JP2013231689A - Quantification method for coverage of core-shell particles, and manufacturing method for core-shell particles - Google Patents

Quantification method for coverage of core-shell particles, and manufacturing method for core-shell particles Download PDF

Info

Publication number
JP2013231689A
JP2013231689A JP2012104504A JP2012104504A JP2013231689A JP 2013231689 A JP2013231689 A JP 2013231689A JP 2012104504 A JP2012104504 A JP 2012104504A JP 2012104504 A JP2012104504 A JP 2012104504A JP 2013231689 A JP2013231689 A JP 2013231689A
Authority
JP
Japan
Prior art keywords
particles
core
shell
metal material
coverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012104504A
Other languages
Japanese (ja)
Other versions
JP5673598B2 (en
Inventor
Makoto Adachi
誠 安達
Hiroko Kimura
紘子 木村
Naoki Takehiro
直樹 竹広
Takumi Taniguchi
拓未 谷口
Hiroyuki Kawai
博之 川合
Atsuo Iio
敦雄 飯尾
Tatsuya Arai
竜哉 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012104504A priority Critical patent/JP5673598B2/en
Publication of JP2013231689A publication Critical patent/JP2013231689A/en
Application granted granted Critical
Publication of JP5673598B2 publication Critical patent/JP5673598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a more accurate quantification method for a shell coverage of core-shell particles, and a manufacturing method for core-shell particles to which the quantification method is applied.SOLUTION: An open-circuit potential of core-shell particles is measured, and for a mixed sample obtained by mixing particles of core metal material and particles of shell metal material, the sample having the same open-circuit potential as the measured value of the open-circuit potential of the core-shell particles, the ratio of the surface area of the particles of shell metal material to the sum of the surface area of the particles of core metal material and the surface area of the particles of shell metal material, is determined as a coverage of the core-shell particles.

Description

本発明は、コアシェル粒子の被覆率定量方法および当該定量方法を用いたコアシェル粒子の製造方法に関する。   The present invention relates to a method for determining the coverage of core-shell particles and a method for producing core-shell particles using the method.

燃料電池は、燃料と酸化剤を電気的に接続された2つの電極に供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。そのため、燃料電池はカルノーサイクルの制約を受けないので、高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で挟持した膜電極接合体を基本構造とする単セルを複数積層して構成されている。   A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Therefore, since the fuel cell is not subject to the Carnot cycle, it exhibits high energy conversion efficiency. A fuel cell is usually configured by laminating a plurality of single cells having a basic structure of a membrane electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes.

従来、燃料電池に用いられる電極触媒としては、触媒活性の高い白金触媒及び白金合金触媒が採用されてきた。しかし、白金は価格が高く、資源量も少ないという問題があり、白金量の低減が求められている。
一方、白金を用いた触媒は非常に高価であるにもかかわらず、触媒反応は粒子表面のみで生じ、粒子内部は触媒反応にほとんど関与しない。したがって、白金を用いた触媒における、材料コストに対する触媒活性は、必ずしも高くなかった。
Conventionally, platinum catalysts and platinum alloy catalysts having high catalytic activity have been employed as electrode catalysts used in fuel cells. However, there is a problem that platinum is expensive and has a small amount of resources, and a reduction in the amount of platinum is required.
On the other hand, although the catalyst using platinum is very expensive, the catalytic reaction occurs only on the particle surface, and the inside of the particle hardly participates in the catalytic reaction. Therefore, the catalyst activity with respect to material cost in the catalyst using platinum was not necessarily high.

上記課題の解決を目的とした技術の1つとして、担体に高分散担持された異種金属(コア金属)粒子上に白金単原子層(シェル)を被覆してなる白金コアシェル粒子触媒が注目されている。なお、「単原子層」とは、通常、単原子の層のことをいうが、厚み方向に原子数個分の層を含む。当該コアシェル粒子においては、コア金属材料に比較的安価な材料を用いることにより、触媒反応にほとんど関与しない粒子内部のコストを低く抑えることができる。
従来、白金のシェルを形成する方法として、コア金属粒子の表面に銅のような白金より低い還元電位をもつ金属の単原子層を形成し(アンダーポテンシャル析出法(UPD法))、その後に白金と置換させる方法(置換メッキ法)が一般的である。
しかしながら、触媒量産時には、材料に均一に電子が伝達されないことや、反応物質が十分に供給されないなどの理由から、白金のシェル被覆が十分にされない場合がある。白金のシェル被覆が十分でない場合、コア金属粒子が露出した部分の触媒活性が低く、触媒性能の低下につながる。また、燃料電池内などの酸性雰囲気下では、触媒表面に露出したコア金属粒子が継続的に溶出するため、材料の耐久性にも問題が生じる。
このため、白金コアシェル粒子触媒を製造する際に、コアシェル粒子の被覆率を正確に定量し、被覆率の高いコアシェル粒子を選択的に採用することの重要性が増している。
ここで、「コアシェル粒子の被覆率」とは、コア金属材料を含むコア部の全表面積に対する、シェル金属材料を含むシェル部によって被覆されているコア部の表面積の割合(%)を指す。
As one of the techniques aimed at solving the above problems, a platinum core-shell particle catalyst in which a platinum monoatomic layer (shell) is coated on a dissimilar metal (core metal) particle supported in a highly dispersed manner on a carrier has attracted attention. Yes. The “monoatomic layer” usually refers to a monoatomic layer, but includes a layer of several atoms in the thickness direction. In the core-shell particle, by using a relatively inexpensive material for the core metal material, the cost inside the particle that hardly participates in the catalytic reaction can be kept low.
Conventionally, as a method of forming a platinum shell, a metal monoatomic layer having a reduction potential lower than that of platinum such as copper is formed on the surface of the core metal particle (underpotential deposition method (UPD method)), and then platinum. Is generally used (substitution plating method).
However, at the time of mass production of the catalyst, there is a case where the platinum shell is not sufficiently coated due to the reason that electrons are not uniformly transmitted to the material and the reactant is not sufficiently supplied. If the platinum shell coating is not sufficient, the catalytic activity of the exposed portions of the core metal particles is low, leading to a decrease in catalyst performance. In addition, in an acidic atmosphere such as in a fuel cell, the core metal particles exposed on the catalyst surface are continuously eluted, which causes a problem in material durability.
For this reason, when manufacturing a platinum core-shell particle catalyst, the importance of accurately quantifying the coverage of the core-shell particles and selectively adopting the core-shell particles having a high coverage is increasing.
Here, the “coverage ratio of the core-shell particles” refers to the ratio (%) of the surface area of the core part covered by the shell part including the shell metal material to the total surface area of the core part including the core metal material.

電極触媒の表面積の測定法としては、サイクリックボルタンメトリー(以下、CVと称する場合がある。)によって測定された波形に基づいて、電気化学表面積を算出する方法が広く知られている。電気化学表面積は、単位質量当たりに規格化された表面積(通常「cm/g」)である。よって、ある電気化学表面積を有する電極触媒の全体の表面積は、電気化学表面積の値に、電極触媒の総質量を乗じることによって算出できる。
また、電極触媒の平均粒径など何らかの定義に従う粒子サイズを測定し、その粒子サイズに基づいて当該電極触媒の表面積を算出することも行われている。
従来の白金触媒及び白金合金触媒においては、触媒全体が均一な元素組成を有する。そのため、触媒表面の凹凸の有無にかかわらず、CV等の測定結果を用いて触媒の表面積を算出することができた。
As a method for measuring the surface area of an electrode catalyst, a method of calculating an electrochemical surface area based on a waveform measured by cyclic voltammetry (hereinafter sometimes referred to as CV) is widely known. The electrochemical surface area is a normalized surface area per unit mass (usually “cm 2 / g”). Therefore, the total surface area of the electrode catalyst having a certain electrochemical surface area can be calculated by multiplying the value of the electrochemical surface area by the total mass of the electrode catalyst.
In addition, the particle size according to some definition such as the average particle diameter of the electrode catalyst is measured, and the surface area of the electrode catalyst is calculated based on the particle size.
In conventional platinum catalysts and platinum alloy catalysts, the entire catalyst has a uniform elemental composition. Therefore, the surface area of the catalyst could be calculated using the measurement results such as CV regardless of the presence or absence of unevenness on the catalyst surface.

特開2011−212666号公報JP 2011-212666 A

しかし、コアシェル粒子の最表面は、シェルが被覆している部分と、シェルの欠陥部すなわちコアが露出している部分とで構成される。そのためコアシェル粒子についてCVを行った場合に測定されるCV波形は、シェル部に起因する波形とコアが露出している部分に起因する波形とが合成されたものである。コアシェル粒子そのもののCV波形に基づいて電気化学表面積を算出したとしても、コアシェル粒子のシェル部のみの表面積を当該電気化学表面積に基づいて算出することはできない。従って、コアシェル粒子の被覆率を定量することができないという問題がある。
また、電気化学的測定法以外の方法でコアシェル粒子の表面積を測定又は計算する場合も、やはりコアシェル粒子表面のシェル部のみの表面積を測定することは不可能である。
However, the outermost surface of the core-shell particle is composed of a portion covered by the shell and a defect portion of the shell, that is, a portion where the core is exposed. Therefore, the CV waveform measured when CV is performed on the core-shell particles is a combination of the waveform caused by the shell portion and the waveform caused by the portion where the core is exposed. Even if the electrochemical surface area is calculated based on the CV waveform of the core-shell particle itself, the surface area of only the shell portion of the core-shell particle cannot be calculated based on the electrochemical surface area. Therefore, there is a problem that the coverage of the core-shell particles cannot be quantified.
Further, when the surface area of the core-shell particle is measured or calculated by a method other than the electrochemical measurement method, it is impossible to measure the surface area of only the shell portion on the surface of the core-shell particle.

特許文献1の明細書の段落[0018]には、白金被覆後の金粒子に関する白金被覆率を求める式として、下記式(A)が開示されている。
被覆率(%)={[(Auのピーク面積)−(Pt/Auのピーク面積)]/(Auのピーク面積)}×100 式(A)
(上記式(A)中、「Auのピーク面積」とは、白金被覆前の金粒子(Au)についてのサイクリックボルタモグラムにおける金酸化物の還元ピーク面積を、「Pt/Auのピーク面積」とは、白金被覆後の金粒子(Pt/Au)についてのサイクリックボルタモグラムにおける金酸化物の還元ピーク面積を、それぞれ示す。)
上記式(A)によれば、白金被覆前後において、サイクリックボルタモグラムにおける金酸化物の還元ピーク面積の変化率が、白金被覆率とされている。
しかし、上記特許文献1に開示の被覆率定量方法は、白金被覆前の金酸化物の還元ピーク面積と白金被覆後の金酸化物の還元ピーク面積を算出して、白金被覆前と白金被覆後の金酸化物の還元ピーク面積比に基づいて被覆率を定量しているだけで、コア部の露出面積やシェル部の面積を直接算出しているわけではない。
そのため、当該方法は、特定の検出しやすいピーク面積があるコア金属材料を用いた場合にしか、被覆率を定量することができない。
In paragraph [0018] of the specification of Patent Document 1, the following formula (A) is disclosed as a formula for obtaining a platinum coverage with respect to gold particles after platinum coating.
Coverage (%) = {[(Au peak area) − (Pt / Au peak area)] / (Au peak area)} × 100 Formula (A)
(In the above formula (A), “Au peak area” refers to the reduction peak area of gold oxide in the cyclic voltammogram for gold particles (Au) before platinum coating, “Pt / Au peak area”). Indicates the reduction peak area of the gold oxide in the cyclic voltammogram for the gold particles (Pt / Au) after platinum coating.
According to the above formula (A), the rate of change of the reduction peak area of the gold oxide in the cyclic voltammogram before and after the platinum coating is the platinum coating rate.
However, the method for determining the coverage ratio disclosed in Patent Document 1 calculates the reduction peak area of the gold oxide before platinum coating and the reduction peak area of the gold oxide after platinum coating, and before and after platinum coating. However, the exposed area of the core part and the area of the shell part are not directly calculated merely by determining the coverage based on the reduction peak area ratio of the gold oxide.
Therefore, this method can quantify the coverage only when a core metal material having a specific easily detectable peak area is used.

また、銅−アンダーポテンシャル析出法(Cu−UPD法)を用いて白金コアシェル粒子触媒を製造した際に、シェル部に欠陥が生じる理由としては、犠牲材となる銅層の形成時に既に欠陥が生じている場合や、銅層の形成後、銅の白金への置換がコア金属上の同位置で行われず、白金が偏析する場合等が考えられる。
しかし、上記特許文献1に開示の被覆率定量方法に頼らない、従来の被覆率定量方法では、被覆率を触媒製造過程で簡易的に定量することができないため、触媒製造後に、X線回折(XRD)分析、透過型電子顕微鏡(TEM)観察や触媒の性能評価によって総合的に被覆率を類推している。
そのため、複数種類の測定を行うことで、良品判断に要する解析時間が長くなる。さらに、複数種類の測定結果から総合的に被覆率を類推するため、被覆率定量の精度が低く、製造した触媒の活性性能、耐久性に大きなばらつきが生じるという問題がある。
本発明は、上記実情を鑑み成し遂げられたものであり、良品判断に要する解析時間が短く、被覆率定量の精度が向上する被覆率定量方法、および、当該定量方法を用いたコアシェル粒子の製造方法を提供することを目的とする。
In addition, when the platinum core-shell particle catalyst is produced using the copper-underpotential deposition method (Cu-UPD method), the reason why the shell portion has a defect is that a defect has already occurred during the formation of the copper layer as a sacrificial material. In some cases, after the formation of the copper layer, the replacement of copper with platinum is not performed at the same position on the core metal, and platinum is segregated.
However, in the conventional coverage quantification method that does not rely on the coverage quantification method disclosed in Patent Document 1, the coverage cannot be easily quantified in the catalyst production process. The total coverage is estimated by XRD analysis, transmission electron microscope (TEM) observation, and catalyst performance evaluation.
Therefore, the analysis time required for non-defective product determination becomes longer by performing a plurality of types of measurements. Furthermore, since the coverage is comprehensively estimated from a plurality of types of measurement results, there is a problem that the accuracy of coverage determination is low, and there is a large variation in the activity performance and durability of the produced catalyst.
The present invention has been accomplished in view of the above-described circumstances, the analysis time required for non-defective product determination is short, the coverage quantification method in which the accuracy of coverage quantification is improved, and the method for producing core-shell particles using the quantification method The purpose is to provide.

本発明においては、コア金属材料を含むコア部と、シェル金属材料を含み且つ前記コア部を被覆するシェル部を備えるコアシェル粒子の被覆率を定量する方法であって、
コアシェル粒子の開回路電位を測定し、
コア金属材料の粒子とシェル金属材料の粒子を混合してなる混合試料であって、前記コアシェル粒子の開回路電位の測定値と同じ開回路電位を有するものに含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合を、コアシェル粒子の被覆率と判断することを特徴とする、コアシェル粒子の被覆率定量方法を提供する。
In the present invention, a method for quantifying the coverage of core-shell particles comprising a core part containing a core metal material and a shell part containing a shell metal material and covering the core part,
Measure the open circuit potential of the core-shell particles,
Surface area of the particles of the core metal material contained in the mixed sample formed by mixing the particles of the core metal material and the particles of the shell metal material having the same open circuit potential as the measured value of the open circuit potential of the core shell particle The ratio of the surface area of the particles of the shell metal material to the total surface area of the particles of the shell metal material is determined as the coverage of the core-shell particles.

本発明の代表的な実施態様においては、コアシェル粒子の開回路電位を測定する工程と、コア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比が異なる複数の混合試料からなる混合試料群において、混合比と開回路電位の関係を示すデータ群を準備する工程と、
前記コアシェル粒子の開回路電位の測定値をデータ群と照合し、同じ開回路電位を示す混合試料を特定する工程を有し、
特定した混合試料に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対する、シェル金属材料の粒子の表面積の割合を、コア金属材料の粒子の単位質量当たり面積、シェル金属材料の粒子の単位質量当たり面積、及び、コア金属材料の粒子とシェル金属材料の粒子の混合比に基づいて計算し、得られた計算値をコアシェル粒子の被覆率と判断することができる。
In a typical embodiment of the present invention, the method comprises a step of measuring an open circuit potential of a core-shell particle, and a plurality of mixed samples having different mixing ratios expressed by masses of the core metal material particles and the shell metal material particles. In the mixed sample group, preparing a data group indicating the relationship between the mixing ratio and the open circuit potential;
Collating the measured value of the open-circuit potential of the core-shell particles with a data group, and identifying a mixed sample exhibiting the same open-circuit potential;
The ratio of the surface area of the particles of the core metal material to the total surface area of the particles of the core metal material and the shell metal material contained in the specified mixed sample is expressed as the area per unit mass of the core metal material particles, the shell metal Calculation is based on the area per unit mass of the particles of the material and the mixing ratio of the particles of the core metal material and the particles of the shell metal material, and the calculated value can be determined as the coverage of the core-shell particles.

本発明においては、前記コア金属材料が、パラジウム、銅、ニッケル、ロジウム、銀、金およびイリジウム並びにこれらから選ばれる金属を含む合金からなる群より選ばれる金属材料であることが好ましい。
本発明においては、前記シェル金属材料が、白金、イリジウム、ルテニウム、ロジウムおよび金並びにこれらから選ばれる金属を含む合金からなる群より選ばれる金属材料であることが好ましい。
In the present invention, the core metal material is preferably a metal material selected from the group consisting of palladium, copper, nickel, rhodium, silver, gold, iridium, and an alloy containing a metal selected from these.
In the present invention, the shell metal material is preferably a metal material selected from the group consisting of platinum, iridium, ruthenium, rhodium and gold and an alloy containing a metal selected from these.

本発明においては、コア金属材料としてパラジウムを含むコア部と、シェル金属材料として白金を含み且つ前記コア部を被覆するシェル部を備えるコアシェル粒子の被覆率を定量する方法であって、
コアシェル粒子の開回路電位を測定する工程と、
平均粒径が4nm以上10nm以下かつ平均粒径の差が1nm以内であるパラジウム粒子及び白金粒子を、物質量で表される混合比を異ならしめて混合した複数の混合試料からなる混合試料群において、混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合と、開回路電位の関係を示すデータ群を準備する工程と、
前記コアシェル粒子の開回路電位の測定値を前記データ群と照合し、同じ開回路電位を示す混合試料を特定する工程を有し、
特定した混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合を、コアシェル粒子の被覆率と判断することを特徴とする、コアシェル粒子の被覆率定量方法を提供する。
In the present invention, a core portion containing palladium as a core metal material, and a method for quantifying the coverage of core-shell particles comprising platinum as a shell metal material and a shell portion covering the core portion,
Measuring the open circuit potential of the core-shell particles;
In a mixed sample group consisting of a plurality of mixed samples in which palladium particles and platinum particles having an average particle diameter of 4 nm to 10 nm and an average particle diameter difference of 1 nm or less are mixed at different mixing ratios represented by substance amounts, A step of preparing a data group indicating a relationship between a ratio of a substance amount of platinum particles to a sum of a substance amount of palladium particles and a substance amount of platinum particles contained in the mixed sample, and an open circuit potential;
Collating the measured value of the open circuit potential of the core-shell particles with the data group, and identifying a mixed sample exhibiting the same open circuit potential,
Coverage quantification of core-shell particles, characterized in that the ratio of the amount of platinum particles to the total amount of palladium particles and platinum particles contained in the specified mixed sample is determined as the core-shell particle coverage. Provide a method.

本発明においては、コアシェル粒子の製造方法であって、コア金属材料を含むコア部を、シェル金属材料を含むシェル部で被覆した後、前記被覆率定量方法により被覆率を定量し、その定量値が所定値未満である場合に、シェル金属材料を追加被覆することを特徴とする、コアシェル粒子の製造方法を提供する。   In the present invention, a method for producing core-shell particles, in which a core portion containing a core metal material is coated with a shell portion containing a shell metal material, and then the coverage is quantified by the coverage quantification method. A method for producing core-shell particles is provided, wherein the shell metal material is additionally coated when is less than a predetermined value.

本発明によれば、コアシェル粒子の被覆率の定量の精度を向上し、コアシェル粒子の良品判断に要する解析時間を短くすることができるコアシェル粒子の被覆率定量方法、及び、当該被覆率定量方法を用いたコアシェル粒子の製造方法を提供することができる。   According to the present invention, there is provided a core-shell particle coverage quantification method capable of improving the accuracy of core-shell particle coverage quantification and shortening the analysis time required for non-defective determination of core-shell particles, and the coverage quantification method. The manufacturing method of the used core-shell particle can be provided.

開回路電位測定を行う電気化学装置を示した斜視模式図である。It is the isometric view schematic diagram which showed the electrochemical apparatus which performs open circuit electric potential measurement. コアシェル粒子の製造方法の典型例を示したフローチャートである。It is the flowchart which showed the typical example of the manufacturing method of core-shell particle. 実施例1における検量線を示す図である。FIG. 3 is a diagram showing a calibration curve in Example 1.

1.コアシェル粒子の被覆率定量方法
本発明のコアシェル粒子の被覆率定量方法は、コア金属材料を含むコア部と、シェル金属材料を含み且つ前記コア部を被覆するシェル部を備えるコアシェル粒子の被覆率を定量する方法であって、
コアシェル粒子の開回路電位を測定し、
コア金属材料の粒子とシェル金属材料の粒子を混合してなる混合試料であって、前記コアシェル粒子の開回路電位の測定値と同じ開回路電位を有するものに含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合を、コアシェル粒子の被覆率と判断することを特徴とする。
1. Core shell particle coverage quantification method The core shell particle coverage quantification method of the present invention includes a core portion including a core metal material, and a core shell particle coverage ratio including a shell metal material and a shell portion covering the core portion. A method of quantifying,
Measure the open circuit potential of the core-shell particles,
Surface area of the particles of the core metal material contained in the mixed sample formed by mixing the particles of the core metal material and the particles of the shell metal material having the same open circuit potential as the measured value of the open circuit potential of the core shell particle The ratio of the surface area of the particles of the shell metal material to the total surface area of the particles of the shell metal material is judged as the coverage of the core-shell particles.

本発明は、コアシェル粒子の被覆率を、酸性溶液中で各金属が固有の酸化還元電位を持つという原理に基づいて定量的に検出する方法である。
酸性溶液に浸漬した金属は、その酸の種類や濃度、溶液の温度に依存して固有の電位に帯電する。コアシェル粒子の場合、シェル部の欠陥部ではコア部が露出することになり、コアシェル粒子自体は総じてシェル金属材料とコア金属材料の各々の酸化還元電位の混成電位に帯電する。
本発明者らは、この混成電位の値が、測定雰囲気である酸性溶液に接触しているシェル金属材料の面積及びコア金属材料の面積の合計に対する、当該酸性溶液に接触しているシェル金属材料の割合に比例することを見出した。
この知見によれば、コアシェル粒子について測定された開回路電位と、コア金属材料の粒子とシェル金属材料の粒子の混合物について測定された開回路電位とが等しい場合は、当該コアシェル粒子の被覆率と、当該混合物中に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合とが、同じ値になるという結果が導かれる。
一方、混合物中に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合は、コア金属材料の粒子の単位質量当たり表面積、シェル金属材料の粒子の単位質量当たり表面積、及び、コア金属材料の粒子とシェル金属材料の粒子の質量(例えばグラム単位など)で表される混合比(質量比)から計算することができる。また、混合物中に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合は、上記した以外の方法によって既知となっている場合もある。
従って、製造したコアシェル粒子の開回路電位を酸性溶液中で測定し、当該コアシェル粒子の開回路電位の測定値と同じ開回路電位を有するコア金属材料の粒子とシェル金属材料の粒子を含む混合試料を特定し、当該混合試料に含まれる、コア金属材料の粒子およびシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合を計算し、得られた計算値を、コアシェル粒子のシェルによる被覆率と判断することができる。
The present invention is a method for quantitatively detecting the coverage of core-shell particles based on the principle that each metal has a specific redox potential in an acidic solution.
A metal immersed in an acidic solution is charged to a specific potential depending on the type and concentration of the acid and the temperature of the solution. In the case of the core-shell particles, the core portion is exposed at the defect portion of the shell portion, and the core-shell particles themselves are generally charged to a mixed potential of the oxidation-reduction potentials of the shell metal material and the core metal material.
The inventors of the present invention have a shell metal material that is in contact with the acidic solution with respect to the sum of the area of the shell metal material that is in contact with the acidic solution that is the measurement atmosphere and the area of the core metal material. It was found to be proportional to the ratio of.
According to this finding, when the open circuit potential measured for the core-shell particles and the open-circuit potential measured for the mixture of the core metal material particles and the shell metal material particles are equal, The result is that the ratio of the surface area of the particles of the core metal material and the ratio of the surface area of the particles of the shell metal material to the total surface area of the particles of the shell metal material contained in the mixture is the same value.
On the other hand, the ratio of the surface area of the particles of the shell metal material to the sum of the surface areas of the particles of the core metal material and the shell metal material contained in the mixture is the surface area per unit mass of the core metal material particles, the shell metal material The surface area per unit mass of the particles and the mixing ratio (mass ratio) represented by the mass of the core metal material particles and the shell metal material particles (for example, in grams) can be calculated. Further, the ratio of the surface area of the particles of the shell metal material to the sum of the surface areas of the particles of the core metal material and the shell metal material contained in the mixture may be known by methods other than those described above. .
Therefore, a mixed sample containing particles of a core metal material and particles of a shell metal material having the same open circuit potential as the measured value of the open circuit potential of the core-shell particles is measured in an acidic solution. And the ratio of the surface area of the shell metal material particles to the total surface area of the core metal material particles and the shell metal material particles contained in the mixed sample is calculated, and the calculated value is calculated as It can be determined that the coverage is due to the shell.

本発明においては、測定ターゲットであるコアシェル粒子の開回路電位の測定値と同じ開回路電位の値を有する混合試料を容易に特定するために、コア金属材料の粒子及びシェル金属材料の粒子の混合比が異なる複数の混合試料からなる混合試料群を作成し、当該混合試料群に含まれる個々の混合試料について開回路電位を測定し、開回路電位の測定値を照合することによって対応する混合試料を特定することが可能なデータ群を用いることが好ましい。
本発明に用いられるデータ群は、コアシェル粒子の開回路電位の測定値と同一の開回路電位を有する混合試料を特定することができ、混合試料に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合を求めるために用いることができるものであれば、いかなるデータ群であってもよい。
In the present invention, in order to easily specify a mixed sample having the same open circuit potential value as the measurement value of the open shell potential of the core shell particle that is the measurement target, the mixture of the core metal material particles and the shell metal material particles is mixed. Create a mixed sample group consisting of a plurality of mixed samples with different ratios, measure the open circuit potential of each mixed sample contained in the mixed sample group, and collate the measured values of the open circuit potential to correspond to the mixed sample It is preferable to use a data group that can specify
The data group used in the present invention can identify a mixed sample having the same open circuit potential as the measured value of the open circuit potential of the core-shell particles, and the surface area of the core metal material particles contained in the mixed sample and the shell metal Any data group can be used as long as it can be used to determine the ratio of the surface area of the particles of the shell metal material to the total surface area of the particles of the material.

上記本発明の定量方法を用いることで、製造中のコアシェル粒子の被覆率を正確に定量することができ、短時間で効率よく定量することができる。
コアシェル粒子の被覆率は、コアシェル粒子の触媒活性等を判定する指標となる他、当該コアシェル粒子を製造するにあたり、製造方法の良否を判定する指標ともなる。
以下、本発明の代表的な実施態様を例に挙げて、本発明を詳しく説明する。
By using the quantification method of the present invention, the coverage of the core-shell particles being produced can be accurately quantified and can be quantified efficiently in a short time.
The coverage of the core-shell particles is an index for determining the catalytic activity of the core-shell particles, and also is an index for determining the quality of the manufacturing method when manufacturing the core-shell particles.
Hereinafter, the present invention will be described in detail by taking typical embodiments of the present invention as examples.

(1)第1の実施態様
本発明の代表的な実施態様は、次の手順からなる。
(1)コアシェル粒子の開回路電位を測定する工程と、
(2)コア金属材料の粒子とシェル金属材料の粒子の質量(例えばグラム単位)で表される混合比が異なる複数の混合試料からなる混合試料群において、混合比と開回路電位の関係を示すデータ群を準備する工程と、
(3)前記コアシェル粒子の開回路電位の測定値をデータ群と照合し、同じ開回路電位を示す混合試料を特定する工程を有し、
(4)特定した混合試料に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対する、シェル金属材料の粒子の表面積の割合を、コア金属材料の粒子の単位質量当たり面積(例えばcm/g)、シェル金属材料の粒子の単位質量当たり面積、及び、コア金属材料の粒子とシェル金属材料の粒子の混合比に基づいて計算し、得られた計算値をコアシェル粒子の被覆率と判断する。
(1) First Embodiment A typical embodiment of the present invention includes the following procedure.
(1) measuring the open circuit potential of the core-shell particles;
(2) In a mixed sample group consisting of a plurality of mixed samples having different mixing ratios expressed by the mass (for example, in grams) of the core metal material particles and the shell metal material particles, the relationship between the mixing ratio and the open circuit potential is shown Preparing a data set;
(3) collating the measured value of the open circuit potential of the core-shell particles with a data group, and specifying a mixed sample exhibiting the same open circuit potential;
(4) The ratio of the surface area of the particles of the shell metal material to the total surface area of the particles of the core metal material and the particles of the shell metal material contained in the specified mixed sample is expressed as the area per unit mass of the core metal material particles. (For example, cm 2 / g), the area per unit mass of the particles of the shell metal material, and the mixing ratio of the particles of the core metal material and the particles of the shell metal material. Judge as coverage.

(コアシェル粒子)
測定ターゲットであるコアシェル粒子は、コア金属材料を含むコア部と、シェル金属材料を含み且つ前記コア部を被覆するシェル部を備えるものである。本発明に用いられるコアシェル粒子は、市販のものであってもよいし、予め製造したものであってもよい。
コア部にシェル部を被覆する方法は特に限定されず、公知の方法を用いることができる。
(Core shell particles)
The core-shell particle that is a measurement target includes a core portion that includes a core metal material and a shell portion that includes the shell metal material and covers the core portion. The core-shell particles used in the present invention may be commercially available or may be produced in advance.
The method for coating the core portion with the shell portion is not particularly limited, and a known method can be used.

コア部を構成するコア金属材料は、後述するシェル部に用いられるシェル金属材料と格子不整合を生じない金属材料であることが好ましい。また、コストを抑える観点から、コア部を構成するコア金属材料は、後述するシェル部に用いられるシェル金属材料よりも安価な金属材料であることが好ましい。さらに、コア部を構成するコア金属材料は、電気的導通がとれる金属材料であることが好ましい。
この様な観点から、コア部に含まれるコア金属材料は、パラジウム、銅、ニッケル、ロジウム、銀、金およびイリジウム並びにこれらから選ばれる金属を含む合金からなる群より選ばれる少なくとも1種の金属材料であることが好ましい。これらの金属材料のうち、パラジウム、又は上記金属材料を含むパラジウム合金をコア金属材料に用いることがより好ましく、パラジウムが特に好ましい。
The core metal material constituting the core part is preferably a metal material that does not cause lattice mismatch with the shell metal material used for the shell part described later. Further, from the viewpoint of cost reduction, the core metal material that constitutes the core part is preferably a metal material that is less expensive than the shell metal material used for the shell part described later. Furthermore, it is preferable that the core metal material which comprises a core part is a metal material which can take electrical continuity.
From such a viewpoint, the core metal material included in the core portion is at least one metal material selected from the group consisting of palladium, copper, nickel, rhodium, silver, gold, iridium, and an alloy containing a metal selected from these. It is preferable that Of these metal materials, it is more preferable to use palladium or a palladium alloy containing the metal material as the core metal material, and palladium is particularly preferable.

コア金属材料の粒子の平均粒径は、後述するコアシェル粒子の平均粒径以下であれば、特に限定されない。コア金属材料の粒子の平均粒径は、好ましくは30nm以下、より好ましくは2〜10nmである。
なお、本発明に用いられる粒子の平均粒径は、常法により算出される。粒子の平均粒径の算出方法の例は以下の通りである。まず、400,000倍又は1,000,000倍のTEM画像において、ある1つの粒子について、当該粒子を球状と見なした際の粒径を算出する。このようなTEM観察による粒径の算出を、同じ種類の200〜300個の粒子について行い、これらの粒子の個々の粒径の平均値を平均粒径とする。
The average particle diameter of the core metal material particles is not particularly limited as long as it is equal to or less than the average particle diameter of core-shell particles described later. The average particle size of the core metal material particles is preferably 30 nm or less, more preferably 2 to 10 nm.
In addition, the average particle diameter of the particle | grains used for this invention is computed by a conventional method. An example of a method for calculating the average particle size of the particles is as follows. First, in a TEM image of 400,000 times or 1,000,000 times, for one particle, the particle size when the particle is regarded as spherical is calculated. Such calculation of the particle diameter by TEM observation is performed for 200 to 300 particles of the same type, and the average value of the individual particle diameters of these particles is defined as the average particle diameter.

コア金属材料は担体に担持されていてもよい。特に、本発明におけるコアシェル粒子を燃料電池の電極触媒層に使用した際、電極触媒層に導電性を付与するという観点から、担体が導電性材料であることが好ましい。
担体として使用できる導電性材料の具体例としては、ケッチェンブラック(商品名:ケッチェン・ブラック・インターナショナル株式会社製)、バルカン(商品名:Cabot社製)、ノーリット(商品名:Norit社製)、ブラックパール(商品名:Cabot社製)、アセチレンブラック(商品名:Chevron社製)等の炭素粒子や、カーボンナノチューブ(CNT)、カーボンナノホーン(CNH)、カーボンナノファイバー(CNF)等の炭素繊維の炭素材料;金属粒子や金属繊維等の金属材料;が挙げられる。
担体へのコア金属材料の担持方法には、従来から用いられている方法を採用することができる。
The core metal material may be supported on a carrier. In particular, when the core-shell particles in the present invention are used for an electrode catalyst layer of a fuel cell, the support is preferably a conductive material from the viewpoint of imparting conductivity to the electrode catalyst layer.
Specific examples of the conductive material that can be used as a carrier include Ketjen black (trade name: manufactured by Ketjen Black International Co., Ltd.), Vulcan (product name: manufactured by Cabot), Norit (trade name: manufactured by Norit), Carbon particles such as black pearl (trade name: manufactured by Cabot), acetylene black (trade name: manufactured by Chevron), and carbon fibers such as carbon nanotube (CNT), carbon nanohorn (CNH), and carbon nanofiber (CNF) And carbon materials; metal materials such as metal particles and metal fibers.
Conventionally used methods can be adopted as a method for supporting the core metal material on the carrier.

シェル部を構成するシェル金属材料は、触媒活性が高いことが好ましい。
この様な観点から、シェル部に含まれるシェル金属材料は、白金、イリジウム、ルテニウム、ロジウム及び金並びにこれらから選ばれる金属を含む合金からなる群より選ばれる少なくとも1種の金属材料であることが好ましい。
これらの金属材料の中でも、シェル部は白金を含むことが特に好ましい。白金は、触媒活性、特に酸素還元反応(Oxygen Reduction Reaction;以下、ORRと称する場合がある。)活性に優れている。また、白金の格子定数は3.92Åであるのに対し、パラジウムの格子定数は3.89Åであり、パラジウムの格子定数は白金の格子定数の±5%の範囲内の値である。したがって、コア金属材料にパラジウムを、シェル金属材料に白金をそれぞれ用いることにより、コア金属材料の粒子とシェル金属材料の粒子の間で格子不整合が生じず、白金によるコア部の被覆が十分に行われる。
The shell metal material constituting the shell part preferably has a high catalytic activity.
From such a viewpoint, the shell metal material included in the shell portion is at least one metal material selected from the group consisting of platinum, iridium, ruthenium, rhodium, gold, and an alloy containing a metal selected from these. preferable.
Among these metal materials, the shell part particularly preferably contains platinum. Platinum is excellent in catalytic activity, in particular, oxygen reduction reaction (Oxygen Reduction Reaction; hereinafter referred to as ORR) activity. The lattice constant of platinum is 3.923, whereas the lattice constant of palladium is 3.89Å, and the lattice constant of palladium is a value within a range of ± 5% of the lattice constant of platinum. Therefore, by using palladium as the core metal material and platinum as the shell metal material, there is no lattice mismatch between the core metal material particles and the shell metal material particles, and the core portion is sufficiently covered with platinum. Done.

コア部へのシェル部の被覆は、一段階の反応を経て行われてもよいし、多段階の反応を経て行われてもよい。
以下、2段階の反応を経てコア部にシェル部が被覆される例について主に説明する。
The coating of the shell portion onto the core portion may be performed through a one-step reaction or may be performed through a multi-step reaction.
Hereinafter, an example in which the core portion is covered with the shell portion through a two-step reaction will be mainly described.

2段階の反応を経てコア部にシェル部が被覆される例としては、少なくとも、コア部に単原子層を被覆する工程、及び、当該単原子層を所望のシェル金属材料を含むシェル部に置換する工程を有する例が挙げられる。   As an example in which the core part is coated with the shell part through a two-step reaction, at least the process of coating the core part with a monoatomic layer, and replacing the monoatomic layer with a shell part containing a desired shell metal material The example which has the process to do is given.

2段階の反応を経てコア部にシェル部が被覆される具体例としては、アンダーポテンシャル析出法により予めコア部に単原子層を形成した後、当該単原子層を所望のシェル金属材料を含むシェル部に置換する方法が挙げられる。アンダーポテンシャル析出法としては、Cu−UPD法を用いることが好ましい。Cu−UPD法としては、特開2012−16684号公報の明細書の段落[0036]〜[0038]に記載の従来公知の方法を用いることができる。
特に、パラジウム粒子からなるコアを使用し、シェルとして白金を被覆する場合には、Cu−UPD法によって、白金の被覆率が高く、耐久性に優れるコアシェル粒子を製造できる。
本発明に用いられるコアシェル粒子の平均粒径は一般に、下限が3nm以上、好ましくは4nm以上、上限が40nm以下、好ましくは10nm以下である。
As a specific example in which the core portion is coated with the shell portion through a two-step reaction, a monoatomic layer is previously formed on the core portion by an underpotential deposition method, and then the monoatomic layer is formed into a shell containing a desired shell metal material. The method of substituting for a part is mentioned. As the underpotential deposition method, it is preferable to use a Cu-UPD method. As the Cu-UPD method, a conventionally known method described in paragraphs [0036] to [0038] of the specification of JP2012-16684A can be used.
In particular, when a core made of palladium particles is used and platinum is coated as a shell, core-shell particles having a high platinum coverage and excellent durability can be produced by the Cu-UPD method.
The average particle diameter of the core-shell particles used in the present invention generally has a lower limit of 3 nm or more, preferably 4 nm or more, and an upper limit of 40 nm or less, preferably 10 nm or less.

(開回路電位の測定)
本発明において「開回路電位」とは、電気化学測定において、作用極と参照極のみを溶媒に浸漬させ、電流を流さない状態で測定される作用極と参照極の間の電位差(単位mVなど)をいう。
本発明における開回路電位測定方法は、特に限定されない。開回路電位測定方法としては、例えば、回転ディスク電極(Rotating Disk Electrode;以下、RDEと称する場合がある。)、回転リングディスク電極(Rotating Ring Disk Electrode;以下、RRDEと称する場合がある。)等を作用極に用いた電気化学装置により行われる。
(Measurement of open circuit potential)
In the present invention, the “open circuit potential” refers to a potential difference (unit mV or the like) between a working electrode and a reference electrode measured in a state where only a working electrode and a reference electrode are immersed in a solvent and no current is passed in electrochemical measurement. ).
The open circuit potential measuring method in the present invention is not particularly limited. Examples of the open circuit potential measurement method include a rotating disk electrode (hereinafter sometimes referred to as RDE), a rotating ring disk electrode (hereinafter sometimes referred to as RRDE), and the like. Is carried out by an electrochemical device using as a working electrode.

以下、コアシェル粒子の開回路電位を測定する方法の具体例について説明する。
先ず、コアシェル粒子の粉末を、少なくとも水を含む溶媒に加え、分散させる。この分散液を、電気化学セルの作用極に塗布し、自然乾燥させる。
なお、分散液は、電解質、例えば、Nafion(登録商標:デュポン株式会社製)等のパーフルオロスルホン酸ポリマー系電解質をバインダーにして、作用極上に接着してもよい。分散液には、適宜、水やアルコール等の溶媒を加えてもよい。
作用極としては、グラッシーカーボン等の、導電性が担保できる材料を用いることができる。
参照極としては、白金に水素を吹き込み使用する可逆水素電極(reversible hydrogen electrode;以下RHEと称することがある)、あるいは銀−塩化銀電極が用いられる。銀−塩化銀電極の測定値を可逆水素電極へ変換する場合は、事前にRHEと銀−塩化銀電極の電位差を測定しておき、あとで補正する。
図1は、開回路電位測定を行う電気化学装置を示した斜視模式図である。ガラスセル1に、電解液2を加え、さらに分散液3が塗布された作用極4を設ける。ガラスセル1中には、作用極4と、参照極5を電解液2に十分に浸かるように配置し、これら2つの電極をデュアル電気化学アナライザーと電気的に接続する。また、気体の導入管6を電解液2に浸かるように配置し、セル外部に設置された酸素供給源(図示せず)から酸素を一定時間電解液2に室温下でバブリングさせ、電解液2中に酸素を飽和させた状態とする。気泡7は酸素の気泡を示す。そして、作用極4と参照極5との間の開回路電位を測定する。
作用極としてRDEを用いてコアシェル粒子の開回路電位を測定する場合、電位の安定性の観点から、RDEを電解液に浸漬させ、電解液中でRDEを回転させ、浸漬から数分後に開回路電位を測定することが好ましい。
開回路電位測定条件は、コアシェル粒子の劣化や、担体であるカーボンの劣化が生じない条件であることが好ましい。RDEを用いた開回路電位測定の具体的な条件の一例を下記に示す。
・電解液:0.1M HClOaq(酸素をバブリングさせる)
・雰囲気:酸素雰囲気下
・回転数:400〜3,000rpm
・参照極:銀−塩化銀電極
Hereinafter, a specific example of a method for measuring the open circuit potential of the core-shell particles will be described.
First, the powder of core-shell particles is added to a solvent containing at least water and dispersed. This dispersion is applied to the working electrode of the electrochemical cell and allowed to dry naturally.
The dispersion may be adhered to the working electrode using an electrolyte, for example, a perfluorosulfonic acid polymer electrolyte such as Nafion (registered trademark: manufactured by DuPont) as a binder. A solvent such as water or alcohol may be appropriately added to the dispersion.
As the working electrode, a material that can ensure conductivity, such as glassy carbon, can be used.
As the reference electrode, a reversible hydrogen electrode (hereinafter sometimes referred to as RHE) using hydrogen blown into platinum or a silver-silver chloride electrode is used. When converting the measured value of the silver-silver chloride electrode to the reversible hydrogen electrode, the potential difference between the RHE and the silver-silver chloride electrode is measured in advance and corrected later.
FIG. 1 is a schematic perspective view showing an electrochemical device that performs open circuit potential measurement. The working electrode 4 to which the electrolyte 2 is added and the dispersion 3 is further applied is provided in the glass cell 1. In the glass cell 1, the working electrode 4 and the reference electrode 5 are disposed so as to be sufficiently immersed in the electrolytic solution 2, and these two electrodes are electrically connected to the dual electrochemical analyzer. Further, the gas introduction pipe 6 is disposed so as to be immersed in the electrolytic solution 2, and oxygen is bubbled into the electrolytic solution 2 at room temperature for a certain period of time from an oxygen supply source (not shown) installed outside the cell. The oxygen is saturated inside. Bubbles 7 represent oxygen bubbles. Then, an open circuit potential between the working electrode 4 and the reference electrode 5 is measured.
When measuring the open circuit potential of core-shell particles using RDE as the working electrode, from the viewpoint of potential stability, RDE is immersed in an electrolytic solution, the RDE is rotated in the electrolytic solution, and the open circuit is opened several minutes after the immersion. It is preferable to measure the potential.
The open circuit potential measurement condition is preferably a condition that does not cause deterioration of the core-shell particles or carbon as the carrier. An example of specific conditions for open circuit potential measurement using RDE is shown below.
Electrolyte solution: 0.1M HClO 4 aq (bubble oxygen)
・ Atmosphere: Under oxygen atmosphere ・ Rotation speed: 400-3,000 rpm
・ Reference electrode: Silver-silver chloride electrode

(混合試料)
混合試料に用いるコア金属材料の粒子は、測定ターゲットであるコアシェル粒子のコア部と同じ材料からなる粒子を用いることができる。また、混合試料に用いるシェル金属材料の粒子は、測定ターゲットであるコアシェル粒子のシェル部と同じ材料からなる粒子を用いることができる。
コア金属材料の粒子及びシェル金属材料の粒子の平均粒径は特に限定されないが、コアシェル粒子の平均粒径と同様の下限が3nm以上、好ましくは4nm以上、上限が40nm以下、好ましくは10nm以下の範囲内であれば、混合試料の開回路電位を問題なく測定することができる。
コアシェル粒子の開回路電位と同じ開回路電位を有する混合試料を特定するために、通常は混合比が異なる複数の混合試料を準備する。混合試料の混合比は、当該混合試料に含まれるコア金属材料の粒子の表面積及びシェル金属材料の粒子の表面積を計算するために用いられるものであり、質量基準(通常はグラム単位)の混合比で表される。
混合試料群に含まれる個々の混合試料について開回路電位を測定し、混合比と開回路電位の関係を示すデータ群(データマップ)を作成する。混合試料の開回路電位は、コアシェル粒子と同じ方法で測定すればよい。なお、本発明においてコア金属材料の粒子とシェル金属材料の粒子の混合比とは、混合物に含まれるコア金属材料の粒子の量とシェル金属材料の粒子の量を直接対比し、「a:b」のように表記される狭義の混合比に限定されず、コア金属材料の粒子とシェル金属材料の粒子の合計量に対するシェル金属材料の粒子の量の割合、例えば「質量%」で表記される比率を包含する広義の混合比である。
(Mixed sample)
As the particles of the core metal material used for the mixed sample, particles made of the same material as the core portion of the core-shell particles that are measurement targets can be used. Moreover, the particle | grains of the same material as the shell part of the core shell particle | grains which are measurement targets can be used for the particle | grains of the shell metal material used for a mixed sample.
The average particle diameters of the core metal material particles and the shell metal material particles are not particularly limited, but the lower limit similar to the average particle diameter of the core-shell particles is 3 nm or more, preferably 4 nm or more, and the upper limit is 40 nm or less, preferably 10 nm or less. Within the range, the open circuit potential of the mixed sample can be measured without any problem.
In order to specify a mixed sample having the same open circuit potential as that of the core-shell particles, usually, a plurality of mixed samples having different mixing ratios are prepared. The mixing ratio of the mixed sample is used to calculate the surface area of the particles of the core metal material and the surface area of the particles of the shell metal material contained in the mixed sample, and is a mixing ratio based on mass (usually in grams). It is represented by
The open circuit potential is measured for each mixed sample included in the mixed sample group, and a data group (data map) indicating the relationship between the mixing ratio and the open circuit potential is created. What is necessary is just to measure the open circuit potential of a mixed sample by the same method as a core-shell particle. In the present invention, the mixing ratio of the core metal material particles and the shell metal material particles is a direct comparison between the amount of the core metal material particles and the amount of the shell metal material particles contained in the mixture. The ratio of the amount of the shell metal material particles to the total amount of the core metal material particles and the shell metal material particles, for example, “mass%” This is a broad mixing ratio including a ratio.

(データ群及びデータ照合)
データ群としては、例えば、混合試料の開回路電位と混合比を対応させたプロット群からなる単純なデータ群、混合試料の開回路電位と混合試料の混合比を対応させたプロット群から導き出した関係式の形式で表わされるデータ群が挙げられる。
なおデータ群としては、混合試料の開回路電位と、当該混合試料に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合とを対応させたプロット群からなるデータ群、混合試料の開回路電位と上記したような表面積の割合とを対応させたプロット群から導き出した関係をグラフ化したいわゆる検量線の形式となったデータ群などのように、外見上は混合試料の混合比を示さないデータ群も挙げられる。しかし、これらの変形例も、混合試料の開回路電位と混合比を対応させたプロットからなるデータ群を、さらにデータ処理することによって、後続の工程において行われるべきデータ処理を繰り上げて行ったものにすぎない。
(Data group and data verification)
As the data group, for example, it was derived from a simple data group consisting of a plot group in which the open circuit potential of the mixed sample and the mixing ratio correspond to each other, and from a plot group in which the open circuit potential of the mixed sample and the mixing ratio of the mixed sample correspond to each other. A data group expressed in the form of a relational expression is given.
The data group corresponds to the open circuit potential of the mixed sample and the ratio of the surface area of the core metal material particles contained in the mixed sample and the ratio of the surface area of the shell metal material particles to the total surface area of the shell metal material particles. A data group consisting of plotted plots, a data group in the form of a so-called calibration curve that graphs the relationship derived from the plot group that correlates the open circuit potential of the mixed sample and the surface area ratio as described above, etc. Thus, a data group that does not show the mixing ratio of the mixed sample in appearance. However, these modified examples are also obtained by further performing data processing on the data group consisting of plots corresponding to the open circuit potential of the mixed sample and the mixing ratio, thereby performing the data processing to be performed in the subsequent process. Only.

本発明に用いられるデータ群は、例えば、(a)コア金属材料の粒子における開回路電位のデータ、(b)シェル金属材料の粒子における開回路電位のデータ、及び、(c)コア金属材料の粒子とシェル金属材料の粒子の混合比が異なる複数の混合試料群における開回路電位のデータを少なくとも含むデータ群であってもよい。
当該(a)におけるコア金属材料の粒子、及び当該(b)におけるシェル金属材料の粒子は、それぞれ、被覆率を定量すべきコアシェル粒子のコア部及びシェル部と同じ材料からなる。また、当該(c)における混合試料群とは、前記コア金属材料の粒子、及び、前記シェル金属材料の粒子を任意の割合で含む混合試料群を指す。
本発明に用いるデータ群について具体的に説明する。まず、コア金属材料の粒子の開回路電位V、シェル金属材料の粒子の開回路電位V100、コア金属材料の粒子とシェル金属材料の粒子の混合比が異なる複数の混合試料群の開回路電位Vを、それぞれ測定する。
次に、混合試料に含まれるコア金属材料の粒子とシェル金属材料の粒子の合計に対するシェル金属材料の粒子の割合n(wt%)をx軸にとり、混合試料群の開回路電位(V)をy軸にとれば、(x,y)=(0,V)、(n,V)、(100,V100)のデータからなるデータ群が得られる。
コアシェル粒子の開回路電位の測定値を、このようなデータ群と照合することによって、コアシェル粒子の開回路電位の測定値と同一の開回路電位を有する混合試料を特定し、当該混合試料の混合比を知ることができる。
Data groups used in the present invention include, for example, (a) data on open circuit potential in particles of core metal material, (b) data on open circuit potential in particles of shell metal material, and (c) data on core metal material. It may be a data group including at least open circuit potential data in a plurality of mixed sample groups having different mixing ratios of particles and shell metal material particles.
The particles of the core metal material in (a) and the particles of the shell metal material in (b) are made of the same material as the core part and the shell part of the core-shell particle whose coverage is to be quantified, respectively. In addition, the mixed sample group in (c) refers to a mixed sample group including particles of the core metal material and particles of the shell metal material in an arbitrary ratio.
The data group used in the present invention will be specifically described. First, the open circuit potential V 0 of the core metal material particles, the open circuit potential V 100 of the shell metal material particles, and the open circuit of a plurality of mixed sample groups having different mixing ratios of the core metal material particles and the shell metal material particles the potential V n, is measured.
Next, the ratio n (wt%) of the shell metal material particles to the total of the core metal material particles and the shell metal material particles contained in the mixed sample is taken on the x axis, and the open circuit potential (V) of the mixed sample group is calculated. On the y-axis, a data group consisting of data (x, y) = (0, V 0 ), (n, V n ), (100, V 100 ) is obtained.
By comparing the measured value of the open-circuit potential of the core-shell particle with such a data group, a mixed sample having the same open-circuit potential as the measured value of the open-circuit potential of the core-shell particle is identified, and the mixed sample is mixed. You can know the ratio.

(コア金属材料の粒子とシェル金属材料の粒子の表面積)
コアシェル粒子の開回路電位の測定値と等しい開回路電位を有する混合試料を特定した後、当該混合試料に含まれるコア金属材料の粒子の表面積と、シェル金属材料の粒子の表面積を計算する。
ここで、混合試料中のコア金属材料の粒子の表面積は、当該混合試料の質量と、当該混合試料に含まれるコア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比と、コア金属材料の粒子の単位質量当たり面積から計算される。また、混合試料中のシェル金属材料の粒子の表面積は、当該混合試料の質量と、当該混合試料に含まれるコア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比と、シェル金属材料の粒子の単位質量当たり面積から計算される。
ここで、混合試料の質量は、使用した混合試料全体を秤量することで知ることができる。また、混合試料に含まれるコア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比は、混合試料を調製する段階で決定される値であるから、既知である。
(Surface area of core metal material particles and shell metal material particles)
After identifying a mixed sample having an open circuit potential equal to the measured value of the open circuit potential of the core-shell particles, the surface area of the particles of the core metal material and the surface area of the particles of the shell metal material contained in the mixed sample are calculated.
Here, the surface area of the particles of the core metal material in the mixed sample is the mass of the mixed sample, and the mixing ratio represented by the mass of the core metal material particles and the shell metal material particles contained in the mixed sample, Calculated from the area per unit mass of the core metal material particles. Moreover, the surface area of the particles of the shell metal material in the mixed sample is the mass of the mixed sample, the mixing ratio represented by the mass of the core metal material particles and the shell metal material particles contained in the mixed sample, and the shell It is calculated from the area per unit mass of the metal material particles.
Here, the mass of the mixed sample can be known by weighing the entire used mixed sample. Further, the mixing ratio represented by the mass of the core metal material particles and the shell metal material particles contained in the mixed sample is a value determined at the stage of preparing the mixed sample, and thus is known.

コア金属材料の粒子及びシェル金属材料の粒子の単位質量当たり面積は、サイクリックボルタンメトリー(CV)、CO吸着、X線小角散乱(Small Angle X−ray Scattering;以下、SAXSと称する。)、TEM等の適切な測定結果から算出する。SAXSの測定結果及びTEMの観察結果からは、金属材料の粒子の平均粒径が算出できるので、当該平均粒径から粒子の単位質量当たり面積を計算できる。単位質量当たり面積は、同じ材料からなる粒子であっても粒径によって異なるから、混合試料の調製に実際に使用するコア金属材料の粒子及びシェル金属材料の粒子について測定した結果から計算する必要がある。
サイクリックボルタンメトリー(CV)の測定結果から計算されるコア金属材料の粒子の電気化学表面積及びシェル金属材料の粒子の電気化学表面積は、それぞれの粒子の単位質量当たり面積として採用することができる。コア金属材料の粒子の電気化学表面積は、コア金属材料の粒子についてCV測定を行うことでサイクリックボルタモグラムを取得し、得られたサイクリックボルタモグラムに含まれる水素吸着波の面積から水素吸着電荷量を算出し、この水素吸着電荷量を用いて次の式(1)から求めることができる。また、シェル金属材料の粒子の電気化学表面積も、同様に式(1)から求めることができる。
[式(1)]
電気化学表面積(cm/g)=粒子の水素吸着電荷量(μC)/[粒子を構成する金属材料の単位活性表面積当たりの吸着電荷量(μC/cm)×粒子の重量(g)]
なお、金属材料の単位活性表面積当たりの吸着電荷量としては、既知の値を用いることができる。
電気化学表面積の測定は、例えば、回転ディスク電極、回転リングディスク電極等を作用極に用いた電気化学装置により行われる。RDEを用いる対流ボルタンメトリーは、物質輸送速度を回転数で再現よく制御でき、且つ、電極への物質輸送を均一にできる観点から好ましい。
電気化学表面積の測定条件は、コアシェル粒子の劣化や、担体であるカーボンの劣化が生じない条件であることが好ましい。
The area per unit mass of the core metal material particles and the shell metal material particles is cyclic voltammetry (CV), CO adsorption, small angle X-ray scattering (hereinafter referred to as SAXS), TEM, and the like. Calculate from the appropriate measurement results. Since the average particle diameter of the metal material particles can be calculated from the SAXS measurement result and the TEM observation result, the area per unit mass of the particle can be calculated from the average particle diameter. Since the area per unit mass differs depending on the particle size even for particles made of the same material, it is necessary to calculate from the measurement results of the core metal material particles and the shell metal material particles actually used for preparing the mixed sample. is there.
The electrochemical surface area of the particles of the core metal material and the electrochemical surface area of the particles of the shell metal material calculated from the measurement results of cyclic voltammetry (CV) can be adopted as the area per unit mass of each particle. As for the electrochemical surface area of the core metal material particles, the cyclic voltammogram is obtained by performing CV measurement on the core metal material particles, and the hydrogen adsorption charge amount is calculated from the area of the hydrogen adsorption wave contained in the obtained cyclic voltammogram. It can calculate and can obtain | require from following Formula (1) using this hydrogen adsorption charge amount. Similarly, the electrochemical surface area of the particles of the shell metal material can be obtained from the equation (1).
[Formula (1)]
Electrochemical surface area (cm 2 / g) = hydrogen adsorption charge amount (μC) of particle / [adsorption charge amount per unit active surface area of metal material constituting particle (μC / cm 2 ) × particle weight (g)]
In addition, a known value can be used as the adsorption charge amount per unit active surface area of the metal material.
The electrochemical surface area is measured by, for example, an electrochemical apparatus using a rotating disk electrode, a rotating ring disk electrode, or the like as a working electrode. Convective voltammetry using RDE is preferable from the viewpoint that the mass transport speed can be controlled with high reproducibility and the mass transport to the electrode can be made uniform.
The measurement condition of the electrochemical surface area is preferably a condition that does not cause deterioration of the core-shell particles and deterioration of carbon as a carrier.

(被覆率)
混合試料に含まれるコア金属材料の粒子の表面積と、シェル金属材料の粒子の表面積を計算した後、混合試料に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対する、シェル金属材料の粒子の表面積の割合を計算し、得られた計算値を、当該混合試料に対応するコアシェル粒子の被覆率であると判断する。
コアシェル粒子の被覆率をX、コア金属材料の粒子の表面積をA、シェル金属材料の粒子の表面積をBとすると、被覆率Xは次の式で表される。
[式(2)]
コアシェル粒子の被覆率X(単位%)
={シェル金属材料の粒子の表面積B(単位cm)/(コア金属材料の粒子の表面積A(単位cm)+シェル金属材料の粒子の表面積B(単位cm))}×100
(Coverage)
After calculating the surface area of the core metal material particles included in the mixed sample and the surface area of the shell metal material particles, the total surface area of the core metal material particles and the shell metal material particles included in the mixed sample is calculated. The ratio of the surface area of the particles of the shell metal material is calculated, and the obtained calculated value is determined as the coverage of the core-shell particles corresponding to the mixed sample.
When the coverage of the core-shell particles is X, the surface area of the core metal material particles is A, and the surface area of the shell metal material particles is B, the coverage X is expressed by the following equation.
[Formula (2)]
Core shell particle coverage X (unit%)
= {Surface Metal B Particle Surface Area B (Unit cm 2 ) / (Core Metal Material Particle Surface Area A (Unit cm 2 ) + Shell Metal Material Particle Surface Area B (Unit cm 2 ))} × 100

また、混合試料の質量をM、当該混合試料に含まれるコア金属材料の粒子の質量をMa、当該混合試料に含まれるシェル金属材料の粒子の質量をMb、コア金属材料の粒子の単位質量当たり面積をSa、シェル金属材料の粒子の単位質量当たり面積をSbとすると、混合試料の質量M、コア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比R、コア金属材料の粒子の表面積A、シェル金属材料の粒子の表面積Bは、それぞれ次の式で表される。
[式(3)]
混合試料の質量M(単位g)
=コア金属材料の粒子の質量Ma(単位g)+シェル金属材料の粒子の質量Mb(単位g)
[式(4)]
コア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比R
=コア金属材料の粒子の質量Ma(単位g):シェル金属材料の粒子の質量Mb(単位g)
Further, the mass of the mixed sample is M, the mass of the core metal material particles contained in the mixed sample is Ma, the mass of the shell metal material particles contained in the mixed sample is Mb, and the unit mass of the core metal material particles per unit mass When the area is Sa, and the area per unit mass of the shell metal material particles is Sb, the mixed sample mass M, the mixing ratio R expressed by the mass of the core metal material particles and the shell metal material particles, The surface area A of the particles and the surface area B of the particles of the shell metal material are represented by the following equations, respectively.
[Formula (3)]
Mass M of the mixed sample (unit: g)
= Mass of core metal material particles Ma (unit: g) + Mass of shell metal material particles Mb (unit: g)
[Formula (4)]
Mixing ratio R expressed by mass of particles of core metal material and shell metal material
= Mass of core metal material particles Ma (unit g): Shell metal material particle mass Mb (unit g)

[式(5)]
コア金属材料の粒子の表面積A(単位cm
=コア金属材料の粒子の単位質量当たり面積Sa(単位cm/g)×〔混合試料の質量M(単位g)×{Ma(単位g)/(Ma+Mb(単位g))}〕
上記式(5)に、上記式(3)を代入すると、
[式(6)]
コア金属材料の粒子の表面積A(単位cm
=コア金属材料の粒子の単位質量当たり面積Sa(単位cm/g)×コア金属材料の粒子の質量Ma(単位g)
[Formula (5)]
Surface area A of the core metal material particles (unit cm 2 )
= Area Sa per unit mass of core metal material particles (unit cm 2 / g) × [Mass of mixed sample M (unit g) × {Ma (unit g) / (Ma + Mb (unit g))}]
When the above equation (3) is substituted into the above equation (5),
[Formula (6)]
Surface area A of the core metal material particles (unit cm 2 )
= Area Sa (unit cm 2 / g) per unit mass of the core metal material particles x mass Ma (unit g) of the core metal material particles

[式(7)]
シェル金属材料の粒子の表面積B(単位cm
=シェル金属材料の粒子の単位質量当たり面積Sb(単位cm/g)×〔混合試料の質量M(単位g)×{Mb(単位g)/(Ma+Mb(単位g))}〕
上記式(7)に、上記式(3)を代入すると、
[式(8)]
シェル金属材料の粒子の表面積B(単位cm
=シェル金属材料の粒子の単位質量当たり面積Sb(単位cm/g)×シェル金属材料の粒子の質量Mb(単位g)
[Formula (7)]
Surface area B of shell metal material particles (unit cm 2 )
= Area Sb per unit mass of shell metal material particles (unit cm 2 / g) × [Mass of mixed sample M (unit g) × {Mb (unit g) / (Ma + Mb (unit g))}]
When the above equation (3) is substituted into the above equation (7),
[Formula (8)]
Surface area B of shell metal material particles (unit cm 2 )
= Area Sb (unit cm 2 / g) per unit mass of particles of shell metal material × mass Mb (unit g) of particles of shell metal material

そして、上記式(2)に、上記式(6)及び上記式(8)を代入すると、
[式(9)]
コアシェル粒子の被覆率X
={B/(A+B)}×100
={Sb×Mb/(Sa×Ma+Sb×Mb)}×100(単位%)
上記式(9)において各符号の意味は次の通りである。
X:測定ターゲットであるコアシェル粒子の被覆率(単位%)
A:混合試料に含まれるコア金属材料の粒子の表面積(単位cm
B:混合試料に含まれるシェル金属材料の粒子の表面積(単位cm
Sa:コア金属材料の粒子の単位質量当たり面積(単位cm/g)
Sb:シェル金属材料の粒子の単位質量当たり面積(単位cm/g)
Ma:混合試料に含まれるコア金属材料の粒子の質量(単位g)
Mb:混合試料に含まれるシェル金属材料の粒子の質量(単位g)
ここで、上記式(4)によれば、コア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比Rは、コア金属材料の粒子の質量Ma及びシェル金属材料の粒子の質量Mbの比(Ma:Mb)で表されるから、結局のところコアシェル粒子の被覆率Xは、コア金属材料の粒子の単位質量当たり面積Sa、シェル金属材料の粒子の単位質量当たり面積Sb、及び、混合試料に含まれるコア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比(Ma:Mb)に基づいて計算することができる。
Then, when the above formula (6) and the above formula (8) are substituted into the above formula (2),
[Formula (9)]
Core shell particle coverage X
= {B / (A + B)} × 100
= {Sb × Mb / (Sa × Ma + Sb × Mb)} × 100 (unit%)
In the above formula (9), the meaning of each symbol is as follows.
X: Coverage (unit%) of core-shell particles that are measurement targets
A: Surface area of the core metal material particles contained in the mixed sample (unit: cm 2 )
B: Surface area of shell metal material particles contained in the mixed sample (unit: cm 2 )
Sa: Area per unit mass of core metal material particles (unit: cm 2 / g)
Sb: area per unit mass of particles of shell metal material (unit: cm 2 / g)
Ma: Mass of core metal material particles contained in the mixed sample (unit: g)
Mb: mass of the shell metal material particles contained in the mixed sample (unit: g)
Here, according to the above formula (4), the mixing ratio R expressed by the mass of the core metal material particles and the shell metal material particles is equal to the mass Ma of the core metal material particles and the mass of the shell metal material particles. Since it is represented by the ratio of Mb (Ma: Mb), after all, the covering ratio X of the core-shell particles is the area Sa per unit mass of the core metal material particles, the area Sb per unit mass of the shell metal material particles, and , Based on the mixing ratio (Ma: Mb) represented by the mass of the core metal material particles and the shell metal material particles contained in the mixed sample.

(2)第2の実施態様
本発明者らは、パラジウムを含むコア部、白金を含むシェル部から構成されるコアシェル粒子の被覆率を定量するために上記第1の実施態様を適用し、さらに混合試料の調製に用いるコア金属材料としてのパラジウム粒子、シェル金属材料としての白金粒子とが、互いに同等の粒径分布のものであるという限られた条件の下では、混合試料に含まれるパラジウム粒子と白金粒子の物質量(モル)で表される混合比(モル比)を、当該混合試料に含まれるパラジウム粒子の表面積と白金粒子の表面積の比と同一視することができ、物質量の値又は物質量で表される混合比から被覆率を定量することができることを見出した。
(2) Second Embodiment The present inventors applied the first embodiment to quantify the coverage of core-shell particles composed of a core part containing palladium and a shell part containing platinum, and Under the limited condition that the palladium particles as the core metal material and the platinum particles as the shell metal material used for the preparation of the mixed sample have the same particle size distribution, the palladium particles contained in the mixed sample The mixing ratio (molar ratio) represented by the substance amount (mol) of the platinum particles can be identified with the ratio of the surface area of the palladium particles and the surface area of the platinum particles contained in the mixed sample. Or it discovered that a coverage could be quantified from the mixing ratio represented by the amount of substances.

白金とパラジウムの原子径はそれぞれ、278pm、274pmと、ほぼ等しいため、白金粒子とパラジウム粒子が同等の粒径分布を持つ場合には、白金粒子1個に含まれる白金原子の数と、パラジウム粒子1個に含まれるパラジウム原子の数は、ほぼ等しくなる。また、白金粒子とパラジウム粒子が同等の粒径分布を持つ場合には、白金粒子1個の表面積と、パラジウム粒子1個の表面積も、ほぼ等しくなり、且つ、白金粒子1個の表面に露出する白金原子の数と、パラジウム粒子1個の表面に露出するパラジウム原子の数も、ほぼ等しくなる。従って、白金粒子とパラジウム粒子の混合物において、白金粒子とパラジウム粒子が同等の粒径分布を持つ場合には、白金粒子の表面積とパラジウム粒子の表面積の比が、白金粒子とパラジウム粒子の物質量で表される混合比と、ほぼ等しくなり、同一視することが可能である。
また、パラジウムを含むコア部、白金を含むシェル部から構成されるコアシェル粒子の開回路電位と、パラジウム粒子と白金粒子を混合してなる混合試料について測定された開回路電位とが等しい場合、前者であるコアシェル粒子においてコア部が露出している部分の面積と、シェル部が被覆している部分の面積の比は、後者である混合試料に含まれるパラジウム粒子の表面積と、白金粒子の表面積の比と一致する。この事実は、他のコアシェル粒子と同様である。
従って、上記した如き限られた条件を満たす場合には、パラジウムを含むコア部、白金を含むシェル部から構成されるコアシェル粒子の開回路電位と等しい開回路電位を持つ混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合を、当該コアシェル粒子の被覆率と判断することができる。
Since the atomic diameters of platinum and palladium are approximately equal to 278 pm and 274 pm, respectively, when the platinum particles and the palladium particles have the same particle size distribution, the number of platinum atoms contained in one platinum particle and the palladium particles The number of palladium atoms contained in one is approximately equal. Further, when the platinum particles and the palladium particles have the same particle size distribution, the surface area of one platinum particle and the surface area of one palladium particle are substantially equal and exposed on the surface of one platinum particle. The number of platinum atoms and the number of palladium atoms exposed on the surface of one palladium particle are also substantially equal. Therefore, in the mixture of platinum particles and palladium particles, when the platinum particles and palladium particles have the same particle size distribution, the ratio of the surface area of the platinum particles to the surface area of the palladium particles is the amount of the platinum particles and the palladium particles. The mixing ratio is almost the same, and can be identified.
Further, when the open circuit potential of the core-shell particles composed of the core portion containing palladium and the shell portion containing platinum is equal to the open circuit potential measured for the mixed sample formed by mixing the palladium particles and the platinum particles, the former The ratio of the area of the core shell particle where the core part is exposed to the area of the part covered by the shell part is the ratio of the surface area of the palladium particles contained in the latter mixed sample to the surface area of the platinum particles. Consistent with the ratio. This fact is similar to other core-shell particles.
Accordingly, when the above-mentioned limited conditions are satisfied, the palladium particles contained in the mixed sample having an open circuit potential equal to the open circuit potential of the core-shell particles composed of the core portion containing palladium and the shell portion containing platinum. The ratio of the amount of platinum particles relative to the total amount of substances and the amount of platinum particles can be determined as the coverage of the core-shell particles.

本発明の第2の実施態様は、上記した如き限られた条件を満たす場合において、極めて効率よく、コアシェル粒子の被覆率を定量できる方法であり、次の手順からなる。
(1)コア金属材料としてパラジウムを含むコア部と、シェル金属材料として白金を含み且つ前記コア部を被覆するシェル部を備えるコアシェル粒子の開回路電位を測定する工程と、
(2)平均粒径が4nm以上10nm以下かつ平均粒径の差が1nm以内であるパラジウム粒子及び白金粒子を、物質量で表される混合比を異ならしめて混合した複数の混合試料からなる混合試料群において、混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合と、開回路電位の関係を示すデータ群を準備する工程と、
(3)前記コアシェル粒子の開回路電位の測定値を前記データ群と照合し、同じ開回路電位を示す混合試料を特定する工程を有し、
(4)特定した混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合を、コアシェル粒子の被覆率と判断する。
この第2の実施態様によれば、混合試料中のコア金属材料の粒子およびシェル金属材料の粒子の各々の単位質量当たり面積をCV測定などの方法で測定し又は計算する必要がないため、本発明による定量手順を極めて簡素化することができる。
The second embodiment of the present invention is a method capable of quantifying the covering ratio of the core-shell particles extremely efficiently when the above-mentioned limited conditions are satisfied, and includes the following procedure.
(1) a step of measuring an open circuit potential of a core-shell particle comprising a core part containing palladium as a core metal material and a shell part containing platinum as a shell metal material and covering the core part;
(2) A mixed sample composed of a plurality of mixed samples in which palladium particles and platinum particles having an average particle diameter of 4 nm to 10 nm and an average particle diameter difference of 1 nm or less are mixed at different mixing ratios represented by substance amounts. Preparing a data group indicating a relationship between a ratio of the amount of platinum particles contained in a mixed sample and a total amount of platinum particles contained in the mixed sample, and an open circuit potential;
(3) collating the measured value of the open circuit potential of the core-shell particles with the data group, and specifying a mixed sample exhibiting the same open circuit potential;
(4) The ratio of the substance amount of the platinum particles to the total of the substance amount of the palladium particles and the platinum substance contained in the specified mixed sample is determined as the coverage of the core-shell particles.
According to the second embodiment, it is not necessary to measure or calculate the area per unit mass of each of the particles of the core metal material and the shell metal material in the mixed sample by a method such as CV measurement. The quantitative procedure according to the invention can be greatly simplified.

この実施態様においては、同等の粒径分布を有するパラジウム粒子と白金粒子を用いるという観点から、平均粒径が4nm以上10nm以下かつ平均粒径の差が1nm以内であるパラジウム粒子と白金粒子を混合して混合試料を調製する。パラジウム粒子と白金粒子の平均粒径を4nm以上10nm以下かつ平均粒径の差が1nm以内に限定することによって、特に再現性の良い定量結果が得られる。
ここで、パラジウム粒子と白金粒子の平均粒径としては、X線回折法の定義に従う平均粒径の測定値を採用することができる。かかる定義に従う平均粒径は、例えば、次の方法で測定できる。
金属粒子にX線を照射し、その回折像から、結晶子サイズを次のScherrerの式(10)から求め、得られた結晶子サイズを平均粒径とする。
[式(10)]
D=(Kλ)/(βcosΘ)
上記式(10)において各符号の意味は次の通りである。
D:結晶子サイズ(nm)
K:Scherrer定数
λ:測定X線波長(nm)
β:半価幅(rad)
Θ:回折線のブラッグ角度(rad)
In this embodiment, from the viewpoint of using palladium particles and platinum particles having an equivalent particle size distribution, a mixture of palladium particles and platinum particles having an average particle size of 4 nm to 10 nm and an average particle size difference of 1 nm or less. To prepare a mixed sample. By limiting the average particle diameter of palladium particles and platinum particles to 4 nm or more and 10 nm or less and the difference in average particle diameter to within 1 nm, quantitative results with particularly good reproducibility can be obtained.
Here, as the average particle diameter of the palladium particles and the platinum particles, a measurement value of the average particle diameter according to the definition of the X-ray diffraction method can be adopted. The average particle diameter according to such a definition can be measured, for example, by the following method.
The metal particles are irradiated with X-rays, the crystallite size is determined from the following Scherrer equation (10) from the diffraction image, and the obtained crystallite size is defined as the average particle size.
[Formula (10)]
D = (Kλ) / (βcosΘ)
In the above formula (10), the meaning of each symbol is as follows.
D: Crystallite size (nm)
K: Scherrer constant λ: Measurement X-ray wavelength (nm)
β: Half width (rad)
Θ: Bragg angle (rad) of diffraction line

この実施態様においては、混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合と、開回路電位の関係を示すデータ群を用いる。ここで、混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合は「モル%」と定義され、対応する開回路電位を有するコアシェル粒子の被覆率(面積%)の値と同一視される。
この実施態様において、コアシェル粒子の被覆率をX、パラジウム粒子の物質量をC(単位モル)、白金粒子の物質量をD(単位モル)とすると、被覆率Xは次の式で表される。
[式(11)]
コアシェル粒子の被覆率X(単位%)
={白金粒子の物質量D(単位モル)/(パラジウム粒子の物質量C(単位モル)+白金粒子の物質量D(単位モル))}×100
上記式(11)において各符号の意味は次の通りである。
X:測定ターゲットであるコアシェル粒子の被覆率(単位%)
C:コアシェル粒子の開回路電位と等しい開回路電位を示す混合試料に含まれるコア金属材料の粒子であるパラジウム粒子の物質量(単位モル)
D:コアシェル粒子の開回路電位と等しい開回路電位を示す混合試料に含まれるシェル金属材料の粒子である白金粒子の物質量(単位モル)
従って,第2の実施態様においてコアシェル粒子の被覆率Xは、混合試料に含まれるパラジウム粒子と白金粒子の物質量で表される混合比(C:D)に基づいて計算することができる。
In this embodiment, a data group indicating the relationship between the ratio of the amount of platinum particles contained in the mixed sample and the amount of platinum particles contained in the mixed sample and the open circuit potential is used. Here, the ratio of the substance amount of the platinum particles to the total of the substance amount of the palladium particles and the platinum particles contained in the mixed sample is defined as “mol%”, and the coverage ratio of the core-shell particles having the corresponding open circuit potential It is identified with the value of (Area%).
In this embodiment, when the coverage of the core-shell particles is X, the amount of palladium particles is C (unit mol), and the amount of platinum particles is D (unit mol), the coverage X is expressed by the following formula. .
[Formula (11)]
Core shell particle coverage X (unit%)
= {Substance amount of platinum particles D (unit mole) / (Substance amount of palladium particles C (unit mole) + Substance amount of platinum particles D (unit mole))} × 100
In the above formula (11), the meaning of each symbol is as follows.
X: Coverage (unit%) of core-shell particles that are measurement targets
C: Substance amount (unit mol) of palladium particles that are particles of the core metal material contained in the mixed sample exhibiting an open circuit potential equal to the open circuit potential of the core-shell particles
D: Substance amount (unit mol) of platinum particles, which are particles of the shell metal material contained in the mixed sample showing an open circuit potential equal to the open circuit potential of the core-shell particles
Therefore, in the second embodiment, the coverage X of the core-shell particles can be calculated based on the mixing ratio (C: D) expressed by the amount of palladium particles and platinum particles contained in the mixed sample.

2.コアシェル粒子の製造方法
本発明におけるコアシェル粒子の製造方法は、コア金属材料を含むコア部を、シェル金属材料を含むシェル部で被覆した後、上述のコアシェル粒子の被覆率定量方法により被覆率を定量し、その定量値が所定値未満の時に、シェル金属材料を追加被覆することを特徴とする。
2. Core-shell particle manufacturing method The core-shell particle manufacturing method of the present invention is a method in which a core part containing a core metal material is coated with a shell part containing a shell metal material, and then the coverage is quantified by the above-described core-shell particle coverage quantification method. When the quantitative value is less than a predetermined value, the shell metal material is additionally coated.

本発明における上記所定値、すなわち被覆率の目標値は、コアシェル粒子の用途により適宜決定できる。例えば、コアシェル粒子を燃料電池の電極触媒に用いる場合には、被覆率の目標値を50%以上の値に設定することが好ましい。   The predetermined value in the present invention, that is, the target value of the coverage can be appropriately determined depending on the use of the core-shell particles. For example, when using core-shell particles for an electrode catalyst of a fuel cell, it is preferable to set the target value of the coverage to a value of 50% or more.

図2は、本発明のコアシェル粒子の製造方法の典型例を示したフローチャートである。なお、本発明は、必ずしも本典型例のみに限定されるものではない。以下、図2に沿って本発明の製造方法について説明する。
まず、対象となるコアシェル粒子を準備する(手順1)。次に、コアシェル粒子について開回路電位の測定を行う(手順2)。開回路電位の測定方法は、上述した通りである。続いて、開回路電位の測定値から、コアシェル粒子の被覆率を定量する(手順3)。次に、定量された被覆率と予め設定した所定値とを比較する(手順4)。被覆率が所定値以上である場合には、コアシェル粒子の製造を終了する。一方、被覆率が所定値未満である場合には、コアシェル粒子にシェル金属材料を追加被覆する(手順5)。このように、手順4において所定値を満たしていない場合、手順5において、コアシェル粒子にシェル金属材料を追加被覆し、所望の被覆率を有するコアシェル粒子が得られるまで繰り返し手順1から手順5を行う。
FIG. 2 is a flowchart showing a typical example of the method for producing core-shell particles of the present invention. In addition, this invention is not necessarily limited only to this typical example. Hereafter, the manufacturing method of this invention is demonstrated along FIG.
First, target core-shell particles are prepared (procedure 1). Next, an open circuit potential is measured for the core-shell particles (procedure 2). The method for measuring the open circuit potential is as described above. Subsequently, the coverage of the core-shell particles is quantified from the measured value of the open circuit potential (procedure 3). Next, the quantified coverage is compared with a predetermined value (procedure 4). When the coverage is equal to or higher than the predetermined value, the production of the core-shell particles is finished. On the other hand, when the coverage is less than the predetermined value, the shell metal material is additionally coated on the core-shell particles (procedure 5). As described above, when the predetermined value is not satisfied in the procedure 4, the shell metal material is additionally coated on the core-shell particles in the procedure 5, and the procedures 1 to 5 are repeated until the core-shell particles having a desired coverage are obtained. .

(シェル金属材料を追加被覆する方法)
本発明において、コアシェル粒子にシェル金属材料を追加被覆する方法は、特に限定されず、例えば、電位サイクル処理、酸洗浄処理、UPD法、化学還元処理等が挙げられる。
電位サイクル処理は、特に限定されないが、コアシェル粒子に電位サイクル(例えば、1.1V〜0.6VvsRHEの矩形波等)をかけ、コア部のコア金属材料を部分的に溶出させ、溶け難いシェル部のセルフヒーリング効果を促進させることで、露出したコア部を抑制させる方法等が挙げられる。この場合、コアシェル粒子の粒径が一回り小さくなるが、シェル部の欠陥が少ないコアシェル粒子ができる。
酸洗浄処理は、特に限定されないが、コアシェル粒子を硝酸等の酸に浸漬させ、電位サイクル処理と同様に、コア部のコア金属材料を部分的に溶出させ、溶け難いシェル部のセルフヒーリング効果を促進させることで、露出したコア部を抑制させる方法等が挙げられる。この場合も、電位サイクル処理と同様に、コアシェル粒子の粒径が一回り小さくなるが、シェル部の欠陥が少ないコアシェル粒子ができる。
UPD法は、特に限定されないが、銅を用いてもよいし、それ以外の金属による置換メッキを行ってもよい。Cu−UPD法の場合、析出終点を電位で制御することにより、必要量の銅層を形成することができる。
化学還元処理は、特に限定されないが、アルコール類や水素を使用したシェル金属材料の金属塩による化学還元を行ってもよい。
(Method of additionally coating shell metal material)
In the present invention, the method of additionally coating the core-shell particles with the shell metal material is not particularly limited, and examples include potential cycle treatment, acid cleaning treatment, UPD method, and chemical reduction treatment.
The potential cycle treatment is not particularly limited, but the core shell particle is subjected to a potential cycle (for example, 1.1 V to 0.6 V vs. RHE rectangular wave) to partially elute the core metal material of the core portion, and the shell portion that is difficult to melt For example, a method of suppressing the exposed core part by promoting the self-healing effect. In this case, although the particle diameter of the core-shell particles is slightly reduced, core-shell particles with few defects in the shell portion can be obtained.
The acid cleaning treatment is not particularly limited, but the core shell particles are immersed in an acid such as nitric acid, and the core metal material in the core portion is partially eluted in the same manner as the potential cycle treatment, and the self-healing effect of the shell portion that is difficult to dissolve is obtained. Examples of the method include a method of suppressing the exposed core part by promoting it. In this case as well, as with the potential cycle treatment, the core-shell particle size is slightly reduced, but core-shell particles with few defects in the shell portion can be obtained.
The UPD method is not particularly limited, but copper may be used, or substitution plating with other metals may be performed. In the case of the Cu-UPD method, the required amount of copper layer can be formed by controlling the deposition end point with the potential.
The chemical reduction treatment is not particularly limited, but chemical reduction using a metal salt of a shell metal material using alcohols or hydrogen may be performed.

このように、本発明のコアシェル粒子の被覆率定量方法をコアシェル粒子の製造方法に適用することで、触媒の良品判断が簡易的になり、被覆率の定量の精度が向上し、優れたコアシェル粒子のみを触媒反応に供することができる。
本発明の製造方法によって得られたコアシェル粒子を、例えば、燃料電池の電極に用いる場合には、コア金属材料の粒子の溶出により電圧が低下するおそれがなく、優れた放電性能を有する電池の提供が可能となる。また、本発明の製造方法により、高品質なコアシェル粒子を無駄なく提供できる。
In this way, by applying the core shell particle coverage determination method of the present invention to the core shell particle manufacturing method, it is easy to determine the quality of the catalyst, the accuracy of the coverage determination is improved, and excellent core shell particles Only can be subjected to catalytic reaction.
When the core-shell particles obtained by the production method of the present invention are used for, for example, an electrode of a fuel cell, there is no fear that the voltage is lowered due to elution of the particles of the core metal material, and a battery having excellent discharge performance is provided. Is possible. In addition, the production method of the present invention can provide high-quality core-shell particles without waste.

以下に、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples.

(実施例1)
1.カーボンに担持されたコアシェル粒子(Pt/Pd/C)の合成
0.5gの30wt%パラジウム担持カーボン粉(以下Pd/C)をグラファイト製容器に入れ、1.0Lの0.05M硫酸水溶液を加えた。
グラファイト製容器を作用極(以下WE)として、白金メッシュを対極(以下CE)として、銀−塩化銀電極を参照極(以下RE)としてセットし、各々が硫酸水溶液に浸るようにした。
容器を密閉し、Pd/Cが懸濁した硫酸水溶液に窒素を50cc/minで30分間バブリングした。その後、水素を50cc/minで30分間バブリングした。
WE、RE、CEをポテンショスタット(北斗電工株式会社製、HZ−5000)に接続し、WEを0.40〜0.45VvsRHE間でCVを360サイクル回した。電位の掃引速度は5mV/sで行った。
容器内に14.6gの硫酸銅5水和物を66mLの0.05Mの硫酸水溶液に溶解したものを加え、WEの電位を0.40VvsRHEで2時間、一定にし、パラジウム粒子の表面に銅の単原子層を析出させた。
容器内に161.3mgの塩化白金カリウムと4.5gのクエン酸1水和物を140mLの0.05Mの硫酸水溶液に溶解したものを約80分かけて加え、その後、懸濁液は1時間攪拌し、パラジウム粒子の表面に白金の単原子層を析出させた。
その後、約15mLの懸濁液を抽出し、濾過した。300mLの超純水で洗浄し、3時間真空乾燥しカーボン担持コアシェル粒子を得た。
Example 1
1. Synthesis of core-shell particles supported on carbon (Pt / Pd / C) 0.5 g of 30 wt% palladium-supported carbon powder (hereinafter referred to as Pd / C) is placed in a graphite container, and 1.0 L of 0.05 M sulfuric acid aqueous solution is added. It was.
A graphite vessel was set as a working electrode (hereinafter referred to as WE), a platinum mesh as a counter electrode (hereinafter referred to as CE), and a silver-silver chloride electrode as a reference electrode (hereinafter referred to as RE), and each was immersed in a sulfuric acid aqueous solution.
The vessel was sealed, and nitrogen was bubbled into the sulfuric acid aqueous solution in which Pd / C was suspended at 50 cc / min for 30 minutes. Thereafter, hydrogen was bubbled at 50 cc / min for 30 minutes.
WE, RE, and CE were connected to a potentiostat (HZ-5000, manufactured by Hokuto Denko Corporation), and CV was rotated 360 cycles between 0.40 to 0.45 V vs. RHE. The potential sweep rate was 5 mV / s.
A solution prepared by dissolving 14.6 g of copper sulfate pentahydrate in 66 mL of 0.05 M aqueous sulfuric acid solution was added to the container, and the WE potential was kept constant at 0.40 V vs RHE for 2 hours. A monoatomic layer was deposited.
A solution prepared by dissolving 161.3 mg of potassium platinum chloride and 4.5 g of citric acid monohydrate in 140 mL of 0.05 M aqueous sulfuric acid solution was added to the vessel over about 80 minutes, and then the suspension was added for 1 hour. The mixture was stirred to deposit a platinum monoatomic layer on the surface of the palladium particles.
Thereafter, about 15 mL of suspension was extracted and filtered. It was washed with 300 mL of ultrapure water and vacuum dried for 3 hours to obtain carbon-supported core-shell particles.

2.データ群の作成
平均粒径が4.5nmのパラジウム粒子及び平均粒径が5.4nmの白金粒子を、それぞれ同種のカーボンに担持させ、パラジウム粒子担持カーボン及び白金粒子担持カーボンを用意した。
これらの担持体を、白金粒子の物質量とパラジウム粒子の物質量の合計に対する白金粒子の物質量の割合が0モル%、20モル%、40モル%、60モル%、80モル%、100モル%となるように混合し、それぞれの混合試料を作用極であるグラッシーカーボン電極上に塗布し、酸素飽和の0.1M過塩素酸水溶液中にて1600rpmで回転させながらそれぞれの混合試料についての開回路電位を測定した。図3は、それぞれの混合試料に含まれる白金粒子の物質量とパラジウム粒子の物質量の合計に対する白金粒子の物質量の割合(mol%)に対するそれぞれの混合試料についての開回路電位(mV)の関係を示した検量線である。
2. Creation of data group Palladium particles having an average particle diameter of 4.5 nm and platinum particles having an average particle diameter of 5.4 nm were supported on the same kind of carbon, respectively, to prepare palladium particle-supporting carbon and platinum particle-supporting carbon.
The ratio of the amount of platinum particles to the total amount of platinum particles and palladium particles is 0 mol%, 20 mol%, 40 mol%, 60 mol%, 80 mol%, 100 mol. %, And each mixed sample was applied on a glassy carbon electrode as a working electrode, and rotated at 1600 rpm in an oxygen-saturated 0.1 M perchloric acid aqueous solution. The circuit potential was measured. FIG. 3 shows the open circuit potential (mV) of each mixed sample with respect to the ratio (mol%) of the amount of platinum particles to the total amount of platinum particles and palladium particles contained in each mixed sample. It is a calibration curve showing the relationship.

3.追加被覆前のコアシェル粒子の評価
追加被覆前のコアシェル粒子について、開回路電位の測定、被覆率の定量、白金の単位質量当たりの触媒活性の測定、及び、パラジウムコアの溶出速度を、次の手順で測定した。
(1)開回路電位及び被覆率
乾燥して得られたコアシェル粒子の粉末を乳鉢ですりつぶした。この粉末を、6.0mLの超純水、1.5mLのイソプロパノール、35μLの5%パーフルオロスルホン酸ポリマー系電解質(Nafion(登録商標:デュポン株式会社製))分散液の混合溶液に加え、分散させた。この溶液をRDEに塗布し、自然乾燥した。
乾燥したRDEを、酸素飽和(30mL/minで事前に30分以上バブリング)の0.1M過塩素酸水溶液中で回転させ(1600rpm)、浸漬から3分後の開回路電位を測定した。
開回路電位の測定値を図3の検量線と照らし合わせ、対応する物質量の割合(mol%)の数値を、コアシェル粒子の被覆率と判断した。なお被覆率は、白金粒子100%(パラジウム粒子0%)の対照試料について測定された開回路電位を基準に算出した。
3. Evaluation of core-shell particles before additional coating For core-shell particles before additional coating, open circuit potential measurement, coverage quantification, measurement of catalyst activity per unit mass of platinum, and elution rate of palladium core, Measured with
(1) Open circuit potential and coverage The powder of core-shell particles obtained by drying was ground in a mortar. This powder was added to a mixed solution of 6.0 mL of ultrapure water, 1.5 mL of isopropanol, and 35 μL of 5% perfluorosulfonic acid polymer electrolyte (Nafion (registered trademark: manufactured by DuPont)) dispersion, and dispersed. I let you. This solution was applied to RDE and air dried.
The dried RDE was rotated (1600 rpm) in a 0.1 M aqueous solution of perchloric acid saturated with oxygen (30 mL / min for 30 minutes or more in advance), and the open circuit potential was measured 3 minutes after immersion.
The measured value of the open circuit potential was compared with the calibration curve of FIG. 3, and the numerical value of the ratio (mol%) of the corresponding substance amount was determined as the coverage of the core-shell particles. The coverage was calculated based on the open circuit potential measured for a control sample of 100% platinum particles (0% palladium particles).

(2)白金の単位質量当たりの触媒活性
「(1)開回路電位及び被覆率」に記載の方法と同様の方法で調製したコアシェル粒子の溶液をRDEに塗布し、自然乾燥した。
乾燥したRDEを、酸素飽和(30mL/minで事前に30分以上バブリング)の0.1M過塩素酸水溶液中で回転させ(1600rpm)、この状態で電位を1.05Vから0.05V(vsRHE)の範囲で10mV/秒の速度で掃引した。0.95Vと0.35Vの値が安定するまで掃引を繰り返し、0.9Vの電流値を酸素還元電流(I0.9)、0.35Vの電流値を拡散限界電流(Ilim)とし、次式(12)から活性化支配電流(Ik)を求めた。そして、RDE上に塗布した白金量(g)でIk(A)を除して白金の単位質量当たりの触媒活性(A/g−Pt)を算出した。
[式(12)]
Ik=(Ilim×I0.9)/(Ilim−I0.9
上記式(12)において各符号の意味は次の通りである。
Ik:活性化支配電流(A)
lim:拡散限界電流(A)
0.9:酸素還元電流(A)
(2) Catalyst activity per unit mass of platinum A solution of core-shell particles prepared by a method similar to the method described in “(1) Open circuit potential and coverage” was applied to RDE and air dried.
The dried RDE was rotated (1600 rpm) in a 0.1 M aqueous solution of perchloric acid saturated with oxygen (30 mL / min for 30 minutes in advance) and the potential was changed from 1.05 V to 0.05 V (vsRHE). In the range of 10 mV / sec. The sweep is repeated until the values of 0.95 V and 0.35 V are stabilized, the current value of 0.9 V is the oxygen reduction current (I 0.9 ), the current value of 0.35 V is the diffusion limit current (I lim ), The activation dominant current (Ik) was determined from the following equation (12). And Ik (A) was remove | divided by the amount (g) of platinum apply | coated on RDE, and the catalyst activity per unit mass of platinum (A / g-Pt) was computed.
[Formula (12)]
Ik = (I lim × I 0.9 ) / (I lim −I 0.9 )
In the above formula (12), the meaning of each symbol is as follows.
Ik: Activation dominant current (A)
I lim : diffusion limit current (A)
I 0.9 : Oxygen reduction current (A)

(3)パラジウムコアの溶出速度
上記被覆率の定量に用いたコアシェル粒子の粉末を乳鉢ですりつぶした。
この粉末を、80℃の0.1mol/L硫酸に浸漬させた。1時間後、硫酸を濾過し、濾液について誘導結合プラズマ質量分析(Inductively Coupled Plasma Mass Spectroscopy:ICP−MS)により、硫酸に溶出したパラジウム元素を定量した。溶出量は、パラジウムコア全量に対する1時間当たりの溶出質量(wt%/hr)として表した。
(3) Elution rate of palladium core The powder of the core-shell particles used for the determination of the coverage was ground in a mortar.
This powder was immersed in 0.1 mol / L sulfuric acid at 80 ° C. After 1 hour, sulfuric acid was filtered, and the palladium element eluted in sulfuric acid was quantified by inductively coupled plasma mass spectrometry (ICP-MS). The elution amount was expressed as an elution mass per hour (wt% / hr) with respect to the total amount of the palladium core.

4.追加被覆処理
追加被覆処理は、(A)電位サイクル処理、(B)酸洗浄処理、(C)Cu−UPD処理のそれぞれの方法で行った。
(A)電位サイクル処理
懸濁液を濾過し、コアシェル粒子を回収した。3Lの超純水でコアシェル粒子の粉末を洗浄した。
コアシェル粒子の粉末をグラファイト板上に常温で加圧プレスし、固定化した。
グラファイトに固定化したコアシェル粒子を酸素飽和の0.1M過塩素酸水溶液中に浸漬した。このグラファイト板をWEとし、白金メッシュをCE、銀−塩化銀電極をREとして同系に加えた。WEの電位を0.2V〜1.1VvsRHE、50mV/sで80回電位サイクルさせ、不要なパラジウム粒子を溶出除去した。
コアシェル粒子をグラファイト上から剥がし、超音波を使用し分散させ、濾過し、コアシェル粒子を回収した。3Lの超純水でコアシェル粒子の粉末を洗浄し、50℃で、6時間真空乾燥した。
(B)酸洗浄処理
懸濁液を濾過し、コアシェル粒子を回収した。3Lの超純水でコアシェル粒子の粉末を洗浄した。
コアシェル粒子の粉末を0.8Lの酸素飽和の1.0M硝酸水溶液に懸濁させ、60分間攪拌させた。
懸濁液を濾過し、コアシェル粒子の粉末を洗浄し、50℃で、6時間真空乾燥した。
(C)Cu−UPD処理
コアシェル粒子の懸濁液を含む容器のWEを再び0.4VvsRHEとし、60分間電位を一定にした。なお、元々溶液内にCuが過剰に存在するためCuの追加は不要である。
塩化白金カリウムと1.0gのクエン酸を0.05M硫酸に溶かし、コアシェル粒子の懸濁液に加えた。塩化白金カリウムは検量線より見積もった白金の不足分の1.2倍を加えた。懸濁液は60分攪拌した。
懸濁液を濾過し、コアシェル粒子を回収した。3Lの超純水でコアシェル粒子の粉末を洗浄し、50℃で、6時間真空乾燥した。
4). Additional coating treatment The additional coating treatment was performed by (A) potential cycle treatment, (B) acid cleaning treatment, and (C) Cu-UPD treatment.
(A) Potential cycle treatment The suspension was filtered to collect core-shell particles. The core-shell particle powder was washed with 3 L of ultrapure water.
The powder of the core-shell particles was press-pressed on a graphite plate at room temperature and fixed.
The core-shell particles immobilized on graphite were immersed in an oxygen-saturated 0.1M perchloric acid aqueous solution. This graphite plate was added to the same system as WE, platinum mesh as CE, and silver-silver chloride electrode as RE. The potential of WE was cycled 80 times at 0.2 V to 1.1 V vs. RHE and 50 mV / s to elute and remove unnecessary palladium particles.
The core-shell particles were peeled off from the graphite, dispersed using ultrasonic waves, and filtered to collect the core-shell particles. The powder of the core-shell particles was washed with 3 L of ultrapure water and vacuum dried at 50 ° C. for 6 hours.
(B) Acid washing treatment The suspension was filtered to collect core-shell particles. The core-shell particle powder was washed with 3 L of ultrapure water.
The core-shell particle powder was suspended in 0.8 L of oxygen-saturated 1.0 M nitric acid aqueous solution and stirred for 60 minutes.
The suspension was filtered, and the powder of the core-shell particles was washed and vacuum-dried at 50 ° C. for 6 hours.
(C) Cu-UPD treatment The WE of the container containing the suspension of core-shell particles was again set to 0.4 V vs RHE, and the potential was kept constant for 60 minutes. In addition, since Cu originally exists in a solution excessively, addition of Cu is unnecessary.
Potassium chloride chloride and 1.0 g of citric acid were dissolved in 0.05 M sulfuric acid and added to the suspension of core-shell particles. For platinum potassium chloride, 1.2 times the platinum deficiency estimated from the calibration curve was added. The suspension was stirred for 60 minutes.
The suspension was filtered to collect the core-shell particles. The powder of the core-shell particles was washed with 3 L of ultrapure water and vacuum dried at 50 ° C. for 6 hours.

5.追加被覆後のコアシェル粒子の評価
上記(A)の電位サイクル処理によって得られたコアシェル粒子の粉末の開回路電位を測定し、被覆率を定量した。また当該コアシェル粒子について、白金の単位質量当たりの触媒活性及びパラジウムコアの溶出速度を測定した。
5. Evaluation of core-shell particles after additional coating The open-circuit potential of the powder of core-shell particles obtained by the potential cycle treatment of (A) above was measured, and the coverage was quantified. Moreover, about the said core-shell particle, the catalyst activity per unit mass of platinum and the elution rate of the palladium core were measured.

(比較例1)
実施例1においてコアシェル粒子の合成に用いたパラジウム担持カーボン粉について、実施例1と同じ方法で開回路電位の測定、被覆率の定量、パラジウムコアの溶出速度の測定を行った。
(Comparative Example 1)
With respect to the palladium-supported carbon powder used for the synthesis of the core-shell particles in Example 1, the open circuit potential was measured, the coverage was quantified, and the elution rate of the palladium core was measured in the same manner as in Example 1.

(評価結果)
実施例1の追加被覆前及び追加被覆後のコアシェル粒子、並びに、比較例1のコアシェル粒子について、開回路電位、被覆率、白金の質量当たりの触媒活性、パラジウム溶出速度の測定結果を表1に示す。
(Evaluation results)
Table 1 shows the measurement results of the open-circuit potential, the coverage, the catalytic activity per mass of platinum, and the palladium elution rate of the core-shell particles before and after the additional coating of Example 1 and the core-shell particles of Comparative Example 1. Show.

上記図3のような検量線を作成することにより、被覆率が未知のコアシェル粒子について、その開回路電位を測定することにより、被覆率を定量できた。
比較例1においては、被覆処理を全く施していないパラジウム粒子について開回路電位を測定し、検量線と照らし合わせた結果、被覆率0%と判断された。
一方、実施例1においては、本発明の方法によってコアシェル粒子の被覆率を第1回目の定量を行い、追加被覆後に第2回目の定量を行った結果、表1に示すように、白金の質量当たりの触媒活性が450(A/g−Pt)から730(A/g−Pt)に向上し、活性値のばらつきも±25%から±10%に減少した。追加被覆後は、コアシェル粒子からのパラジウム溶出速度も格段に小さくなった。
また、良品判断に要する解析時間が従来は3週間程度かかっていたのに対し、実施例1では0.5日に短縮され、解析判断の手順も簡易的になった。
By creating a calibration curve as shown in FIG. 3 above, the coverage could be quantified by measuring the open circuit potential of core-shell particles with unknown coverage.
In Comparative Example 1, the open circuit potential was measured for palladium particles that had not been subjected to any coating treatment, and was compared with a calibration curve. As a result, the coverage was determined to be 0%.
On the other hand, in Example 1, the coating amount of the core-shell particles was first determined by the method of the present invention, and the second determination was performed after the additional coating. As a result, as shown in Table 1, the mass of platinum Per catalytic activity was improved from 450 (A / g-Pt) to 730 (A / g-Pt), and the variation in activity value was reduced from ± 25% to ± 10%. After the additional coating, the palladium elution rate from the core-shell particles was also significantly reduced.
In addition, the analysis time required for non-defective product determination was conventionally about 3 weeks, but in Example 1, the analysis time was shortened to 0.5 days and the analysis determination procedure was simplified.

1 ガラスセル
2 電解液
3 分散液
4 作用極
5 参照極
6 気体の導入管
7 気泡
DESCRIPTION OF SYMBOLS 1 Glass cell 2 Electrolytic solution 3 Dispersion liquid 4 Working electrode 5 Reference electrode 6 Gas introduction tube 7 Bubble

Claims (6)

コア金属材料を含むコア部と、シェル金属材料を含み且つ前記コア部を被覆するシェル部を備えるコアシェル粒子の被覆率を定量する方法であって、
コアシェル粒子の開回路電位を測定し、
コア金属材料の粒子とシェル金属材料の粒子を混合してなる混合試料であって、前記コアシェル粒子の開回路電位の測定値と同じ開回路電位を有するものに含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対するシェル金属材料の粒子の表面積の割合を、コアシェル粒子の被覆率と判断することを特徴とする、コアシェル粒子の被覆率定量方法。
A method for quantifying the coverage of core-shell particles comprising a core part containing a core metal material and a shell part containing a shell metal material and covering the core part,
Measure the open circuit potential of the core-shell particles,
Surface area of the particles of the core metal material contained in the mixed sample formed by mixing the particles of the core metal material and the particles of the shell metal material having the same open circuit potential as the measured value of the open circuit potential of the core shell particle The ratio of the surface area of the particles of the shell metal material to the total surface area of the particles of the shell metal material is determined as the coverage of the core-shell particles.
コアシェル粒子の開回路電位を測定する工程と、
コア金属材料の粒子とシェル金属材料の粒子の質量で表される混合比が異なる複数の混合試料からなる混合試料群において、混合比と開回路電位の関係を示すデータ群を準備する工程と、
前記コアシェル粒子の開回路電位の測定値をデータ群と照合し、同じ開回路電位を示す混合試料を特定する工程を有し、
特定した混合試料に含まれるコア金属材料の粒子の表面積とシェル金属材料の粒子の表面積の合計に対する、シェル金属材料の粒子の表面積の割合を、コア金属材料の粒子の単位質量当たり面積、シェル金属材料の粒子の単位質量当たり面積、及び、コア金属材料の粒子とシェル金属材料の粒子の混合比に基づいて計算し、得られた計算値をコアシェル粒子の被覆率と判断することを特徴とする、請求項1に記載の被覆率定量方法。
Measuring the open circuit potential of the core-shell particles;
In a mixed sample group consisting of a plurality of mixed samples having different mixing ratios represented by the mass of the core metal material particles and the shell metal material particles, preparing a data group indicating the relationship between the mixing ratio and the open circuit potential;
Collating the measured value of the open-circuit potential of the core-shell particles with a data group, and identifying a mixed sample exhibiting the same open-circuit potential;
The ratio of the surface area of the particles of the core metal material to the total surface area of the particles of the core metal material and the shell metal material contained in the specified mixed sample is expressed as the area per unit mass of the core metal material particles, the shell metal It is calculated based on the area per unit mass of the particles of the material and the mixing ratio of the particles of the core metal material and the particles of the shell metal material, and the obtained calculated value is judged as the coverage of the core shell particles The coverage quantification method according to claim 1.
前記コア金属材料が、パラジウム、銅、ニッケル、ロジウム、銀、金およびイリジウム並びにこれらから選ばれる金属を含む合金からなる群より選ばれる金属材料である、請求項1又は2に記載の被覆率定量方法。   The coverage quantification according to claim 1 or 2, wherein the core metal material is a metal material selected from the group consisting of palladium, copper, nickel, rhodium, silver, gold, iridium, and an alloy containing a metal selected from these. Method. 前記シェル金属材料が、白金、イリジウム、ルテニウム、ロジウムおよび金並びにこれらから選ばれる金属を含む合金からなる群より選ばれる金属材料である、請求項1乃至3のいずれか一項に記載の被覆率定量方法。   The coverage according to any one of claims 1 to 3, wherein the shell metal material is a metal material selected from the group consisting of platinum, iridium, ruthenium, rhodium and gold and an alloy containing a metal selected from these. Quantitation method. コア金属材料としてパラジウムを含むコア部と、シェル金属材料として白金を含み且つ前記コア部を被覆するシェル部を備えるコアシェル粒子の被覆率を定量する方法であって、
コアシェル粒子の開回路電位を測定する工程と、
平均粒径が4nm以上10nm以下かつ平均粒径の差が1nm以内であるパラジウム粒子及び白金粒子を、物質量で表される混合比を異ならしめて混合した複数の混合試料からなる混合試料群において、混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合と、開回路電位の関係を示すデータ群を準備する工程と、
前記コアシェル粒子の開回路電位の測定値を前記データ群と照合し、同じ開回路電位を示す混合試料を特定する工程を有し、
特定した混合試料に含まれるパラジウム粒子の物質量と白金粒子の物質量の合計に対する白金粒子の物質量の割合を、コアシェル粒子の被覆率と判断することを特徴とする、コアシェル粒子の被覆率定量方法。
A method of quantifying the coverage of core-shell particles comprising a core part containing palladium as a core metal material and a shell part containing platinum as a shell metal material and covering the core part,
Measuring the open circuit potential of the core-shell particles;
In a mixed sample group consisting of a plurality of mixed samples in which palladium particles and platinum particles having an average particle diameter of 4 nm to 10 nm and an average particle diameter difference of 1 nm or less are mixed at different mixing ratios represented by substance amounts, A step of preparing a data group indicating a relationship between a ratio of a substance amount of platinum particles to a sum of a substance amount of palladium particles and a substance amount of platinum particles contained in the mixed sample, and an open circuit potential;
Collating the measured value of the open circuit potential of the core-shell particles with the data group, and identifying a mixed sample exhibiting the same open circuit potential,
Coverage quantification of core-shell particles, characterized in that the ratio of the amount of platinum particles to the total amount of palladium particles and platinum particles contained in the specified mixed sample is determined as the core-shell particle coverage. Method.
コアシェル粒子の製造方法であって、コア金属材料を含むコア部を、シェル金属材料を含むシェル部で被覆した後、前記請求項1乃至5のいずれか一項に記載の定量方法により被覆率を定量し、その定量値が所定値未満である場合に、シェル金属材料を追加被覆することを特徴とする、コアシェル粒子の製造方法。   It is a manufacturing method of core-shell particle | grains, Comprising: After coat | covering the core part containing a core metal material with the shell part containing a shell metal material, a coverage is measured by the fixed_quantity | quantitative_assay method as described in any one of the said Claims 1 thru | or 5. A method for producing core-shell particles, characterized in that when the amount is quantitatively determined and the quantitative value is less than a predetermined value, the shell metal material is additionally coated.
JP2012104504A 2012-05-01 2012-05-01 Method for quantifying coverage of core-shell particles and method for producing core-shell particles Active JP5673598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104504A JP5673598B2 (en) 2012-05-01 2012-05-01 Method for quantifying coverage of core-shell particles and method for producing core-shell particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104504A JP5673598B2 (en) 2012-05-01 2012-05-01 Method for quantifying coverage of core-shell particles and method for producing core-shell particles

Publications (2)

Publication Number Publication Date
JP2013231689A true JP2013231689A (en) 2013-11-14
JP5673598B2 JP5673598B2 (en) 2015-02-18

Family

ID=49678246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104504A Active JP5673598B2 (en) 2012-05-01 2012-05-01 Method for quantifying coverage of core-shell particles and method for producing core-shell particles

Country Status (1)

Country Link
JP (1) JP5673598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056485A1 (en) * 2013-10-18 2015-04-23 トヨタ自動車株式会社 Carbon-supported catalyst
US10305113B2 (en) 2014-07-31 2019-05-28 Toyota Jidosha Kabushiki Kaisha Method for producing core-shell catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135359A1 (en) * 2004-12-22 2006-06-22 Radoslav Adzic Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
WO2011125197A1 (en) * 2010-04-07 2011-10-13 トヨタ自動車株式会社 Core-shell type metal nanoparticles and method for manufacturing the same
JP2011212666A (en) * 2010-03-19 2011-10-27 Doshisha Platinum core-shell catalyst manufacturing method, and fuel cell using catalyst
JP2012016684A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Method of producing core-shell catalyst particle, and core-shell catalyst particle produced by the production method
JP2012120949A (en) * 2010-12-06 2012-06-28 Toyota Motor Corp Method for producing platinum/palladium core-shell catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135359A1 (en) * 2004-12-22 2006-06-22 Radoslav Adzic Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
JP2011212666A (en) * 2010-03-19 2011-10-27 Doshisha Platinum core-shell catalyst manufacturing method, and fuel cell using catalyst
WO2011125197A1 (en) * 2010-04-07 2011-10-13 トヨタ自動車株式会社 Core-shell type metal nanoparticles and method for manufacturing the same
JP2012016684A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Method of producing core-shell catalyst particle, and core-shell catalyst particle produced by the production method
JP2012120949A (en) * 2010-12-06 2012-06-28 Toyota Motor Corp Method for producing platinum/palladium core-shell catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011014615; 青木 潤珠、浦田 翔、福塚友和、内本 喜晴: 'その場X線吸収法を用いたコアシェル型Pt/Pd/C触媒の電気化学反応活性の解明' 第33回電解技術討論会-ソーダ工業技術討論会-講演要旨集 , 20091124, 89-92 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056485A1 (en) * 2013-10-18 2015-04-23 トヨタ自動車株式会社 Carbon-supported catalyst
US10305113B2 (en) 2014-07-31 2019-05-28 Toyota Jidosha Kabushiki Kaisha Method for producing core-shell catalyst

Also Published As

Publication number Publication date
JP5673598B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
Zhao et al. Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers
Rowley-Neale et al. 2D molybdenum disulphide (2D-MoS 2) modified electrodes explored towards the oxygen reduction reaction
Bizzotto et al. Ir nanoparticles with ultrahigh dispersion as oxygen evolution reaction (OER) catalysts: synthesis and activity benchmarking
Yang et al. Combinatorial studies of palladium-based oxygen reduction electrocatalysts for alkaline fuel cells
JP6608753B2 (en) PdRu alloy electrode material and manufacturing method thereof
Hornberger et al. In situ stability studies of platinum nanoparticles supported on ruthenium− titanium mixed oxide (RTO) for fuel cell cathodes
Zhao et al. Au–Pt alloy nanocatalysts for electro-oxidation of methanol and their application for fast-response non-enzymatic alcohol sensing
Habibi et al. Electrocatalytic oxidation of formic acid and formaldehyde on platinum nanoparticles decorated carbon-ceramic substrate
Kiani et al. Fabrication of platinum coated nanoporous gold film electrode: a nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction
Hameed Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R
Mittermeier et al. Monometallic palladium for oxygen reduction in PEM fuel cells: particle-size effect, reaction mechanism, and voltage cycling stability
Sharma et al. Critical thinking on baseline corrections for electrochemical surface area (ECSA) determination of Pt/C through H-adsorption/H-desorption regions of a cyclic voltammogram
WO2015056485A1 (en) Carbon-supported catalyst
Mamat et al. The performance and degradation of Pt electrocatalysts on novel carbon carriers for PEMFC applications
Niu et al. Highly active and durable methanol electro-oxidation catalyzed by small palladium nanoparticles inside sulfur-doped carbon microsphere
Nandan et al. A unique approach to designing resilient bi-functional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres
Yang et al. Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: Approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces
JP5664370B2 (en) Method for producing catalyst fine particles
JP2015529551A (en) High surface area unsupported catalysts for electrochemical processes and their preparation
Kondo et al. Boron-doped diamond powder as a durable support for platinum-based cathode catalysts in polymer electrolyte fuel cells
Cheng et al. Fabrication of coral-like Pd based porous MnO2 nanosheet arrays on nickel foam for methanol electrooxidation
Yohannes et al. Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid
JP5673598B2 (en) Method for quantifying coverage of core-shell particles and method for producing core-shell particles
Habibi et al. Electrosynthesis, characterization and electrocatalytic properties of Pt–Sn/CCE towards oxidation of formic acid
JP5482690B2 (en) Method for producing electrode material for fuel cell and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151