyromellitic dianhydride (PMDA) and oxydianiline (molar ratio 0.5: 0.5: 1) ODA) and a suitable amount of solvent N, N-dimethylformamide (DMF) were reacted according to the above steps. In the reaction step (1), in this example, the temperature of the reaction kettle was 10 ° C., and the stirring reaction time was 5 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 300 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 200 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 350 ° C. at a temperature rising rate of 5 ° C./min. Heated and held at 350 ° C. for 30 minutes, then turned off and allowed to cool naturally to room temperature.

キャラクタリゼーション:共重合ポリアミド酸溶液の質量濃度は8%、絶対粘度は4.2Pa・Sであり、共重合ポリアミド酸ナノファイバーの直径は80〜300nmであり、主に150nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは23MPa、破断伸びは24%、ガラス転移温度は278℃、熱分解温度は540℃、空隙率は81.4%、比表面積は41.8m/g、絶縁破壊強度は1.4×10V/cmまたは14V/μmであった。 Characterization: The mass concentration of the copolymerized polyamic acid solution is 8%, the absolute viscosity is 4.2 Pa · S, the diameter of the copolymerized polyamic acid nanofiber is 80 to 300 nm, and it is distributed mainly around 150 nm. The tensile strength of the polymerized polyimide / nanofiber nonwoven fabric is 23 MPa, the elongation at break is 24%, the glass transition temperature is 278 ° C., the thermal decomposition temperature is 540 ° C., the porosity is 81.4%, and the specific surface area is 41.8 m 2 / g. The dielectric breakdown strength was 1.4 × 10 5 V / cm or 14 V / μm.

実施例7
共重合モノマーに2種のテトラカルボン酸二無水物と2種のジアミンを選定した。モル比が1:1:1:1の精製したジフェニルスルホン二無水物(BTDA)、ピロメリット酸二無水物(PMDA)、ベンジジン(Bz)およびオキシジアニリン(ODA)を混合し、適量のN,N−ジメチルアセトアミド(DMAc)を溶媒とし、上記ステップにより反応させた。反応ステップ(一)において、この実施例では、反応釜の温度を5℃とし、撹拌反応時間を6時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は250kV/mとした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から250℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で370℃まで加熱し、370℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 7
Two kinds of tetracarboxylic dianhydrides and two kinds of diamines were selected as copolymerization monomers. Purified diphenylsulfone dianhydride (BTDA), pyromellitic dianhydride (PMDA), benzidine (Bz) and oxydianiline (ODA) in a molar ratio of 1: 1: 1: 1 are mixed together and an appropriate amount of N , N-dimethylacetamide (DMAc) was used as a solvent, and the reaction was carried out by the above steps. In the reaction step (1), in this example, the temperature of the reaction kettle was 5 ° C., and the stirring reaction time was 6 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 250 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 250 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 370 ° C. at a temperature rising rate of 5 ° C./min. Heated and allowed to stay at 370 ° C. for 30 minutes, then turned off and allowed to cool naturally to room temperature.

キャラクタリゼーション:共重合ポリアミド酸溶液の質量濃度は6%、絶対粘度は4.3Pa・Sであり、共重合ポリアミド酸ナノファイバーの直径は100〜300nmであり、主に150nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは22MPa、破断伸びは24%、ガラス転移温度は288℃、熱分解温度は540℃、空隙率は80.5%、比表面積は41.8m/g、絶縁破壊強度は1.5×10V/cmまたは15V/μmであった。 Characterization: The mass concentration of the copolymerized polyamic acid solution is 6%, the absolute viscosity is 4.3 Pa · S, the diameter of the copolymerized polyamic acid nanofiber is 100 to 300 nm, and it is distributed mainly around 150 nm. The tensile strength of the polymerized polyimide / nanofiber nonwoven fabric is 22 MPa, the elongation at break is 24%, the glass transition temperature is 288 ° C., the thermal decomposition temperature is 540 ° C., the porosity is 80.5%, and the specific surface area is 41.8 m 2 / g. The dielectric breakdown strength was 1.5 × 10 5 V / cm or 15 V / μm.

実施例8
共重合モノマーに2種のテトラカルボン酸二無水物と2種のジアミンを選定した。モル比が1:1:1:1の精製したビフェニル二無水物(BTDA)、1,4−ビス(3,10−ジカルボキシフェノキシ)ベンゼン二無水物(HQPDA)、p−フェニレンジアミン(PPD)およびオキシジアニリン(ODA)を混合し、適量のN,N−ジメチルホルムアミド(DMAc)を溶媒とし、上記ステップにより反応させた。反応ステップ(一)において、この実施例では、反応釜の温度を10℃とし、撹拌反応時間を10時間とした。エレクトロスピニング加工で用いた高圧電場の電場強度は300kV/mとした。反応ステップ(二)における昇温手順は、20℃/分の昇温速度で室温から250℃まで加熱し、この温度で30分間滞留させ、次いで、5℃/分の昇温速度で350℃まで加熱し、320℃で30分間滞留させ、次いで、電源を切り、室温まで自然冷却した。
Example 8
Two kinds of tetracarboxylic dianhydrides and two kinds of diamines were selected as copolymerization monomers. Purified biphenyl dianhydride (BTDA), 1,4-bis (3,10-dicarboxyphenoxy) benzene dianhydride (HQPDA), p-phenylenediamine (PPD) with a molar ratio of 1: 1: 1: 1 And oxydianiline (ODA) were mixed, and an appropriate amount of N, N-dimethylformamide (DMAc) was used as a solvent, and the reaction was carried out by the above steps. In the reaction step (1), in this example, the temperature of the reaction kettle was 10 ° C., and the stirring reaction time was 10 hours. The electric field strength of the high piezoelectric field used in the electrospinning process was 300 kV / m. The temperature raising procedure in the reaction step (2) is to heat from room temperature to 250 ° C. at a temperature rising rate of 20 ° C./min, hold at this temperature for 30 minutes, and then to 350 ° C. at a temperature rising rate of 5 ° C./min. Heated and allowed to stay at 320 ° C. for 30 minutes, then turned off and allowed to cool naturally to room temperature.

キャラクタリゼーション:共重合ポリアミド酸溶液の質量濃度は8%、絶対粘度は4.0Pa・Sであり、共重合ポリアミド酸ナノファイバーの直径は50〜250nmであり、主に150nm程度に分布し、共重合ポリイミド・ナノファイバー不織布の引張強さは21MPa、破断伸びは23%、ガラス転移温度は284℃、熱分解温度は530℃、空隙率は80.2%、比表面積は42.0m/g、絶縁破壊強度は1.5×10V/cmまたは15V/μmであった。 Characterization: The mass concentration of the copolymerized polyamic acid solution is 8%, the absolute viscosity is 4.0 Pa · S, the diameter of the copolymerized polyamic acid nanofiber is 50 to 250 nm, and is distributed mainly at about 150 nm. The tensile strength of the polymerized polyimide / nanofiber nonwoven fabric is 21 MPa, the elongation at break is 23%, the glass transition temperature is 284 ° C., the thermal decomposition temperature is 530 ° C., the porosity is 80.2%, and the specific surface area is 42.0 m 2 / g. The dielectric breakdown strength was 1.5 × 10 5 V / cm or 15 V / μm.

以上の実施例は、本発明の保護範囲に対する制限と理解してはならない。当業者が本発明の上記内容に基づき本発明に対して行った非本質な改善および調整は、本発明の保護範囲に属す。   The above examples should not be understood as limitations on the protection scope of the present invention. Non-essential improvements and adjustments made by the person skilled in the art based on the above description of the invention belong to the protection scope of the invention.

Claims (13)

下記(I)、(II)、(III)、(IV)の4種のモノマーのうちの3種以上のモノマーにより共重合ポリアミド酸を共重合し、さらに静電紡糸、イミド化を経てなることを特徴とする、共重合ポリイミド・ナノファイバー不織布。
この際、共重合ポリイミドは、次の化学構造を有する。
nは50〜300の自然数であり、mは50〜300の自然数であり、R、RはC〜C30のテトラカルボン酸二無水物モノマーの残基構造であり、R、RはC〜C30ジアミンモノマーの残基構造であり、共重合反応において、テトラカルボン酸二無水物モノマーの全物質量とジアミンモノマーの全物質量の比は、常に1:1を保つ。
Copolymerized polyamic acid is copolymerized with three or more of the following four types of monomers (I), (II), (III), and (IV), followed by electrospinning and imidization. Copolymerized polyimide / nanofiber nonwoven fabric.
At this time, the copolymerized polyimide has the following chemical structure.
n is a natural number of 50 to 300, m is a natural number of 50 to 300, R 1 and R 3 are residue structures of C 4 to C 30 tetracarboxylic dianhydride monomers, R 2 , R 4 is a residual structure of C 6 -C 30 diamine monomer, in the copolymerization reaction, the ratio of the total amount of substance of the total material amount and diamine monomer dianhydride monomer is always 1: keep 1.
前記共重合ポリイミド・ナノファイバーが、上記(I)、(III)、(IV)または(II)、(III)、(IV)の3種のモノマーの共重合によるものであり、3種のモノマーのモル比は、(I):(III):(IV)または(II):(III):(IV)=[1]:[0.05〜0.95]:[0.05〜0.95]であることを特徴とする、請求項1に記載の共重合ポリイミド・ナノファイバー不織布。   The copolymerized polyimide nanofiber is obtained by copolymerization of the above three monomers (I), (III), (IV), or (II), (III), and (IV). The molar ratio of (I) :( III) :( IV) or (II) :( III) :( IV) = [1]: [0.05-0.95]: [0.05-0. 95] The copolymerized polyimide nanofiber nonwoven fabric according to claim 1, 前記共重合ポリイミド・ナノファイバーが、上記(I)、(II)、(III)または(I)、(II)、(IV)の3種のモノマーの共重合によるものであり、3種のモノマーのモル比は、(I):(II):(III)または(II):(III):(IV)=[0.05〜0.95]:[0.05〜0.95]:[1]であることを特徴とする、請求項1に記載の共重合ポリイミド・ナノファイバー不織布。   The copolymerized polyimide nanofiber is obtained by copolymerization of the above three monomers (I), (II), (III), or (I), (II), and (IV). The molar ratio of (I) :( II) :( III) or (II) :( III) :( IV) = [0.05-0.95]: [0.05-0.95]: [ 1] The copolymerized polyimide nanofiber nonwoven fabric according to claim 1, wherein 前記共重合ポリイミド・ナノファイバーが、上記(I)、(II)、(III)、(IV)の4種のモノマーの共重合によるものであり、4種のモノマーのモル比の関係は、[(I)+(II)]:[(III)+(IV)]=1:1であることを特徴とする、請求項1に記載の共重合ポリイミド・ナノファイバー不織布。   The copolymerized polyimide nanofiber is obtained by copolymerization of the above four monomers (I), (II), (III), and (IV), and the relationship between the molar ratios of the four monomers is [ The copolymer polyimide nanofiber nonwoven fabric according to claim 1, wherein (I) + (II)]: [(III) + (IV)] = 1: 1. 、Rが、それぞれ次のテトラカルボン酸二無水物残基構造から選択される1種であることを特徴とする、請求項1〜4のいずれか1項に記載の共重合ポリイミド・ナノファイバー不織布。
R 1 and R 3 are each one type selected from the following tetracarboxylic dianhydride residue structures, copolymerized polyimides according to any one of claims 1 to 4, Nanofiber nonwoven fabric.
、Rが、それぞれ次のジアミン残基構造から選択される1種であることを特徴とする、請求項1〜4のいずれか1項に記載の共重合ポリイミド・ナノファイバー不織布。
The copolymerized polyimide nanofiber nonwoven fabric according to any one of claims 1 to 4, wherein R 2 and R 4 are each one selected from the following diamine residue structures.
前記共重合したイミド・ナノファイバー不織布の破断伸びが20〜30%であり、空隙率が80〜86%であり、引張強さが20〜25MPaであり、絶縁破壊強度1×10〜1.5×10V/mであり、熱分解温度が510〜560℃であることを特徴とする、請求項1〜4のいずれか1項記載の共重合ポリイミド・ナノファイバー不織布。 The copolymerized imide nanofiber nonwoven fabric has an elongation at break of 20 to 30%, a porosity of 80 to 86%, a tensile strength of 20 to 25 MPa, and a dielectric breakdown strength of 1 × 10 7 to 1. 5. The copolymerized polyimide / nanofiber nonwoven fabric according to claim 1, which has a thermal decomposition temperature of 510 to 560 ° C. and is 5 × 10 7 V / m. 次を含むことを特徴とする、請求項1に記載の共重合ポリイミド・ナノファイバー不織布の製造方法。
(1)前記二無水物、ジアミンモノマー3種以上を精製した後、適量の溶媒とともに重合反応釜の中に入れ、撹拌しながら一定時間反応させる。共重合ポリアミド酸(ポリイミド前駆体)溶液を得て、この共重合ポリアミド酸溶液に対して高圧電場において静電紡糸を実施し、ステンレスドラムをコレクターとし、収集して共重合ポリアミド酸ナノファイバー不織布を得る。
(2)前記の得られた共重合ポリアミド酸ナノファイバー不織布を高温炉の中に置き、加熱してイミド化する。
The manufacturing method of the copolymerization polyimide nanofiber nonwoven fabric of Claim 1 characterized by including the following.
(1) After purifying 3 or more types of the dianhydride and diamine monomer, they are put into a polymerization reaction kettle together with an appropriate amount of solvent and allowed to react for a certain time with stirring. Obtain a copolymerized polyamic acid (polyimide precursor) solution, perform electrospinning on the copolymerized polyamic acid solution in a high piezoelectric field, collect the stainless steel drum as a collector, and collect the copolymerized polyamic acid nanofiber nonwoven fabric. obtain.
(2) The obtained copolymerized polyamic acid nanofiber nonwoven fabric is placed in a high temperature furnace and heated to imidize.
前記溶媒が極性溶媒であることを特徴とする、請求項8に記載の共重合ポリイミド・ナノファイバー不織布の製造方法。   The method for producing a copolymerized polyimide / nanofiber nonwoven fabric according to claim 8, wherein the solvent is a polar solvent. 前記極性溶媒がN,N−ジメチルホルムアミド(DMF)またはN,N−ジメチルアセトアミド(DMAC)であることを特徴とする、請求項8に記載の共重合ポリイミド・ナノファイバー不織布の製造方法。   The method for producing a copolymerized polyimide / nanofiber nonwoven fabric according to claim 8, wherein the polar solvent is N, N-dimethylformamide (DMF) or N, N-dimethylacetamide (DMAC). 前記反応釜の重合反応温度が0〜30℃であり、反応時間が1〜10時間であり、高圧電場の電場強度が250〜300Kvであることを特徴とする、請求項8に記載の共重合ポリイミド・ナノファイバー不織布の製造方法。   The copolymerization according to claim 8, wherein a polymerization reaction temperature of the reaction kettle is 0 to 30 ° C, a reaction time is 1 to 10 hours, and an electric field strength of a high piezoelectric field is 250 to 300 Kv. Manufacturing method of polyimide nanofiber nonwoven fabric. 前記イミド化プロセスの昇温手順が、20℃/分の昇温速度で室温から200〜250℃まで加熱し、当該温度で30分間滞留させ、次いで、5℃/分の昇温速度で330〜370℃まで加熱し、当該温度で30分間滞留させ、次いで、電源を切ることを特徴とする、請求項8または11に記載の共重合ポリイミド・ナノファイバー不織布の製造方法。   The temperature increase procedure of the imidization process is as follows: room temperature to 200 to 250 ° C. at a temperature increase rate of 20 ° C./min, residence at that temperature for 30 minutes, and then 330 ° C. at a temperature increase rate of 5 ° C./min. The method for producing a copolymerized polyimide / nanofiber nonwoven fabric according to claim 8, wherein the method is heated to 370 ° C., kept at the temperature for 30 minutes, and then the power is turned off. 請求項1に記載の共重合ポリイミド・ナノファイバー不織布の電池セパレータにおける、応用。   Application in the battery separator of the copolymer polyimide nanofiber nonwoven fabric according to claim 1.
JP2013530522A 2010-09-30 2010-09-30 Copolymerized polyimide / nanofiber nonwoven fabric, production method and application thereof Pending JP2013540208A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077517 WO2012040929A1 (en) 2010-09-30 2010-09-30 Copolyimide nano-fiber non-woven fabric, process for producing the same and the use thereof

Publications (1)

Publication Number Publication Date
JP2013540208A true JP2013540208A (en) 2013-10-31

Family

ID=45891826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530522A Pending JP2013540208A (en) 2010-09-30 2010-09-30 Copolymerized polyimide / nanofiber nonwoven fabric, production method and application thereof

Country Status (6)

Country Link
US (1) US20130196562A1 (en)
JP (1) JP2013540208A (en)
KR (1) KR20130065720A (en)
CZ (1) CZ2013219A3 (en)
DE (1) DE112010005915B4 (en)
WO (1) WO2012040929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507096A (en) * 2014-12-24 2018-03-15 コーロン ファッション マテリアル インコーポレイテッド POROUS SUPPORT EXCELLENT IN PACKING CHARACTERISTICS OF ION CONDUCTOR, ITS MANUFACTURING METHOD, AND REINFORCED MEMBRANE CONTAINING THE SAME

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122555A (en) * 2012-12-25 2013-05-29 浙江大东南集团有限公司 Preparation method of nanofiber membrane based on polyethylene terephthalate (PET) non-woven fabrics
JP6289014B2 (en) * 2013-10-11 2018-03-07 ソマール株式会社 Polyimide fibers and assemblies
US9000122B1 (en) * 2013-12-16 2015-04-07 Uop Llc Aromatic poly (ether sulfone imide) membranes for gas separations
KR101984724B1 (en) * 2016-09-09 2019-05-31 주식회사 엘지화학 Lithium-sulfur battery
CN109096505B (en) * 2018-07-04 2021-04-20 大连理工大学 Method for improving interfacial property of composite material by grafting polycarboxy polyurethane
TWI709592B (en) * 2018-11-22 2020-11-11 達勝科技股份有限公司 Polyimide film, and manufacturing method of polyimide film
CN112086606A (en) * 2019-06-13 2020-12-15 南京林业大学 Preparation method of hierarchical porous polyimide lithium battery diaphragm
CN112448098A (en) * 2020-10-23 2021-03-05 广东工业大学 Electrostatic spinning polyimide-based nanofiber porous membrane and preparation method and application thereof
CN113241500A (en) * 2020-11-27 2021-08-10 广东工业大学 High-temperature-resistant battery diaphragm with anti-wrinkle characteristic and preparation method and application thereof
CN113708007A (en) * 2021-08-27 2021-11-26 北京宇程科技有限公司 Polyimide/polyetherimide composite film and preparation method thereof
CN114717751B (en) * 2021-12-09 2023-06-20 中国地质大学(北京) Atomic oxygen-resistant polyimide nanofiber membrane and preparation method and application thereof
CN114606654B (en) * 2022-04-18 2023-09-19 江西昌大高新能源材料技术有限公司 Preparation method of three-dimensional crosslinked polyimide fiber membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274730A (en) * 1989-04-18 1990-11-08 Teijin Ltd Production of copolyamic acid and copolyimide fiber
JP2004308031A (en) * 2003-04-03 2004-11-04 Teijin Ltd Polyamic acid nonwoven fabric, polyimide nonwoven fabric obtained from the same and methods for producing those
JP2005054348A (en) * 2003-08-06 2005-03-03 Carl Freudenberg Kg Extra-thin type porous and mechanically stable nonwoven fabric, method for producing the same and method for using the same
JP2007513474A (en) * 2003-11-21 2007-05-24 エヴァレディー バッテリー カンパニー インコーポレイテッド High discharge capacity lithium battery
WO2007148674A1 (en) * 2006-06-22 2007-12-27 Toyo Boseki Kabushiki Kaisha Polyimide nonwoven fabric and process for production thereof
JP2008120398A (en) * 2006-11-09 2008-05-29 Atsugi Plastic Kk Cuplike container body and packaging method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166311A1 (en) * 2003-02-25 2004-08-26 Clemson University Electrostatic spinning of aromatic polyamic acid
CN101139746A (en) * 2006-09-04 2008-03-12 哈尔滨理工大学 Method for preparing polyimide (PI) non-woven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274730A (en) * 1989-04-18 1990-11-08 Teijin Ltd Production of copolyamic acid and copolyimide fiber
JP2004308031A (en) * 2003-04-03 2004-11-04 Teijin Ltd Polyamic acid nonwoven fabric, polyimide nonwoven fabric obtained from the same and methods for producing those
JP2005054348A (en) * 2003-08-06 2005-03-03 Carl Freudenberg Kg Extra-thin type porous and mechanically stable nonwoven fabric, method for producing the same and method for using the same
JP2007513474A (en) * 2003-11-21 2007-05-24 エヴァレディー バッテリー カンパニー インコーポレイテッド High discharge capacity lithium battery
WO2007148674A1 (en) * 2006-06-22 2007-12-27 Toyo Boseki Kabushiki Kaisha Polyimide nonwoven fabric and process for production thereof
JP2008120398A (en) * 2006-11-09 2008-05-29 Atsugi Plastic Kk Cuplike container body and packaging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507096A (en) * 2014-12-24 2018-03-15 コーロン ファッション マテリアル インコーポレイテッド POROUS SUPPORT EXCELLENT IN PACKING CHARACTERISTICS OF ION CONDUCTOR, ITS MANUFACTURING METHOD, AND REINFORCED MEMBRANE CONTAINING THE SAME

Also Published As

Publication number Publication date
KR20130065720A (en) 2013-06-19
CZ2013219A3 (en) 2013-06-12
WO2012040929A1 (en) 2012-04-05
DE112010005915B4 (en) 2016-10-20
US20130196562A1 (en) 2013-08-01
DE112010005915T5 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP2013540208A (en) Copolymerized polyimide / nanofiber nonwoven fabric, production method and application thereof
KR101504245B1 (en) Polyimide blend nanofibre and its use in battery separator
CN101974828B (en) Copolymerized polyimide nanofiber nonwoven fabric and preparation method and application thereof
CN101473080B (en) Polyimide nonwoven fabric and process for production thereof
CN102251307B (en) Polyimide-base nano fibrous membrane, and preparation method and application thereof
CN101355143B (en) Battery separator and preparation method thereof
KR20150096446A (en) High Temperature Melt Integrity Battery Separators Via Spinning
Byun et al. A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries
CN104309232B (en) Acid-resisting and alkali-resisting porous film enhanced by polyimide nanofiber and preparation method and application of porous film
CN112062989B (en) Polyimide aerogel lithium battery diaphragm and preparation method thereof
JP2011207149A (en) Method for manufacturing composite porous film
JP5429101B2 (en) Manufacturing method of high heat-resistant polyimide fine fiber, high heat-resistant polyimide fine fiber, and nonwoven fabric comprising the polyimide fine fiber
KR101465243B1 (en) Heat-resistant nano web membrane and method for production thereof
CN102816431B (en) Superfine fiber porous film and preparation method and application thereof
CN112585198A (en) Polyimide film containing crystalline polyimide resin and thermally conductive filler, and method for producing same
CN113708007A (en) Polyimide/polyetherimide composite film and preparation method thereof
JP6289014B2 (en) Polyimide fibers and assemblies
CN112226910A (en) Polyimide nanofiber membrane and preparation method and application thereof
JP2010265559A (en) Polyimide fiber and method for producing the same
JP2014520972A (en) Improved polyimide nanoweb
CN115725077A (en) Polyimide precursor solution, porous polyimide film, and insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150317