JP2013257065A - Waste incinerator, and method of incinerating waste - Google Patents

Waste incinerator, and method of incinerating waste Download PDF

Info

Publication number
JP2013257065A
JP2013257065A JP2012132784A JP2012132784A JP2013257065A JP 2013257065 A JP2013257065 A JP 2013257065A JP 2012132784 A JP2012132784 A JP 2012132784A JP 2012132784 A JP2012132784 A JP 2012132784A JP 2013257065 A JP2013257065 A JP 2013257065A
Authority
JP
Japan
Prior art keywords
waste
combustion
grate
combustion chamber
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012132784A
Other languages
Japanese (ja)
Other versions
JP5800237B2 (en
Inventor
Tomohiro Denda
知広 傳田
Takeshi Nakayama
剛 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49953651&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013257065(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012132784A priority Critical patent/JP5800237B2/en
Publication of JP2013257065A publication Critical patent/JP2013257065A/en
Application granted granted Critical
Publication of JP5800237B2 publication Critical patent/JP5800237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide a waste incinerator and a method allowing low air ratio combustion.SOLUTION: A waste incinerator includes a main combustion chamber 11 for burning a waste fed from a waste feed inlet 13, with a secondary combustion chamber 12 connected to an outlet side of the main combustion chamber 11, to burn unburnt gas after the burning in the main combustion chamber 11, and is provided with a drying fire grate 11a, a combustion fire grate 11b, and an after-combustion fire grate 11c sequentially in a main combustion chamber 11 lower part, and further with a primary air supply means 21 for supplying primary air from respective under sides of the drying fire grate 11a and the combustion fire grate 11b. In the waste incinerator, a high-temperature air supply means 25 is provided to supply 100-200°C of high-temperature air from an under side of the after-combustion fire grate, and the high-temperature air is supplied to the secondary combustion chamber 12 through the main combustion chamber 11.

Description

本発明は、都市ごみ等の廃棄物を焼却する火格子式の廃棄物焼却炉及び廃棄物焼却方法に関する。   The present invention relates to a grate-type waste incinerator and a waste incineration method for incinerating waste such as municipal waste.

都市ごみ等の廃棄物を焼却処理する焼却炉として、火格子式廃棄物焼却炉が広く用いられており、その代表的なものの概要構成を添付図面の図2に示す。この図2の形式の焼却炉は特許文献1にも開示されている。   A grate-type waste incinerator is widely used as an incinerator for incinerating waste such as municipal waste, and a schematic configuration of a typical one is shown in FIG. 2 of the accompanying drawings. This type of incinerator of FIG. 2 is also disclosed in Patent Document 1.

図2に示される焼却炉は、廃棄物を燃焼する主燃焼室1の下部に廃棄物の移動方向に配置され三段から成る火格子(乾燥火格子1a、燃焼火格子1bそして後燃焼火格子1c)を有し、後燃焼火格子1cの上方に位置する主燃焼室1の出口に二次燃焼室2が連設されている。上記主燃焼室1には乾燥火格子1aの上方に位置して廃棄物投入口3がそして後燃焼火格子1cの右下方には灰落下口4がそれぞれ設けられている。通常、上記二次燃焼室2は廃熱回収用の廃熱ボイラ10の一部でもあり入口近傍部分である。また、上記主燃焼室1には、燃焼火格子1bと後燃焼火格子1cにまたがる範囲で火格子の上方位置に外部からの二次空気を主燃焼室1内へ吹き込む二次空気吹込み口5が設けられている。   The incinerator shown in FIG. 2 is a three-stage grate (dry grate 1a, combustion grate 1b, and post-combustion grate) disposed in the moving direction of the waste at the lower part of the main combustion chamber 1 for burning the waste 1c), and a secondary combustion chamber 2 is connected to the outlet of the main combustion chamber 1 located above the post-combustion grate 1c. The main combustion chamber 1 is provided with a waste charging port 3 located above the dry grate 1a and an ash drop port 4 at the lower right of the rear combustion grate 1c. Usually, the secondary combustion chamber 2 is also a part of the waste heat boiler 10 for recovering waste heat and is in the vicinity of the inlet. The main combustion chamber 1 has a secondary air inlet through which secondary air from outside is blown into the main combustion chamber 1 at a position above the grate within a range extending over the combustion grate 1b and the post-combustion grate 1c. 5 is provided.

図2に示される焼却炉にあっては、廃棄物投入口3から炉内に投入された廃棄物は、シュート3aを通して乾燥火格子1a上に堆積され、乾燥火格子1aの下からの空気と炉内の輻射熱により乾燥されると共に、昇温されて着火する。すなわち、上記乾燥火格子1aの直上方では、廃棄物の流れ方向の上流側たる左域空間で乾燥領域をそして下流側たる右域空間では燃焼開始領域を形成する。燃焼開始領域で着火して燃焼を開始した廃棄物は、燃焼火格子1b上に送られ、廃棄物が熱分解ガス化され可燃性ガスが発生し、燃焼火格子1bの下から送られる燃焼用の一次空気によりガス分と固形分が燃焼し、上記燃焼火格子1bの直上方空間で主燃焼領域を形成する。そして、更に後燃焼火格子1c上で、後燃焼火格子1cの下から送られる燃焼用の一次空気により固定炭素など未燃分が完全に燃焼し、該後燃焼火格子1c直上方空間で後燃焼領域を形成する。しかる後、燃焼後に残った灰は、灰落下口4より外部に排出される。かくして廃棄物は三段の火格子1a〜1cの下から吹き上げる一次空気により、燃焼する。   In the incinerator shown in FIG. 2, the waste introduced into the furnace through the waste inlet 3 is deposited on the dry grate 1a through the chute 3a, and the air from below the dry grate 1a While being dried by the radiant heat in the furnace, it is heated to ignite. That is, immediately above the dry grate 1a, a dry region is formed in the left region space upstream of the waste flow direction, and a combustion start region is formed in the right region space downstream. The waste that ignites in the combustion start region and starts combustion is sent onto the combustion grate 1b, and the waste is pyrolyzed and gasified to generate a combustible gas, which is sent from below the combustion grate 1b. Gas and solid content are combusted by the primary air to form a main combustion region in the space immediately above the combustion grate 1b. Further, on the post-combustion grate 1c, unburned components such as fixed carbon are completely burned by the primary air for combustion sent from below the post-combustion grate 1c, and the rear combustion grate 1c is rearward in the space immediately above it. Create a combustion zone. Thereafter, the ash remaining after the combustion is discharged to the outside from the ash drop opening 4. Thus, the waste is combusted by the primary air blown from below the three-stage grate 1a to 1c.

このような焼却炉では、廃棄物の燃焼は主燃焼室1内で行われ、燃焼排ガスに含まれている未燃ガスは、二次空気吹込み口5からの二次空気を受けて二次燃焼室2で二次的な燃焼が行われて未燃分が完全に燃焼する。二次燃焼室2からの排ガスは、廃熱ボイラ10にて熱交換された後に、減温塔、バグフィルタ(共に図示せず)等を経由して無害化された状態で煙突から外部に放出される。廃熱ボイラでは、高温の燃焼排ガスから熱交換器により熱回収され蒸気を発生し、その蒸気を熱供給,発電等に供している。   In such an incinerator, the combustion of waste is performed in the main combustion chamber 1, and unburned gas contained in the combustion exhaust gas receives secondary air from the secondary air inlet 5 and receives secondary air. Secondary combustion is performed in the combustion chamber 2 to completely burn the unburned portion. The exhaust gas from the secondary combustion chamber 2 is heat-exchanged in the waste heat boiler 10 and then discharged from the chimney in a detoxified state via a temperature reducing tower, a bag filter (both not shown), etc. Is done. In a waste heat boiler, heat is recovered from a high-temperature combustion exhaust gas by a heat exchanger to generate steam, and the steam is used for heat supply, power generation, and the like.

この図2の焼却炉は、一次空気と二次空気の2系統の燃焼用空気供給系を備え、一次空気供給系はファン6からダンパ等の流量調節機構7を介して火格子1a〜1cに空気を送り込む系統であり、二次空気供給系はファン8からダンパ等の流量調節機構9を介して二次空気を吹込み口5から主燃焼室1内に吹き込む系統である。   The incinerator of FIG. 2 includes two systems of combustion air supply systems, primary air and secondary air. The primary air supply system is connected from the fan 6 to the grate 1a to 1c via a flow rate adjusting mechanism 7 such as a damper. The secondary air supply system is a system that blows secondary air from the blower port 5 into the main combustion chamber 1 through a flow rate adjusting mechanism 9 such as a damper.

特開平9-49624JP-A-9-49624

図2に示されるような従来の廃棄物焼却炉では、実際に炉内に供給する空気量を廃棄物の燃焼に必要な理論空気量で除した比は(空気比)は、通常1.6程度である。これは、一般燃料の燃焼に必要な空気比である1.05〜1.2に比べて大きくなっている。その理由は、廃棄物には、上記一般燃料としての液体燃料や気体燃料に比べて不燃分が多く、かつ燃料分の分布が不均質なため、空気の利用効率が低く、燃焼を行うには多量の空気が必要となるためである。しかし、単に供給空気を多くすると、空気比が大きくなるにしたがって排ガス量も多くなるので、これに伴ってより大きな排ガス処理設備が必要となる。   In the conventional waste incinerator as shown in FIG. 2, the ratio (air ratio) obtained by dividing the amount of air actually supplied into the furnace by the theoretical amount of air necessary for combustion of waste is usually 1.6. Degree. This is larger than 1.05 to 1.2 which is an air ratio necessary for combustion of general fuel. The reason for this is that waste has a higher incombustibility than liquid fuel and gaseous fuel as general fuel, and the distribution of fuel is inhomogeneous. This is because a large amount of air is required. However, if the supply air is simply increased, the amount of exhaust gas increases as the air ratio increases, and accordingly, a larger exhaust gas treatment facility is required.

焼却炉において空気比を小さくした状態で支障なく廃棄物を燃焼することができれば排ガス量は低減し、排ガス処理設備がコンパクトになり、その結果、廃棄物焼却施設全体が小型化して設備費を低減できる。これに加えて、排ガス処理のための薬剤量も低減するので、運転費を低減できる。さらには、熱回収できずに大気に捨てられる熱量を低減させ、廃熱ボイラの熱回収率を向上できるので、廃棄物発電の効率を上げることができる。   If waste can be burned without problems in an incinerator with a reduced air ratio, the amount of exhaust gas will be reduced, and the exhaust gas treatment facility will become compact. As a result, the entire waste incineration facility will be downsized and equipment costs will be reduced. it can. In addition, since the amount of chemicals for exhaust gas treatment is also reduced, the operating cost can be reduced. Furthermore, since the amount of heat that cannot be recovered and discarded to the atmosphere can be reduced and the heat recovery rate of the waste heat boiler can be improved, the efficiency of waste power generation can be increased.

このような状況のもとで、空気比を1.3以下の低空気比で廃棄物焼却炉を操業することが検討されている。低空気比操業を行うことにより焼却炉より排出される排ガス量が低減されるため、排ガスの体積当たりの顕熱が増加し廃熱ボイラでの熱回収効率が向上して発生蒸気による発電効率が向上でき、また、排ガス処理設備をコンパクトにでき廃棄物焼却設備全体をコンパクトにできる効果がある。   Under such circumstances, it has been studied to operate a waste incinerator with a low air ratio of 1.3 or less. Since the amount of exhaust gas discharged from the incinerator is reduced by operating at a low air ratio, the sensible heat per volume of the exhaust gas increases, the heat recovery efficiency in the waste heat boiler is improved, and the power generation efficiency by the generated steam is increased. The exhaust gas treatment facility can be made compact, and the entire waste incineration facility can be made compact.

しかしながら、このように、低空気比燃焼に対する利点は大きくなるが、一方で、低空気比燃焼では燃焼が不安定になるという問題が残る。すなわち、低空気比で廃棄物を燃焼させると、燃焼が不安定となり、COの発生が増加したり、火炎温度が局所的に上昇してNOxが急増したり、煤が大量に発生したり、クリンカが発生したり、局所的な高温により炉の耐火物の寿命が短くなるという問題点がある。   As described above, however, the advantage over the low air ratio combustion becomes large, but the problem remains that the combustion becomes unstable in the low air ratio combustion. That is, if waste is burned at a low air ratio, the combustion becomes unstable, the generation of CO increases, the flame temperature rises locally, NOx increases rapidly, soot is generated in large quantities, There are problems that clinker is generated and that the lifetime of the refractory in the furnace is shortened due to local high temperatures.

火格子式焼却炉では、焼却炉へ供給する空気量を低減して低空気比燃焼を指向する場合でも、乾燥、燃焼、後燃焼のため火格子から供給する一次空気は空気比1.2程度は供給しないと廃棄物の燃焼状況が悪化してしまい、燃え切りが悪くなり灰分中未燃分の増加(熱勺減量の増加)につながることになってしまう。したがって、低空気比燃焼での操業を行うためには、二次空気量をも減少させることが試みられているが、次のような問題がある。すなわち、二次空気は火格子上の廃棄物層の上方で焼却炉側壁に設けた複数のノズルから炉幅方向(水平方向)に吹き込むようになっている。その結果、低空気比燃焼の操業を指向し二次空気量を減少させると、ノズルから供給された二次空気は炉中央部まで到達できず、炉中央部では二次空気が炉内発生ガスと十分な混合がなされないまま、炉壁側に沿って上昇してしまうため、未燃ガスが完全燃焼されず、燃焼排ガス中に数百ppmオーダのCOガスが残存する場合があり、COスパイクの発生の原因ともなる。COスパイクが発生すると、有害物質を含んだ排ガスが炉外に放出されることになり、公害防止の上から好ましくない。そのため低空気比燃焼を実現するのが困難になっている。   In the grate-type incinerator, even if the amount of air supplied to the incinerator is reduced and the low air ratio combustion is directed, the primary air supplied from the grate for drying, combustion, and post-combustion is about 1.2 If it is not supplied, the state of combustion of the waste will deteriorate, burning out will worsen, leading to an increase in unburned ash (increased heat loss). Therefore, in order to operate at low air ratio combustion, attempts have been made to reduce the amount of secondary air, but there are the following problems. That is, secondary air is blown in the furnace width direction (horizontal direction) from a plurality of nozzles provided on the incinerator side wall above the waste layer on the grate. As a result, when the amount of secondary air is reduced with a low air ratio combustion operation, the secondary air supplied from the nozzle cannot reach the center of the furnace, and the secondary air is generated in the furnace at the center of the furnace. In this case, the unburned gas may not be completely burned and CO gas on the order of several hundred ppm may remain in the combustion exhaust gas. It also causes the occurrence of. When the CO spike is generated, exhaust gas containing harmful substances is discharged outside the furnace, which is not preferable for preventing pollution. Therefore, it is difficult to realize low air ratio combustion.

本発明は、かかる事情に鑑み、低空気比燃焼を行った場合においても、CO等の有害ガスの発生を抑制でき、廃棄物を安定して燃焼できる火格子式の廃棄物焼却炉及び廃棄物焼却方法を提供することを課題とする。   In view of such circumstances, the present invention is a grate-type waste incinerator and waste that can suppress the generation of harmful gases such as CO even when low air ratio combustion is performed and can stably burn waste. It is an object to provide an incineration method.

本発明によると、上記課題は、次のように構成される廃棄物焼却炉あるいは廃棄物焼却方法によって解決される。   According to the present invention, the above problem is solved by a waste incinerator or a waste incineration method configured as follows.

<廃棄物焼却炉>
本発明に係る廃棄物焼却炉は、廃棄物投入口から投入された廃棄物を燃焼する主燃焼室を有し、主燃焼室での燃焼後の未燃ガスを燃焼する二次燃焼室が該主燃焼室の出口側に接続されており、主燃焼室下部に、乾燥火格子、燃焼火格子そして後燃焼火格子が順に設けられていると共に、乾燥火格子と燃焼火格子のそれぞれの下方から一次空気を供給する一次空気供給手段が設けられている。
<Waste incinerator>
A waste incinerator according to the present invention has a main combustion chamber for burning waste input from a waste input port, and a secondary combustion chamber for burning unburned gas after combustion in the main combustion chamber It is connected to the outlet side of the main combustion chamber. A dry grate, a combustion grate, and a post-combustion grate are provided in this order at the bottom of the main combustion chamber. Primary air supply means for supplying primary air is provided.

かかる廃棄物焼却炉において、本発明では、後燃焼火格子の下方から100〜200℃の高温空気を供給する高温空気供給手段が設けられており、高温空気が主燃焼室を経て二次燃焼室へ供給されるようになっていることを特徴としている。   In such a waste incinerator, in the present invention, high temperature air supply means for supplying high temperature air of 100 to 200 ° C. from below the post combustion grate is provided, and the high temperature air passes through the main combustion chamber and the secondary combustion chamber. It is characterized by being supplied to.

本発明において、高温空気供給手段は、後燃焼火格子上の廃棄物の未燃分を燃焼すること、そして二次燃焼室で未燃ガスを燃焼することに十分な高温空気量を供給する供給能力を有していることが好ましい。   In the present invention, the high-temperature air supply means supplies the amount of high-temperature air sufficient to burn the unburned portion of the waste on the post-combustion grate and to burn the unburned gas in the secondary combustion chamber. It is preferable to have the capability.

<廃棄物焼却方法>
本発明に係る廃棄物焼却方法は、廃棄物投入口から投入された廃棄物を燃焼する主燃焼室を有し、主燃焼室での燃焼後の未燃ガスを燃焼する二次燃焼室が該主燃焼室の出口側に接続されており、主燃焼室下部に、乾燥火格子、燃焼火格子そして後燃焼火格子が順に設けられている廃棄物焼却炉にて、乾燥火格子と燃焼火格子のそれぞれの下方から一次空気を供給する。
<Waste incineration method>
The waste incineration method according to the present invention has a main combustion chamber for burning waste input from a waste inlet, and the secondary combustion chamber for burning unburned gas after combustion in the main combustion chamber includes the main combustion chamber. In a waste incinerator that is connected to the outlet side of the main combustion chamber and is provided with a dry grate, a combustion grate, and a post-combustion grate in the lower part of the main combustion chamber, Primary air is supplied from below each of the above.

かかる廃棄物焼却方法において、本発明では、後燃焼火格子の下方から100〜200℃の高温空気を供給し、高温空気が主燃焼室を経て二次燃焼室へ供給されることを特徴としている。   In such a waste incineration method, the present invention is characterized in that high-temperature air of 100 to 200 ° C. is supplied from below the post-combustion grate, and the high-temperature air is supplied to the secondary combustion chamber through the main combustion chamber. .

本発明において、高温空気は、後燃焼火格子上の廃棄物の未燃分を燃焼すること、そして二次燃焼室で未燃ガスを燃焼することに十分な高温空気量を供給されることが好ましい。   In the present invention, the high-temperature air may be supplied with a sufficient amount of high-temperature air to burn unburned waste on the post-combustion grate and to burn unburned gas in the secondary combustion chamber. preferable.

このような本発明の廃棄物焼却炉そして廃棄物焼却方法にあっては、乾燥火格子そして燃焼火格子のそれぞれの下方から一次空気が供給されることに加えて、100〜200℃の高温空気が後燃焼火格子の下方から供給されるので、後燃焼火格子上での燃焼反応性が格段に向上する。そのため、高温空気により、後燃焼火格子の廃棄物の未燃分が効率よく燃焼されるとともに、高温空気が主燃焼室を経て二次燃焼室へ供給され、二次燃焼室で未燃ガスを完全に燃焼することができる。そのため、低空気比燃焼でも廃棄物、未燃ガスを安定して燃焼することができ、COなど有害物の発生を抑制でき、低空気比燃焼を達成できる。   In such a waste incinerator and waste incineration method of the present invention, in addition to supplying primary air from below the dry grate and the combustion grate, high-temperature air at 100 to 200 ° C. Is supplied from below the post-combustion grate, the combustion reactivity on the post-combustion grate is significantly improved. Therefore, the high-temperature air efficiently burns the unburned waste of the post-combustion grate, and the high-temperature air is supplied to the secondary combustion chamber through the main combustion chamber, and unburned gas is removed in the secondary combustion chamber. Can burn completely. Therefore, even in low air ratio combustion, waste and unburned gas can be stably burned, generation of harmful substances such as CO can be suppressed, and low air ratio combustion can be achieved.

この高温空気は、後燃焼火格子の炉幅方向全体に形成されている該後燃焼火格子の通気孔を通過し、炉幅方向(水平方向)に均等に分散された後に、後燃焼火格子の上方の主燃焼室を経て上昇した後、二次燃焼室へ至る。その結果、低空気比燃焼のもとでも、二次燃焼室には炉幅方向中央部でも十分に均一に高温空気が行きわたり、未燃ガスの燃焼が良好に行われる。   This high-temperature air passes through the vent holes of the post-combustion grate formed in the entire furnace width direction of the post-combustion grate and is uniformly distributed in the furnace width direction (horizontal direction), and then the post-combustion grate After rising through the main combustion chamber above, the secondary combustion chamber is reached. As a result, even under the low air ratio combustion, the high-temperature air reaches the secondary combustion chamber sufficiently uniformly even in the center portion in the furnace width direction, and the unburned gas is burned well.

また、高温空気により、後燃焼火格子の廃棄物の未燃分が効率よく燃焼されるため、常温空気を供給する場合に比べて、後燃焼火格子上での未燃分の後燃焼に必要な時間を短くすることができ、後燃焼火格子の面積を縮小することができる。   In addition, the high-temperature air efficiently burns the unburned waste of the post-burning grate, so it is necessary for the post-burning of the unburned content on the post-burning grate compared to supplying normal temperature air. Time can be shortened, and the area of the post-combustion grate can be reduced.

また、二次燃焼室における未燃ガスの二次燃焼のための二次空気を、後燃焼火格子下から供給する高温空気だけで賄うこともできるため、従来、後燃焼火格子の上方空間へ直接供給されていた二次燃焼用空気の供給のための機構を別途設けることを省くこともできる。   In addition, since secondary air for secondary combustion of unburned gas in the secondary combustion chamber can be covered only with high-temperature air supplied from below the post-combustion grate, conventionally, the space above the post-combustion grate A separate mechanism for supplying the secondary combustion air that has been directly supplied can be omitted.

本発明は、以上のように、後燃焼火格子の下方から100〜200℃の高温空気を供給することとしたので、後燃焼火格子の廃棄物の未燃分が効率よく燃焼されるとともに、高温空気が主燃焼室を経て二次燃焼室へ供給され、二次燃焼室において、未燃ガスを完全に燃焼することができる。そのため、低空気比燃焼でも廃棄物、未燃ガスを安定して燃焼することができ、COなど有害物の発生を抑制でき、低空気比燃焼を達成できる廃棄物焼却炉及び廃棄物焼却方法を提供することができる。   As described above, since the present invention supplies high-temperature air of 100 to 200 ° C. from below the post-combustion grate, the unburned matter of the waste of the post-combustion grate is efficiently burned, Hot air is supplied to the secondary combustion chamber through the main combustion chamber, and the unburned gas can be completely burned in the secondary combustion chamber. Therefore, a waste incinerator and a waste incineration method that can stably burn waste and unburned gas even with low air ratio combustion, can suppress the generation of harmful substances such as CO, and can achieve low air ratio combustion. Can be provided.

本発明の第一実施形態として廃棄物焼却炉装置の概要構成図である。It is a schematic block diagram of a waste incinerator apparatus as 1st embodiment of this invention. 従来の廃棄物焼却炉装置の概要構成図である。It is a schematic block diagram of the conventional waste incinerator apparatus.

以下、添付図面の図1にもとづき、本発明の実施の形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

<第一実施形態>
図1に示される本実施形態の廃棄物焼却炉は、廃棄物を燃焼するための主燃焼室11の出口側に二次燃焼室12が連設されている。二次燃焼室12は廃熱回収のための廃熱ボイラ17の一部でもあり入口近傍部分である。
<First embodiment>
In the waste incinerator of this embodiment shown in FIG. 1, a secondary combustion chamber 12 is continuously provided on the outlet side of the main combustion chamber 11 for burning waste. The secondary combustion chamber 12 is also a part of the waste heat boiler 17 for waste heat recovery and is in the vicinity of the inlet.

主燃焼室11の下部には、廃棄物の移動方向(図では右方向)で、上流側から乾燥火格子11a、燃焼火格子11b、そして後燃焼火格子11cが順に設けられている。各火格子11a,11b,11cはそれぞれ、火格子上の廃棄物を右方に移動させる動作を伴っている。   In the lower part of the main combustion chamber 11, a dry grate 11a, a combustion grate 11b, and a post-combustion grate 11c are provided in this order from the upstream side in the waste movement direction (right direction in the figure). Each grate 11a, 11b, 11c is accompanied by an operation of moving waste on the grate to the right.

上記焼却炉では、乾燥火格子11aの上流側の上方に、廃棄物投入口13が設けられており、該廃棄物投入口13から垂下するシュート14により上記主燃焼室11の上部空間に連通していて、廃棄物投入口13から投入された廃棄物が上記シュート14を経て、図示しない廃棄物供給機構により上記乾燥火格子11aに供給されるようになっている。該乾燥火格子11a上に供給された廃棄物は、各火格子11a〜11cの動作によって、火格子上に廃棄物の層を形成しつつ燃焼火格子11bそして後燃焼火格子11cへと移動する。各火格子11a〜11cの下方には、燃焼用の空気の供給を受けるための風箱11a−1,11b−1,11c−1が設けられている。燃焼用の一次空気は、火格子上の廃棄物の乾燥及び燃焼に使われるほか、火格子の冷却作用、廃棄物の攪拌作用を有する。また、後燃焼火格子11cに対して下流側で隣接する位置に、下方に開口する灰落下口15が設けられている。   In the incinerator, a waste charging port 13 is provided above the upstream side of the dry grate 11 a, and communicates with the upper space of the main combustion chamber 11 by a chute 14 hanging from the waste charging port 13. In addition, the waste introduced from the waste inlet 13 is supplied to the dry grate 11a through the chute 14 by a waste supply mechanism (not shown). The waste supplied on the dry grate 11a moves to the combustion grate 11b and the post-combustion grate 11c while forming a waste layer on the grate by the operation of each grate 11a to 11c. . Below each grate 11a-11c, wind boxes 11a-1, 11b-1, and 11c-1 for receiving supply of combustion air are provided. The primary air for combustion is used for drying and burning waste on the grate, and also has a grate cooling action and a waste agitation action. Further, an ash drop opening 15 that opens downward is provided at a position adjacent to the rear combustion grate 11c on the downstream side.

主燃焼室11の出口部(下流側)の上方位置で該主燃焼室11に二次燃焼室12が連設されている。廃熱ボイラ17はその入口近傍部分が二次燃焼室12であり、二次燃焼室12に続いて屈曲流路空間が形成され、内壁面の水冷壁や伝熱管群により廃熱を回収し、上方の排出口17aから排ガスを次工程処理のために排出するようになっている。   A secondary combustion chamber 12 is connected to the main combustion chamber 11 at a position above the outlet (downstream side) of the main combustion chamber 11. The waste heat boiler 17 has a secondary combustion chamber 12 in the vicinity of the inlet, a bent flow passage space is formed following the secondary combustion chamber 12, and the waste heat is recovered by a water cooling wall or a heat transfer tube group on the inner wall surface. Exhaust gas is discharged from the upper discharge port 17a for the next process.

本実施形態では、焼却炉は、燃焼用空気となる一次空気、高温空気そして、好ましい形態として、さらに二次空気の3系統の空気供給系を備えている。一次空気供給系21は、空気供給源からの空気を管路22を経て、乾燥火格子11a、燃焼火格子11bのそれぞれの風箱11a−1,11b−1に分岐供給管21a,21bから送り込むようになっており、上記管路22には、圧送用ファン23そして流量調整機構としてのダンパ24が設けられている。高温空気供給系25は、上記空気供給源からの空気を、管路26に設けられた空気予熱器27で予熱した後に、後燃焼火格子11cの風箱11c−1に送り込むようになっており、上記管路26には、圧送用ファン28そして流量調整機構としてのダンパ29が設けられている。また、二次空気供給系31は、空気供給源からの空気を管路32を経て、二次燃焼室12に送り込むようになっており、上記管路32には、圧送用ファン33そして供給量調整機構としてのダンパ34が設けられている。なお、上記風箱及び燃焼用の一次空気、高温空気そして二次空気を供給するための管路等の構成は図示したものに限定されず、焼却炉の規模、形状、用途等により適宜選択され得る。廃熱ボイラ17の排出口17aには、排出口17aから排出される排ガスの酸素濃度を検出する酸素濃度計35が設けられていて、炉外に設けられた制御装置36に該酸素濃度計35の検出信号が送られ、制御装置36が検出酸素濃度に応じて上記ダンパ34の開度を制御するようになっている。   In the present embodiment, the incinerator is provided with three air supply systems of primary air that is combustion air, high-temperature air, and, as a preferable mode, secondary air. The primary air supply system 21 feeds air from an air supply source from the branch supply pipes 21a and 21b to the wind boxes 11a-1 and 11b-1 of the dry grate 11a and the combustion grate 11b via the pipe line 22, respectively. The pipe 22 is provided with a pressure feeding fan 23 and a damper 24 as a flow rate adjusting mechanism. The high-temperature air supply system 25 is configured to send air from the air supply source to the wind box 11c-1 of the post-combustion grate 11c after preheating with an air preheater 27 provided in the pipe line 26. The duct 26 is provided with a pressure feeding fan 28 and a damper 29 as a flow rate adjusting mechanism. Further, the secondary air supply system 31 is configured to send air from an air supply source to the secondary combustion chamber 12 through a pipe line 32. The pipe 32 has a pressure feed fan 33 and a supply amount. A damper 34 as an adjustment mechanism is provided. The configuration of the wind box and the pipelines for supplying the primary air, high temperature air and secondary air for combustion is not limited to those shown in the figure, and may be appropriately selected according to the scale, shape, application, etc. of the incinerator. obtain. The exhaust port 17a of the waste heat boiler 17 is provided with an oxygen concentration meter 35 for detecting the oxygen concentration of the exhaust gas discharged from the discharge port 17a, and the oxygen concentration meter 35 is connected to a control device 36 provided outside the furnace. The control device 36 controls the opening degree of the damper 34 in accordance with the detected oxygen concentration.

上記一次空気供給系21、高温空気供給系25そして二次空気供給系31の空気供給源は、互いに共通でも個別に設けられていてもよい。   The air supply sources of the primary air supply system 21, the high-temperature air supply system 25, and the secondary air supply system 31 may be common or individually provided.

後燃焼火格子11cの下から供給する高温空気の温度は、100〜200℃の範囲とされている。その理由は、吹き込む高温空気の温度を100℃未満とすると、二次燃焼室の温度が低下し、未燃ガスの二次燃焼が不安定となり、COが増加してしまうし、高温空気の温度が200℃を超えると高温化に見合った経済的効果がないからである。また、上記空気予熱器27の熱源としては廃熱ボイラで生成された蒸気を用いることができる。   The temperature of the high-temperature air supplied from under the post-combustion grate 11c is in the range of 100 to 200 ° C. The reason for this is that if the temperature of the hot air to be blown is less than 100 ° C., the temperature of the secondary combustion chamber decreases, the secondary combustion of the unburned gas becomes unstable, the CO increases, and the temperature of the hot air If the temperature exceeds 200 ° C., there is no economic effect commensurate with higher temperatures. As the heat source of the air preheater 27, steam generated by a waste heat boiler can be used.

本実施形態では、後燃焼火格子11cの下から高温空気を吹き込むので、後燃焼火格子11c上の廃棄物の未燃分は、高温空気によって加熱され、燃焼が促進され、完全に燃焼が終了する。高温空気により、後燃焼火格子11c上の廃棄物の未燃分が効率よく燃焼されるため、常温空気を供給する場合に比べて、後燃焼火格子11c上での未燃分の後燃焼に必要な時間を短くすることができ、後燃焼火格子11cの長さを縮小することができる。   In the present embodiment, since high-temperature air is blown from the bottom of the post-combustion grate 11c, the unburned portion of the waste on the post-combustion grate 11c is heated by the high-temperature air, combustion is promoted, and combustion is completely completed. To do. Since the unburned portion of the waste on the post-combustion grate 11c is efficiently burned by the high-temperature air, compared with the case where normal temperature air is supplied, the post-burning of the unburned portion on the post-combustion grate 11c is performed. The required time can be shortened, and the length of the post-combustion grate 11c can be reduced.

本実施形態では、好ましい形態として、さらに、二次空気供給系31に二次空気の供給量調整機構としてのダンパ34を有しているが、その場合には、二次燃焼室12を含む廃熱ボイラ17からの排ガスの酸素濃度を上記酸素濃度計35で検出して、その濃度が所定範囲内に収まるように、上記ダンパ34を制御して二次空気の供給量を増減する。二次燃焼室12における未燃ガスの二次燃焼のための二次空気を、後燃焼火格子11c下から供給する高温空気だけで十分に賄うこともできる場合には、二次空気供給系31を省略することもできる。   In this embodiment, as a preferred embodiment, the secondary air supply system 31 further includes a damper 34 as a secondary air supply amount adjustment mechanism. In this case, the waste including the secondary combustion chamber 12 is included. The oxygen concentration of the exhaust gas from the heat boiler 17 is detected by the oxygen concentration meter 35, and the amount of secondary air supplied is increased or decreased by controlling the damper 34 so that the concentration falls within a predetermined range. When the secondary air for secondary combustion of the unburned gas in the secondary combustion chamber 12 can be sufficiently covered only by the high-temperature air supplied from below the post-combustion grate 11c, the secondary air supply system 31 Can be omitted.

このような本実施形態の焼却炉では、各火格子11a〜11cの上に廃棄物の層が形成される。   In such an incinerator of this embodiment, a waste layer is formed on each grate 11a-11c.

乾燥火格子11aの直上方で該乾燥火格子11a上であって廃棄物の流れ方向の上流側範囲には乾燥領域が形成され、下流側範囲には燃焼開始領域が形成される。すなわち、乾燥火格子11aの廃棄物は、上流側範囲で乾燥され、下流側範囲で着火して燃焼が開始し燃焼火格子11bへと移動する。燃焼火格子11b上の廃棄物はここで熱分解そして部分酸化が行われ、可燃ガスと固形分が燃焼する。廃棄物はこの燃焼火格子11b上で実質的に殆んど燃焼される。こうして、上記燃焼火格子11b直上に主燃焼領域が形成される。しかる後、僅かに残った廃棄物中の固定炭素など未燃分が後燃焼火格子に移動して該後燃焼火格子11c上で完全に燃焼される。この後燃焼火格子11c上に後燃焼領域が形成される。   A dry region is formed in the upstream range in the waste flow direction on the dry grate 11a immediately above the dry grate 11a, and a combustion start region is formed in the downstream range. That is, the waste in the dry grate 11a is dried in the upstream range, ignited in the downstream range, starts combustion, and moves to the combustion grate 11b. The waste on the combustion grate 11b is pyrolyzed and partially oxidized here, and combustible gas and solid content are combusted. The waste is substantially burned on the combustion grate 11b. Thus, a main combustion region is formed immediately above the combustion grate 11b. Thereafter, the unburned matter such as fixed carbon in the remaining waste moves to the post-combustion grate and is completely burned on the post-combustion grate 11c. Thereafter, a post-combustion region is formed on the post-combustion grate 11c.

主燃焼室11内で発生した未燃ガスは、上記後燃焼火格子11cの上方に位置する二次燃焼室12に流入してここで燃焼し、上記後燃焼領域の上方に二次燃焼領域を形成する。   Unburned gas generated in the main combustion chamber 11 flows into the secondary combustion chamber 12 located above the post-combustion grate 11c and burns there, and the secondary combustion region is located above the post-combustion region. Form.

このような本実施形態の焼却炉は、次の要領で運転される。   Such an incinerator of this embodiment is operated in the following manner.

先ず、廃棄物投入口13へ廃棄物を投入すると、シュート14を経て、廃棄物は乾燥火格子11aに堆積され、各火格子11a〜11cの動作により、燃焼火格子11b上そして後燃焼火格子11c上へと移動し、各火格子11a〜11c上に廃棄物の層を形成する。   First, when waste is introduced into the waste inlet 13, the waste is deposited on the dry grate 11a via the chute 14, and the operation of each grate 11a to 11c causes the grate on the combustion grate 11b and the post-combustion grate. 11c to form a waste layer on each grate 11a-11c.

各火格子11a〜11cは、風箱11a−1,11b−1を経て燃焼用の一次空気を、そして風箱11c−1を経て高温空気をそれぞれ受けており、これにより各火格子11a〜11c上の廃棄物は燃焼する。   Each grate 11a-11c receives primary air for combustion via wind boxes 11a-1, 11b-1 and high temperature air via wind box 11c-1, and thereby each grate 11a-11c. The waste above will burn.

乾燥火格子11aでは主として廃棄物の乾燥と着火が行われる。すなわち、乾燥火格子11aの廃棄物の流れ方向の上流側域で乾燥がそして下流側域で着火(燃焼開始)が行われる。燃焼火格子11bでは主として廃棄物の熱分解、部分酸化が行われ、可燃性ガスと固形分の燃焼が行われる。燃焼火格子11bにおいて廃棄物の燃焼は実質的に完了する。後燃焼火格子11c上では、僅かに残った廃棄物中の固定炭素など未燃分を完全におき燃焼させる。完全に燃焼した後の燃焼灰は、灰落下口15より排出される。このように廃棄物が燃焼している状態で、各火格子11a〜11c直上空間には、上述の乾燥領域、燃焼開始領域、主燃焼領域そして後燃焼領域がそれぞれ形成される。   In the dry grate 11a, waste is mainly dried and ignited. That is, drying is performed in the upstream region of the dry grate 11a in the waste flow direction, and ignition (combustion start) is performed in the downstream region. In the combustion grate 11b, thermal decomposition and partial oxidation of waste are mainly performed, and combustible gas and solid content are combusted. The combustion of the waste is substantially completed in the combustion grate 11b. On the post-combustion grate 11c, unburned components such as fixed carbon in the remaining waste are completely put and burned. The combustion ash after complete combustion is discharged from the ash drop opening 15. With the waste burning in this manner, the above-described drying region, combustion start region, main combustion region, and post-combustion region are formed in the space immediately above each grate 11a to 11c.

本実施形態では、後燃焼火格子11cには、空気予熱器27で予熱された高温空気が圧送用ファン28により風箱11c−1を経て供給される。上記風箱11c−1内に送入された高温空気は、後燃焼火格子11cの炉幅方向全体に形成されている通気孔を通過し、炉幅方向(図1にて紙面に直角方向)均一に分布した状態で、主燃焼室11内の後燃焼領域を経てその上方の二次燃焼室12へ至ることとなり、ここで二次空気供給系31で供給される二次空気とともに二次燃焼に寄与する。   In the present embodiment, the hot air preheated by the air preheater 27 is supplied to the post-combustion grate 11c by the pressure feeding fan 28 via the wind box 11c-1. The high-temperature air sent into the wind box 11c-1 passes through the vent hole formed in the entire furnace width direction of the post-combustion grate 11c, and the furnace width direction (perpendicular to the paper surface in FIG. 1). In a uniformly distributed state, it passes through the post-combustion region in the main combustion chamber 11 and reaches the secondary combustion chamber 12 thereabove, where secondary combustion is performed together with the secondary air supplied by the secondary air supply system 31. Contribute to.

本実施形態では、高温空気を後燃焼火格子11cの下方から送入することとしたので、高温空気が炉幅方向で均一に行きわたり、その結果、低空気比燃焼においても、空気量が不十分な領域がなくなり、二次燃焼室12内の未燃ガス量に応じた最低限の空気量の供給で二次燃焼を行うことができる。   In the present embodiment, since the high-temperature air is fed from below the post-combustion grate 11c, the high-temperature air travels uniformly in the furnace width direction, and as a result, the amount of air is low even in low air ratio combustion. There is no sufficient area, and secondary combustion can be performed by supplying a minimum amount of air according to the amount of unburned gas in the secondary combustion chamber 12.

上記二次空気の供給量は、制御装置36によるダンパ34の開度を増減して調整されるが、これは、酸素濃度計35により検出された廃熱ボイラ17の排出口17aの排ガスの検出酸素濃度が、所定範囲内に収まるように行われる。排ガスの酸素濃度はCO濃度と相関しており、この酸素濃度の所定範囲の下限は、COスパイクが起きないような酸素濃度として定め、上限を極力低空気比となる値として定めることにより、上記所定範囲を決定する。   The supply amount of the secondary air is adjusted by increasing / decreasing the opening degree of the damper 34 by the control device 36. This is the detection of the exhaust gas at the discharge port 17a of the waste heat boiler 17 detected by the oximeter 35. The oxygen concentration is performed so as to be within a predetermined range. The oxygen concentration of the exhaust gas correlates with the CO concentration, and the lower limit of the predetermined range of the oxygen concentration is determined as an oxygen concentration that does not cause a CO spike, and the upper limit is determined as a value that makes the air ratio as low as possible. A predetermined range is determined.

既述のごとく、廃棄物投入口13とは反対側となる主燃焼室11の出口に、廃熱ボイラ17の一部である二次燃焼室12が連設されている。したがって、主燃焼室11内で発生した未燃ガスは、二次燃焼室12に導かれ、そこで上述の高温空気と二次空気と混合・攪拌され、二次燃焼し、二次燃焼室12からの燃焼排ガスは廃熱ボイラ17で熱回収される。熱回収された後、廃熱ボイラ17から排出された燃焼排ガスは、消石灰による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに除塵装置(図示せず)に送られ、活性炭や中和反応物などが回収される。上記除塵装置で除塵され、無害化された後の燃焼排ガスは、誘引ファン(図示せず)により誘引され、煙突から大気中に放出される。なお、上記第一そして第二の除塵装置としては、例えば、バグフィルタ方式、電気集塵方式等の除塵装置を用いることができる。   As described above, the secondary combustion chamber 12 which is a part of the waste heat boiler 17 is connected to the outlet of the main combustion chamber 11 on the side opposite to the waste input port 13. Therefore, the unburned gas generated in the main combustion chamber 11 is guided to the secondary combustion chamber 12 where it is mixed and stirred with the above-described high-temperature air and secondary air, followed by secondary combustion, and from the secondary combustion chamber 12. The combustion exhaust gas is recovered by the waste heat boiler 17. After heat recovery, the combustion exhaust gas discharged from the waste heat boiler 17 is subjected to neutralization of acid gas by slaked lime and adsorption of dioxins by activated carbon, and is further sent to a dust removal device (not shown), where activated carbon And neutralized reactants are recovered. The combustion exhaust gas that has been dedusted and detoxified by the dust removing device is attracted by an attracting fan (not shown) and released from the chimney into the atmosphere. In addition, as said 1st and 2nd dust removal apparatus, dust removal apparatuses, such as a bag filter system and an electrostatic dust collection system, can be used, for example.

次に、本実施形態において、二次燃焼室の雰囲気そして排ガス酸素濃度にもとづく二次空気量の制御について詳述する。   Next, in the present embodiment, control of the secondary air amount based on the atmosphere of the secondary combustion chamber and the exhaust gas oxygen concentration will be described in detail.

<二次燃焼室の雰囲気>
二次燃焼室内のガス温度は、800〜1050℃の範囲となるように、二次空気の流量を調整することが好ましい。その理由は、二次燃焼室内のガス温度が800℃未満となると燃焼が不十分となり、COが増加してしまうからであり、また、二次燃焼室内のガス温度が1050℃を超えると二次燃焼室内におけるクリンカの生成が助長され、さらに、NOxが増加してしまうからである。
<Atmosphere of secondary combustion chamber>
It is preferable to adjust the flow rate of the secondary air so that the gas temperature in the secondary combustion chamber is in the range of 800 to 1050 ° C. The reason is that if the gas temperature in the secondary combustion chamber becomes less than 800 ° C., combustion becomes insufficient and CO increases, and if the gas temperature in the secondary combustion chamber exceeds 1050 ° C., the secondary combustion chamber becomes secondary. This is because generation of clinker in the combustion chamber is promoted, and NOx is further increased.

<排ガス酸素濃度にもとづく二次空気量の制御>
本実施形態において、廃熱ボイラ17の排出口17aの排ガスの酸素濃度を測定し、これにもとづいて二次空気供給量を制御することとしているが、この酸素濃度と排ガス中のCO濃度、排ガス中のNOx濃度、二次空気供給量との関係を表1に示す。
<Control of secondary air volume based on exhaust gas oxygen concentration>
In the present embodiment, the oxygen concentration of the exhaust gas at the exhaust port 17a of the waste heat boiler 17 is measured, and the secondary air supply amount is controlled based on this measurement. The oxygen concentration, the CO concentration in the exhaust gas, and the exhaust gas Table 1 shows the relationship between the NOx concentration and the secondary air supply amount.

焼却炉内で廃棄物と熱分解によって発生する可燃性ガスを適正な酸素濃度や温度等の範囲内で燃焼させた場合に、CO、NOx、DXN(ダイオキシン類)等の有害物質の発生が最も抑制される。表1において、ボイラ出口近傍での排ガス中酸素濃度が高い場合は、焼却炉から排出されるCO濃度は減少するかあるいは変化無しであるが、NOx濃度は増加する。そのため、二次空気供給量を減少させ、二次燃焼室への酸素の供給量を減少させて二次燃焼室の燃焼を適正に行うようにする。反対に、ボイラ出口近傍での排ガス中酸素濃度が低い場合は、焼却炉から排出されるNOx濃度は減少するかあるいは変化無しの状態となるが、CO濃度は増加する状態となる。そのため、二次空気供給量を増加させ、二次燃焼室への酸素の供給量を増やし、二次燃焼室の燃焼を適正に行うようにする。   When combustible gas generated by waste and thermal decomposition in an incinerator is combusted within the range of appropriate oxygen concentration and temperature, the most harmful substances such as CO, NOx, DXN (dioxins) are generated. It is suppressed. In Table 1, when the oxygen concentration in the exhaust gas near the boiler outlet is high, the CO concentration discharged from the incinerator decreases or remains unchanged, but the NOx concentration increases. Therefore, the secondary air supply amount is decreased and the oxygen supply amount to the secondary combustion chamber is decreased so that the combustion in the secondary combustion chamber is appropriately performed. On the contrary, when the oxygen concentration in the exhaust gas near the boiler outlet is low, the NOx concentration discharged from the incinerator decreases or remains unchanged, but the CO concentration increases. Therefore, the secondary air supply amount is increased, the oxygen supply amount to the secondary combustion chamber is increased, and combustion in the secondary combustion chamber is appropriately performed.

Figure 2013257065
Figure 2013257065

以上説明したように本発明によれば、廃棄物焼却炉において低空気比燃焼を行った場合においても燃焼の安定性が維持され、且つ、局所高温領域の発生が抑制され、COやNOx等の有害ガスの発生量が低減できる廃棄物焼却炉及び廃棄物焼却方法が提供される。さらに、低空気比燃焼を行えるので焼却炉から排出される排ガス総量を大幅に低減でき、また、廃熱の回収効率を向上できる廃棄物焼却炉及び廃棄物焼却方法が提供される。   As described above, according to the present invention, even when low air ratio combustion is performed in a waste incinerator, the stability of combustion is maintained, the occurrence of local high temperature regions is suppressed, and CO, NOx, etc. Provided are a waste incinerator and a waste incineration method capable of reducing the generation amount of harmful gas. Furthermore, since a low air ratio combustion can be performed, the total amount of exhaust gas discharged from the incinerator can be significantly reduced, and a waste incinerator and a waste incineration method that can improve waste heat recovery efficiency are provided.

11 主燃焼室
11a 乾燥火格子
11b 燃焼火格子
11c 後燃焼火格子
12 二次燃焼室
13 廃棄物投入口
21 一次空気供給手段
DESCRIPTION OF SYMBOLS 11 Main combustion chamber 11a Dry grate 11b Combustion grate 11c Post combustion grate 12 Secondary combustion chamber 13 Waste inlet 21 Primary air supply means

Claims (4)

廃棄物投入口から投入された廃棄物を燃焼する主燃焼室を有し、主燃焼室での燃焼後の未燃ガスを燃焼する二次燃焼室が該主燃焼室の出口側に接続されており、主燃焼室下部に、乾燥火格子、燃焼火格子そして後燃焼火格子が順に設けられていると共に、乾燥火格子と燃焼火格子のそれぞれの下方から一次空気を供給する一次空気供給手段が設けられている火格子式の廃棄物焼却炉において、
後燃焼火格子の下方から100〜200℃の高温空気を供給する高温空気供給手段が設けられており、高温空気が主燃焼室を経て二次燃焼室へ供給されるようになっていることを特徴とする廃棄物焼却炉。
A main combustion chamber for combusting waste input from the waste input port, and a secondary combustion chamber for combusting unburned gas after combustion in the main combustion chamber is connected to the outlet side of the main combustion chamber; In the lower part of the main combustion chamber, a dry grate, a combustion grate, and a post-combustion grate are provided in this order, and primary air supply means for supplying primary air from below each of the dry grate and the combustion grate In the grate-type waste incinerator provided,
A high-temperature air supply means for supplying high-temperature air of 100 to 200 ° C. from below the post-combustion grate is provided, and the high-temperature air is supplied to the secondary combustion chamber through the main combustion chamber. Characteristic waste incinerator.
高温空気供給手段は、後燃焼火格子上の廃棄物の未燃分を燃焼すること、そして二次燃焼室で未燃ガスを燃焼することに十分な高温空気量を供給する供給能力を有していることとする請求項1に記載の廃棄物焼却炉。   The hot air supply means has a supply capability of supplying a sufficient amount of hot air to burn the unburned waste of the waste on the post-combustion grate and to burn the unburned gas in the secondary combustion chamber. The waste incinerator according to claim 1. 廃棄物投入口から投入された廃棄物を燃焼する主燃焼室を有し、主燃焼室での燃焼後の未燃ガスを燃焼する二次燃焼室が該主燃焼室の出口側に接続されており、主燃焼室下部に、乾燥火格子、燃焼火格子そして後燃焼火格子が順に設けられている廃棄物焼却炉にて、乾燥火格子と燃焼火格子のそれぞれの下方から一次空気を供給する廃棄物焼却方法において、
後燃焼火格子の下方から100〜200℃の高温空気を供給し、高温空気が主燃焼室を経て二次燃焼室へ供給されることを特徴とする廃棄物焼却方法。
A main combustion chamber for combusting waste input from the waste input port, and a secondary combustion chamber for combusting unburned gas after combustion in the main combustion chamber is connected to the outlet side of the main combustion chamber; In a waste incinerator where a dry grate, a combustion grate, and a post-combustion grate are provided in the lower part of the main combustion chamber, primary air is supplied from below the dry grate and the combustion grate. In the waste incineration method,
A waste incineration method, characterized in that high-temperature air of 100 to 200 ° C is supplied from below the post-combustion grate, and the high-temperature air is supplied to the secondary combustion chamber through the main combustion chamber.
高温空気は、後燃焼火格子上の廃棄物の未燃分を燃焼すること、そして二次燃焼室で未燃ガスを燃焼することに十分な高温空気量を供給されることとする請求項3に記載の廃棄物焼却炉。   The hot air is supplied with a quantity of hot air sufficient to burn the unburned waste of the waste on the post-combustion grate and to burn the unburned gas in the secondary combustion chamber. The waste incinerator described in 1.
JP2012132784A 2012-06-12 2012-06-12 Waste incinerator and waste incineration method Active JP5800237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132784A JP5800237B2 (en) 2012-06-12 2012-06-12 Waste incinerator and waste incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132784A JP5800237B2 (en) 2012-06-12 2012-06-12 Waste incinerator and waste incineration method

Publications (2)

Publication Number Publication Date
JP2013257065A true JP2013257065A (en) 2013-12-26
JP5800237B2 JP5800237B2 (en) 2015-10-28

Family

ID=49953651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132784A Active JP5800237B2 (en) 2012-06-12 2012-06-12 Waste incinerator and waste incineration method

Country Status (1)

Country Link
JP (1) JP5800237B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191539A (en) * 2015-03-31 2016-11-10 Jfeエンジニアリング株式会社 Stoker type waste incinerator and waste incineration method
KR101974150B1 (en) * 2018-04-27 2019-04-30 (주)이에스 Solid fuel combustion equipment
CN109737445A (en) * 2019-01-06 2019-05-10 大唐(北京)能源管理有限公司 A kind of boiler exhaust smoke waste-heat utilization system of external First air heater
KR20200013957A (en) * 2018-07-31 2020-02-10 (주)이에스 Solid fuel incinerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228129A (en) * 2001-01-29 2002-08-14 Mitsubishi Heavy Ind Ltd Waste incinerator
JP2003166706A (en) * 2001-11-29 2003-06-13 Mitsubishi Heavy Ind Ltd Combustion method and combustion device of stoker type incinerator
JP2004077014A (en) * 2002-08-15 2004-03-11 Jfe Engineering Kk Operation method of waste incinerator
JP2004085094A (en) * 2002-08-27 2004-03-18 Jfe Engineering Kk Incinerator
JP2004085093A (en) * 2002-08-27 2004-03-18 Jfe Engineering Kk Combustion air temperature control method for incinerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228129A (en) * 2001-01-29 2002-08-14 Mitsubishi Heavy Ind Ltd Waste incinerator
JP2003166706A (en) * 2001-11-29 2003-06-13 Mitsubishi Heavy Ind Ltd Combustion method and combustion device of stoker type incinerator
JP2004077014A (en) * 2002-08-15 2004-03-11 Jfe Engineering Kk Operation method of waste incinerator
JP2004085094A (en) * 2002-08-27 2004-03-18 Jfe Engineering Kk Incinerator
JP2004085093A (en) * 2002-08-27 2004-03-18 Jfe Engineering Kk Combustion air temperature control method for incinerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191539A (en) * 2015-03-31 2016-11-10 Jfeエンジニアリング株式会社 Stoker type waste incinerator and waste incineration method
KR101974150B1 (en) * 2018-04-27 2019-04-30 (주)이에스 Solid fuel combustion equipment
KR20200013957A (en) * 2018-07-31 2020-02-10 (주)이에스 Solid fuel incinerator
KR102196355B1 (en) * 2018-07-31 2020-12-30 (주)이에스 Solid fuel incinerator
CN109737445A (en) * 2019-01-06 2019-05-10 大唐(北京)能源管理有限公司 A kind of boiler exhaust smoke waste-heat utilization system of external First air heater

Also Published As

Publication number Publication date
JP5800237B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP6011295B2 (en) Waste incinerator and waste incineration method
JP6824642B2 (en) Waste incineration equipment and waste incineration method
JP2016191539A (en) Stoker type waste incinerator and waste incineration method
JP5818093B2 (en) Waste incinerator and waste incineration method
JP2004084981A (en) Waste incinerator
JP5800237B2 (en) Waste incinerator and waste incineration method
JP6146673B2 (en) Waste incinerator and waste incineration method
JP5861880B2 (en) Waste incinerator and waste incineration method
WO2013133290A1 (en) Grate-type waste incinerator and method for incinerating waste
JP2013164226A (en) Waste material incinerator and waste material incinerating method
JP5871207B2 (en) Waste incinerator and waste incineration method
JP2007163078A (en) Waste disposal method and device
JP6256859B2 (en) Waste incineration method
CN107687639A (en) Energy-saving waste combustion waste-heat recovery device
JP3582710B2 (en) Combustion method of stoker type incinerator and stoker type incinerator
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JP6455717B2 (en) Grate-type waste incinerator and waste incineration method
JP6146671B2 (en) Waste incinerator and waste incineration method
JP6218117B2 (en) Grate-type waste incinerator and waste incineration method
JP2019020084A (en) Waste incineration equipment and waste incineration method
JP2007078197A (en) Incinerator and incinerating method of waste
JP2015209992A (en) Waste incineration treatment equipment and waste incineration treatment method
JP6443758B2 (en) Grate-type waste incinerator and waste incineration method
JP5818094B2 (en) Waste incinerator
JP6183787B2 (en) Grate-type waste incinerator and waste incineration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150813

R150 Certificate of patent or registration of utility model

Ref document number: 5800237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350