JP2013237120A - Wc-based cemented carbide cutting tool excellent in chipping resistance - Google Patents

Wc-based cemented carbide cutting tool excellent in chipping resistance Download PDF

Info

Publication number
JP2013237120A
JP2013237120A JP2012111370A JP2012111370A JP2013237120A JP 2013237120 A JP2013237120 A JP 2013237120A JP 2012111370 A JP2012111370 A JP 2012111370A JP 2012111370 A JP2012111370 A JP 2012111370A JP 2013237120 A JP2013237120 A JP 2013237120A
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting
based cemented
cutting tool
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012111370A
Other languages
Japanese (ja)
Inventor
Manyasu Nishiyama
満康 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012111370A priority Critical patent/JP2013237120A/en
Publication of JP2013237120A publication Critical patent/JP2013237120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a WC-based cemented carbide cutting tool that has a sufficient cutting life and is excellent in chipping resistance and finished surface accuracy in high-speed intermittent cutting.SOLUTION: A cutting tool is made of a WC-based cemented carbide mainly consisting of WC and composed of a hard dispersed phase containing one or more of a carbide, a nitride, and a carbonitride of Ti, Ta, Mo, Nb, V, and Cr, and a binder metal phase comprising one or more of Co, Ni, Fe, and Al. The cutting tool is configured as follows: (a) the Hv of a flank face and a rake face is 1,600-1,800 while the Hv of a honing part is 1,900-2,200, (b) the surface roughness Ra of the flank face and the rake face is 0.15-0.30 μm while the surface roughness Ra of the honing part is 0.05-0.20 μm, and the surface roughness Ra of the flank face and the rake face is larger than the surface roughness Ra of the honing part, (c) the average particle size of WC particles in the WC cemented carbide is 0.5-3.0 μm and the content of the binder metal phase is 4-12 mass%.

Description

本発明は、WC基超硬合金製切削工具に関し、さらに詳しくは、すぐれた耐欠損性を有し、合金鋼、軸受鋼などの高硬度鋼の断続切削に用いた場合にも長期に亘ってすぐれた耐摩耗性を発揮するWC基超硬合金製切削工具に関するものである。   The present invention relates to a cutting tool made of a WC-based cemented carbide, and more specifically, has excellent fracture resistance, and even when used for intermittent cutting of high-hardness steel such as alloy steel and bearing steel. The present invention relates to a cutting tool made of a WC-based cemented carbide that exhibits excellent wear resistance.

一般に、切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルや、インサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, for cutting tools, inserts that are detachably attached to the tip of a tool for turning and planing of various materials such as steel and cast iron, chamfering, grooving, and shoulder processing There are known solid type end mills used for such as, and insert type end mills in which inserts are detachably attached and cut in the same manner as solid type end mills.

そして、切削工具の工具基体としては、従来からWCを主成分とし、さらに必要に応じて、Ti、Ta、Mo、Nb、V、Crの炭化物、窒化物、炭窒化物の1種または2種以上を含む硬質分散相と、Co、Ni、FeおよびAlのうち1種または2種以上からなる結合金属相とで構成されているWC基超硬合金を用いることが知られており、このWC基超硬合金を用いた切削工具が、鋼や鋳鉄などの荒仕上げ切削加工に用いられていることも知られている(例えば、特許文献1参考)。   And as a tool base of a cutting tool, WC is the main component from the past, and further, one or two types of carbides, nitrides, and carbonitrides of Ti, Ta, Mo, Nb, V, and Cr as required. It is known to use a WC-based cemented carbide composed of a hard dispersed phase containing the above and a bonded metal phase composed of one or more of Co, Ni, Fe and Al. It is also known that a cutting tool using a base cemented carbide is used for rough finishing cutting of steel or cast iron (for example, see Patent Document 1).

特開平5−230589号公報Japanese Patent Laid-Open No. 5-230589

近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、前記従来切削工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じない。しかし、これを合金鋼、軸受鋼の焼入れ材などのビッカース硬さ(Cスケール)50以上の高い硬さを有する高硬度鋼の高速断続切削(以下、単に「高速切削」という)に用いた場合には、高い靱性が求められるが、靱性を向上させるとその分硬さが低下する傾向がある。特に、ホーニング部近傍では切削抵抗が大きいため、硬さが低下すると摩耗が進みやすく、刃先の欠損が生じ、仕上げ面制度が安定しない。すなわち、WC基超硬合金の耐欠損性が十分でないために、刃先に欠損が生じて、切削寿命や仕上げ面精度が低下してしまうという課題があった。   In recent years, automation of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting is performed under higher speed conditions in addition to normal cutting conditions. However, in the conventional cutting tool, no particular problem occurs when various types of steel and cast iron are cut under normal conditions. However, when this is used for high-speed intermittent cutting (hereinafter simply referred to as “high-speed cutting”) of high-hardness steel having a hardness higher than 50 Vickers hardness (C scale) such as hardened material of alloy steel and bearing steel However, when the toughness is improved, the hardness tends to decrease accordingly. In particular, since the cutting resistance is large in the vicinity of the honing portion, if the hardness decreases, the wear easily proceeds, the cutting edge is damaged, and the finished surface system is not stable. That is, since the fracture resistance of the WC-based cemented carbide is not sufficient, there is a problem that the cutting edge is chipped and the cutting life and finished surface accuracy are lowered.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高硬度鋼の高速切削においても十分な切削寿命を奏する耐欠損性および仕上げ面精度にすぐれたWC基超硬合金製切削工具を提供することにある。   Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide a WC-based cemented carbide excellent in chipping resistance and finished surface accuracy that has a sufficient cutting life even in high-speed cutting of high hardness steel. It is to provide a cutting tool.

本発明者は、前述のような観点から、特に合金鋼、軸受鋼の焼入れ材などの高硬度鋼の高速切削加工で、WC基超硬合金がすぐれた耐欠損性を発揮する切削工具を開発すべく研究を行った結果、
(a)切削工具の逃げ面、すくい面、ホーニング部の硬さ、表面粗さRaを所定の値となるように調整する。
(b)WC基超硬合金を構成するWC粒子の粒径を所定の値に調整する。
(c)WC基超硬合金中の金属結合相の含有量を調整する。
前記(a)〜(c)の条件を満たす時、WC基超硬合金は、すぐれた耐欠損性を奏することを見出した。
From the above viewpoint, the present inventor has developed a cutting tool that exhibits excellent fracture resistance of WC-based cemented carbide, particularly in high-speed cutting of hardened steel such as alloy steel and hardened material of bearing steel. As a result of research,
(A) The cutting tool flank, rake face, honing hardness, and surface roughness Ra are adjusted to predetermined values.
(B) The particle size of the WC particles constituting the WC-based cemented carbide is adjusted to a predetermined value.
(C) The content of the metal binder phase in the WC-based cemented carbide is adjusted.
It has been found that when the conditions (a) to (c) are satisfied, the WC-based cemented carbide exhibits excellent fracture resistance.

さらに、本発明者は、前記(a)の条件は、WC基超硬合金の刃先に所定の条件のArボンバード処理を施すことにより達成できることを見出した。   Furthermore, the present inventor has found that the condition (a) can be achieved by subjecting the cutting edge of a WC-based cemented carbide alloy to Ar bombardment treatment under predetermined conditions.

本発明は、以上の研究成果に基づいて完成したものであって、
「 WCを主成分とし、Ti、Ta、Mo、Nb、V、Crの炭化物、窒化物、炭窒化物の1種または2種以上を含む硬質分散相と、Co、Ni、FeおよびAlのうち1種または2種以上を含む金属結合相とで構成されたWC基超硬合金を工具基体とするWC基超硬合金製切削工具であって、
(a)前記WC基超硬合金製切削工具の逃げ面、すくい面のビッカース硬さ(Hv)が1600〜1800、ホーニング部のビッカース硬さ(Hv)が1900〜2200、かつ、
(b)前記WC基超硬合金製切削工具の逃げ面、すくい面の表面粗さRaが0.15〜0.30μm、ホーニング部の表面粗さRaが0.05〜0.20μm、かつ、逃げ面およびすくい面の表面粗さRa>ホーニング部の表面粗さRa、かつ、
(c)前記WC超硬合金中のWC粒子の平均粒径が0.5〜3.0μmであり、かつ、金属結合相の含有量が4〜12質量%である
ことを特徴とするWC基超硬合金製切削工具。」
に特徴を有するものである。
ここで、本発明における表面粗さRaとは、JIS B0601−2001で規定されている算術平均粗さRa、すなわち、平均線から絶対値偏差の平均値を意味している。
The present invention has been completed based on the above research results,
“A hard dispersed phase mainly composed of WC and containing one or more of carbides, nitrides, and carbonitrides of Ti, Ta, Mo, Nb, V, and Cr, and Co, Ni, Fe, and Al. A WC-based cemented carbide cutting tool having a tool base made of a WC-based cemented carbide composed of one or more metal binder phases,
(A) The flank of the WC-base cemented carbide cutting tool, the Vickers hardness (Hv) of the rake face is 1600 to 1800, the Vickers hardness (Hv) of the honing part is 1900 to 2200, and
(B) The surface roughness Ra of the flank and rake face of the WC-based cemented carbide cutting tool is 0.15 to 0.30 μm, the surface roughness Ra of the honing part is 0.05 to 0.20 μm, and Surface roughness Ra of flank and rake face> Surface roughness Ra of honing portion, and
(C) WC group characterized in that an average particle diameter of WC particles in the WC cemented carbide is 0.5 to 3.0 μm and a content of a metal binder phase is 4 to 12% by mass. Cemented carbide cutting tool. "
It has the characteristics.
Here, the surface roughness Ra in the present invention means the arithmetic average roughness Ra defined by JIS B0601-2001, that is, the average value of the absolute value deviation from the average line.

つぎに、本発明のWC基超硬合金製切削工具において、これを構成するWC基超硬合金の構成成分、金属結合相の含有量、WC粒子の平均粒径を限定した理由を説明する。   Next, in the WC-based cemented carbide cutting tool of the present invention, the reason why the constituent components of the WC-based cemented carbide, the content of the metal binder phase, and the average particle size of the WC particles are limited will be described.

WC基超硬合金の構成成分:
本発明のWC基超硬合金は、WCを主成分とし、Ti、Ta、Mo、Nb、V、Crの炭化物、窒化物、炭窒化物の1種または2種以上を含む硬質分散相と、Co、Ni、FeおよびAlのうち1種または2種以上を含む金属結合相とから構成された焼結体である。
Components of WC-based cemented carbide:
The WC-based cemented carbide of the present invention has WC as a main component and includes a hard dispersed phase containing one or more of Ti, Ta, Mo, Nb, V, Cr carbide, nitride, carbonitride, It is a sintered body composed of a metal binder phase containing one or more of Co, Ni, Fe and Al.

硬質分散相中の各成分の含有量:
WC基超硬合金を構成する硬質分散相に含まれる各成分の含有量は特に限定しないが、各成分の含有量を変えることによりにWC基超硬合金の諸特性が変わることは言うまでもない。例えば、Crを含有させるとWC粒子の粒成長を抑制する効果を有する。その際のCr含有量は、0.1質量%以上、1.0質量%以下とすることが望ましい。0.1質量%未満では、含有量が少なく、WCの粒成長を十分に抑制できない。一方、1.0質量%を超えて多いと、Crが過多となり、Crの炭化物等の脆性相が超硬合金中に、多量に生成し、この化合物が破壊の起点となり、強度低下を引き起こしやすい。
Content of each component in the hard dispersed phase:
Although the content of each component contained in the hard dispersed phase constituting the WC-based cemented carbide is not particularly limited, it goes without saying that various properties of the WC-based cemented carbide change by changing the content of each component. For example, when Cr is contained, there is an effect of suppressing grain growth of WC particles. In this case, the Cr content is preferably 0.1% by mass or more and 1.0% by mass or less. If it is less than 0.1% by mass, the content is small and the grain growth of WC cannot be sufficiently suppressed. On the other hand, if it exceeds 1.0% by mass, Cr becomes excessive, and a brittle phase such as a carbide of Cr is produced in a large amount in the cemented carbide, and this compound becomes a starting point of fracture, which tends to cause a decrease in strength. .

金属結合相の含有量:
金属結合相の組成は、主成分が特にCoであることが好ましいが、Coの一部をNi、Fe等の他の鉄族元素やAlで置換してもよい。但し、金属結合相の含有量は、4質量%以上12質量%以下とする。その理由は、金属結合相の含有量が4質量%未満であると、硬質分散相中のCr、Ta等の含有量が適量であっても、WC基超硬合金全体の靱性が低下し、耐欠損性が低下する。一方、12質量%を超えて多いと、結合相量が多すぎるため、硬度が低下し、所望の耐摩耗性が得られない。
Content of metal binder phase:
In the composition of the metal bonded phase, the main component is particularly preferably Co. However, a part of Co may be substituted with other iron group elements such as Ni and Fe or Al. However, the content of the metal binder phase is 4% by mass or more and 12% by mass or less. The reason is that if the content of the metal binder phase is less than 4% by mass, the toughness of the entire WC-based cemented carbide decreases even if the content of Cr, Ta, etc. in the hard dispersed phase is an appropriate amount, Fracture resistance is reduced. On the other hand, if the amount exceeds 12% by mass, the amount of the binder phase is too large, so that the hardness is lowered and the desired wear resistance cannot be obtained.

本発明のWC基超硬合金は、硬質相のWC平均粒径を0.5μm以上3.0μm以下に規定する。この理由は、0.5μm未満の場合、WC基超硬合金全体の耐熱性、耐塑性変形性が低下してしまう。一方、3.0μmを超えるとWC基超硬合金全体の硬さが低下し所望の耐摩耗性が得られないことに加え、強度の低下による抗折力の低下を引き起こし易くなるからである。 In the WC-based cemented carbide of the present invention, the WC average particle size of the hard phase is specified to be 0.5 μm or more and 3.0 μm or less. The reason for this is that if the thickness is less than 0.5 μm, the heat resistance and plastic deformation resistance of the entire WC-based cemented carbide will decrease. On the other hand, if the thickness exceeds 3.0 μm, the hardness of the entire WC-based cemented carbide decreases and desired wear resistance cannot be obtained, and a decrease in bending strength due to a decrease in strength tends to occur.

なお、本発明のWC基超硬合金における各成分の含有量は、周知の分析方法、例えば、電子線マイクロアナライザー(EPMA)を用いて求めることができる。 The content of each component in the WC-based cemented carbide of the present invention can be determined using a well-known analysis method, for example, an electron beam microanalyzer (EPMA).

逃げ面、すくい面のビッカース硬さ(Hv)とホーニング部のビッカース硬さ(Hv):
本発明のWC基超硬合金は、逃げ面、すくい面のビッカース硬さ(Hv)を1600〜1800、ホーニング部のビッカース硬さ(Hv)を1900〜2200とする。その理由は、逃げ面、すくい面のビッカース硬さ(Hv)は、1600未満では自身の持つ耐摩耗性向上効果が得られないため好ましくなく、1800を超えると耐摩耗性は向上するがその分靱性が低下しチッピングが発生しやすくなる。したがって、1600〜1800と定めた。
また、ホーニング部においては、1900未満では所望の耐摩耗性向上効果が得られないため好ましくなく、2200を超えると耐摩耗性は向上するが、ホーニング部近傍での靱性が低下し、刃先での欠損が発生しやすくなる。したがって、1900〜2200と定めた。さらに、このように逃げ面、すくい面、ホーニング部のビッカース硬さ(Hv)を定めることによって、逃げ面およびすくい面のビッカース硬さ(Hv)の方が、ホーニング部のビッカース硬さ(Hv)よりも小さくなるので、ホーニング部のチッピングが生じにくくなる。すなわち、逃げ面、すくい面およびホーニング部のビッカース硬さ(Hv)を前記の関係とすることにより、切削時のホーニング部での衝撃を緩和することができ、切削時に最も切削抵抗が大きくなるホーニング部での剥離を抑制することができる。
Vickers hardness (Hv) of flank and rake face and Vickers hardness (Hv) of honing part:
In the WC-based cemented carbide of the present invention, the Vickers hardness (Hv) of the flank and rake face is 1600 to 1800, and the Vickers hardness (Hv) of the honing portion is 1900 to 2200. The reason for this is that the Vickers hardness (Hv) of the flank and rake face is less than 1600 because the effect of improving the wear resistance of the flank and rake face cannot be obtained. If it exceeds 1800, the wear resistance is improved. Toughness decreases and chipping is likely to occur. Therefore, it was set as 1600-1800.
Also, in the honing portion, if less than 1900, the desired effect of improving wear resistance is not obtained, and this is not preferable. If it exceeds 2200, the wear resistance is improved, but the toughness in the vicinity of the honing portion decreases, and the cutting edge Defects are likely to occur. Therefore, it was set to 1900-2200. Further, by determining the Vickers hardness (Hv) of the flank, rake face, and honing portion in this way, the Vickers hardness (Hv) of the flank and rake face is greater than the Vickers hardness (Hv) of the honing portion. Therefore, the honing part is less likely to be chipped. That is, by setting the flank, rake face, and Vickers hardness (Hv) of the honing part as described above, the impact at the honing part at the time of cutting can be mitigated, and the honing at which cutting resistance is maximized at the time of cutting. Peeling at the part can be suppressed.

WC基超硬合金の表面粗さRa:
WC基超硬合金の表面粗さRaは、逃げ面およびすくい面においては、0.15μm未満とすることは製造コストの上昇につながるため好ましくなく、0.30μmを超えると皮膜表面の切削抵抗が大きくなりチッピングが発生しやすくなるため、0.15μm以上0.30μm以下と定めた。また、ホーニング部においては、0.05μm未満とすることは製造コストの上昇につながるため好ましくなく、0.20μmを超えると皮膜表面の切削抵抗が大きくなりチッピングが発生しやすくなるため、0.05μm以上0.20μm以下と定めた。さらに、逃げ面およびすくい面の表面粗さRa>ホーニング部の表面粗さRaとすることにより、切削時のホーニング部での摩耗を緩和することができ、切削時に最も切削抵抗が大きくなるホーニング部での摩耗を抑制することができる。
Surface roughness Ra of WC-based cemented carbide:
It is not preferable that the surface roughness Ra of the WC-based cemented carbide is less than 0.15 μm on the flank and rake face because it leads to an increase in manufacturing cost. If it exceeds 0.30 μm, the cutting resistance on the coating surface Since it becomes large and chipping is likely to occur, it is set to 0.15 μm or more and 0.30 μm or less. Further, in the honing portion, it is not preferable that the thickness is less than 0.05 μm because it leads to an increase in manufacturing cost. If it exceeds 0.20 μm, the cutting resistance on the surface of the film increases and chipping is likely to occur. It was defined as 0.20 μm or less. Further, by setting the surface roughness Ra of the flank and the rake face> the surface roughness Ra of the honing portion, the wear in the honing portion at the time of cutting can be alleviated, and the honing portion in which the cutting resistance is maximized at the time of cutting. It is possible to suppress wear on the surface.

なお、逃げ面、すくい面のビッカース硬さ(Hv)を1600〜1800、ホーニング部のビッカース硬さ(Hv)を1900〜2200とし、逃げ面、すくい面の表面粗さRaを0.15〜0.30μm、ホーニング部の表面粗さRaを0.05〜0.20μm、かつ、逃げ面およびすくい面の表面粗さRa>ホーニング部の表面粗さRaとするためには、例えば、表面処理方法の一つであるArボンバード処理を行うことにより達成できる。   The flank and rake face have a Vickers hardness (Hv) of 1600 to 1800, the honing part has a Vickers hardness (Hv) of 1900 to 2200, and the flank and rake face have a surface roughness Ra of 0.15 to 0. In order to set the surface roughness Ra of the honing part to 0.05 to 0.20 μm and the surface roughness Ra of the flank and rake face> the surface roughness Ra of the honing part, for example, a surface treatment method This can be achieved by performing Ar bombardment treatment, which is one of the above.

ここで、Arボンバード処理とは、減圧状態の不活性ガス(ここでは、Arガス)放電中で形成された正イオン(Ar+ )を、負に印加したWC基超硬合金に衝突させ、正イオン(Ar+ )によるスパッタ効果で、表面にある付着不純物や薄い酸化皮膜層などを除去したり、表面を粗面化・活性化したり、含浸不純物(水分その他)を叩き出すために施す処理方法のことである。 Here, the Ar bombardment treatment means that positive ions (Ar +) formed in an inert gas (Ar gas in this case) discharge in a reduced pressure are collided with a negatively applied WC-based cemented carbide and are positively charged. A processing method applied to remove impurities and thin oxide film layers on the surface, roughen and activate the surface, and knock out impregnated impurities (moisture, etc.) by sputtering effect by ions (Ar +) That is.

Arボンバード処理のような比較的弱い表面処理を行うと、逃げ面すくい面はそれほど大きく影響を受けないが、ホーニング部はエッジ効果により大きくボンバードの効果が現れる。よってホーニング部に選択的に圧縮応力が大きくなり、硬さが向上する。一方、逃げ面、すくい面はホーニング部よりも圧縮残留応力が小さく、硬さの向上もあまり起こらないため、比較的高い靱性が維持され、逃げ面、すくい面での耐欠損性の維持、あるいはホーニング部近傍に発生する衝撃を緩和することができる。さらにホーニング部は平面が平滑になるため切削抵抗を低減することができ、長期に亘って安定した切削と仕上げ面精度の向上につながる。
よって、前述のように切削工具の部位ごとに制御された硬さの向上および平滑性の向上の相乗効果により、高硬度鋼の高速切削において長期に亘ってすぐれた耐摩耗性、仕上げ面精度を発揮することができる。
When a relatively weak surface treatment such as Ar bombardment is performed, the flank rake face is not significantly affected, but the honed portion has a large bombardment effect due to the edge effect. Therefore, the compressive stress is selectively increased in the honing portion, and the hardness is improved. On the other hand, the flank and rake face have smaller compressive residual stress than the honing part, and the hardness does not increase much, so relatively high toughness is maintained, and fracture resistance is maintained on the flank and rake face, or Impact generated in the vicinity of the honing portion can be reduced. Further, the honing portion has a smooth flat surface, so that cutting resistance can be reduced, leading to stable cutting over a long period of time and improvement of finished surface accuracy.
Therefore, as described above, the synergistic effect of improved hardness and smoothness controlled for each part of the cutting tool provides excellent wear resistance and finished surface accuracy over a long period of time in high-speed cutting of high-hardness steel. It can be demonstrated.

また、切れ刃のホーニング形状はどのような形状であっても、例えば丸ホーニング、チャンファーホーニングであっても、表面粗さ及び硬さを所定の値にすることにより上記効果を得ることができる。   Moreover, even if the honing shape of the cutting edge is any shape, for example, round honing or chamfer honing, the above-described effects can be obtained by setting the surface roughness and hardness to predetermined values. .

本発明のWC基超硬合金製切削工具は、WC基超硬合金のホーニング部の硬さが選択的に向上しているとともに、平滑性が向上している結果、高速断続切削においても長期に亘ってすぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を維持することができる。   The cutting tool made of WC-based cemented carbide according to the present invention has improved the hardness of the honing part of the WC-based cemented carbide selectively and has improved smoothness. In addition to exhibiting excellent wear resistance, it is possible to maintain excellent finished surface accuracy of the work material.

本発明のArボンバード処理を行うためのアークイオンプレーティング装置の概略説明図であり、(a)が上面図であり(b)が側面図である。It is a schematic explanatory drawing of the arc ion plating apparatus for performing the Ar bombardment process of this invention, (a) is a top view, (b) is a side view.

つぎに、本発明のWC基超硬合金製切削工具を実施例により具体的に説明する。   Next, the WC-based cemented carbide cutting tool of the present invention will be specifically described with reference to examples.

原料粉末として、0.5〜3.0μmの範囲内の平均粒径を有するWC粉末、Co粉末、VC粉末、Cr、TiC粉末、TaC粉末、NbC粉末を用意し、さらにワックスを加えてこれら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、圧粉体にプレス成形、ついでこの圧粉体を、1.3Paの真空雰囲気中、1380〜1480℃の範囲内の所定温度に1時間保持して焼結後、炉冷の条件で焼結し、超硬合金素材を製造した。さらにその後、砥石にて切れ刃部を所定寸法に外周加工し、切刃部に幅:0.13mm、角度:25°のチャンファーホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもったWC基超硬合金製切削工具基体A〜D(以下、工具基体A〜Dという)を形成した。 Prepare WC powder, Co powder, VC powder, Cr 3 C 2 , TiC powder, TaC powder, and NbC powder having an average particle diameter in the range of 0.5 to 3.0 μm as raw material powder, and add wax. These raw material powders were blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, press molded into a green compact, and then the green compact was placed in a 1.3 Pa vacuum atmosphere. A cemented carbide material was manufactured by holding at a predetermined temperature within a range of 1380 to 1480 ° C. for 1 hour and sintering, followed by sintering under furnace cooling conditions. Further, the outer periphery of the cutting edge is processed to a predetermined size with a grindstone, the chamfer honing process is performed on the cutting edge with a width of 0.13 mm and an angle of 25 °, and finish polishing is performed to further satisfy ISO standard SNGA120204. WC-based cemented carbide cutting tool bases A to D (hereinafter referred to as tool bases A to D) having an insert shape were formed.

(a)ついで、前記工具基体A〜Dのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、1〜2Paの雰囲気とする。
(c)前記テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、もって切削工具表面をArイオンによって30〜60sec.の間、ボンバード処理した後、30sec.の未処理の時間を設ける。
(d)前記(c)の処理を5〜20回繰り返す。本実施例で用いた(b)〜(c)のArボンバード処理条件を表2に処理条件a〜cとして示す。前記Arボンバード処理を行うことにより、本発明切削工具1〜10をそれぞれ製造した。
(A) Next, each of the tool bases A to D is subjected to ultrasonic cleaning in acetone and dried, and in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance away,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then Ar gas is introduced to make an atmosphere of 1 to 2 Pa.
(C) A DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the table, so that the cutting tool surface is irradiated with Ar ions for 30 to 60 sec. After bombarding for 30 sec. Of untreated time.
(D) The process of (c) is repeated 5 to 20 times. The Ar bombardment treatment conditions (b) to (c) used in this example are shown as treatment conditions a to c in Table 2. The cutting tools 1 to 10 of the present invention were manufactured by performing the Ar bombardment process.

(e)また、比較の目的で、前記工具基体A〜Dのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、
(f)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.4〜0.8Paまたは2.2〜3.0Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−50Vまたは−200Vの直流バイアス電圧を印加し、もって工具基体表面をArイオンによって80〜200sec.の間、ボンバード処理した後、30sec.の未処理の時間を設ける。
(g)前記(f)の処理を5〜20回繰り返す。本比較例で用いた(e)〜(f)のArボンバード処理条件を同じく表2に処理条件(d)〜(f)として示す。前記Arボンバード処理を行うことにより、比較切削工具1〜10をそれぞれ製造した。
(E) Further, for comparison purposes, each of the tool bases A to D is ultrasonically cleaned in acetone and dried, and the center on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer circumference at a predetermined distance in the radial direction from the shaft,
(F) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to obtain 0.4 to 0.8 Pa or 2 A DC bias voltage of −50 V or −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is irradiated with Ar ions for 80 to 200 sec. After bombarding for 30 sec. Of untreated time.
(G) The process of (f) is repeated 5 to 20 times. The Ar bombardment treatment conditions (e) to (f) used in this comparative example are also shown in Table 2 as treatment conditions (d) to (f). Comparative cutting tools 1 to 10 were manufactured by performing the Ar bombardment process.

得られた本発明切削工具1〜10、比較切削工具1〜10について、逃げ面、すくい面、ホーニング部について、ビッカース硬さ(Hv)、表面粗さRaを測定した。   Vickers hardness (Hv) and surface roughness Ra were measured for the flank, rake face, and honing part of the obtained cutting tools 1 to 10 and comparative cutting tools 1 to 10 of the present invention.

ここで、ビッカース硬さ(Hv)の測定は、ビッカース微小硬度計を用いて、測定荷重500gfで試料の各試験面(すくい面中央、逃げ面中央、ホーニング部中央)に押込み、生じた永久くぼみの大きさから測定する。本発明においては、前記各試験面中央から直径5mmの範囲で5点測定し平均値で評価した。   Here, the measurement of the Vickers hardness (Hv) was performed by using a Vickers microhardness meter to push into each test surface (center of the rake surface, center of the flank surface, center of the honing portion) of the sample with a measurement load of 500 gf. Measure from the size of. In the present invention, five points were measured within a diameter range of 5 mm from the center of each test surface, and the average value was evaluated.

また、表面粗さRaの測定は、レーザー顕微鏡を用いて10μm×10μmの範囲で測定し、それを各測定箇所で10点ずつ測定してその平均を算出した。またカットオフ値はλsを0.25μm、λcを0.25mmとした。   The surface roughness Ra was measured using a laser microscope in the range of 10 μm × 10 μm, and 10 points were measured at each measurement point to calculate the average. The cut-off values were λs of 0.25 μm and λc of 0.25 mm.

これらの結果について、表3に示した。   These results are shown in Table 3.

つぎに、前記各種の切削工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明切削工具1〜10および比較切削工具1〜10について切削条件A〜Bで高速断続切削試験を実施した。
[切削条件A]
被削材:JIS・SKD11の4本縦溝入れ丸棒、
切削速度: 200m/min.、
切り込み: 0.20mm、
送り: 0.15mm/rev.、
切削時間: 4分、
の条件での高硬度鋼の乾式高速断続切削加工試験(通常の切削速度は100m/min.)、
[切削条件B]
被削材:JIS・SKD11の4本縦溝入れ丸棒、
切削速度: 220m/min.、
切り込み: 0.15mm、
送り: 0.15m/rev.、
切削時間: 4分、
の条件での高硬度鋼の乾式高速断続切削加工試験(通常の切削速度は100m/min.)
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)と被削材の仕上げ面精度(JIS B0601−2001による算術平均粗さRa(μm))を測定した。この測定結果を表4に示した。
Next, the cutting conditions A to 10 of the present invention cutting tools 1 to 10 and the comparative cutting tools 1 to 10 with the various cutting tools screwed to the tip of the tool steel tool with a fixing jig. A high-speed intermittent cutting test was conducted at B.
[Cutting conditions A]
Work material: JIS · SKD11 4 fluted round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 0.20mm,
Feed: 0.15 mm / rev. ,
Cutting time: 4 minutes
Dry high-speed intermittent cutting test of high hardness steel under the conditions of (normal cutting speed is 100 m / min.),
[Cutting conditions B]
Work material: JIS · SKD11 4 fluted round bar,
Cutting speed: 220 m / min. ,
Cutting depth: 0.15mm,
Feed: 0.15 m / rev. ,
Cutting time: 4 minutes
Dry high-speed intermittent cutting test of high hardness steel under normal conditions (normal cutting speed is 100 m / min.)
In each cutting test, the flank wear width (mm) of the cutting edge and the finished surface accuracy (arithmetic mean roughness Ra (μm) according to JIS B0601-2001) of the work material were measured. The measurement results are shown in Table 4.

表2〜4に示される結果から、本発明切削工具は、いずれも、逃げ面、すくい面、ホーニング部の表面粗さおよびビッカース硬さ(Hv)を制御しているので、合金鋼、軸受鋼の焼入れ鋼等の高硬度鋼の高速断続切削加工でも、境界異常損傷およびチッピングの発生なく、すぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を確保することができるのに対して、比較切削工具は、いずれも、本発明切削工具と異なり、逃げ面、すくい面、ホーニング部の表面粗さおよびビッカース硬さ(Hv)が制御されておらず、その結果、特に、ホーニング部の硬さが十分でないために、刃先に境界異常損傷やチッピングが発生し、被削材の仕上げ面精度を維持することができないばかりか、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 2 to 4, the cutting tools of the present invention all control the flank, rake face, honing surface roughness and Vickers hardness (Hv), so alloy steel, bearing steel Even in high-speed interrupted cutting of hardened steel such as hardened steel, excellent wear resistance can be achieved without causing abnormal boundary damage and chipping, and excellent finished surface accuracy of the work material can be secured. On the other hand, all the comparative cutting tools, unlike the cutting tool of the present invention, the flank, rake face, honing part surface roughness and Vickers hardness (Hv) are not controlled. It is clear that the hardness of the honing part is not sufficient, leading to abnormal boundary damage and chipping at the cutting edge, not only maintaining the finished surface accuracy of the work material but also reaching the service life in a relatively short time. Et It is.

前述のように、本発明のWC基超硬合金製切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金鋼、軸受鋼の焼入れ材等のような高硬度鋼の、高熱発生を伴い切刃部にきわめて大きな断続的・衝撃的な機械的負荷が加わる高速断続切削であっても、WC基超硬合金がすぐれた耐欠損性を発揮し、すぐれた被削材仕上げ面精度を長期に亘って維持するとともにすぐれた耐摩耗性をも示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the WC-based cemented carbide cutting tool according to the present invention can be used not only for cutting under normal cutting conditions such as various types of steel and cast iron, but particularly for hardened materials of alloy steel and bearing steel. WC-based cemented carbide shows excellent fracture resistance even in high-speed intermittent cutting of high-hardness steel, even with high-speed intermittent cutting in which extremely large intermittent and impact mechanical loads are applied to the cutting edge with high heat generation, Maintains excellent surface finish accuracy of the work material for a long period of time and also exhibits excellent wear resistance, so that the performance of the cutting device is improved, and the labor and energy saving of the cutting work is further reduced, and the cost is lower. It is possible to cope with the conversion sufficiently satisfactorily.

Claims (1)

WCを主成分とし、Ti、Ta、Mo、Nb、V、Crの炭化物、窒化物、炭窒化物の1種または2種以上を含む硬質分散相と、Co、Ni、FeおよびAlのうち1種または2種以上を含む金属結合相とで構成されたWC基超硬合金を工具基体とするWC基超硬合金製切削工具であって、
(a)前記WC基超硬合金製切削工具の逃げ面、すくい面のビッカース硬さ(Hv)が1600〜1800、ホーニング部のビッカース硬さ(Hv)が1900〜2200、かつ、
(b)前記WC基超硬合金製切削工具の逃げ面、すくい面の表面粗さRaが0.15〜0.30μm、ホーニング部の表面粗さRaが0.05〜0.20μm、かつ、逃げ面およびすくい面の表面粗さRa>ホーニング部の表面粗さRa、かつ、
(c)前記WC超硬合金中のWC粒子の平均粒径が0.5〜3.0μmであり、かつ、金属結合相の含有量が4〜12質量%である
ことを特徴とするWC基超硬合金製切削工具。
A hard dispersed phase mainly composed of WC and containing one or more of carbides, nitrides, and carbonitrides of Ti, Ta, Mo, Nb, V, and Cr, and one of Co, Ni, Fe, and Al A WC-based cemented carbide cutting tool having a WC-based cemented carbide composed of a seed or a metal binder phase containing two or more types as a tool base,
(A) The flank of the WC-base cemented carbide cutting tool, the Vickers hardness (Hv) of the rake face is 1600 to 1800, the Vickers hardness (Hv) of the honing part is 1900 to 2200, and
(B) The surface roughness Ra of the flank and rake face of the WC-based cemented carbide cutting tool is 0.15 to 0.30 μm, the surface roughness Ra of the honing part is 0.05 to 0.20 μm, and Surface roughness Ra of flank and rake face> Surface roughness Ra of honing portion, and
(C) WC group characterized in that an average particle diameter of WC particles in the WC cemented carbide is 0.5 to 3.0 μm and a content of a metal binder phase is 4 to 12% by mass. Cemented carbide cutting tool.
JP2012111370A 2012-05-15 2012-05-15 Wc-based cemented carbide cutting tool excellent in chipping resistance Pending JP2013237120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111370A JP2013237120A (en) 2012-05-15 2012-05-15 Wc-based cemented carbide cutting tool excellent in chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111370A JP2013237120A (en) 2012-05-15 2012-05-15 Wc-based cemented carbide cutting tool excellent in chipping resistance

Publications (1)

Publication Number Publication Date
JP2013237120A true JP2013237120A (en) 2013-11-28

Family

ID=49762628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111370A Pending JP2013237120A (en) 2012-05-15 2012-05-15 Wc-based cemented carbide cutting tool excellent in chipping resistance

Country Status (1)

Country Link
JP (1) JP2013237120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033757A (en) * 2013-06-26 2015-02-19 日立金属株式会社 Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same
CN109496238A (en) * 2016-06-23 2019-03-19 山特维克海博锐股份有限公司 Corrosion-resistant and antifatigue hard alloy process the Line tool
CN112831705A (en) * 2019-11-22 2021-05-25 森拉天时卢森堡有限公司 Tungsten carbide based cemented hard material
CN113894709A (en) * 2021-09-16 2022-01-07 郑州市钻石精密制造有限公司 Honing strip for processing diesel engine and manufacturing method thereof
CN114845828A (en) * 2019-12-20 2022-08-02 山特维克科洛曼特公司 Cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033757A (en) * 2013-06-26 2015-02-19 日立金属株式会社 Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same
CN109496238A (en) * 2016-06-23 2019-03-19 山特维克海博锐股份有限公司 Corrosion-resistant and antifatigue hard alloy process the Line tool
CN112831705A (en) * 2019-11-22 2021-05-25 森拉天时卢森堡有限公司 Tungsten carbide based cemented hard material
CN114845828A (en) * 2019-12-20 2022-08-02 山特维克科洛曼特公司 Cutting tool
CN113894709A (en) * 2021-09-16 2022-01-07 郑州市钻石精密制造有限公司 Honing strip for processing diesel engine and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP2823920A1 (en) Surface coating cutting tool
WO2014163081A1 (en) Surface-coated cutting tool
EP2656948B1 (en) Cutting tool
JP6421934B2 (en) Surface coated cutting tool with excellent abnormal damage resistance and wear resistance
JP2013237120A (en) Wc-based cemented carbide cutting tool excellent in chipping resistance
JP5686253B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP5402507B2 (en) Surface coated cutting tool
JP5850400B2 (en) Surface coated cutting tool
KR102186966B1 (en) Surface-coated cutting tool
JP6604138B2 (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance with a hard coating layer and method for producing the same
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP2007253271A (en) Cutting tool made from surface coated cubic boron nitride group ultra high pressure sintering material with excellent finished surface accuracy
JP2013107187A (en) Cutting tool made of surface-coated wc-based cemented carbide
JP2017047526A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP5850393B2 (en) Surface coated cutting tool
CN104858458A (en) Surface Coating Cutting Tool Having Excellent Abnormal Damage Resistance And Wear Resistance
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5978671B2 (en) Replaceable cutting edge
JP5831708B2 (en) Surface coated cutting tool
JP2013184274A (en) Cutting edge-replaceable cutting tip
JP2012210672A (en) End mill exhibiting excellent wear resistance
JP6090033B2 (en) Surface coated cutting tool
JP2011195846A (en) Surface-coated cutting tool made from wc-base cemented carbide
JP6090034B2 (en) Surface coated cutting tool
JP2015020216A (en) Surface-coated cutting tool